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A B S T R A C T

Ubiquitin (Ub) is a small protein that can be attached to substrate proteins to direct their degradation via the
proteasome. Deubiquitinating enzymes (DUBs) reverse this process by removing ubiquitin from its substrate
protein. Over the past few decades, ubiquitin-specific protease 14 (USP14), a member of the DUBs, has emerged
as an important player in various types of cancers. In this article, we review and summarize biological function
of USP14 in tumorigenesis and multiple signaling pathways. To determine its role in cancer, we analyzed USP14
gene expression across a panel of tumors, and discussed that it could serve as a novel bio-marker in several types
of cancer. And recent contributions indicated that USP14 has been shown to act as a tumor-promoting gene via
the AKT, NF-κB, MAPK pathways etc. Besides, drugs targeting USP14 have shown potential anti-tumor effect and
clinical significance. We focus on recent studies that explore the link between USP14 and cancer, and further
discuss USP14 as a novel target for cancer therapy.

1. Introduction

Eukaryotic cells employ two major proteolytic systems: the ubi-
quitin-proteasome system (UPS) and the autophagy-lysosome system,
which accounts for approximately 80–90% and 10–20% of cellular
proteolysis respectively [1,2]. The UPS is a selective proteolytic system
in which the conjugation of ubiquitin to substrates induces degradation
by the proteasome [3]. Autophagy is an evolutionarily conserved, bulk
degradation pathway whereby long-lived proteins and whole organelles
are delivered to lysosomes for breakdown [4]. The core of both de-
gradation pathways is ubiquitination, which generates linkage-specific
degrons on substrates destined for destruction [1]. Ubiquitin mod-
ifications are added to substrate lysine residues by the E1 ubiquitin-
activating enzyme, E2 ubiquitin-conjugating enzyme cascade and E3
ubiquitin ligase, resulting in the formation of a covalent isopeptide
bond between the C-terminus of ubiquitin and a nucleophilic group on
the substrate [5]. DUBs remodel and remove conjugated ubiquitin
chains from substrate proteins, rescuing them via degradation or
modulating Ub-mediated signal transduction [6,7]. Moreover, deubi-
quitylation is important for ubiquitin homeostasis as it prevents de-
gradation of ubiquitin and recycles ubiquitin back to the free ubiquitin
pool [8].

The proteasome most exclusively used in human is the 26S

proteasome (molecular mass 2000 kDa), which consists of one 20S
protein subunit and two 19S regulatory cap subunits (Fig. 1) [9]. Up
until now, two types of subunits of 26S proteasome have attracted
considerable attention in the field of cancer research. Due to the im-
portance of protein degradation in cell survival, the 26S proteasome has
been a prime focus in cancer research. For example, two drugs that
target the 20S subunit, bortezomib and ixazomib, had been approved
for treating hematological malignancies by the United States Food and
Drug Administration (FDA) [10]. Three proteasome-associated DUBs
located in 19S regulatory complexes, USP14, Ub carboxyl-terminal
hydrolase isozyme L5 (UCHL5) and RPN11, could remove conjugated
ubiquitin chains [11].

Accumulating evidences implicated that USP14 was overexpressed
in several cancers, including colorectal cancer, non-small-cell lung
cancer, ovarian cancer as well as esophageal squamous cell carcinoma
[12–15], and participated in multiple signaling pathways to regulate
cell proliferation, apoptosis, autophagy and ets. of cancer cells [16–18].
Besides, USP14 inhibitors have shown potential anti-cancer effects
[19,20]. These efforts suggest that USP14 plays a critical role in on-
cogenesis and development of tumor, and propose a possibility that
development of USP14 inhibitors can be considered an interesting
therapeutic target for treatment of cancer.
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2. The deubiquitination enzymes

There have been around 100 DUBs found in human, each with
distinct substrate specificities and enzymatic properties, which show
remarkable specificity for cracking different multiple chain types
[21,22]. Based on their catalytic mechanisms, DUBs can be broadly
divided into two classes: cysteine proteases and metalloproteases. The
cysteine protease DUBs, the more common of the two classes, consists
of four subclasses based on their Ub-protease domains: ubiquitin-spe-
cific proteases (USPs), ubiquitin C-terminal hydrolases (UCHs), ovarian
tumor proteases (OTUs), and Machado-Joseph disease proteases (MJDs)
[23]. The metalloprotease class contains only the Jab1/Mov34/Mpr1
Pad1 N-terminal+ (MPN+) (JAMM) domain proteases. Table 1 shows
the information of different types of DUBs including DUB subfamily,
representative DUBs, cancer type and tumorigenesis of each DUB. The
USP is the largest family of DUBs, with over 50 members [7]. The
catalytic domain of USPs contains two short and well-conserved motifs,
called the Cys and His boxes, which include the critical residues for
catalysis [24]. Among the three DUBs associated with mammalian
proteasome, USP14 is research hotspot because it negatively regulates
proteasome activity by ubiquitin chain disassembly as well as by a
noncatalytic mechanism [25–29]. We will explore the interplay be-
tween USP14 and the proteasome below.

3. USP14 and 26S proteasome

The 26S proteasome is an ATP-dependent and multi-subunit pro-
tease that primarily degrades ubiquitinated proteins. The proteasome
holoenzyme is composed of a 19-subunit regulatory particle (known as
the RP, 19S complex, or PA700) and a 28-subunit core particle (known
as the CP, or 20S complex) [27]. A substrate first binds the RP, then is
actively translocated to the CP for degradation. The three DUBs asso-
ciated with the 19S proteasome lid complex, Rpn11, UCHL5, and
USP14, are all present at> 4×105 copies per cell, which is consistent
with other proteasome subunits [8]. Unlike the two other DUBs, USP14

interaction with 19S complex is reversible [30]. Mammalian USP14
contains a ubiquitin-like (Ubl) domain at the N-terminus, which is re-
sponsible for the reversible association with 26S proteasomes [8,31]. In
the absence of ubiquitin binding, the active site of USP14, which con-
sists of three amino acid residues (C114, H435 and D451), is blocked by
the two surface loops BL1 and BL2. Upon ubiquitin binding, BL1 and
BL2 undergo conformational changes to relieve the autoinhibition and
activate USP14 [32]. The confirmation changes of loops BL1 and BL2
were illustrated in a structure diagram of USP14 in Fig. 2 by Worldwide
Protein Data Bank database [33] and PyMOL software.

USP14 can be activated by the 26S proteasome. Borodovsky A et al.
demonstrated an increased USP14 activity when proteasome function is
impaired, suggesting functional coupling between the activities of
USP14 and the proteasome [34]. Studies by Ponnappan et al. also
showed that a compensatory increase in USP14 activity is induced
when the activity of the 26S proteasome declines during aging [35].

USP14 can reciprocally regulate the activity of the 26S proteasome.
USP14 was previously reported to inhibit protein degradation by cat-
alyzing substrate deubiquitination [36]. Occupancy of USP14's active
site by a ubiquitinated substrate or an inhibitor of deubiquitination
activated proteasomal degradation via enhancing 20S gate opening
[28,37]. The similar results occurred when substrate-protein was co-
incubated with purified 26S proteases [27,28]. Goldberg's group further
characterized the effect of USP14 on 26S proteasome. They reported
that USP14 has seemingly opposite actions and that it functions both as
an inhibitor and an activator of proteolysis. In the absence of a sub-
strate, USP14 maintains the 26S proteasomes in a quiescent state, de-
creasing nonspecific degradation of non-ubiquitinated proteins. How-
ever, upon binding a Ub conjugate, USP14 allosterically activates
several enzymatic processes that enhances ATPase activity and DUB
activities, resulting in an increase in specificity for ubiquitinated sub-
strates [38]. These studies demonstrate that USP14 serve as a central
regulator of the 26S proteasome.

4. USP14 and cancer

As an important member of the ubiquitin proteasome system,
USP14 has been received significant attention for its crucial role in
various cancers. Using the UALCAN database, we analyzed gene ex-
pression data of USP14 in primary tumor and stage 1–4 tumor in human
patients with different types of cancer (Fig. 3) [39]. The figure can be
divided into two parts, of which the upper part means that USP14
probably acts as an oncogene or exerts a tumor-promoting role in
corresponding tumors, while the lower represents that USP14 may not
act tumor-promoting role in those tumors. Specifically, USP14 probably
plays the tumor-promoting role in approximately 61% cancers (19 of 31
types of cancer). We found a close correlation between USP14 gene and
a majority of cancers. USP14 gene is highly expressed in breast invasive
carcinoma, colon adenocarcinoma and lung squamous cell carcinoma.
On the other hand, USP14 gene expression positively correlates with
stages of tumor progression in adrenocortical carcinoma, cervical
squamous cell carcinoma, and head and neck squamous cell carcinoma.

In recent years, an increasing number of studies have reported the
significance of USP14 in cancer. Researchers have investigated its sti-
mulatory effect on cell growth, migration, kinase activation and the
activation of the inflammasome, as well as its inhibitory effect on cell
autophagy and apoptosis in cancer cells (Fig. 4). In 2006, Shinji S et al.
found that USP14 expression significantly correlates with tumor pa-
thological stage, and lymph node, as well as liver metastases. Moreover,
USP14 expression in colorectal tumors negatively predicts patients’
survival rate [12]. Li and colleagues also highlighted the role of USP14
in non-small cell lung cancer. Abnormal high-expression of USP14 was
detected in NSCLC patients and cell lines, and associated with poor
prognosis in NSCLC patients. On the other hand, silencing of USP14
suppressed tumor cell proliferation via reduction of β-catenin [13]. Wu
et al. identified a negative correlation between USP14 mRNA level and

Fig. 1. The structure and function of 26S proteasome. The 26S proteasome
consists of two 19S regulatory particles and one 20S catalytic particle. Three
DUBs (USP14, UCH37 and RPN11), located at the 19S complexes, are re-
sponsible for disassembling the association between ubiquitin and its substrate
protein. When a Ub-tagged protein is transported to proteasome, Ub first could
be dissociated from the substrate in 19S particle. Then, the substrate either
leaves the 26S proteasome, or it could be catalytic into 20S core and discharged
to cytoplasm.
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miR-4782-3p level. Moreover, it was shown that miR-4782-3p could
inhibit cell growth in NSCLC by targeting USP14 [40]. Similar findings
were echoed in epithelial ovarian cancer (EOC). The protein level of
USP14 in EOC tissues was reported to be higher than that in normal
ovarian tissues, and USP14 overexpression was associated with poor
prognosis in EOC patients. Meanwhile, knockdown of USP14 led to cell
growth repression and excessive apoptosis in EOC cells [17]. In 2009,
Wada et al. conducted focus formation assays using retroviral expres-
sion libraries of ovarian cancer cell lines, and identified USP14 as an
ovarian-cancer related oncogene with high transforming potential, and

the outcome of which indicated that USP14 was closely related to the
formation of ovarian cancer [41]. Additionally, Huang et al. demon-
strated that USP14 was up-regulated in tumor tissues of patient with
hepatocellular carcinoma (HCC) using qPCR and immunohistochemical
techniques. More importantly, knockdown of USP14 suppressed cell
proliferation, altered the cell cycle, and induced cell apoptosis. These
findings showed that USP14 played an oncogenic role in promoting
tumor progression in HCC [42]. Similarly, high mRNA and protein
expression of USP14 in esophageal squamous cell carcinoma, sug-
gesting that USP14 significantly relates to distant metastasis [43].
These studies concluded that high expression of USP14 is associated
with poor prognosis in cancer [12,13,17,40].

The mechanism of USP14 in tumorigenesis have been extensively
investigated. Mines et al. found that USP14 could induce deubiquiti-
nation of CXCR4, thus facilitating its degradation [44]. Another re-
search team discovered that USP14 deubiquitinated K63-linked poly-
ubiquitin chains of Dvl, and USP14 inhibition could attenuate Wnt
signal transduction [45]. In leukemia, USP14 also played a pivotal role
in regulating chemotherapy drugs-induced apoptosis by preventing
Aurora B (a mitotic checkpoint kinase) to degrade [46]. Furthermore, in
androgen-responsive prostate cancer cells, inhibiting the function of
USP14 resulted in cell proliferation inhibition and cell cycle arrest at
the G0/G1 phase, as USP14 could promote cell cycle by deubiquitina-
tion and stabilization of androgen receptor [47].

Inflammation is characterized by acute or chronic dysregulation of
the host immune response, and it is a common manifestation of many
diseases, including lung injury, osteoarthritis and myocarditis
[38,48–50]. USP14 was found to regulate various signal transduction
pathways, such as NF-κB pathway and the mitogen-activated protein
kinase (MAPK) pathway, in response to inflammation [51,52]. Findings
by Mialki et al. indicated that USP14 removes the ubiquitin chain of I-
κB, thus triggering I-κB degradation and cytokine release in lung epi-
thelial cells [51]. In ataxia mice, the loss of USP14 increased the levels
of phosphorylated MAPKs, including phosphor-JNK and ERK [52]. As
evidenced in a study by author et al., USP14 regulated the stability of
CBP (cAMP response element-binding protein) by reducing its

Table 1
Representative DUBs and associations with cancer.

DUB subfamily Representative DUBs Cancer type Tumorigenesis Reference

Ubiquitin-specific protease (USP) USP1 Osteosarcoma Promote cell growth and invasion of osteosarcoma [91]
Ovarian cancer Mediate cancer cell resistance to platinum and promote tumor

dissemination
[92]

Breast cancer Promote cell migration, invasion and cancer metastasis [93]
USP7 Prostate cancer Be associated with PTEN nuclear exclusion [94,95]

Non-small cell lung cancer Stabilize p53 and induce p53-dependent cell growth repression and
apoptosis

[96,97]

USP22 Liver cancer Genetic depletion of USP22 inhibits liver cancer cell growth [98]
Colorectal cancer Regulate CCND1 stability to control cell cycle progression [99]
Lung adenocarcinoma Promote cell proliferation, migration and invasion of lung

adenocarcinoma
[100]

Leukemia Be linked to cancer progression [101]
Ubiquitin C-terminal hydrolase (UCH) UCHL5 Gastric cancer Positive cytoplasmic UCHL5 tumor expression is linked to improved

prognosis
[102]

Lung cancer Promote cancer cell apoptosis [103]
Pancreatic carcinoma Impair cell migration [104]

BAP1 Lung cancer Suppress the growth of lung cancer cell [105–107]
Mesothelioma Germline BAP1 mutations lead to malignant mesothelioma [108]
Colorectal cancer Reduced BAP1 expression is associated with poor prognosis of

colorectal cancer
[109]

Machado-Joseph disease protease
(MJD)

JOSD1 Gynaecological cancer JOSD1 depletion leads to severe apoptosis both in vivo and in vitro [110]
ATXN3 Breast cancer Enhance tumor formation and correlate with poor prognosis [111]

Lung cancer Decrease cell viability of lung cancer [112]
Ovarian tumor protease (OTU) OTUB2 Non-small cell lung cancer Promote cell growth, migration and invasive activity of non-small cell

lung cancer
[113]

Abbreviations: USP1: Ubiquitin-specific protease 1; USP7: Ubiquitin-specific protease 7; USP22: Ubiquitin-specific protease 22; UCHL5: Ubiquitin carboxyl-terminal
hydrolase isozyme L5; BAP1: BRCA1-associated protein 1; JOSD1: Josephin domain-containing protein 1; ATXN3: Ataxin-3; OTUB2: OTU domain-containing ubi-
quitin aldehyde-binding protein.

Fig. 2. The structure of USP14. When ubiquitin binding is absent, the active site
of USP14 (consisting of C114, H435 and D451) is covered by the loops BL1 and
BL2; when ubiquitin is binding, BL1 and BL2 undergo conformational changes
to relieve the autoinhibition and activate USP14.
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Fig. 3. USP14 gene expression in different types of human cancers. The considerable data of normal and tumor tissues is analyzed in 31 kinds of cancers. And the
number represents relative expression of USP14 gene. In every line, darker red means higher expression of USP14 gene. (For interpretation of the references to color
in this figure legend, the reader is referred to the Web version of this article.)

Fig. 4. The mechanism of USP14 in cancer. USP14 participates in multiple signaling pathway. In cancer cells, USP14 promote cell growth, migration, EMT and cell
cycle, while repressing autophagy and apoptosis.
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ubiquitylation, which lead to modulation of histone acetylation and
lung inflammation [53].

Vimentin, a typical biomarker of the epithelial to mesenchymal
transitions (EMTs) during embryogenesis and metastasis, has garnered
widespread attention recently [54]. A recent study revealed that USP14
could interact with vimentin, and USP14 upregulation decreased the
levels of ubiquitinated vimentin in human gastric cancer cell lines [55].
Moreover, USP14 knockdown inhibited the breast cancer cell migration
by increasing the vimentin expression while reducing the E-cadherin
expression, which suggested that USP14 affects breast cancer cell mi-
gration by targeting EMT [56].

It was reported that AKT-mediated phosphorylation of USP14 at
Ser432 activated its deubiquitinating activity for both K48 and K63
ubiquitin linkages, thus regulating protease activity and consequently
global protein degradation [57]. Interestingly, another study showed
that USP14 regulates autophagy by negatively regulating K63 ubiqui-
tination of Beclin 1 [58]. The authors proposed that activation of USP14
by AKT-mediated phosphorylation provides a mechanism for AKT ne-
gatively regulates autophagy by promoting K63 deubiquitination.

Besides, emerging studies have shown that USP14 plays a critical
role in the drug resistance of tumors. Fu et al. found that USP14 could
contribute to cisplatin resistance through Akt/ERK signaling pathways

[59], and the study by Xu et al. indicated that USP14 promoted cell
adhesion-mediated drug resistance through enhancing the ability of cell
adhesion via Wnt-signaling pathways in multiple myeloma cells [60].

In conclusion, all of the aforementioned research offers us a brand-
new insight into USP14's regulation in both proteasomal and autop-
hagic degradation.

5. The inhibitors of USP14

The 26S proteasome is comprised of one 20S catalytic particle and
two 19S regulatory particle [61,62]. The former contains multiple
proteolytic sites, and the latter contains multiple ATPases and a binding
site for ubiquitin concatemers [63,64]. The 20S catalytic subunit has
been a successful target in the cancer therapy, and some of its inhibitors
including bortezomib and ixazomib have been approved by FDA [10].
The 19S regulatory component (including USP14, UCHL5 and RPN11)
has also attracted worldwide attention owing to its potential function in
tumorigenesis [65–67]. Table 2 summarizes some known inhibitors that
target USP14.

According to two studies from Linder group, b-AP15 was identified
to induce the lysosomal apoptosis pathway in a screen for compounds
[68,69]. The mechanism of b-AP15 is under active investigation. As the

Table 2
Reported inhibitors targeting USP14.

USP14 inhibitor Target Structure IC50 Reference

b-AP15 UCHL5, USP14 2.1 μM [19,70,72]

VLX1570 UCHL5, USP14 10 μM [75,77,78]

WP1130 USP9x, USP5, USP14, UCH37 N.A. [79,80,114]

IU1 USP14 4–5 μM [27,87,115]

IU1-47 USP14 0.6 μM [85]

1D18 USP14 N.A. [86]

1B10 USP14 N.A. [86]

IU1-248 USP14 0.83 μM [87]

miR-4782-3p USP14 UGAUUGUCUUCAUAUCUAGAAC N.A. [40,88]

Note: N.A.: not available.
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dual inhibitor of UCHL5 and USP14, b-AP15 could result in accumu-
lation of polyubiquitin, with P53- and BCL2-independent tumor cell
apoptosis. Moreover, b-AP15 showed a significant inhibition in four
different in vivo solid tumor model and in organ infiltration of acute
myeloid leukemia model [70]. Other research has indicated that b-
AP15-induced apoptosis depends on the activation of AP-1, with en-
hancing of oxidative stress and rapid activation of Jun-N-terminal ki-
nase 1/2 (JNK) signaling [71]. The strong antitumor activity of b-AP15
was reported to be due to its intensive enrichment in cells and the re-
sulting rapid commitment to cell death [72]. It could also induce an
excessive accumulation of polyubiquitinated proteins and decrease of
mitochondrial oxidative phosphorylation thus leading to strong pro-
teotoxic stress and mitochondrial damage [73]. Another study de-
monstrated that targeting of USP14 and UCHL5 by b-AP15 resulted in a
build-up of ubiquitinated proteins and the activation of the en-
doplasmic reticulum stress response [74].

VLX1570, a derivative of b-AP15, was identified to inhibit protea-
some DUBs (including USP14 and UCHL5) activity in vitro in a manner
consistent with competitive inhibition [75]. And VLX1570 showed
marked inhibition in vivo xenograft mouse model of Ewing sarcoma
[76]. Moreover, treatment with VLX1570 induced the accumulation of
proteasome-bound high molecular weight polyubiquitin conjugates and
an apoptotic response, as well as extended survival in xenograft in
multiple myeloma [77]. Paulus et al. found that targeting USP14 and
UCHL5 with VLX1570 could be conducive to ibrutinib- or bortezomib-
resistant Waldenstrom macroglobulinemia tumor, with downregulation
of BCR-associated elements BTK, MYD88, NFATC, NF-κB and CXCR4
[78].

WP1130, a partly selective DUB inhibitor, exhibits inhibitory ac-
tivity against DUBs including USP14. USP14 inhibition by WP1130
results in downregulation of antiapoptotic and upregulation of proa-
poptotic proteins [79]. In addition, treatment of USP14 inhibitor
WP1130 led to the unfolded protein response and blocked viral infec-
tions [80].

In 2010, Lee et al. firstly described IU1 as a selective small-molecule
inhibitor of USP14 [27]. In 2012, Nag et al. found that IU1 suppressed
replication of several flaviviruses [81]. It was reported that IU1 could
significantly alleviate ventilator-induced rat lung injury by decreasing
TNF-α, IL-1β, IL-6 and IL-8 levels and increased IκB expression [82]. In
addition, Kiprowska et al. found that in a rat cerebral cortical neuron,
IU1 reduced the accumulation of Ub-proteins induced by prostaglandin
J2 (PGJ2) and triggered calpain-mediated cleavage of Tau, caspase 3
and spectrin, but failed to enhance proteasomal degradation of Ub-
proteins or Tau in neurons [83].

Many other compounds also show inhibitory activity against USP14.
In a recent study, platinum pyrithione (PtPT) was detected to inhibit
USP14 activity and have selective cytotoxicity to multiple cancer cells
without damaging DNA [84]. In 2017, Boselli et al. reported compound
that IU1-47, a variant of IU1, is a more effective inhibitor of USP14 than
IU1 [85]. Besides, Palmer et al. [86] and Wang et al. [87] also reported
IU1 derivatives showed inhibitory activity for USP14, and some of these
inhibitors (1D18, 1B10 and IU1-248) were more potent than IU1.

In vivo, miR-4728-3p was identified to promote cancer cells apop-
tosis via inhibiting USP14 expression in lung cancer [40]. Likewise, it
was confirmed that USP14 was capable of being targeted by miR-4782-
3p in hepatocellular carcinoma cells [88]. Meanwhile, zinc pyrithione
found by Zhao et al. [89] and nickel pyrithione by Lan et al. [90] in-
hibited the enzymatic activities of USP14 and UCHL5, but not the
proteolytic activities of 20S proteasomes.

Moreover, some of these compounds showed potential anti-cancer
drug resistance. For example, b-AP15 could decrease the viability
bortezomib-resistant in multiple myeloma cells, therefore overcoming
bortezomib resistance [19]; VLX1570 was able to induce tumor-specific
apoptosis in bortezomib- or ibrutinib-resistant Waldenstrom macro-
globulinemia tumor cells [78]; Nickel pyrithione could overcome im-
atinib resistance by triggering excessive apoptosis in chronic myeloid

leukemia cells [90].

6. Conclusions and future remarks

USP14, a deubiquitination enzyme located on 26S proteasomes, is
responsible for cleaving ubiquitin moieties from ubiquitin-fused pre-
cursors and ubiquitinylated proteins. The role of USP14 in cancer
progression is currently being explored. Recently, a series of break-
throughs have been made in further clarifying the role of USP14 in cell
proliferation, migration and autophagy in different types of cancers.
More importantly, drugs design targeting USP14 in oncotherapy have
emerged and shown efficient anti-tumor effects. Therefore, novel
USP14 inhibitors presents potential clinical uses for cancer treatment.
Further investigation on the molecular signaling pathway of USP14 can
offer new insights into its antitumor mechanisms. In the future, the
manner of USP14's regulation for the ubiquitin chain of substrate pro-
teins may be a hotspot in cancer research. The development of clinical
drugs for USP14 and the combination of drugs with other drugs are also
valuable research directions.
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