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Abstract The purpose of this work is to investigate the initial value problem for a general

isothermal model of capillary fluids derived by Dunn and Serrin [12], which can be used

as a phase transition model. Motivated by [9], we aim at extending the work by Danchin-

Desjardins [11] to a critical framework which is not related to the energy space. For small

perturbations of a stable equilibrium state in the sense of suitable L
p-type Besov norms,

we establish the global existence. As a consequence, like for incompressible flows, one may

exhibit a class of large highly oscillating initial velocity fields for which global existence and

uniqueness holds true.
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1 Introduction

We are interested in the following compressible capillary fluid model, which can be derived

from a Cahn-Hilliard like free energy (see the pioneering works by Dunn and Serrin [12] and

also [1, 4, 13]). The conservation of mass and of momentum write:



∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) − µ∆u− (µ+ µ′)∇div u+ ∇P (ρ) = κρ∇∆ρ.
(1.1)

Here u = u(t, x) ∈ R
d (d ≥ 2) stands for the velocity field and ρ = ρ(t, x) ∈ R

+ is the density.

The pressure P is a suitably smooth functions of ρ. We denote by µ and µ′ the two Lamé

coefficients of the fluid, which are assumed to satisfy µ > 0 and 2µ + µ′ > 0. The constant

κ > 0 is the capillary coefficient. In this article we investigate the Cauchy problem (1.1) with

the initial condition:

(ρ, u)|t=0 = (ρ0, u0). (1.2)
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The formulation of the theory of capillarity with diffuse interfaces was first introduced by

Korteweg a century ago [18], and derived rigorously by Dunn and Serrin [12]. Due to the

the physical importance and mathematical challenges, the study on Navier-Stokes-Korteweg

equstion has attracted many physicists and mathematicians. Many results concerning the

existence and uniqueness of (weak, strong or smooth) solutions can be found in [3, 11, 14–16,

19, 20] and the references cited therein. Among them, we refer to [3, 14] for the global existence

of weak solutions, [19] for the local existence of strong solutions, [15, 16] for the existence of

classical solutions, and [11] for the existence of solutions in the critical Besov spaces.

Here, we want to investigate the well-posedness of the system (1.1)–(1.2) in critical spaces,

that is, in spaces which are invariant by the scaling of Korteweg’s system. This is nowadays

a classical approach for achieving the largest class of data for which well-posedness may be

proved. Let us explain precisely the scaling of Korteweg system. For the compressible Navier-

Stokes-Korteweg equations, let us introduce the following transformation:

ρλ(t, x) := ρ(λ2t, λx), uλ := λu(λ2t, λx).

Then if (ρ, u) solves (1.1), so does (ρλ, uλ) provided the pressure law has been changed into

λ2P . This motivates the following definition:

Definition 1.1 We say that a functional space is critical with respect to the scaling of

the equation if the associated norm is invariant under the transformation:

(ρ, u) −→ (ρλ, uλ)

(up to a constant independent of λ).

This suggests us to choose initial data (ρ0, u0) in spaces whose norm is invariant by

(ρ0, u0) −→ (ρ0(λ·), λu0(λ·)).

In the homogeneous Besov spaces framework, we are thus led to take ρ0 in Ḃ
d

p1
p1,r1

(Rd) and u0 in

Ḃ
d

p2
−1

p2,r2
(Rd) for some 1 ≤ p1, r1, p2, r2 ≤ ∞. However, owing to the coupling between the density

and the velocity equations, it is nature to take p1 = p2. In addition, in order to obtain a L∞

control on the density we have to take r1 = 1. Finally, as regards the velocity, having r2 = 1

is the only way to obtain ∇u ∈ L1
loc(R

+;L∞(Rd)) by means of parabolic regularity estimates,

a property which is fundamental to transport the Besov regularity of the density. Because a

global in time approach does not seem to be accessible for general data, we will mainly consider

the global well-posedness problem for initial data close enough to stable equilibria (ρ̄, 0), where

ρ̄ > 0 satisfies P ′(ρ̄) > 0. After suitable normalization, one may assume that, without loss of

generality that ρ̄ = 1 and that P ′(1) = 1. So finally denoting a := ρ− 1, the system (1.1)–(1.2)

becomes 



∂ta+ u · ∇a+ (1 + a)div u = 0,

∂tu+ u · ∇u− I(a)A u+ ∇G(a) = κ∇∆a,

(a, u)|t=0 = (a0, u0) = (ρ0 − 1, u0)

(1.3)

with A := µ∆+(µ+µ′)∇div, I(a) := 1/1+a and G, a smooth function (that may be computed

from P ) satisfying G′(0) = 1.
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From now on, let us agree that if f is a tempered distribution over R
d, then f ℓ and f~

stand for the low and high frequency parts of f , respectively (the exact definition is given in

(4.3)). The following statement is a consequence of results that have been proved in [11].

Theorem 1.2 Let a0 be in Ḃ
d
2

2,1 and satisfy 1+ a0 > 0. Let u0 ∈ Ḃ
d
2
−1

2,1 , then there exists

a positive time T such that system (1.3) has a unique solution (a, u) which belongs to ET ,

where ET is the set of function which satisfy

a ∈ C([0, T ]; Ḃ
d
2

2,1)
⋂
L1([0, T ]; Ḃ

d
2
+2

2,1 ),

u ∈ C([0, T ]; Ḃ
d
2
−1

2,1 )
⋂
L1([0, T ]; Ḃ

d
2
+1

2,1 )

with 1 + a bounded away from 0.

If in addition a0 ∈ Ḃ
d
2
−1

2,1 , then there exists a constant c depending only on d, µ, µ′ and P

such that if

‖aℓ
0‖

Ḃ
d
2
−1

2,1

+ ‖a~

0‖
Ḃ

d
2
2,1

+ ‖u0‖
Ḃ

d
2
−1

2,1

≤ c,

then the above solution is global and satisfies

aℓ ∈ Cb([0, T ]; Ḃ
d
2
−1

2,1 )
⋂
L1([0, T ]; Ḃ

d
2
+1

2,1 ),

a~ ∈ Cb([0, T ]; Ḃ
d
2

2,1)
⋂
L1([0, T ]; Ḃ

d
2
+2

2,1 ),

u ∈ Cb([0, T ]; Ḃ
d
2
−1

2,1 )
⋂
L1([0, T ]; Ḃ

d
2
+1

2,1 ).

In the present work, we aim at extending the above statement to Besov spaces related to

Lp. The motivation for this is twofold:

(1) showing that a global well-posedness result for small data with critical regularity beyond

energy method;

(2) having larger spaces for which the global well-posedness for small data holds true.

In particular, as pointed out by Cannone in [5] (or more recently in [7]), owing to the fact

that d/p − 1 is negative if p > d, velocity fields u0 with a larger modulus may have a small

norm in Ḃ
d
p
−1

p,1 provided they have fast enough oscillation.

As in [11], the system has to be handled differently for low and high frequencies. Roughly,

in the low frequency regime, the first order terms predominate so that (1.3) must be treated

by means of hyperbolic energy methods. The influence of the viscous term I(a)A (u), however,

is decisive as it supplies the parabolic decay estimates for both a and u, they are the key to

global results.

In contrast, in the high frequency regime, two types of modes coexist: the parabolic one

(for the velocity) and the damped one (for the density), and a Lp approach may be used. More

explanation will be given in Section 3. For the time being, let us introduce some notation (the

reader is referred to the next section for the definition of spaces C̃b(Ḃ
s
p,r) and L̃1(Ḃs

p,r) and to

(4.3) for the definition of aℓ, a~ and u~.

Notation For s ∈ R and 1 ≤ p, r ≤ ∞, we denote by Es
p,r the set of functions (a, u)

which satisfy

aℓ ∈ C̃b(Ḃ
s
2,r)

⋂
L̃1(Ḃs+2

2,r ), a~ ∈ C̃b(Ḃ
s+1
2,r

⋂
Ḃ

d
p

p,1)
⋂
L̃1(Ḃs+3

2,r )
⋂
Ḃ

d
p
+2

p,1 ),
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u ∈ C̃b(Ḃ
s
2,r)

⋂
L̃1(Ḃs+2

2,r ), and u~ ∈ C̃b(Ḃ
d
p
−1

p,1 )
⋂
L1(Ḃ

d
p
+1

p,1 ).

If T > 0 then we denote by Es
p,r(T ) the restriction to [0, T ] of functions of Es

p,r. If r = ∞ then

we replaced the strong continuity in Ḃs
2,r or in Ḃs+1

2,r , above, by the weak continuity.

We shall repeatedly use the idea that in the case p ≥ 2, owing to Bernstein’s inequality

(see Lemma below), the space Es
p,r is a subset of the set of functions (a, u) which satisfy

a ∈ C̃b(Ḃ
d
p

p,1)
⋂
L2(Ḃ

d
p

p,1), a
ℓ ∈ C̃b(Ḃ

s
2,r)

⋂
L̃1(Ḃs+2

2,r ), a~ ∈ C̃b(Ḃ
s+1
2,r )

⋂
L̃1(Ḃs+3

2,r ),

u ∈ C̃b(Ḃ
s
2,r)

⋂
L̃1(Ḃs+2

2,r ), and u ∈ C̃b(Ḃ
d
p
−1

p,1 )
⋂
L1(Ḃ

d
p
+1

p,1 ).

Let us now state our main result.

Theorem 1.3 Assume that a0 ∈ Ḃ
d

p1

p1,1 and u0 ∈ Ḃ
d

p1
−1

p1,1 for some p1 ∈ [2, 2d). Further-

more we make the following addition (lower order) assumption:

aℓ
0 ∈ Ḃs

2,r, a
~

0 ∈ Ḃs+1
2,r and u0 ∈ Ḃs

2,r

for some r ∈ [1,∞] and s ∈ R such that

−min(1, d/p2) < s < d/2 − 1 if r > 1, (1.4)

−min(1, d/p2) < s ≤ d/2 − 1 if r ≥ 1, (1.5)

where p2 ∈ [p1, 2d). Then there exist two constants c and M depending only on d, p2, s and on

the physical parameters of the system such that if

‖aℓ
0‖Ḃs

2,r
+ ‖a~

0‖Ḃ
s+1

2,r
+ ‖a~

0‖
Ḃ

d
p2
p2,1

+ ‖u0‖Ḃs
2,r

+ ‖u~

0‖
Ḃ

d
p2

−1

p2,1

≤ c,

then system (1.3) has a unique global-in-time solution (a, u) in Es
p1,r. In addition, the norm of

the solution in Es
pi,r

(i = 1, 2) by M times the norm of the data in the corresponding space.

Let us introduce some notations for the use throughout this article. C stands for a “harm-

less” constant and we will sometimes use the notation A . B equivalently to A ≤ CB. The

notation A ≈ B means that A . B and B . A. If f : R
d → R

m is a differential function then

Df denotes the Jacobean matrix of f , and ∇f is the transposed matrix of Df .

We conclude this section by stating the arrangement of the rest of this article. In Section

2, we recall some basic facts about Littlewood-Paley decomposition and Besov spaces. Section

3 is devoted to the proof a priori estimates, first for the linearized system and next for the

paralinearized system. The proof of global well-posedness is carried over to the last section.

2 Littlewood-Paley Theory and Functional Spaces

Let us introduce the Littlewood-Paley decomposition. Choose a radial function ϕ ∈ S(Rd)

supported in C = {ξ ∈ R
d, 3

4 ≤ |ξ| ≤ 8
3} such that

∑

q∈Z

ϕ(2−qξ) = 1, if ξ 6= 0.

The frequency localization operator ∆q and Sq are defined by

∆̇qf = ϕ(2−qD)f, Sqf =
∑

j≤q−1

∆̇jf for all q ∈ Z.
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With our choice of ϕ, one can easily verify that

∆̇j∆q = 0 if |j − k| ≥ 2

and

∆̇j(Sk−1f∆̇kf) = 0 if |j − k| ≥ 5.

We denote the space Z
′

(Rd) by the dual space of Z(Rd) = {f ∈ S(Rd);Dαf̂(0) = 0;∀α ∈

N
N multi-index}, it also can be identified by the quotient space of S

′

(Rd)/P with polynomials

space P . The formal equality

f =
∑

q∈Z

∆qf

holds true for f ∈ Z
′

(Rd) and is called the homogeneous Littlewood-Paley decomposition.

The operators ∆̇ help us recall the definition of the Besov space (see also [21]).

Definition 2.1 Let s ∈ R, 1 ≤ p, r ≤ +∞. The homogeneous Besov space Ḃs
p,r is defined

by

Ḃs
p,r = {f ∈ Z

′

(RN ) : ‖f‖Ḃs
p,r

< +∞}

where

‖f‖Ḃs
p,r

:= ‖2qs‖∆̇qf‖Lp‖lr .

Let us now state some basic properties for Ḃs
p,r spaces.

Proposition 2.2 The following some basic properties for Ḃs
p,r hold

• for any p ∈ [1,∞] we have the following chain of continuous embedding:

Ḃ0
p,1 →֒ Lp →֒ Ḃ0

p,∞;

• if p <∞ then Ḃ
d
p

p,1 is an algebra continuously embedded in the set of continuous function

decaying to 0 at infinity;

• the following real interpolation property is satisfied for all 1 ≤ p, r1, r2, r ≤ ∞, s1 6= s2

and θ ∈ (0, 1):

[Ḃs1

p,r1
, Ḃs2

p,r2
](θ,r) = Ḃθs2+(1−θ)s1

p,r ;

• for any smooth homogeneous of degree m function F on R
d\{0} the operator F (D) maps

Ḃs
p,r in Ḃs−m

p,r . In particular, as the Leray projector P over divergence free vector-fields and

P
⊥ := Id − P satisfies the above assumptions with m = 0 (for, in Fourier variables, we have

P
⊥u(ξ) = − ξ

|ξ|2 ξ · û(ξ)), they map Ḃs
p,r in itself. Note also that the above property implies that

the gradient operator maps Ḃs
p,r in Ḃs−1

p,r .

The following lemma (referred to in what follows as Bernstein’s inequalities) describes the

way derivatives act on spectrally localized functions.

Lemma 2.3 Let 0 < r < R. There exists a constant C such that, for any nonnegative

integer k, any couple (p, q) in [1,∞]2 with 1 ≤ p ≤ q and any function u of Lp, we have for all

λ > 0,

Supp û ⊂ B(0, λR) ⇒ ‖Dku‖Lq ≤ Ck+1λk+d( 1
p
− 1

q
)‖u‖Lp;

Supp û ⊂ {ξ ∈ R
d : rλ ≤ |ξ| ≤ Rλ} ⇒ C−k−1λk‖u‖Lp ≤ ‖Dku‖Lp

≤ Ck+1λk‖u‖Lp.



1644 ACTA MATHEMATICA SCIENTIA Vol.39 Ser.B

The first Bernstein’s inequality entails the following embedding result.

Proposition 2.4 For all s ∈ R, 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞, the space Ḃs
p1,r1

is continuously embedded in the space Ḃ
s−d( 1

p
− 1

p
)

p2,r2
.

In this article, we shall work mainly with functions or distributions depending on both the

time variable t and the space variable x. More often, these functions will be seen as defined

on some time interval I and valued in some Banach space X . We shall denote by C(I;X)

(resp. Cb(I;X)) the set of continuous (resp. continuous bounded) functions on I with values in

X . For p ∈ [1,∞], the notation Lp(I;X) stands for the set of measurable functions on I with

values in X such that t 7→ ‖f(t)‖X belongs to Lp(I). We denote by Lp
loc(I;X) the set of those

functions defined on I and valued in X which, restricted to any compact subset J of I, are in

Lp(J ;X). In the case where I = [0, T ], the space Lp([0, T ];X) (resp. C([0, T ];X)) will also

be denoted by Lp
T (X) (resp. CT (X)). Finally, if I = R

+ we shall alternately use the notation

Lp(X).

We next introduce the Besov-Chemin-Lerner space which is initiated in [8].

Definition 2.5 For T > 0, s ∈ R and 1 ≤ p, q, r ≤ ∞.The space L̃q
T (Ḃs

p,r) is defined as

the set of all the the distributions f satisfying

‖f‖
L̃

q
T
(Ḃs

p,r) <∞,

where

‖f‖
L̃

q

T
(Ḃs

p,r) := ‖22ks‖∆̇kf(t)‖Lq(0,T ;Lp)‖ℓr .

The letter T is omitted for functions defined over R
+. We shall also adopt the notation

C̃T (Ḃs
p,r) := L̃∞

T (Ḃs
p,r) ∩ C([0, T ]; Ḃs

p,r)

and

C̃b(Ḃ
s
p,r) := L̃∞(Ḃs

p,r) ∩ Cb(R
+; Ḃs

p,r).

The spaces L̃q
T (Ḃs

p,r) may be compared with the spaces Lq
T (Ḃs

p,r) through the Minkowski in-

equality: we have

‖f‖
L̃

q

T
(Ḃs

p,r) ≤ ‖f‖L
q

T
(Ḃs

p,r) if r ≥ q

and

‖f‖
L̃

q
T
(Ḃs

p,r) ≥ ‖f‖L
q
T
(Ḃs

p,r) if r ≤ q.

The general principle is that all the properties of continuity for the product and composition

which are true in Besov spaces (see blow) remain true in the above spaces. The time exponent

simply behaves according to Hölder’s inequality.

In the sequel, we will constantly use the Bony’s decomposition from [2] that

uv = Tuv + Tvu+R(u, v) (2.1)

with

Tuv =
∑

q

Sq−1u∆̇qv

and

R(u, r) :=
∑

q

∑

|q′−q|≤1

∆̇qu∆̇q′v.
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The above operator T is called the “paraproduct” whereas R is called the “remainder”. We

shall sometimes use the notation

T ′
uv := Tuv +R(u, v).

The following properties of continuity for the paraproduct and remainder operators (sometimes

adapted to L̃q
T (Ḃs

p,r) spaces) will be of constant use in the article.

Proposition 2.6 For any (s, p, r) ∈ R× [1,∞]2 and t < 0, there exists a constant C such

that

‖Tuv‖Ḃs
p,r

≤ C‖u‖L∞‖v‖Ḃs
p,r

and

‖Tuv‖Ḃ
s+t
p,r

≤ C‖u‖Ḃt
∞,∞

‖v‖Ḃs
p,r
.

For any (s1, p1, r1) and (s2, p2, r2) in R × [1,∞]2 there exists a constant C such that

(1) if s1 + s2 > 0, 1/p := 1/p1 + 1/p2 ≤ 1 and 1/r := 1/r1 + 1/r2 ≤ 1 then

‖R(u, v)‖
Ḃ

s1+s2
p,r

≤ ‖u‖Ḃ
s1
p1,r1

‖v‖Ḃ
s2
p2,r2

;

(2) if s1 + s2 = 0, 1/p := 1/p1 + 1/p2 ≤ 1 and 1/r1 + 1/r2 ≥ 1 then

‖R(u, v)‖Ḃ0
p,∞

≤ ‖u‖Ḃ
s1
p1,r1

‖v‖Ḃ
s2
p2,r2

.

Combining the above proposition with (2.1) yields the following “tame estimate”.

Corollary 2.7 Let f and g be in L∞ ∩ Ḃs
p,r for some s > 0 and (p, r) ∈ [1,∞]2. Then

there exists a constant C depending only on d, p and s and such that

‖fg‖Ḃs
p,r

≤ ‖f‖L∞‖g‖Ḃs
p,r

+ ‖g‖L∞‖f‖Ḃs
p,r
.

The following result pertaining to the composition of functions in Besov spaces will be

needed for handling the pressure and the viscosity terms.

Proposition 2.8 Let I be a bounded interval of R and F : I 7→ R be a smooth function

vanishing at 0. Then for all compact subset J of I, all (p, r) ∈ [1,∞]2 and all positive s with

s < d/p if r > 1 and s ≤ d/p if r = 1, there exists a constant C such that for all a ∈ Ḃs
p,r with

values in J , we have F (a) ∈ Ḃs
p,r and

‖F (a)‖Ḃs
p,r

≤ C‖a‖Ḃs
p,r
.

We recall classical estimates for the flow of a smooth vector-field with bounded spatial

derivatives. The following proposition may be easily deduced from Proposition 8 in [9] and

Lemma 2.3.

Proposition 2.9 Let v be a smooth globally Lipschitz time dependent vector-field. Let

V (t) =
∫ t

0
‖∇v(t′)‖L∞dt′. Let

Ψq(t, x) = x+

∫ t

0

Sqv(t
′,Ψ(t′, x))dt′.

Then for all t ∈ R, the flow Ψq is a smooth diffeomorphism over R
d. Moreover there exists a

constant C and one has if t ≥ 0,

‖g ◦ Ψq‖Lp ≤ eCV ‖g‖Lp for all function g in Lp,

‖DΨ±
q ‖L∞ ≤ eCV ,
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‖DΨ±
q − Id‖L∞ ≤ eCV − 1,

‖DkΨ±
q ‖L∞ ≤ C2(k−1)q(eCV − 1) for k = 2, 3, 4.

3 The Paralinearized System

Let us fix some suitably smooth vector-field v. The key to the proof of Theorem 1.3 is a

new estimate in Besov spaces for the following paralinearization of system (1.3)



∂ta+ div(Tva) + div u = F,

∂tu+ Tv · ∇u− A u+ ∇a− κ∇∆a = G,
(3.1)

with div(Tva) := ∂i(Tvi
a), and Tv ·∇u := Tvi

∂iu. Here the summation convention over repeated

indices is used, so does the following article.

We shall make an extensive use of the following notation. For (p, r) ∈ [1,∞]2 and s ∈ R:

‖f‖ℓ

Ḃs
p,r

:=

( ∑

q<N

(2qs‖∆̇qu‖Lp)r

) 1
r

and ‖f‖~

Ḃs
p,r

:=

( ∑

q≥N

(2qs‖∆̇qu‖Lp)r

) 1
r

. (3.2)

For notational simplicity, the dependence on N is omitted. In the following statements, the

value of N will depend only on the viscosity coefficients µ, µ′ and the capillary coefficient κ.

Let us first recall a priori estimates for (3.1) in Besov spaces modeled on L2:

Proposition 3.1 Let s ∈ R and N ∈ N. Let (a, u) be a solution of (3.1). There exists a

constant C depending only on µ, µ′, κ,N, d and s, such that the following estimate holds:

‖(a, u)‖ℓ

L̃∞
t (Ḃs

2,r)∩L̃1
t(Ḃ

s+2

2,r )
+ ‖a‖~

L̃∞
t (Ḃs+1

2,r )∩L̃1
t(Ḃ

s+3

2,r )
+ ‖u‖~

L̃∞
t (Ḃs

2,r)∩L̃1
t (Ḃs+2

2,r )

≤ CeCV (t)(‖(a0, u0)‖
ℓ

Ḃs
2,r

+ ‖a0‖
~

Ḃs+1

2,r

+ ‖u0‖
~

Ḃs
2,r

+ ‖(F,G)‖ℓ

L̃1
t (Ḃs

2,r)

+ ‖F‖~

L̃1
t(Ḃ

s+1

2,r )
+ ‖G‖~

L̃1
t (Ḃs

2,r)
),

with V (t) :=
∫ t

0 ‖∇v(τ)‖L∞dτ .

Proof The case r = 1 has been proved in [11]. The general case r ∈ [1,∞] may be

obtained by means of real interpolation. �

The rest of this section is devoted to extending the previous proposition to the Lp frame-

work. We first consider the linearized homogeneous system (that is v ≡ 0, F ≡ 0, and G ≡ 0).

The general case will be treated in the second part of this section.

3.1 Linearized Homogeneous System

We consider the following linear system


∂ta+ div u = 0,

∂tu− A u+ ∇a− κ∇∆a = 0.
(3.3)

Let ν := 2µ + µ′. Introducing the Leray projector P := Id + ∇(−∆)−1div on divergence-free

vector-fields, and P
⊥ := Id− P, the above system translates into





∂ta+ divP
⊥u = 0,

∂tP
⊥u− νP

⊥u+ ∇a− κ∇∆a = 0,

∂tPu− µ∆Pu = 0.

(3.4)
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Note that the equation for Pu reduces to an ordinary equation, independent from the others,

Moreover, if we denote by Λs the pseudo differential operator defined by Λsu = F−1(|ξ|sû(ξ)),

it is equivalent to study P
⊥u or v := Λ−1div u and Pu or w := Λ−1curl u (with (curl z)j

i =

∂jz
i − ∂iz

j). So we are led to consider:





∂ta+ Λv = 0,

∂tu− ν∆v − Λa− κΛ3a = 0,

∂tw − µw = 0.

(3.5)

Indeed, as the definition of v and w, and relation u = −Λ−1∇v − Λ−1div w involve pseudo-

differential operators of degree zero, the estimates in Besov spaces for the original function u

will be same as for (v, w).

This section is devoted to the proof of the following result.

Lemma 3.2 Let (a, u) satisfy system (3.3) with the initial data (a0, u0). Let v :=

Λ−1div u and w := Λ−1curl u. There exist two constants c and C such that

(1) for all j ∈ Z and p ∈ [1,∞], we have

ect22j

‖∆̇jw(t)‖Lp ≤ C‖∆̇jw0‖Lp ; (3.6)

(2) there is M > 0 such that for j ≥M then for all p ∈ [1,∞],




‖∆̇jv(t)‖Lp ≤ Ce−ct22j

(‖∆̇ja0‖Lp + ‖∆̇jv0‖Lp),

‖∆̇ja(t)‖Lp ≤ Ce−ct22j

(‖∆̇ja0‖Lp + (2j)−1‖∆̇jv0‖Lp).
(3.7)

For all m ≥ 1 there exist two constants c and C depending only on m such that if j ≤ m then

‖∆̇ja(t), ∆̇jv(t)‖L2 ≤ Ce−ct22j

‖∆̇ja0, ∆̇jv0‖Lp . (3.8)

Proof The estimate for w was proved by Chenmin in [6], so let us focus on the first two

equations of (3.5). Taking the Fourier transform with respect to the space variable yields

d

dt


 â

v̂


 = A(ξ)


 â

v̂


 with A(ξ) :=


 0 −|ξ|

|ξ| + κ|ξ|3 −ν|ξ|2


 . (3.9)

The characteristic polynomial of A(ξ) is λ2 + ν|ξ|2λ+ |ξ|2 + κ|ξ|4 and has two distinct roots

λ±(ξ) := −
ν|ξ|2

2
(1 ±R(ξ)) with R(ξ) :=

√
1 −

4κ

ν2
−

4

ν2|ξ|2
.

The matrix A(ξ) is diagonalizable and after computing the associated eigenvalues, we find that

â(t, ξ) = etλ−(ξ)(
1

2
(1 +

1

R(ξ)
)â0(ξ) −

1

ν|ξ|R(ξ)
v̂0(ξ))

+etλ+(ξ)(
1

2
(1 −

1

R(ξ)
)â0(ξ) +

1

ν|ξ|R(ξ)
v̂0(ξ)),

v̂(t, ξ) = etλ−(ξ)(
1

ν|ξ|R(ξ)
â0(ξ) +

1

2
(1 −

1

R(ξ)
)v̂0(ξ))

+etλ+(ξ)(−
1

ν|ξ|R(ξ)
â0(ξ) +

1

2
(1 +

1

R(ξ)
)v̂0(ξ)).
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Remark that λ+(ξ) ∼ − ν|ξ|2

2 (1 +
√

1 − 4κ
ν2 ) and that λ−(ξ) ∼ − ν|ξ|2

2 (1 −
√

1 − 4κ
ν2 ) when |ξ|

goes to infinity. This is reminiscent of parabolic regularization for the high frequency of v and

the damping for the high frequencies of a.

Let us now tackle the proof of (3.7) and (3.8). The proof of (3.8) relies on the energy

method in the Fourier space and the proof of (3.7) relies on the use of explicit expression for

∆̇ja and ∆̇jv. �

The low frequency regime For all m ≥ 1, let us observe that for all j ≤ m we have



∂t

̂̇∆ja(t, ξ) + |ξ|̂̇∆jv(t, ξ) = 0,

∂t
̂̇∆jv(t, ξ) + ν|ξ|2 ̂̇∆jv(t, ξ) − |ξ|̂̇∆ja(t, ξ) − κ|ξ|3 ̂̇∆ja(t, ξ) = 0.

(3.10)

If we apply the energy method in the Fourier space to (3.10), then there is a time-frequency

Lyapunov functional E(̂̇∆ja(t, ξ),
̂̇∆jv(t, ξ)) with

E( ̂̇∆ja(t, ξ),
̂̇∆jv(t, ξ)) ∼ |̂̇∆ja(t, ξ)|

2 + |̂̇∆jv(t, ξ)|
2 (3.11)

satisfying that there is c > 0 depend only on m, ν and κ such that the Lyapunov inequality

d

dt
E(̂̇∆ja(t, ξ),

̂̇∆jv(t, ξ))
2 + c|ξ|2E( ̂̇∆ja(t, ξ),

̂̇∆jv(t, ξ)) ≤ 0. (3.12)

Combing (3.11), (3.12) and Plancherel theorem, we infer that inequality (3.8) holds for j ≤ m.

The high frequency regime To finish, we have to prove inequality (3.7) for j ≥ M

if M is large enough. In the case p 6= 2, we do not expect the above method to give an Lp

estimate. We shall, rather, adapt the approach used in [6] for the heat equation. We divide

into two case:

Case 1 1 − 4κ
ν2 6= 0. We let φ0 ∈ C∞

c (Rd) with suppφ0 ⊂ C′ = {ξ ∈ R
d, 1

2 ≤ |ξ| ≤ 3}, and

φ0 = 1 on C. Observing that

1

2
(1 −

1

R(ξ)
) = −(

2

ν2|ξ|2
+

2κ

ν2
)

1

R(ξ)(R(ξ) + 1)
,

we have

̂̇∆jv(t, ξ) = etλ−(ξ)(
φ0(2

−jξ)

ν|ξ|R(ξ)
̂̇∆ja0(ξ) − 2φ0(2

−jξ)(
1

ν2|ξ|2
+

κ

ν2
)

1

R(ξ)(R(ξ) + 1)
̂̇∆jv0(ξ)

+etλ+(ξ)(−
φ0(2

−jξ)

ν|ξ|R(ξ)
̂̇∆ja0(ξ) +

φ0(2
−jξ)

2
(1 +

1

R(ξ)
)v̂0(ξ)),

which we rewrite into

∆̇jv(t) = h1(t) ∗ (|νD|−1∆̇ja0) + h2(t) ∗ (|νD|−2 +
κ

ν2
)∆̇jv0)

+h3(t) ∗ (|νD|−1∆̇ja0) + h4(t) ∗ ∆̇jv0 (3.13)

with 



h1(t, x) := −
1

(2π)d

∫

Rd

eix·ξφ0(2
−jξ)

R(ξ)
etλ−(ξ)dξ,

h2(t, x) := −
2

(2π)d

∫

Rd

eix·ξφ0(2
−jξ)(

1

R(ξ)
−

1

R(ξ) + 1
)etλ−(ξ)dξ,

h3(t, x) := −
1

(2π)d

∫

Rd

eix·ξφ0(2
−jξ)

R(ξ)
etλ+(ξ)dξ,

h4(t, x) := −
1

2(2π)d

∫

Rd

eix·ξφ0(2
−jξ)(1 +

1

R(ξ)
)etλ+(ξ)dξ.
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We claim that there exist two positive constants c and C such that for all t ≥ 0,

‖h1(t), h2(t), h3(t), h4(t)‖Lp ≤ Ce−c22j

.

To prove this, we shall study the following functions




h1(t, x) :=

∫

Rd

eix·ξ φ0(2
−jξ)

R(ξ)
etλ−(ξ)dξ,

h2(t, x) :=

∫

Rd

eix·ξ φ0(2
−jξ)

R(ξ) + 1
etλ−(ξ)dξ,

h3(t, x) :=

∫

Rd

eix·ξ φ0(2
−jξ)

R(ξ)
etλ+(ξ)dξ,

h4(t, x) :=

∫

Rd

eix·ξφ0(2
−jξ)etλ+(ξ)dξ.

We just consider the function h1, and the proof works the same for h2, h3 and h4. Using the

change of variable ξ = 2jη we obtain that h1(t, x) = 2jdht(2
jx) with

ht(x) :=

∫

Rd

eix·ηφ0(η)A(2jη)e−
νt22j

2
|η|2B(2jη)dη

with

A(ξ) :=
1√

1 − 4κ
ν2 − 4

ν2|ξ|2

and B(ξ) := 1 −

√
1 −

4κ

ν2
−

4

ν2|ξ|2
.

Note that ‖h2(t)‖L1 = ‖ht‖L1 . In order to estimate the L1-norms, we shall exhibit a suitable

bound for (1 + |x|2)dh(x). By definition of ht, we have

(1 + |x|2)dht(x) =

∫

Rd

[(Id− ∆ξ)
deix·ξ]φ0(ξ)A(2jξ)e−

νt22j

2
|ξ|2B(2jξ)dξ,

so that, performing integrations by parts:

(1 + |x|2)dht(x) =

∫

Rd

eix·ξ(Id− ∆ξ)
d[φ0(ξ)A(2jξ)e−

νt22j

2
|ξ|2B(2jξ)]dξ. (3.14)

From the Leibniz formula, we see that there exist integer numbers Cα,β so that

(Id− ∆ξ)
d[φ0(ξ)A(2jξ)e−

νt22j

2
|ξ|2B(2jξ)]

=
∑

|α|+|β|≤2d

Cα,β∂
α(e−

νt22j

2
|ξ|2B(2jξ))∂β(φ0(ξ)A(2jξ)).

Now, the Leibniz formula gives:

∂β(φ0(ξ)A(2jξ)) =
∑

|γ|≤|β|


β

γ


 ∂β−γφ0(ξ)(2

j)|γ|(∂γA)(2jξ),

and the Faá-Bruno formula yields that the following quantity:

e
νt22j

2
|ξ|2B(2jξ)∂α(e−

νt22j

2
|ξ|2B(2jξ))

is a sum of terms of the form:

∑

α1+···+αm=α,|αj |≥1

(−
νt22j

2
)m

m∏

j=1

∂αj (|ξ|2B(2jξ)).
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Once more using the Leibniz formula we obtain:

∂αj (|ξ|2B(2jξ)) =
∑

γj≤αj


αj

γj


 ∂αj−γj (|ξ|2)(2j)|γj |(∂γjB)(2jξ).

Recall that in (3.14) integration may be restricted to C′ thanks to the cut-off function φ0. So it

suffices to bound the integrand on C′. Thanks to the exponential term, we can absorb the the

powers of νt22j

, as the real part of B(2jξ) is positive if j large enough. For the powers of 2j,

it’s easy to get rid of these term is to take advantage of the following properties of functions A

and B:

Proposition 3.3 There exist two constants C > 0 and M > 0 such that, for all ξ ∈ C′

and j > M , and all nonzero multi-index γ, we have:

|A(2jξ)| + |B(2jξ)| + (2j)|γ|(|(∂γA)(2jξ)| + |(∂γB)(2jξ)|) ≤ C.

The above proposition may be easily proved by induction. It is only a matter of com-

puting the derivatives of A and B and using the fact that, for j > M , the terms of the form
1√

1− 4κ

ν2 − 4

ν2|2jξ|2

can be bounded by a constant if M large enough.

Gathering all this information and using (3.14), we conclude that for all x ∈ R
d:

(1 + |x|2)d|ht(x)| ≤ C(1 + 22jt)2d

∫

C′

e
− νt22j

2
|ξ|2(1−

√
1− 4κ

ν2 − 4

ν2|2j ξ|2
)
dξ.

So finally, there exist two constants c and C such that for all x ∈ R
d,

(1 + |x|2)d|ht(x)| ≤ Ce−ct22j

,

and we can conclude that h1 satisfies the desired inequality and the claim is proved.

Now, convolution inequalities enable us to bound the Lp norm of all the terms in the

decomposition (3.13). We eventually obtain two positive constants c and C such that for all

j > M ,

‖∆̇jv(t)‖Lp ≤ Ce−ct22j

(‖∆̇ja0‖Lp + ‖∆̇jv0‖Lp).

Taking the same method to estimate a we have

‖∆̇ja(t)‖Lp ≤ Ce−ct22j

(‖∆̇ja0‖Lp + (2j)−1‖∆̇jv0‖Lp).

Case 2 1 − 4κ
ν2 = 0. If 1 − 4κ

ν2 = 0, we rewrite â(t, ξ) and v̂(t, ξ) into

â(t, ξ) = cos(|ξ|t)e−
ν|ξ|2t

2 â0(ξ) −
1

2

sin(|ξ|t)

|ξ|t
ν|ξ|2te−

ν|ξ|2t

2 â0(ξ)

+
1

2ν

sin(|ξ|t)

|ξ|t
ν|ξ|2te−

ν|ξ|2t

2
1

|ξ|
v̂0(ξ),

v̂(t, ξ) = −
1

2ν

sin(|ξ|t)

|ξ|t
ν|ξ|2te−

ν|ξ|2t

2
1

|ξ|
â0(ξ) + cos(|ξ|t)e−

ν|ξ|2t

2 v̂0(ξ)

+
1

2

sin(|ξ|t)

|ξ|t
ν|ξ|2te−

ν|ξ|2t

2 v̂0(ξ).

Because there exist constants c, C and M such that

|Dα(
sin(|ξ|t)

|ξ|t
ν|ξ|2te−

ν|ξ|2t

2 + cos(|ξ|t)e−
ν|ξ|2t

2 )| < Ce−c|ξ|2t,

if |ξ| > M . Then discuss just as above, we have (3.7).
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3.2 The Variable Coefficients Case

This section is devoted to the proof of the following result which is the key to obtain

Theorem 1.3.

Proposition 3.4 Let (s, s′) ∈ R
2, r ∈ [1,∞] and (a, u) be a solution of (3.1). Assume

that p ∈ [2,∞]. Let V (t) :=
∫ t

0
‖∇v(τ)‖L∞dτ . There exists a constant C depending only on

(µ, µ′), d and (s, s′), and on integer N depending only on ν such that under Notation (3.2) the

following estimate holds for all t ≥ 0:

‖(a, u)‖ℓ

L̃∞
t (Ḃs′

2,r)∩L̃1
t(Ḃ

s′+2

2,r )
+ ‖a‖~

L̃∞
t (Ḃs′+1

2,r )∩L̃1
t (Ḃs′+3

2,r )
+ ‖u‖~

L̃∞
t (Ḃs′

2,r)∩L̃1
t (Ḃs′+2

2,r )

+ ‖(a)‖~

L̃∞
t (Ḃs+1

p,1 )∩L1
t(Ḃ

s+3

p,1 )
+ ‖(u)‖~

L̃∞
t (Ḃs

p,1)∩L1
t (Ḃs+2

p,1 )

≤ CeCV (t)(‖(a0, u0)‖
ℓ

Ḃs′
2,r

+ ‖(F,G)‖ℓ

L̃1
t (Ḃs′

2,r)
+ ‖a0‖

~

Ḃ
s′+1

2,r

+ ‖u0‖
~

Ḃs′
2,r

+ ‖F‖~

L̃1
t(Ḃ

s′+1

2,r )

+ ‖G‖~

L̃1
t(Ḃ

s′
2,r)

+ ‖a0‖
~

Ḃ
s+1

p,1

+ ‖u0‖
~

Ḃs
p,1

+ ‖F‖~

L1
t(Ḃ

s+1

p,1 )
+ ‖G‖~

L1
t (Ḃs

p,1)
).

Proof Owning to the hyperbolic nature of the first equation of (3.1), one cannot expect

to have any estimate for (a, u) by a direct application of Lemma 3.2 treating the convection

terms as source terms. To overcome this difficulty, we shall adapt the method introduced by

Hmidi in [17] for transport-diffusion equations with divergence free vector-fields, and extended

in [10] for general vector-fields.

First, we apply operator ∆̇q to (3.1) in order to obtain a system of equations for (aq, uq) :=

(∆̇qa, ∆̇qu). We have



∂taq + vq · ∇aq + div uq = fq,

∂tuq + vq · ∇uq − A uq + ∇aq − κ∇∆aq = gq.

with vq := Sq−1v and

fq : = ∆̇qF + div(Sq−1v∆̇qa− ∆̇qTva) − ∆̇qadiv vq,

gq : = ∆̇qG+ Sq−1v · ∇∆̇qu− ∆̇q(Tv · ∇u).

We have the following estimates in [9] for fq and gq:

||∇fq||Lp ≤ ||∇∆̇qF ||Lp + C||∇v||L∞

∑

q′∼q

||∇∆̇q′a||Lp , (3.15)

and

||gq||Lp ≤ ||∆̇qG||Lp + C||∇v||L∞

∑

q′∼q

||∆̇q′u||Lp . (3.16)

Where q ∼ q′ means that the summation is restricted over q′ ∈ {q − 4, · · ·, q + 4}. This is a

consequence of the spectral localization properties of the Littlewood-Paley decomposition.

In order to handle he convection terms, we perform the Lagrangian change of variable

(τ, x) = (t, ψq(t, y)) where ψq stands for the flow of vq. Let φq := ψ−
q , f̃ := fq ◦ ψq and

g̃ := gq ◦ ψq. Obviously (ãq, ũq) := (aq ◦ ψq, uq ◦ ψq) satisfies



∂tãq + div ũq = f̃q +R1

q ,

∂tũq − A ũq + ∇ãq − κ∇∆ãq = g̃q + R2
q + κR3

q +R4
q ,

(3.17)
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where the remainder terms R1
q , R

2
q , R

3
q and R4

q are defined by:

R1
q(t, x) := Tr[∇ũq(t, x) · (Id−∇φq(t, ψq(t, x)))),

R2
q(t, x) := ∇ãq(t, x) · (Id−∇φq(t, ψq(t, x))),

R3,i
q (t, x) := {Tr[∇Dkφq(t, ψq(t, x)) · ∇Dãq(t, x) ·Dφq(t, ψq(t, x))

+ (∇φq(t, ψq(t, x)) − Id) · ∇DDkãq(t, x) ·Dφq(t, ψq(t, x))

+ (∇φq(t, ψq(t, x)) − Id) · ∇Dãq(t, x) ·DDkφq(t, ψq(t, x))

+ ∇DDkãq(t, x) · (Dφq(t, ψq(t, x)) − Id) + ∇Dãq(t, x)

·DDkφq(t, ψq(t, x))] + ∇Dkãq(t, x) · ∆φq(t, ψq(t, x))

+ ∇ãq(t, x) · ∆Dkφq(t, ψq(t, x))} · ∇φq(t, ψq(t, x))

+ ∆Dkãq(t, x)(Dkφ
i
q(t, ψq(t, x)) − δikId)

and R4
q := µR5

q + (µ+ µ′)R6
q with

R5,i
q (t, x) := Tr[(∇φq(t, ψq(t, x)) − Id) · ∇Dũi

q(t, x) ·Dφq(t, ψq(t, x))

+ ∇Dũi
q(t, x) · (Dφq(t, ψq(t, x)) − Id)] + ∇ũi

q(t, x) · ∆φq(t, ψq(t, x)),

R6,i
q (t, x) := Tr[Dũq(t, x) · ∂iDφq(t, ψq(t, x))]

+
∑

j,l,k,j 6=k,l6=i

∂2
lj ũ

k
q(t, x) · ∂iφ

l
q(t, ψq(t, x)) · ∂kφ

j
q(t, ψq(t, x))

+

d∑

k=1

∂2
ikũ

k
q(t, x) · [(∂iφ

i
q(t, ψq(t, x)) − Id) · ∂kφ

k
q (t, ψq(t, x))

+ (∂kφ
k
q (t, ψq(t, x)) − Id)].

Now we expect Lemma 3.2 to provide us with the desired estimate for (ãq, ũq). As the change of

variable destroys the spectral localization of (aq, uq), this is not so straightforward, though. To

handle frequencies of ũq which are very small compare to 2q , we are going to take advantage of

Lemma A.1 in [10], which ensures that there exists a constant C such that for all N0 ∈ N, q ∈ N

and t ∈ R
+, we have

||Sq−N0
ũq(t)||Lp ≤ C(2−N0eCV (t) + (eCV (t) − 1))||uq(t)||Lp .

Bounding the low of frequencies of ∇ãq stems from a similar argument; indeed, using the

Bernstein’s inequality, one may write

||Sq−N0
Dãq(t)||Lp ≤ C2q−N0 ||Sq−N0

ãq(t)||Lp .

Hence, using the aforementioned lemma and the Bernstein’s inequality, one may conclude that

||Sq−N0
Dãq(t)||Lp ≤ C(2−2N0eCV (t) + 2−N0(eCV (t) − 1))||Daq(t)||Lp . (3.18)

In order to bound the high frequency part of (Dãq, ũq), we shall use a decomposition into dyadic

blocks and bound each block by means of Lemma 3.2. More precisely, if we denote by (etL)t≥0

the semi-group with generator L then we may write

 ∆̇j ãq(t)

∆̇j ũq(t)


 = etL


 ∆̇j∆̇qa0(t)

∆̇j∆̇qa0(t)


 +

∫ t

0

e(t−τ)L


 ∆̇j(f̃q(t) +R1

q)

∆̇j(g̃q(t) +R2
q +R3

q +R4
q)


 dτ.
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Hence combined Lemma 3.2 with Bernstein’s inequality ensures that there exists N1 ∈ Z de-

pending only on ν, κ and two constants c and C depending only on (µ, µ′) and κ, such that for

all j ≥ N1, we have

||∆̇jDãq(t)||Lp . e−c22jt(||∆̇j∆̇qDa0||Lp + ||∆̇j∆̇qu0||Lp)

+

∫ t

0

e−c22j(t−τ)(||∆̇jDf̃q(t)||Lp + ||∆̇jDR
1
q(t)||Lp

+||∆̇j g̃q(t)||Lp + ||∆̇jR
2
q(t)||Lp + ||∆̇jR

3
q(t)||Lp

+||∆̇jR
4
q(t)||Lp + ||∆̇jR

5
q(t)||Lp)dτ, (3.19)

||∆̇j ũq(t)||Lp . e−c22jt(||∆̇j∆̇qDa0||Lp + ||∆̇j∆̇qu0||Lp)

+

∫ t

0

e−c22j(t−τ)(||∆̇jD̃fq(t)||Lp + ||∆̇jDR
1
q(t)||Lp

+||∆̇j g̃q(t)||Lp + ||∆̇jR
2
q(t)||Lp + ||∆̇jR

3
q(t)||Lp

+||∆̇jR
4
q(t)||Lp + ||∆̇jR

5
q(t)||Lp)dτ. (3.20)

In the final step of the proof, it will be possible to obtain an estimate for aq and uq just by

using the fact

∇aq = (Sq−N0
∇ãq ◦ φq +

∑

j≥q−N0

∆̇j∇ãq ◦ φq) · ∇φq

uq = Sq−N0
ũq ◦ φq +

∑

j≥q−N0

∆̇j ũq ◦ φq.
(3.21)

So now we are left with bounding all the terms in the right-hand side of (3.19) and (3.20).

According to [9], we have the following estimates

||∆̇jDf̃q(t)||Lp . 2q−jeCV (t)(||∆̇jDFq(t)||Lp + C||Dv(t)||L∞

∑

q′∼q

||∆̇q′Da(t)||),

||∆̇j g̃q(t)||Lp . 2q−jeCV (t)(||∆̇jGq(t)||Lp + C||Dv(t)||L∞

∑

q′∼q

||∆̇q′u(t)||),

||∆̇jDR
1
q(t)||Lp . 2q−j(eCV (t) − 1)eCV (t)22q||uq||Lp ,

||∆̇jR
2
q(t)||Lp . 2q−j(eCV (t) − 1)eCV (t)||Daq||Lp ,

||∆̇jR
4
q(t)||Lp . 2q−j(eCV (t) − 1)eCV (t)22q||uq||Lp .

(3.22)

Let us now bound the term R3
q , we use Bernstein’s inequality and write

||∆̇jR
3
q ||Lp . 2−j||∆̇jDR

3
q ||Lp .

Therefore, using the chain rule and Hölder’s inequality, we obtain

||∆̇jR
3
q ||Lp . 2−j{||D4ãq||Lp ||Dφq ◦ ψq − Id||L∞(1 + ||Dφq ◦ ψq||L∞)2

+ ||D3ãq||Lp ||D2φq ◦ ψq||L∞(||Dφq ◦ ψq||L∞ + 1)2

× (1 + ||ψq||L∞) + ||D2ãq||Lp((||D3φq ◦ ψq||L∞

+ ||D2φq ◦ ψq||
2
L∞)(||Dφq ◦ ψq||L∞ + 1)2(1 + ||ψq||L∞))

+ ||Dãq||Lp(||D3φq ◦ ψq||L∞ ||Dφq ◦ ψq||L∞

+ ||D2φq ◦ ψq||
2
L∞)||ψq||L∞}.
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So, taking advantage of Proposition 2.9, we conclude that

||∆̇jR
3
q ||Lp . 2q−j(eCV − 1)22q||Daq||Lp . (3.23)

Now, combining (3.19) and (3.20) with convolution inequalities with respect to time yields

||∆̇jDãq, ∆̇j ũq||L∞
t (Lp) + 22j

||∆̇jDãq, ∆̇j ũq||L1
t (Lp)

. ||∆̇j∆̇qDa0||Lp + ||∆̇j∆̇qu0||Lp + ||∆̇jDf̃q||L1
t (Lp) + ||∆̇jDR

1
q ||L1

t (Lp)

+ ||∆̇j g̃q||L1
t (Lp) + ||∆̇jR

2
q||L1

t (Lp) + ||∆̇jR
3
q ||L1

t (Lp) + ||∆̇jR
4
q ||L1

t (Lp).

Hence, inserting inequalities (3.22) and (3.23) in the above inequality, we end up with

||∆̇jDãq, ∆̇j ũq||L∞
t (Lp) + 22j

||∆̇jDãq, ∆̇j ũq||L1
t (Lp)

.||∆̇j∆̇qDa0, ∆̇j∆̇qu0||Lp + 2q−jeCV (t)||∆̇jDF, ∆̇jG||L1
t (Lp)

+ 2q−j
∑

q′∼q

∫ t

0

V ′eCV ||(Daq′ , uq′)||Lpdτ + 2q−j(eCV (t) − 1)eCV (t)22q(||Daq, uq||L1
t (Lp)).

Let

Uq(t) := ||(Daq, uq)||L∞
t (Lp) + 22q||(Daq, uq)||L1

t (Lp),

U0
q (t) := ||(Daq(0), uq(0))||Lp + ||(D∆̇qF, ∆̇qG)||L1

t (Lp).

From the previous inequality and (3.21), we see that for all q ≥ N0 +N1 and t ≥ 0, we have

Uq(t) ≤ CeCV (t)(23N0(U0
q (t) +

∑

q′∼q

∫ t

0

V ′Uq′dτ) + C(23N0(eCV (t) − 1) + 2−N0)Uq(t)).

Let us fix some T such that CV (T ) ≤ log 2 (so that in particular eCV (t) − 1 ≤ 2CV (t) for

t ∈ [0, T ]). Next, choose N0 to be a unique integer such that 2C2−N0 ∈ (1/4, 1/2). Finally, let

us assume, in addition, that 16C2V (T )23N0 ≤ 1. Then the last term of the above inequality

may be absorbed by the left-hand side. Hence, if T has been defined by

T := sup{t ≤ 0 : CV (t) ≤ log 2 and 16C2V (T )23N0 ≤ 1} (3.24)

then for all t ∈ [0, T ] and q ≥ N0 +N1, we have

Uq(t) ≤ C(U0
q +

∑

q′∼q

∫ t

0

V ′Uq′dτ).

So multiplying both sides by 2qs, we have

2qsUq(t) ≤ C(2qsU0
q +

∑

q′∼q

∫ t

0

V ′2q′sUq′dτ). (3.25)

In order to estimate the Besov norm of the high frequency part of the solution, the natural

next step would be to perform a summation over q ≤ N0 +N1 in (3.25) the use the Gronwall

lemma. However, owing to the summation over q′, the right-hand side involves a finite number

of terms Uq′ with q′ < N0 +N1. In other words, there is a slight overlap between the low and

high frequency parts of the solution. Here comes into play the L2 type assumption on the data.

Indeed, taking N = N0 + N1 in (3.2), Proposition 3.1 ensures that for all q < N0 + N1 and

s′ ∈ R, we have for all t ∈ [0, T ],

2qs′

||(∆̇qa, ∆̇qu)||L∞
t (L2) + 2q(s′+2)||(∆̇qa, ∆̇qu)||L1

t (L2)
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≤ C(||a0||
ℓ

Ḃs′
2,r

+ ||a0||
~

Ḃ
s′+1

2,r

+ ||u0||Ḃs′
2,r

+ ||F ||ℓ
L̃1

t (Ḃs′
2,r)

+ ||F ||~
L̃1

t (Ḃs′+1

2,r )
+ ||G||

L̃1
t (Ḃs′

2,r)).

Owing to the Bernstein’s inequality (recall that p ≥ 2), the above inequality ensures that for

N0 +N1 − 4 ≤ q < N0 +N1, we have

2qsUq(t) . ||a0||
ℓ

Ḃs′
2,r

+ ||a0||
~

Ḃ
s′+1

2,r

+ ||u0||Ḃs′
2,r

+ ||F ||ℓ
L̃1

t (Ḃs′
2,r)

+ ||F ||~
L̃1

t (Ḃs′+1

2,r )
+ ||G||

L̃1
t (Ḃs′

2,r).

So, summing up over q ≥ N0 + N1 in (3.25), plugging in the above inequality and bearing in

mind the definition of T in (3.24), we have for all t ∈ [0, T ],
∑

q≥N0+N1

2qsUq(t) . ||a0||
ℓ

Ḃs′
2,r

+ ||a0||
~

Ḃ
s′+1

2,r

+ ||u0||Ḃs′
2,r

+ ||F ||ℓ
L̃1

t (Ḃs′
2,r)

+ ||F ||~
L̃1

t (Ḃs′+1

2,r )
+ ||G||

L̃1
t (Ḃs′

2,r) +
∑

q≥N0+N1

2qsU0
q (t)

+

∫ t

0

||∇v||L∞

∑

q≥N0+N1

2qsUq(t)dτ.

Then applying the Gronwall lemma, we conclude that for all t ∈ [0, T ],

||a||~
L̃∞

t (Ḃs+1

p,1 )∩L̃1
t (Ḃs+3

p,1 )
+ ||u||~

L̃∞
t (Ḃs

p,1)∩L̃1
t (Ḃs+2

p,1 )

. eCV (t)(||a0||
ℓ

Ḃs′
2,r

+ ||a0||
~

Ḃ
s′+1

2,r

+ ||u0||Ḃs′
2,r

+ ||F ||ℓ
L̃1

t (Ḃs′
2,r)

+ ||F ||~
L̃1

t (Ḃs′+1

2,r )

+ ||G||
L̃1

t (Ḃs′
2,r) + ||a0||

~

Ḃ
s+1

p,1

+ ||u0||
~

Ḃs
p,1

+ ||F ||~
L1

t (Ḃs+1

p,1 )
+ ||G||L1

t (Ḃs
p,1)

).

This yields the desired Lp type estimate for t ∈ [0, T ]. Then a standard bootstrap arguments

leads to the result for all positive time. As for the L2 type estimate, it has already been proved

in Proposition 3.1. �

4 Proof of Global Well-posedness

This section is devoted to the proof of Theorem 1.3. In the first paragraph, we establish

new a priori estimates for the solution to (1.3). Global solutions are constructed in the second

paragraph.

4.1 A Priori Estimates

Consider a solution (a, u) to (1.3). In order to take advantage of Proposition 3.4, we rewrite

the system satisfied by (a, u) as follows:



∂ta+ div(Tua) + div u = F,

∂tu+ Tu · ∇u− A u+ ∇a− κ∇∆a = G
(4.1)

with

F := −divT ′
au and G := ∇(aK(a)) − J(a)A u− T ′

∇u · u,

where J(a) := a/(1 + a) and K is a smooth function vanishing at 0 (recall that P ′(1) = 1).

Throughout, we make the following assumption on a:

∀(t, x) ∈ [0, T ]× R
d, |a(t, x)| ≤

1

2
(P)
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and we set for p = p1, p2,

Xp(t) := ||a||ℓ
L̃∞

t (Ḃs
2,r)∩L̃1

t(Ḃ
s+2

2,r )
+ ||a||~

L̃∞
t (Ḃs+1

2,r ∩Ḃ
d
p
p,1)

+ ||a||~

L̃1
t (Ḃs+3

2,r ∩Ḃ
d
p

+2

p,1 )

+ ||u||
L̃∞

t (Ḃs
2,r)∩L̃1

t(Ḃ
s+2

2,r ) + ||u||~

L̃∞
t (Ḃ

d
p
−1

p,1 )∩L1
t(Ḃ

d
p

+1

p,1 )

,

Xp,0 := ||a0||
ℓ

Ḃs
2,r

+ ||a0||
~

Ḃ
s+1

2,r ∩Ḃ
d
p
p,1

+ ||u0||Ḃs
2,r

+ ||u0||
~

Ḃ
d
p
−1

p,1

.

Let U(t) :=
∫ t

0 ||∇u||L∞dτ . For i = 1, 2, according to Proposition 3.4, we have for some constant

C depending only on s, d and pi,

Xpi
(t) ≤ CeCU(t)(Xpi,0(t) + ||F ||ℓ

L̃1
t (Ḃs

2,r)
+ ||F ||~

L̃1
t (Ḃs+1

2,r )

+ ||G||
L̃1

t (Ḃs
2,r) + ||F ||~

L1
t (Ḃ

d
pi
pi,1

)

+ ||G||
L1

t (Ḃ
d
pi

−1

pi,1 )
). (4.2)

If we denoting

f ℓ :=
∑

q≤N

∆̇qf and f~ :=
∑

q≥N

∆̇qf for f ∈ S′(Rd). (4.3)

Taking the same argument in [9] to estimate F and G, we have the following result.

Proposition 4.1 Let (a, u) be a solution of (1.3) which belongs to Es
p1,r(T ) with s, p1

and r satisfying the condition of Theorem 1.3. There exist two constants c and C depending

only on d, p2, s and r such that if Xp2,0(T ) ≤ c then

Xpi
(t) ≤ CXpi,0 for all t ∈ [0, T ] and i = 1, 2.

4.2 The Proof of the Global Existence Theorem

For all p > 0, Danchin-Desjardins [11] has shown that uniqueness holds true in the set of

functions (a, u) such that

||a||
L̃∞

T
(Ḃ

d
p
p,1)

+ ||u||
L̃∞

T
(Ḃ

d
p
−1

p,1 )
≤ c

for some small enough constant c depending only on p and d. So let us proceed to the proof of

global existence under assumptions of Theorem 1.3. To simplify the presentation, we assume

throughout that r < ∞. The case r = ∞ follows from the similar arguments. It is only a

matter of replacing the strong topology in Ḃs
2,r or Ḃs+1

2,r by weak topology. We proceed in three

steps:

Step 1 smooth solutions

We smooth out the data so as to obtain a sequence (a0,n, u0,n)n∈N such that

a0,n ∈ Ḃs
2,r ∩ Ḃ

d
2

2,r and u0,n ∈ Ḃs
2,r ∩ Ḃ

d
2
−1

2,r

and that

aℓ
0,n −→ aℓ

0 in Ḃs
2,r, a~

0,n −→ a~
0 in Ḃs+1

2,r ∩ Ḃ
d

p1

p1,1,

uℓ
0,n −→ uℓ

0 in Ḃs
2,r, u~

0,n −→ u~
0 in Ḃ

d
p1

−1

p1,1 .
(4.4)

Note that, owing to Bernstein’s inequality, one may merely take

a0,n := Sna0 and u0,n := Snu0.
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Now, from the Theorem 1.2, for all n ∈ N, we have a maximal solution (an, un) over the time

interval [0, T ∗
n) such that for all T < T ∗

n we have

an ∈ C̃T (Ḃ
d
2

2,1) ∩ L
1
T (Ḃ

d
2
+2

2,1 ) and un ∈ C̃T (Ḃ
d
2
−1

2,1 ) ∩ L1
T (Ḃ

d
2
+1

2,1 ).

We claim that (an, ) is in Es
p1,r(T ) (and thus also in Es

p2,r(T )) for all T < T ∗. Note that,

because p1 ≥ 2, Proposition 2.4 ensures that

a~

n ∈ C̃T (Ḃ
d

p1

p1,1 ∩ Ḃ
s
2,r) ∩ L

1
T (Ḃ

d
p1

+2

p1,1 ∩ Ḃs+2
2,r ) and u~

n ∈ C̃T (Ḃ
d

p1
−1

p1,1 ) ∩ L1
T (Ḃ

d
p1

+1

p1,1 ).

So, in order to complete the justification of our claim, it is only a matter of showing that the

low frequencies of an and of un are in C̃T (Ḃs
2,r) (hence also in L̃1

T (Ḃs+2
2,r )) for all T < T ∗

n .

For the time being, let us assume for simplicity that, in addition to condition (1.4) or (1.5),

we have

s >
d

2
− 2. (4.5)

In order to establish the property for an, one may use the fact that

∂tan = −div un − div(anun).

Fix some T ∈ (0, T ∗
n). As un is in L̃∞

T (Ḃ
d
2
−1

2,1 ) and as an is in L̃∞
T (Ḃ

d
2

2,1) the product laws in

Besov spaces ensure that ∂tan is in L̃∞
T (B

d
2
−2

2,1 ). Hence ∂ta
ℓ
n is in L̃∞

T (B
d
2

2,1), owing to (4.5). As

aℓ
n,0 belongs to Ḃs

2,r we thus have aℓ
n ∈ C̃T (Ḃs

2,r).

Let us now check that un ∈ C̃T (Ḃs
2,r). Owing to (4.5), it suffices to establish that ∂tun

belongs to L1
T (Ḃ

d
2
−2

2,1 ). Now, we have

∂tun = (1 − J(an))A un −∇((1 +K(an))an) − un · ∇un − κ∇∆an.

In the case d ≥ 3, one may use the fact that an (hence also J(an) and K(an)) belongs to

L̃∞
T (Ḃ

d
2

2,1) and that A un belongs to L2
T (Ḃ

d
2
−2

2,1 ) to deduce that the first term of the right-hand

side is in L2
T (Ḃ

d
2
−2

2,1 ). Next, as an is also in L∞
T (Ḃ

d
2
−1

2,1 ), the second term is in L2
T (Ḃ

d
2
−2

2,1 ). A

similar argument works for the third term. Finally, as an is belong to L1
T (Ḃ

d
2
+1

2,1 ), the last term

is belong L1
T (Ḃ

d
2
−2

2,1 ).

In the case d = 2, owing to the fact that the product only maps Ḃ−1
2,1 × Ḃ1

2,1 in the larger

Besov space Ḃ−1
2,∞, we obtain, rather, that ∂tun belongs to L1

T (Ḃ−1
2,∞). In any case, as (4.5) is

satisfied and u0,n is in Ḃs
2,r, one may conclude uℓ

n ∈ C̃T (Ḃs
2,r). This completes the proof that

(an, un) ∈ Es
p,r(T ) for all T < T ∗ under assumption (4.5).

The case of smaller values of s may be treated by bootstrapping as, from the previous

discussion, we already know that an and un are in C̃T (Ḃ
d
2
−2

2,r ). Then one may argue as above

to show that ∂tan and ∂tun are in L1
T (Ḃ

max(s, d
2
−2)

2,r ), and so on.

Step 2 global existence and uniform bounds

According to Proposition 4.1 and (4.4), there exists a constant c such that(with obvious

notation) if Xn
p2

≤ c then

Xn
p (t) ≤ CXn

p,0 for all n ∈ N, t ∈ [0, T ∗
n) and p = p1, p2. (4.6)

Note that if we suppose thatXp2,0 ≤ c
2 , then property (4.4) guarantees that the above smallness

condition for the smoothed out date is satisfied for all large enough n.

Taking the standard method in [2, Chap. 10], we have the following continuation criterion.
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Lemma 4.2 Under the hypotheses of Theorem 1.2, assume that the system (1.3) has a

solution (a, u) on [0, T )× R
d which belongs to ET ′ for all T ′ < T and satisfies

∫ T

0

||∇u||L∞dt <∞ and





||a||
L∞

T
(Ḃ

d
2
2,1)

≤ η, if d ≥ 3,

||a||
L̃∞

T
(Ḃ1

2,1)
≤ η, if d = 2,

where η is a constant depending only on µ and µ′. Then there exists some T ∗ > T such that

(a, u) may be continued on [0, T ∗] × R
d to a solution of system (1.3) which belongs to ET∗ .

By contradiction, we assume that T ∗
n is finite. Then applying Proposition 4.1 with Lebesgue

exponents 2 and p2 ensures that

Xn
2 (t) ≤ CXn

2,0 for all t ∈ [0, T ∗
n).

In order words, an belongs to L̃∞
T∗

n
(Ḃ

d
2

2,1) and un belongs to L̃∞
T∗

n
(Ḃ

d
2
−1

2,1 ). Then, from Lemma

4.2, we conclude that (an, un) may be continued beyond T ∗
n into a solution (ãn, ũn) of (1.3)

which coincides with (an, un) on [0, T ∗
n) and such that, for some T > T ∗

n ,

ãn ∈ C̃T (Ḃ
d
2

2,1) and ũn ∈ C̃T (Ḃ
d
2
−1

2,1 ) ∩ L1
T (Ḃ

d
2
+1

2,1 ).

Then the previous step ensures that (ãn, ũn) ∈ Es
p1,r(T ). This stands in contradiction with the

definition of T ∗
n . Hence T ∗

n = ∞ and (4.6) holds true globally.

Step 3 passing to the limit

Let us first focus on the convergence of (an)n∈N. We claim that, up to extraction, (an)n∈N

converges in the distributional sense to some function a such that

aℓ ∈ L̃∞(Ḃs
2,r) ∩ L̃

1(Ḃs+2
2,r ), a~ ∈ L̃∞(Ḃs+1

2,r ) ∩ L̃1(Ḃs+3
2,r )∩ ∈ L̃∞(Ḃ

d
p1

p1,1) ∩ L̃
1(Ḃ

d
p1

+2

p1,1 ). (4.7)

The proof relies on an Aubin-lions type argument. Indeed, let us admit for a while that

(∂tan)n∈N is bounded in L̃2(Ḃs
2,r). (4.8)

Then, as (a0,n)n∈N is bounded in Ḃs
2,r, we deduce that (an)n∈N seen as a sequence of Ḃs

2,r

valued functions, is equicontinuous on R
+. In addition, according to the previous step, (an)n∈N

is bounded in C(R+; Ḃs
2,r ∩ Ḃs+1

2,r ). Let (Xk)k∈N be a sequence of C∞
0 (Rd) cut-off functions

supported in the ballB(0, k+1) of R
d and equal to 1 in a neighborhood ofB(0, p). Let us observe

now that the application u 7−→ Xpu is compact from Ḃs
2,r ∩ Ḃ

s+1
2,r into Ḃs

2,r. Therefore, Ascoli’s

theorem ensures that there exists some function ak such that, up to extraction, (Xkan)n∈N

converges to ak in C([0, k]; Ḃs
2,r). Using the Cantor diagonal extraction process, we can then

find a subsequence (an)n∈N (still denoted by (an)n∈N) such that for all k ∈ N, Xkan converges

to ak in C([0, k]; Ḃs
2,r). As XkXk+1 = Xk, we have, in addition, ak = Xka

k+1. From that, we

can easily deduce that there exists some function a such that for (Xan)n∈N converges to Xa

in C(R+; Ḃs
2,r) for all X ∈ C∞

0 (R+). Then, by using the so-called Fatou property [2,Theorem

2.25] for the Besov spaces, we can conclude that (4.7) is satisfied.

For the sake of completeness, let us now establish (4.8). We write

∂tan = −div un − div(anun).

From the previous step and interpolation, we know that (un)n∈N is bounded in L̃2(Ḃs+1
2,r ).

Hence the first term of the right-hand side is bounded in L̃2(Ḃs
2,r). Using embedding, (1.4) and
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(1.5), we see that (an)n∈N is bounded in L̃∞(Ḃ
d

p1

p1,1 ∩ Ḃs+1
2,r ) and that (un)n∈N is bounded in

L̃2(Ḃ
d

p1

p1,1 ∩ Ḃ
s+1
2,r ). Hence Proposition 2.6 ensures that div(anun) is bounded in L̃2(Ḃs

2,r).

We now want to prove that (un)n∈N converges up to extraction and, in the distributional

sense, to some function u such that

u ∈ L̃∞(Ḃs
2,r) ∩ L̃

1(Ḃs+2
2,r ) and u~ ∈ L̃∞(Ḃ

d
p1

−1

p1,1 ) ∩ L̃1(Ḃ
d

p1
−1

p1,1 ). (4.9)

For expository purpose, in what follows we agree that the notation L̃1+

(Ḃs−

2,r) stands for the

space L̃
2

2−ε (Ḃs−ε
2,r ) for suitably small ε. Admit for a while that

(∂tun)n∈N is bounded in L̃1+

loc(Ḃ
s−

2,r). (4.10)

Then (un)n∈N is equicontinuous on R
+ with values in Ḃs−

2,r. By adapting the arguments that

have been used for handling (an)n∈N, one can conclude that (un)n∈N converges up to extraction

to some distribution u satisfying (4.9).

Let us now establish (4.10). For the momentum equation, we may write

∂un = A un − J(an)A un −∇(an(1 +K(an))) − un · ∇un − κ∇∆an. (4.11)

Let us first point out that as (un)n∈N is bounded in L̃∞(Ḃs
2,r)∩ L̃

1(Ḃs+2
2,r ) interpolation ensures

that (A un)n∈N is bounded in L̃1+

(Ḃs−

2,r). As (A un)n∈N is bounded in L̃1+

(Ḃs−

2,r ∩ Ḃ
( d

p1
−1)−

p1,1 )

and as (J(an))n∈N is bounded in L̃∞(Ḃs+1
2,r ∩ Ḃ

d
p1

p1,1), we conclude that the second terms of

the right-hand side of (4.11) is bounded in L̃1+

(Ḃs−

2,r). In addition, as (an)n∈N is bounded in

L̃∞(Ḃ1+s−

2,r ), we see that the third of (4.11) belongs to L̃∞(Ḃs−

2,r).

Next, using the fact that (un)n∈N is bounded in L̃∞(Ḃ
d

p1
−1

p1,1 ) and that (∇un)n∈N is bounded

in L1+

(Ḃ1+s−

2,r ), owing to (1.4) and (1.5), we see that un ·∇un is bounded in L̃1+

(Ḃs−

2,r). Finally,

as (an)n∈N is bounded in L̃∞(Ḃs+1
2,r ) ∩ L̃1(Ḃs+3

2,r ), we conclude that the last term of (4.11) is

bounded in L̃1+

(Ḃs−

2,r).

Note that by interpolating between the local results of convergence that have been proved

so far, and the uniform bounds establish in the previous step, one can obtain stronger results

of convergence so that one may pass to the limit in the system satisfied by (an, un). As a

conclusion, we discover that (a, u) is, indeed, a solution to (1.3) with data (a0, u0). In order

to complete the proof of the existence part of Theorem 1.3, it is only a matter of checking the

continuity properties with respect to time, namely that

aℓ ∈ C(R+; Ḃs
2,r), a

~ ∈ C(R+; Ḃs+1
2,r ∩ Ḃ

d
p1

p1,1)

and

u ∈ C(R+; Ḃs
2,r), u

~ ∈ C(R+; Ḃ
d

p1
−1

p1,1 ).

In fact, owing to p1 ≥ 2 and to Bernstein’s inequality, it is equivalent to establish that

a ∈ C(R+; Ḃs
2,r ∩ Ḃ

s+1
2,r ∩ Ḃ

d
p1

p1,1) and u ∈ C(R+; Ḃs
2,r ∩ Ḃ

d
p1

−1

p1,1 ).

As regards a, it suffices to notice that, according to (4.7), (4.9) and to the product laws in the

Besov spaces, we have

∂ta+ u · ∇a = −(1 + a)div u ∈ L̃1
loc(Ḃ

s
2,r ∩ Ḃ

s+1
2,r ) ∩ L1(Ḃ

d
p1

p1,1).
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As a0 ∈ Ḃs
2,r ∩ Ḃs+1

2,r ∩ Ḃ
d

p1

p1,1, classical results for the transport equation (see for example [2,

Chap. 3]) ensures that, indeed, a is in C(R+; Ḃs
2,r ∩ Ḃ

s+1
2,r ∩ Ḃ

d
p1

p1,1).

To obtain the continuity result for u, one may use the fact

∂un − A un = −J(an)A un −∇(an(1 +K(an))) − un · ∇un − κ∇∆an.

The right-hand of the above equation belongs to L̃1(Ḃs
2,r)∩L

1(Ḃ
d

p1
−1

p1,1 ), then from the standard

properties for the heat equation (see for example [6]), we thus have u ∈ C(R+; Ḃs
2,r ∩ Ḃ

d
p1

−1

p1,1 ).

Therefore, we complete the proof of the main result of Theorem 1.3 in this article.
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