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A B S T R A C T

One near ultraviolet (NUV) chip coated with tricolor phosphors to fabricate the white light
emitting diode (WLED) has been attractive widely. In this paper, the blue emitting
LiCaPO4:Eu2+, together with the red CaSiAlN3: Eu2+ and the green (Sr, Ba)SiO4: Eu2+ phosphor,
is selected as the tricolor components for the NUV excited WLED preparation. The as-prepared
WLED exhibits good luminescent performances with the color rendering index (Ra) of 88.6, the
correlation color temperature of 3351 K, the lumen efficiency of 77.05 lm/W, and the color co-
ordinates located at (0.4399, 0.4389). It is worth mentioning that the blue-light of the warm
WLED succeeds to keep away from the hazard zone centered at 450 nm. Furthermore, a full
spectrum warm WLED with the color rendering index (CRI) of 95.8 is fabricated by adding the
fourth component as the Sr5(PO4)3Cl:Eu2+ phosphor. The prepared full spectrum WLED achieves
the performance index of museum lighting.

1. Introduction

The white light emitting diode (WLED) has the advantages like high energy-efficiency, good life-durability, and environmental
friendliness in comparison to the conventional light sources, so it is a promising green solid-state lighting source [1,2]. The com-
mercial WLED lamps use the blue LED (InGaN) chip coated with the cerium-doped yttrium aluminum garnet (YAG: Ce3+) yellow
phosphors [3,4]. However, this type of WLED emits insufficient red light but excess blue light, and thereof has a high color tem-
perature and a low color-rendering index [5]. Especially, the excess blue light will make eyes uncomfortable, and thus it is not
suitable for indoor lighting [6–10]. A large quantity of literatures have reported that, the potential blue light hazards of light sources
are bad for health, such as retina damage [11–13], clock disorders [14], and mental health [15]. Brainard et al. even found that the
high-energy blue light hazards would lead to a breast cancer in women [10]. Therefore, it is significant to develop the WLED with
good performances suitable for indoor lighting, including the proper blue emission intensity, the low color temperature and the high
color rendering index.

In recent years, one near ultraviolet (NUV) chip coated with tricolor phosphors to fabricate the WLED has been attractive widely.
There are many commercial phosphors for the NUV excited WLED, such as BaMgAl10O17:Eu2+ [16] and LiSrPO4:Eu2+ [17] for the
blue, SrAl2O4:Eu2+ [18] and (Ba, Sr)2SiO4: Eu2+ [19] for the green, and (Sr, Ca) AlSiN3: Eu2+ [20] for the red.

For the blue-emitting phosphors excited by the NUV light, phosphates of formula ABPO4, where A is a mono-valent cation and B a
divalent cation, have emerged as important optical materials because of their excellent thermal and hydrolytic stabilities [21,17].
ABPO4:Eu2+ (A= Li, Na and K; B=Mg, Ca, Sr and Ba) phosphors [22–26] have been widely studied. Among them, the
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LiCaPO4:Eu2+ phosphor has an excellent NUV excitation profile and achieves a quantum efficiency of 88% under the excitation of
400 nm [27].

In this paper, the blue emitting LiCaPO4:Eu2+, together with the red CaSiAlN3: Eu2+ and the green (Sr, Ba)SiO4: Eu2+ phosphor,
is selected as the tricolor components for the NUV excited WLED preparation. A white full spectrum with the low blue hazard
efficiency and the high color rendering is obtained.

2. Experiments

A series of phosphors LiCaPO4:xEu2+ (x= 0.005, 0.01, 0.03, 0.05 and 0.07) with different concentrations are prepared by the
high-temperature solid-state sintering method. Li2CO3(AR), CaCO3(AR), NH4H2PO4(AR) and Eu2O3(AR) are selected as the raw
materials and mixed in a grinding bowl. After homogeneous mixing, they are loaded into a corundum crucible and sintered in a
vacuum furnace with 5% H2/N2 mixed gas, which are heated at 5℃/min. The temperature rises to 600℃ for 1 h, and then increases to
960℃ for 5 h. After that, it is cooled to the room temperature and ground for further analysis.

3. Results and discussion

3.1. The XRD pattern of the phosphor

As shown in Fig. 1, LiCaPO4 has the trigonal structure with the P31c (159) space group. The unit cell volume and lattice para-
meters of the matrix are a= b=7.5247 Å, c= 9.9657 Å, c/a= 1.3244, V= 488.67Å3, and Z= 6. The crystal structure of LiCaPO4

is indexed to ICSD-66387, where the LiCaPO4 is composed of a three dimensional framework of the vertex-sharing LiO4 and PO4

tetrahedron, and the Ca2+ ions have six contacts to oxygen completing irregular eight-coordinate geometry.
Fig. 2 depicts the XRD patterns of a series of the as-synthesized LiCaPO4:xEu2+ (x= 0.005, 0.01, 0.03, 0.05, and 0.07), and the

standard pattern (ICSD-66387) of LiCaPO4 is taken as a reference. The XRD patterns agree well with the reference and the doping of
Eu2+ ions does not lead to the notable structural variation. The Eu2+ ions (r= 0.125 nm with CN=8) substitutes the Ca2+ ions
(r= 0.112 nm with CN=8) in the LiCaPO4 host lattice because these two ions have approximate radiuses.

Fig. 1. The crystal structure diagram of LiCaPO4 (ICSD-66387).

Fig. 2. XRD patterns of the as-prepared samples LiCaPO4:xEu2+ (x= 0.005, 0.01, 0.03, 0.05, and 0.07) and the standard pattern of ICSD-66387.
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3.2. The excited spectrum and the emission spectrum

A series of LiCaPO4:Eu2+ phosphors with different doping concentrations of Eu2+ are fabricated and their emission spectra at
395 nm wavelength are tested to analyze the influence of different doping concentrations on the luminescent properties. The emission
spectra of different doping concentrations at the 395 nm near-ultraviolet excitation wavelength are shown in Fig. 3.

Under the excitation of 395 nm light, the emission intensity of the samples with different doping concentrations varies with the
different concentrations. At x= 0.03, the emission intensity of the samples reaches the maximum, and then decreases with the
increase of the concentration because of the concentration quenching of the Eu2+ doping ions.

The excitation spectra (λem =470 nm) and emission spectra (λex =395 nm) of LiCa0.97PO4:0.03Eu2+ phosphors are shown in
Fig. 4. The LiCa0.97PO4:0.03Eu2+ phosphor has a wide excitation range of 220 to 450 nm. The excitation corresponds to the transition
of Eu2+ ions from the 4F7 (8S7/2) ground state to 4f 65d 1. On the other hand, the LiCa0.97PO4:0.03Eu2+ phosphor exhibits a wide and
strong blue emission band from 450 to 520 nm centered at 470 nm under 395 nm excitation. The radiation transition of the Eu2+ ions
in the inset figure in Fig. 4 indicates that, the electron jumps from 4f to 5d when excited by the NUV light. The electron relaxes to the
4f 65d 1 level in the form of non-radioactive transition, and then transits to 4f 7 to release blue photons.

Fig. 3. The emission spectrum of different concentration LiCa1-xPO4l:xEu2+ (λex=395 nm).

Fig. 4. PLE (λem =470 nm) and PL (λex=395 nm) spectra of the LiCa0.97PO4:0.03Eu2+ phosphor; the inset illustrates the energy level diagram of
the Eu2+ ions in LiCa0.97PO4:0.03Eu2+.
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3.3. Preparation of the NUV excited WLED

A NUV excited WLED is fabricated by using the 395 nm InGaN chip coated with the red (Sr, Ca) AlSiN3: Eu2+, the green (Ba,
Sr)2SiO4: Eu2+, and the blue LiCaPO4: Eu2+ phosphors. The corresponding CIE chromaticity coordinates in Fig. 5 are at R (0.642,
0.360) for the red phosphor, G (0.283, 0.640) for the green phosphor and B (0.125, 0.175) for the blue phosphor respectively.

The emission spectrum of the as-prepared warm WLED is shown in Fig. 6. The color rendering index (Ra) is 88.6; the correlation
color temperature is 3351 K, and the color coordinates of the emitted light (in Fig. 7) are located at (0.4399, 0.4389) and the lumen
efficiency is 77.05 lm/W. It is worth mentioning that the blue-light region of the warm WLED succeeds to minimize the impact of the
blue-light hazard zone centered at 450 nm.

3.4. The full spectrum warm WLED with the high CRI

A full spectrum warm WLED with the color rendering index (CRI) higher than 95 is important in the museums and other special
spaces, which requires a strong ability to restore the color of objects. In this paper, a high Ra full spectrum WLED is fabricated by
using the 395-nm near-UV chip coated with Sr5(PO4)3Cl:Eu2+, LiCaPO4:Eu2+, (Ba, Sr)2SiO4:Eu2+, and (Sr, Ca)AlSiN3:Eu2+ phos-
phors. The emission spectra of four kinds of phosphors at 395-nm (in Fig. 8) are distributed widely from 420 to 650 nm.

The emission spectrum of the as-fabricated full-spectrum WLED is shown in Fig. 9. The correlation color temperature is 3527 K;
the color coordinate is (0.4125, 0.4067); the luminous efficiency is 40.31 lm/W, and the color rendering index Ra reaches as high as
95.8. Therefore, the as-prepared full spectrum WLED has an excellent color rendering performance.

Fig. 5. The CIE chromatic coordinates with three phosphors, including Point R for (Sr, Ca)AlSiN3:Eu2+, Point G for (Ba,Sr)2SiO4:Eu2+ and Point B
for LiCaPO4:Eu2+.

Fig. 6. The emission spectra of the WLED fabricated by the three phosphors with UV-Chips.
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4. Conclusion

In order to obtain the high-performance NUV excited WLED, the LiCaPO4:Eu2+ phosphor with an excellent excitation profile in
the near UV range is synthesized and optimized. A NUV excited warm WLED is prepared by using the 395 nm InGaN chip coated with
the red (Sr, Ca) AlSiN3: Eu2+, the green (Ba, Sr)2SiO4: Eu2+, and the blue LiCaPO4: Eu2+ phosphors. The color rendering index (Ra) is

Fig. 7. The position of the WLED fabricated by the three phosphors excited by near-UV chips on CIE.

Fig. 8. The emission spectra of Sr5(PO4)3Cl:Eu2+, LiCaPO4:Eu2+, (Ba,Sr)2SiO4:Eu2+ and (Sr, Ca)AlSiN3:Eu2+phosphors (λex=395 nm).

Fig. 9. The emission spectrum of the full-spectrum warm WLED.
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88.6; the correlation color temperature is 3351 K; the color coordinates are located at (0.4399, 0.4389); and the lumen efficiency is
77.05 lm/W. It is worth mentioning that the blue-light region of the warm WLED succeeds to minimize the impact of the blue-light
hazard zone centered at 450 nm. In addition, a full spectrum warmWLED with the color rendering index (CRI) of 95.8 is fabricated by
using the 395-nm near-UV chip coated with the Sr5(PO4)3Cl:Eu2+, LiCaPO4:Eu2+, (Ba, Sr)2SiO4:Eu2+, and (Sr, Ca)AlSiN3:Eu2+

phosphors. The correlation color temperature is 3527 K; the color coordinate is (0.4125, 0.4067); and the luminous efficiency is
40.31 lm/W.
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