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Abstract
Porphyridium purpureum is a rich source for producing phycoerythrin (PE); however, the PE content is greatly affected 
by culture conditions. Researchers have aimed to optimize the cultivation of P. purpureum for accumulation of PE. When 
traditional optimized culture conditions were used to cultivate P. purpureum, high PE contents were not usually achieved. 
In this study, an induced cultivation pattern was applied to P. purpureum for PE biosynthesis (i.e., an incremental approach 
by altering temperatures, light intensities, and nitrate concentrations). Results revealed that the induced pattern greatly 
improved the PE biosynthesis. The optimized PE content of 229 mg/L was achieved on the 12th cultivation day, which 
was a maximum PE content within one cultivation period and accounted for approximately 3.05% of the dry biomass. The 
induced cultivation pattern was highly suitable for PE synthesis in P. purpureum, which provided an important reference 
value to the large-scale production of PE.
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Introduction

Phycoerythrin (PE) is a fluorescent protein that can be sepa-
rated and purified from algae and laver, and is a new type of 
fluorescent marker dye that possesses a high market poten-
tial. PE is a natural dye that has high water solubility and 
is widely applied in the food and the cosmetics industries 

[1–4]. PE also has high fluorescence and photostability, 
which enhances its research value a lot in medical and 
molecular biology fields [2, 5–7]. In recent years, PE has 
been used as a photosensitizer in photodynamic therapies 
for tumor cells after showing significant effects in studies 
[8–10].

PE widely exists in Cyanophyta and Rhodophyta species, 
and can be extracted from algae such as Porphyra haitanen-
sis, Porphyridium purpureum, Synechococcus leopoliensis, 
Spirulina platensis, and Bangia fusco-purpurea. The bio-
mass productivity of P. purpureum is high, showing strong 
salt resistance and abundant production of high-value prod-
ucts in cells. The Phycobiliprotein (PB) content is high, in 
which PE is the most abundant [11–13]. However, under reg-
ular cultivation strategies, the productivity of PE in P. pur-
pureum is limited, which prevents any further commercial-
scale application [2, 13]. Therefore, to increase the content 
of PE in P. purpureum for larger scale production methods, 
culture methods have been the primary focus in research.

Jaime et al. [14] conducted semi-continuous cultivation 
of P. purpureum for PE, polyunsaturated fatty acid (PUFA) 
and extracellular polysaccharide (EPS) production, and 
highlighted that the production of these high-value prod-
ucts required different culture strategies. Fuentes-Grünewald 
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et al. [15] suggested that semi-continuous cultivation was 
more favorable for biomass accumulation in P. purpureum 
(47.04  mg/L/d) as well as extracellular polysaccharide 
(2.1 g/L). Kathiresan et al. [16] proposed that the concentra-
tions of chlorides, nitrates and sulfates affected the synthesis 
of PE a lot. Wang and Freddy et al. [17, 18] also indicated 
that PE biosynthesis could be promoted in P. purpureum 
under optimal cultivation conditions [pH 8.0; light intensity 
of 7100.0 lx; ratio of inoculum to substrate 1:20; loaded 
liquid 100.3 mL; low temperature (20 °C); and low light 
(30 μmol/m2s)].

The abovementioned studies have, to some extent, facili-
tated increases in PE synthesis by P. purpureum. However, 
due to the conditions (e.g., low temperature, low light, high 
pH, and high nutrition concentrations) used for cultivating 
P. purpureum in these studies, P. purpureum was subjected 
to environmental stress at the initial stage of culture, that 
affected the schizogamy of P. purpureum cells [12, 13, 19]. 
This manifested the low vitality of P. purpureum in its initial 
culture stage, which affected P. purpureum biomass accumu-
lation and further PE biosynthesis.

By targeting at the abovementioned problem, in this 
study, an induced cultivation strategy was conducted to opti-
mize the growth of P. purpureum and biosynthesis of PE. 
Briefly, the strategy was as follows: normal culture condi-
tions for P. purpureum during the initial stage culture of P. 
purpureum cells; alteration of temperatures, light intensities, 
and nitrate concentrations to promote synthesis and accu-
mulation of PE. This induced cultivation strategy greatly 
enhanced PE biosynthesis, which provides important refer-
ence values for the large-scale production of PE.

Materials and methods

Microalgae strain and culture medium

Porphyridium purpureum CoE1 The algal species used were 
purchased from the Freshwater Algae Culture Collection at 
the Institute of Hydrobiology of the Chinese Academy of 
Sciences. The strain was further induced, screened, and 
stored in artificial seawater (ASW) with periodical refresh-
ment by the author’s research group [20].

Experimental design

Freddy et al. [18] used response surface methodology to 
confirm that cultivating P. purpureum at low light and low 
temperature optimizes PE production in nitrogen-replete 
medium. Therefore, in this experiment, temperature, light 
intensity, and potassium nitrate concentration were used as 
inducing factors, and three cultivation patterns (control pat-
tern, specific pattern, and induced pattern) were designed. 

We compared three cultivation patterns on P. purpureum 
biomass production and PE biosynthesis. The details are as 
follows.

Control pattern

The algal species were inoculated in 2 L conical flasks con-
taining 1 L ASW medium with 10% of the inoculum volume, 
and cultivated with continuous light in an illumination incu-
bator. The temperature was controlled at 25 °C, the illumi-
nation intensity was set at 165 μmol/m2s, and the sterile air 
ventilation rate was set at 1 L/min. The potassium nitrate 
concentrations were 1, 2, 4, and 6 g/L, corresponding to 
four experimental groups, respectively. Three 18-day paral-
lel culture cycles were set up for each experimental group.

Specific pattern

The culture temperature was controlled at 20 °C and the 
illumination intensity was set at 55 μmol/m2s. Other cultiva-
tion conditions were the same as those in the control pattern.

Induced pattern

The temperatures, illumination intensities, and nitrate con-
centrations were adjusted in 3 stages to induce PE biosyn-
thesis by P. purpureum. First, the temperature was controlled 
at 25 °C and the illumination intensity was set at 165 μmol/
m2s, while the initial potassium nitrate concentrations in 
different experimental groups were all controlled at 1 g/L 
for culture for 2 days. The temperature was then adjusted 
to 23 °C and the light intensity to 110 μmol/m2s while pro-
viding 0, 0.5, 1.5, and 2.5 g potassium nitrate, respectively, 
to different experimental groups, which were subsequently 
cultivated for 2 days. Finally, the temperature was adjusted 
to 20 °C and the illumination intensity to 55 μmol/m2s while 
providing 0, 0.5, 1.5, and 2.5 g potassium nitrate, respec-
tively, to that different experimental groups, which were 
cultivated until the 18th day. Other cultivation conditions 
were the same as those in the control group. All the tests 
were repeated for three times.

Sampling procedure

Preparation of the dry powder of P. purpureum The algal 
solution was collected and centrifuged at 8000 g for 10 min. 
Deionised water was then added to wash the cell pellet for 
2–3 times. Later, the collected algae ware frozen and dried 
using a vacuum freeze drier (Bilon, FD-1000), while the 
collected dried algae cells was pulverized in a mortar and 
stored at − 20 °C for further analysis. The biomass of P. 
purpureum, total carbohydrate, total protein, and PE content 
was measured from culture samples every 48 h.
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Biomass concentration

The linear regression equations of dry cell weights and 
absorbance were obtained from Su et al. [21], and were 
used to measure the biomass of P. purpureum. Algal solu-
tion (3 mL) was collected and centrifuged at 4000 g for 
15 min. The cell pellet was resuspended in fresh culture 
media and the absorbance of the solution was measured at 
604 nm with an ultraviolet spectrophotometer (Shimadzu, 
UV-2600), which was substituted into Eq. (1) to obtain the 
P. purpureum biomass concentration:

In the above equation, Y represents the biomass concen-
tration (g/L) and OD represents the optical density of the 
substance at 604 nm.

Total carbohydrate concentration

The quantitative saccharification method [22] reported by 
the U.S. National Renewable Energy Laboratory (NREL) 
was adopted to measure the total carbohydrate content. 
Briefly, 3 mL 72% concentrated sulfuric acid (w/w) was 
added to the algal powder (3–5 mg) and the sample was 
incubated at 30 °C for 30 min for hydrolysis. The con-
centration of sulfuric acid decreased to 4% (w/w) and 
the solution was then hydrolyzed in a 1 × 105 Pa auto-
clave. Finally, a high-performance liquid chromatography 
(HPLC, Waters 2695) was used to measure the contents of 
glucose, xylose, and galactose in the hydrolysate to further 
calculate the total carbohydrate content [23].

Total protein concentration

The bicinchoninic acid method was used to determine 
the total protein content [24]. Three milliliters of the 
algal solution was collected and centrifuged at 8000 g for 
5 min. The pellet was resuspended in 3 mL 0.1 M PBS 
(pH 7.0); then, 0.05 mm and 0.1 mm (volume ratio 1:1) 
diameter small magnetic beads were added and vibrated 
for 20 s on a high-speed vibration bead mill. Then, the 
samples were quickly placed on ice for cooling. The 
abovementioned steps were repeated for 4–5 times, and 
then, the supernatant was taken after centrifugation for 
3 min at 8000 g. The BCA method was used to measure 
the total protein content on a microplate reader (Molecu-
lar Devices, SpectraMax® Prardigm®, Multi-mode Detec-
tion Platform). Standard curves were prepared based on 
the specifications of the BCA Protein Assay Kits (Thermo 
scientific).

(1)Y = 2.4951 × OD604 − 0.5121(R2 = 0.997).

PE concentration

PE was collected using a method developed by Chopin et al. 
[25] with appropriate modifications. Three milliliters of the 
algal solution was taken and centrifuged at 8000 g for 5 min; 
then, the pellet was resuspended in 3 mL 0.1 M PBS (pH 7.0). 
After repeated freezing and thawing, the sample was centri-
fuged for 5 min at 7500 g and the supernatant was collected. 
Absorbance at 455 nm, 564 nm, and 592 nm was measured 
using an ultraviolet spectrophotometer (Shimadzu, UV-2600).

The PE content was calculated using an equation pro-
posed by Beer and Eshel [26]:

In the above equation, OD represents the optical density 
of the substance under a specific wavelength.

Results and discussion

Biomass concentration

In the lag phase of the cultivation (the first 2 days), the 
biomass accumulations in different patterns showed sig-
nificant variance (Fig.  1): the average biomass growth 
rates in the control pattern (0.63 g/L/d) and the induced 
pattern (0.74 g/L/d) were greater than the specific pattern 
(0.31 g/L/d). After 2 days, P. purpureum showed differences 
in biomasses under different conditions; the biomass results 
suggested different growth tendencies for these (Fig. 1). In 
the control pattern, the nitrate concentrations used were 1, 
2, 4 and 6 g/L, under which P. purpureum showed relatively 
strong salt resistance [11, 13]. It was shown that the biomass 
concentrations had a continuous increase until the 18th day, 
reaching 10.76, 11.45, 12.12, and 10.59 g/L, respectively 
(Fig. 1 ). P. purpureum was relatively sensitive to the 
changes of temperatures and illumination intensities [12, 13, 
27]. Under low temperature (20 °C) and low illumination 
(55 μmol/m2s), the biomass concentration decreased from 
the 6th day and 10th day, respectively (Fig. 1 , 1 g/L 
KNO3 and 2 g/L KNO3), but when the initial nitrate con-
centrations reached 4 and 6 g/L, the biomass increased each 
day during the 18 days, having reached 8.47 and 8.72 g/L 
on the 18th day (Fig. 1 , 4 g/L KNO3 and 6 g/L KNO3).

When the initial culture conditions (25 °C, 165 μmol/
m2s, 1 g/L KNO3) were altered to special culture condi-
tions (20 °C, 55 μmol/m2s light and the KNO3 at 1, 2, 4 and 
6 g/L), the biomass showed a tendency of first rapid growth 
followed by a gradual slow growth, which, on the 18th 
day, reached 9.80, 10.63, 10.25, and 9.92 g/L, respectively 

(2)
PE(g/L) =

[(

OD564 − OD592

)

−
(

OD455 − OD592

)

× 0.2
]

× 0.12.
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(Fig. 1 ). This indicated that P. purpureum had been 
adapted to the changes in the environment and was able to 
grow smoothly.

The maximum biomasses concentrations in different 
cultivation patterns showed differences among each other 
(Table 1). Within the same cultivation time (18 days), the 
maximum biomass concentrations reached 12.12, 8.72, 
and 10.63 g/L in the control, specific, and induced pattern, 
respectively. It suggested that the control pattern offered 
greater support for P. purpureum biomass accumulation than 
other patterns employed.

The metabolism of P. purpureum is easily affected by 
the growth environment [13, 14, 18, 28]. In normal culture 
conditions (Fig. 1 ), algal cells have normal metabo-
lism, high growth rates, rapid division and reproductive 
rates, so the biomass is high. In specific culture conditions 

(Fig. 1 ), algal cells were subjected to high environ-
mental stress under continuous low temperature, low light, 
and high concentration of nitrogen, resulting in low vitality 
and weak cell division and reproductive ability, so biomass 
accumulation was small. In the induction culture conditions 
(Fig. 1 ), algal cells were cultivated in a slow transition 
from normal temperature, normal light intensity, and nor-
mal nitrogen concentration to low temperature, low light, 
and high nitrogen, which enabled P. purpureum to have fast 
growth rates and rapid division and reproduction rates. After 
transition, P. purpureum was possibly able to resist envi-
ronmental stress and accumulate biomass normally under 
induction. Therefore, the biomass in the induced pattern 
was closer to that of the normal cultivation than the specific 
pattern.

PE content

The differences of PE concentration in P. purpureum in 
different cultivation patterns are shown in Fig. 2. In the 
lag phase (first 2 days) of the cultivation, P. purpureum 
synthesized a large amount of phycobiliprotein (phyco-
erythrin, phycocyanin, and allophycocyanin) to capture 
more light; light transformation in chloroplasts supports 
the cell schizogamy [13, 29]. The PE contents in these 
three patterns differed from one another. When the nitrate 
concentration was 4 g/L, the PE contents in control and 
specific pattern reached the maximum values of 147 and 

Fig. 1   Effects of three culturing 
patterns on the P. purpureum 
biomass accumulation in  
Control pattern (25 °C, 
165 μmol/m2s),  Specific 
pattern (20 °C, 55 μmol/m2s) 
and  Induced pattern 
(25 °C → 20 °C, 165 μmol/
m2s → 55 μmol/m2s), respec-
tively. The data were collected 
as means of 3 repeated trials
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Table 1   Effects of different cultivation patterns on P. purpureum bio-
mass concentrations after 18 day cultivation

Control pattern (25  °C, 165  μmol/m2s), Specific pattern (20  °C, 
55  μmol/m2s), Induced pattern (25  °C → 20  °C, 165  μmol/
m2s → 55 μmol/m2s). All the tests were conducted in three replicates

Cultivation pat-
tern

Maximum 
biomass (g/L)

Rangeability 
(g/L)

Growth rate 
(g/L/d)

Control pattern 12.12 ± 0.12 11.6 ± 0.11 0.644 ± 0.011
Specific pattern 8.72 ± 0.17 8.18 ± 0.14 0.454 ± 0.014
Induced pattern 10.63 ± 0.26 10.11 ± 0.24 0.561 ± 0.024
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190 mg/L, respectively, on the 10th day. The PE content in 
induced pattern reached the maximum value of 229 mg/L 
(to the culture) on the 12th day, which was much higher 

than the other two patterns applied (Table 2), and it was 
accounted for approximately 3.05% of the dry biomass 
(Table 3). This indicated that the induced pattern is the 

Fig. 2   Effects of different culti-
vation patterns on PE synthesis 
in P. purpureum (  Control 
pattern: 25 °C, 165 μmol/
m2s;  Specific pattern: 
20 °C, 55 μmol/m2s;  
Induced pattern: 25 °C → 20 °C, 
165 μmol/m2s → 55 μmol/m2s). 
All the tests were conducted in 
three replicates
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Table 2   Maximum PE content 
obtained from three cultivation 
patterns

Control pattern (25  °C, 165  μmol/m2s), Specific pattern (20  °C, 55  μmol/m2s), Induced pattern 
(25 °C → 20 °C, 165 μmol/m2s → 55 μmol/m2s). All the tests were conducted in three replicates

Cultivation pattern Maximum PE content 
(mg/L)

Rangeability (mg/L) Growth rate (mg/L/d)

Control pattern 147 ± 6 121 ± 5 12.1 ± 0.5
Specific pattern 190 ± 10 167 ± 9 16.7 ± 0.9
Induced pattern 229 ± 11 204 ± 10 17.0 ± 0.8

Table 3   PE yields in different 
experimental groups

Species Culture pattern Biomass (g/L) PE 
content 
(mg/L)

PE yield 
(% d.w.)

References

Mastocarpus stellatus Wild N/A N/A 0.20 Nguyen et al. [30]
Grateloupia turuturu Wild N/A N/A 0.52 Mathilde et al. [31]
Polysiphonia urceolata Wild N/A N/A 0.89 Liu et al. [32]
Porphyridium cruentum Specific culture 3.07 73.98 2.41 Fuentes et al. [33]
Porphyridium cruentum Specific culture 3.29 123.0 3.74 Wang et al. [17]
Pseudanabaena sp. Specific culture 0.92 39.2 4.26 Sanjiv et al. [12]
Palmaria palmata Wild N/A N/A 1.23 Justine et al. [34]
Rhodosorus marinus Specific culture 2.00 89.0 4.45 Dupre et al. [35]
Porphyridium marinum Specific culture 2.00 79.0 3.95 Nesrine et al. [36]
Porphyridium purpureum Induced culture 7.51 229.0 3.05 This study
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most appropriate strategy for the PE synthesis by P. pur-
pureum. Combined with Fig. 1, the biomass concentra-
tions in these three patterns generally showed continu-
ous increases, whereas the PE contents showed an initial 
increase, followed by a decrease that was independent 
to biomass concentration curves (Fig. 2). To achieve the 
maximum PE content, the optimal cultivation time for P. 
purpureum in the control and specific pattern was 10 days, 
whereas 12 days for the induced pattern. In the previous 
research, 18 days will be necessary for the cultivation of 
P. purpureum [8, 19, 21]. This study reduces the cultiva-
tion time to 12 days for PE production, which will greatly 
enhance the economy and technical efficiency in industrial 
cultivation.

The specific pattern (Fig. 2 ) facilitated an increase in 
PE synthesis in P. purpureum. P. purpureum was subjected 
to environmental stress due to these conditions (e.g., low 
temperature, low light, and high nutrient concentrations). 
This manifested the low vitality of P. purpureum in its initial 
culture stage. In the induced pattern (Fig. 2 ), the high 
growth rates of P. purpureum in its initial culture stage indi-
cate resistance to the stress factors. In the middle and later 
culture stages, P. purpureum accumulated more PE. In sum-
mary, the induced cultivation pattern was more suitable for 
the synthesis of PE in P. purpureum than the other cultivation 
patterns tested.

The parabolic evolution of PE concentration has been 
demonstrated in P. purpureum [13]; these results are similar 

to the results of our experiment. It has been shown that syn-
thesis of PE in P. purpureum is greater under low tempera-
ture, low light, and high nitrogen conditions [18]. This is 
evident when comparing results from the special pattern 
with the normal pattern. The induced pattern had greater 
PE content than the other two patterns. This may be due to 
the vitality of the algae cells during the lag phase. With the 
constant change of temperature, light intensity and nitro-
gen source, the synthesis and accumulation of phycoglobin 
gradually increased. Therefore, P. purpureum biomass accu-
mulated with a large amount of PE.

Total protein content

To further study PE synthesis, the total protein contents in 
different patterns were measured and the results are shown 
in Fig. 3. In the lag phase of the cultivation, the changes 
in total protein contents in the three patterns were similar, 
showing a general continuous growth increase (Fig. 3). After 
2 days of cultivation, in the control pattern, the total protein 
content steadily increased. In the specific pattern, the total 
protein content showed a different trend to the control pat-
tern; when the nitrate concentrations were 1 and 2 g/L, the 
total protein concentration decreased from the 8th day and 
12th day, respectively, but when the initial nitrate concen-
trations reached 4 and 6 g/L, the total protein concentration 
increased each day during the 18 days (Fig. 3 ). In addi-
tion, in the induced pattern, the total protein content showed 

Fig. 3   Effects of three cultiva-
tion patterns on the total 
protein content in P. purpureum 
(  Control pattern: 25 °C, 
165 μmol/m2s;  Spe-
cific pattern: 20 °C, 55 μmol/
m2s;  Induced pattern: 
25 °C → 20 °C, 165 μmol/
m2s → 55 μmol/m2s). All the 
tests were conducted in three 
replicates
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a rapid increase, followed by a steady increase. Overall, the 
changes of total protein contents in the three patterns showed 
a general steady increase (other than the specific pattern 
under 1 g/L and 2 g/L of nitrate). The trends of total pro-
tein and PE changes were different, as total protein content 
increased with an increase of biomass, which suggested that 
PE synthesis and accumulation were independent from total 
protein accumulation.

When P. purpureum accumulates biomass, cells are con-
stantly dividing to produce new algal cells. In the new algal 
cells, organelles and cytoplasm are produced in large quan-
tities, and protein is the main component of the cell mem-
brane and cytoplasm, so the total protein content increases 
with the increase in biomass. However, PE accumulation 
first increases and then decreases, because PE only exists in 
the algal phycobilisome and participates in photosynthesis. 
When cells entered the lag and logarithmic phases, PE is 
produced in large quantities for increased rates of photosyn-
thesis and high growth rates. When cells enter the stationary 
and death phases, photosynthesis weakens and PE might be 
degraded and used to synthesize other metabolites, such as 
polysaccharides and lipids.

P. purpureum productivity

P. purpureum not only produces PE, but also produces many 
other important substances such as polysaccharides, mono-
saccharides, carotene, and chlorophyll [11–13]. As shown in 
Table 4, the proportions of other metabolites were observed 
during on the 10th day cultivation when high PE content 
was in a high level.

Table 4 suggested that during the high PE content period, 
the total carbohydrate and total protein contents were greater 
than the PE content. When the nitrate concentration was 
1 g/L, the total carbohydrate content in the induced pattern 
reached the maximum percentage of 44.7%; and when the 
nitrate concentration was 4 g/L, the total protein content 
in the induced pattern reached the maximum percentage 
of 9.8%. This indicated that when the content of PE was 

at its highest value, there were also large amounts of other 
metabolites produced by P. purpureum. This suggested that 
co-production of PE and other high added value products, 
such as polysaccharides of P. purpureum, would greatly 
enhance the feasibility and economy efficiency of P. pur-
pureum microalgae industry [30].

Photosynthesis provides energy for P. purpureum growth, 
and P. purpureum uses this energy to metabolize nutrients 
and synthesize various high-value products, such as polyun-
saturated fatty acids, extracellular lipopolysaccharides, and 
carotenoids [37]. Therefore, when P. purpureum synthesizes 
a large amount of PE, this indicates that the algal cells are 
undergoing a high rate of division and reproduction, and at 
the same time, they are likely to produce greater amounts 
of high-value products through their metabolic processes.

Conclusion

Biorefinery demonstration proves to be very important to the 
microalgae industry. Cultivation, one of the most important 
downstream processes, is proven to be critical, which greatly 
affects the ecological technical and economy efficiency. The 
biomass accumulation and PE synthesis by P. purpureum 
varied greatly under different growth patterns, providing 
operation, and induction information for specific applica-
tions. This study has also found that PE content initially 
increased and then decreased, which suggests that reducing 
the cultivation period from 18 to 12 days is appropriate, 
which would enhance the production efficiency. Moreover, 
P. purpureum also produces rich carbohydrates and other 
proteins around such timepoint, which will contribute to the 
great progress in industrial economy.
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