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1. Introduction and main results

As we know, Finsler geometry is more diversified than Riemannian geometry because there are many 
non-Riemannian quantities on a Finsler manifold besides the Riemannian quantities ([2,1]). One of the 
important problems in Finsler geometry is to study and characterize the projectively flat metrics on an 
open subset Ω ⊆ Rn. A Finsler metric defined on an open subset in Rn is called projectively flat if its 
geodesics are straight lines. This is the Hilbert’s 4th problem in the regular case [8]. In 1903, Hamel [7]
found a system of partial differential equations

Fxkylyk = Fxl ,
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which can characterize the projectively flat metrics on an open subset Ω ⊆ Rn. And we know that the flag 
curvature in Finsler geometry is a natural extension of the sectional curvature in Riemannian geometry. 
The famous Beltrami theorem tells us that a Riemannian metric is projectively flat if and only if it has 
constant sectional curvature. However, this is not true in Finsler geometry.

So it is important to construct some projectively flat Finsler metrics with constant flag curvature. For 
example, the famous Funk metric on a unit ball Bn ⊆ Rn in [5,6] as the following

F =
√
|y|2 − |x|2|y|2+ < x, y >2

1 − |x|2 + < x, y >

1 − |x|2 , (1.1)

where x ∈ Rn, y ∈ TxRn, | · | is Euclidean norm, <,> is the standard inner product of Rn; and the Berwald’s 
metric in [3,4] as the following

F =
(
√

|y|2 − |x|2|y|2+ < x, y >2+ < x, y >)2

(1 − |x|2)2
√

|y|2 − |x|2|y|2+ < x, y >2
. (1.2)

These two kinds of Finsler metrics can be seen as the metrics composed by the Euclidean metric |y|, the 
inner product < x, y > and the Euclidean norm |x| of x ∈ Rn. More generally, there exist some projectively 
flat Finsler metrics composed by |y|, < x, y >, |x|, < a, y > and < a, x >. For example, Z. Shen constructed 
a group of projectively flat Finsler metric with constant flag curvature λ = 0 in [10] as the following

F (x, y) =
{

1+ < a, x > + (1 − |x|2) < a, y >√
|y|2 − |x|2|y|2+ < x, y >2+ < x, y >

}

× (
√

|y|2 − |x|2|y|2+ < x, y >2+ < x, y >)2

(1 − |x|2)2
√

|y|2 − |x|2|y|2+ < x, y >2
. (1.3)

By introducing new variables u = |x|2, s = <x,y>
|y| , v =< a, x >, t = <a,y>

|y| , |a| < 1, W. Liu and B. Li [9]
rewrote the above metric as

F = |y|
{

1 + v + (1 − u)t√
1 − u + s2 + s

}
(
√

1 − u + s2 + s)2

(1 − u)2
√

1 − u + s2
.

This motivated them to study the following Finsler metric

F = |y|φ(u, s, v, t), u = |x|2, s = < x, y >

|y| , v =< a, x >, t = < a, y >

|y| , (1.4)

where x ∈ Rn, y ∈ TxRn, |a| < 1, < a, y >= aiy
i is a 1-form, φ is a C∞ function. Especially, the Finsler 

metric F becomes a spherically symmetric when a = 0, because any spherically symmetric Finsler metric 
can be expressed by |x|, |y| and < x, y >, which is proved by L. Zhou in [11]. W. Liu and B. Li [9] gave the 
equivalent equations of F being projectively flat.

In this paper, the equivalent PDEs for projectively flat Finsler metrics F = |y|φ(u, s, v, t) with constant 
flag curvature will be given. And by solving these PDEs, we can construct some classes of new projectively 
flat Finsler metrics with constant flag curvature. These new metrics will be provided in Sections 4 and 5.

Now we give the main results as follows.

Theorem 1.1. Suppose F (x, y) = |y|φ(u, s, v, t) is a projectively flat Finsler metric, then it has constant flag 
curvature λ if and only if φ satisfies the following PDEs
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⎧⎪⎪⎨⎪⎪⎩
3A2 − 2tφ∂A

∂v − 4sφ∂A
∂u − 8φφu − 4λφ4 = 0

φsA
2 − 8φφuA + 4φ2 ∂A

∂u + 4λφ4φs = 0
φtA

2 − 4φφvA + 2φ2 ∂A
∂v + 4λφ4φt = 0,

(1.5)

where A = 2sφu + φs + tφv.

The conclusion in Theorem 1.1 gives the equivalent PDEs for projectively flat Finsler metrics F =
|y|φ(u, s, v, t) with constant flag curvature. In order to solve these PDEs of (1.5), we introduce variables 
ũ = u − s2, s̃ = s, ṽ = v − st, t̃ = t and a function

φ̃(ũ, s̃, ṽ, t̃) = φ(u, s, v, t).

So we have

Theorem 1.2. φ is a solution of (1.5) if and only if φ̃ has the form

φ̃ = f

(s̃ + g)2 + λf2 , (1.6)

where the C∞ functions f = f(ũ, ̃v, ̃t) and g = g(ũ, ̃v, ̃t) satisfy the PDEs

2gt̃ + (g2 − λf2)ṽ = 0, (1.7)

−t̃gṽ + 1 + (g2 − λf2)ũ = 0, (1.8)

ft̃ + (fg)ṽ = 0, (1.9)

t̃fṽ − 2(fg)ũ = 0. (1.10)

Due to Theorem 1.2, one may find the projectively flat Finsler metrics F = |y|φ(u, s, v, t) with constant 
flag curvature only by solving the PDEs of (1.7)–(1.10), and it will be done in Sections 4 and 5. The readers 
can see Corollaries 4.1, 4.3, 5.1 and 5.4 for the further results.

2. Preliminaries

In this section, we shall recall some necessary notations, definitions and lemmas. Let M be a manifold 
of dimension n. Let x = (x1, · · · , xn) be a local coordinate system on M and y = (y1, · · · , yn) be the local 
fiber coordinate system defined by the local frame field { ∂

∂x1 , · · · , ∂
∂xn } on the tangent bundle TM of M . 

So (x, y) = (x1, · · · , xn, y1, · · · , yn) is a local coordinate system for TM .

Definition 2.1. ([1]) A Finsler metric on M is a function F : TM → [0, +∞) satisfying the following 
properties:
(i) G = F 2 is smooth on M̃ , where M̃ = TM \ {0};
(ii) F (μy) = |μ|F (y) for all y ∈ TM and μ ∈ R;
(iii) F (y) > 0 for all y ∈ M̃ ;
(iv) The fundamental tensor g, defined locally by its components

gij := 1
2Gij = 1

2
∂2F 2

∂yi∂yj
,

is positive definite.
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A manifold M endowed with a Finsler metric will be called a Finsler manifold.
In this paper, we only investigate the following form of the Finsler metric F ([9])

F = |y|φ(u, s, v, t), u = |x|2, s = < x, y >

|y| , v =< a, x >, t = < a, y >

|y| , (2.1)

where x ∈ Rn, y ∈ TxRn, |a| < 1, < a, y >= aiy
i is a 1-form, φ is a C∞ function.

Remark. When x = 0, W. Liu and B. Li [9] give the conditions of φ = φ(0, 0, 0, t) such that F =
|y|φ(0, 0, 0, t) is a Finsler metric (see Lemma 2.1 in [9]).

We write

Ak = ∂A

∂yk
, A;i = ∂A

∂xi
,

Akj = ∂2A

∂yk∂yj
, Ak;i = ∂2A

∂yk∂xi
, etc.,

to denote the differentiations of a function A(x, y) with respect to yk, xi, yj . We also denote the derivatives 
of φ with respect to u, s, v, t by φu, φs, φv, φt respectively.

By (2.1), it is easy to check that

u;i = 2xi, s;i = yi

|y| , v;i = ai,

sk = xk

|y| −
syk

|y|2 , |y|k = yk

|y| , tk = ak

|y| −
tyk

|y|2 .

And we need two pre-existing lemmas below for later use.

Lemma 2.2. ([9]) Let F (x, y) = |y|φ(u, s, v, t) be a Finsler metric on an open subset Ω ⊆ Rn, then F is 
projectively flat if and only if φ = φ(u, s, v, t) satisfies the following PDEs

{
2sφus + φss + tφsv − 2φu = 0
2sφut + φst + tφvt − φv = 0.

(2.2)

Lemma 2.3. ([4,10]) Suppose F = F (x, y) is a projective flat Finsler metric on an open subset Ω ⊆ Rn. 
Then F has constant flag curvature λ if and only if

P;k = PPk − λFFk, (2.3)

where P = F;mym

2F .

3. Proofs of Theorems 1.1 and 1.2

In this section, we will derive the equivalent PDEs for projectively flat Finsler metrics F = |y|φ(u, s, v, t)
with constant flag curvature λ.
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3.1. Proof of Theorem 1.1

By Lemma 2.3, F has constant flag curvature λ if and only if P;k = PPk − λFFk, where P = F;mym

2F . 
Notice that F (x, y) = |y|φ(u, s, v, t), a straightforward calculation shows that

F;m = |y|(φuu;m + φss;m + φvv;m)

= |y|(2φux
m + φs

ym

|y| + amφv),

Fk = |y|kφ + |y|(φssk + φttk),

P = F;mym

2F = 1
2φ (2sφu|y| + φs|y| + tφv|y|),

Pk = − 1
2φ2 (φssk + φttk)(2sφu|y| + φs|y| + tφv|y|)

+ 1
2φ [2φu|y|sk + 2s|y|(φussk + φuttk) + 2sφu|y|k + (φsssk + φsttk)|y|

+φs|y|k + tφv|y|k + t|y|(φvssk + φvttk) + φv|y|tk],

P;k = − 1
2φ2 (φuu;k + φss;k + φvv;k)(2sφu|y| + φs|y| + tφv|y|)

+ 1
2φ [2φu|y|s;k + 2s|y|(φuuu;k + φuss;k + φuvv;k) + |y|(φsuu;k + φsss;k + φsvv;k)

+t|y|(φvuu;k + φvss;k + φvvv;k)]

= − 1
2φ2 [(4sφ2

u + 2φuφs + 2tφuφv)xk|y| + (2sφuφs + φ2
s + tφvφs)yk

+(2sφuφv + φsφv + tφ2
v)ak|y|]

+ 1
2φ [(4sφuu + 2φsu + 2tφvu)xk|y| + (2φu + 2sφus + φss + tφvs)yk

+(2sφuv + φsv + tφvv)ak|y|]

= [− 1
2φ2 (4sφ2

u + 2φuφs + 2tφuφv) + 1
2φ (4sφuu + 2φsu + 2tφvu)]xk|y|

+[− 1
2φ2 (2sφuφs + φ2

s + tφvφs) + 1
2φ (2φu + 2sφus + φss + tφvs)]yk

+[− 1
2φ2 (2sφuφv + φsφv + tφ2

v) + 1
2φ (2sφuv + φsv + tφvv)]ak|y|. (3.1)

And furthermore,

λFFk = λ|y|φ[|y|kφ + |y|(φssk + φttk)]

= λφφsx
k|y| + (λφ2 − λsφφs − λtφφt)yk + λφφta

k|y|, (3.2)

PPk = − P

2φ2 [(2sφuφs|y| + φ2
s|y| + tφvφs|y|)sk + (2sφuφt|y| + φsφt|y| + tφvφt|y|)tk]

+ P

2φ [(2φu|y| + 2sφus|y| + φss|y| + tφvs|y|)sk + (2sφut|y| + φst|y|

+tφvt|y| + φv|y|)tk + (2sφu + φs + tφv)|y|k]

= [− 1
3 (2sφu + φs + tφv)(2sφuφs + φ2

s + tφsφv)
4φ
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+ 1
4φ2 (2sφu + φs + tφv)(2φu + 2sφus + φss + tφvs)]xk|y|

+[ 1
4φ3 (2s2φu + sφs + tsφv)(2sφuφs + φ2

s + tφsφv)

+ 1
4φ3 (2stφu + tφs + t2φv)(2sφuφt + φsφt + tφtφv)

− 1
4φ2 (2s2φu + sφs + tsφv)(2φu + 2sφus + φss + tφvs)

− 1
4φ2 (2stφu + tφs + t2φv)(2sφut + φst + tφvt + φv)

+ 1
4φ2 (2sφu + φs + tφv)2]yk

+[− 1
4φ3 (2sφu + φs + tφv)(2sφuφt + φsφt + tφtφv) +

1
4φ2 (2sφu + φs + tφv)(2sφut + φst + tφvt + φv)]ak|y|. (3.3)

Since P;k = PPk −λFFk, it follows from (3.1)–(3.3) that the coefficients of the terms xk|y|, yk and ak|y|
on both sides of P;k = PPk − λFFk are equal respectively, i.e., we get the following equations

− 1
2φ2 (4sφ2

u + 2φuφs + 2tφuφv) + 1
2φ (4sφuu + 2φsu + 2tφvu)

= − 1
4φ3 (2sφu + φs + tφv)(2sφuφs + φ2

s + tφsφv)

+ 1
4φ2 (2sφu + φs + tφv)(2φu + 2sφus + φss + tφvs) − λφφs, (3.4)

− 1
2φ2 (2sφuφs + φ2

s + tφsφv) + 1
2φ (2φu + 2sφus + φss + tφvs)

= 1
4φ3 (2s2φu + sφs + tsφv)(2sφuφs + φ2

s + tφsφv)

+ 1
4φ3 (2stφu + tφs + t2φv)(2sφuφt + φsφt + tφtφv)

− 1
4φ2 (2s2φu + sφs + tsφv)(2φu + 2sφus + φss + tφvs)

− 1
4φ2 (2stφu + tφs + t2φv)(2sφut + φst + tφvt + φv)

+ 1
4φ2 (2sφu + φs + tφv)2 − λφ(φ− sφs − tφt), (3.5)

− 1
2φ2 (2sφuφv + φsφv + tφ2

v) + 1
2φ (2sφuv + φsv + tφvv)

= − 1
4φ3 (2sφu + φs + tφv)(2sφuφt + φsφt + tφtφv)

+ 1
4φ2 (2sφu + φs + tφv)(2sφut + φst + tφvt + φv) − λφφt. (3.6)

Recall that A = 2sφu + φs + tφv, and then multiply (3.5) by 4φ3, together with (2.2), we get
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φsA
2 − 8φφuA + 4φ2 ∂A

∂u
+ 4λφ4φs = 0.

Similarly, we deduce from (3.6) that

φtA
2 − 4φφvA + 2φ2 ∂A

∂v
+ 4λφ4φt = 0.

It remains to give the first equation of (1.5). By the definition of A and (2.2), it follows from (3.4) that

(sφs + tφt + φ)A2 − (4sφφu + 2tφφv − 2φφs)A− 8φ2φu − 4λφ4(φ− sφs − tφt) = 0,

which, together with two other equations of (1.5) what we have obtained above, yields the first equation of 
(1.5). This completes the proof.

3.2. Proof of Theorem 1.2

Notice that ũ = u − s2, s̃ = s, ṽ = v − st, t̃ = t, φ̃(ũ, ̃s, ̃v, ̃t) = φ(u, s, v, t) and A = 2sφu + φs + tφv, a 
direct calculation by the chain rule shows that

φu = φ̃ũ, φv = φ̃ṽ, φs = −2s̃φ̃ũ + φ̃s̃ − t̃φ̃ṽ, φt = −s̃φ̃ṽ + φ̃t̃,

A = φ̃s̃,
∂A

∂v
= φ̃s̃ṽ,

∂A

∂u
= φ̃s̃ũ.

Then (1.5) becomes⎧⎪⎪⎨⎪⎪⎩
3φ̃2

s̃ − 2t̃φ̃φ̃s̃ṽ − 4s̃φ̃φ̃s̃ũ − 8φ̃φ̃ũ − 4λφ̃4 = 0
(−2s̃φ̃ũ + φ̃s̃ − t̃φ̃ṽ)φ̃2

s̃ − 8φ̃φ̃ũφ̃s̃ + 4φ̃2φ̃s̃ũ + 4λφ̃4(−2s̃φ̃ũ + φ̃s̃ − t̃φ̃ṽ) = 0
(−s̃φ̃ṽ + φ̃t̃)φ̃2

s̃ − 4φ̃φ̃ṽφ̃s̃ + 2φ̃2φ̃s̃ṽ + 4λφ̃4(−s̃φ̃ṽ + φ̃t̃) = 0.
(3.7)

Similarly, (2.2) is equivalent to

{
−2s̃φ̃s̃ũ + φ̃s̃s̃ − t̃φ̃s̃ṽ = 4φ̃ũ

−s̃φ̃s̃ṽ + φ̃s̃t̃ = 2φ̃ṽ.
(3.8)

It follows from (3.7)1 and (3.8)1 that

3φ̃2
s̃ − 2φ̃φ̃s̃s̃ − 4λφ̃4 = 0. (3.9)

Now we solve (3.9). For fixed ũ, ṽ and t̃, let h(φ̃) = φ̃s̃, and then φ̃s̃s̃ = hdh
dφ̃

. So (3.9) can be rewritten as

dh2

dφ̃
− 3

φ̃
h2 = −4λφ̃3. (3.10)

It is clear that (3.10) is a linear ordinary differential equation of first order, and its solution is

φ̃2
s̃ = φ̃3(η − 4λφ̃),

which leads to
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φ̃ = f

(s̃ + g)2 + λf2 ,

where η, f , g are C∞ functions of ũ, ṽ, t̃, and f = 4
η .

Finally, substituting φ̃ = f
(s̃+g)2+λf2 into (3.7)2, (3.7)3 and (3.8), and then multiplying all these equations 

by [(s̃+ g)2 + λf2]4, we immediately establish (1.7)–(1.10) by a comparison of the homogenous coefficients 
of s̃. This completes the proof of Theorem 1.2.

4. Two classes of projectively flat Finsler metrics with constant flag curvature λ �= 0

In this section, we will give two classes of projectively flat Finsler metrics with constant flag curvature 
λ �= 0 by solving the equivalent PDEs (1.7)–(1.10).

4.1. The first class of projectively flat Finsler metrics with constant flag curvature λ �= 0

In virtue of (1.7)–(1.10), it is easy to find that the two unknown functions f and g satisfy{
2gt̃ũ = −t̃gṽṽ

2ft̃ũ = −t̃fṽṽ.
(4.1)

Inspired by (4.1), in this subsection, we only consider the following special case{
2gt̃ũ = −t̃gṽṽ = 0
2ft̃ũ = −t̃fṽṽ = 0,

(4.2)

namely, the functions f and g have the form{
f(ũ, ṽ, t̃) = [e(ũ) + b(t̃)]ṽ + c(ũ) + d(t̃)
g(ũ, ṽ, t̃) = [p(ũ) + q(t̃)]ṽ + r(ũ) + w(t̃).

(4.3)

Substituting (4.3) into (1.7)–(1.10), one can get a sequence of quadratic equations with respect to the 
variable ṽ. Comparing the homogenous coefficients of ṽ, we obtain the following equations

−λ[e(ũ) + b(t̃)]2 + [p(ũ) + q(t̃)]2 + qt̃(t̃) = 0, (4.4)

−λ[e(ũ) + b(t̃)][c(ũ) + d(t̃)] + [p(ũ) + q(t̃)][r(ũ) + w(t̃)] + wt̃(t̃) = 0, (4.5)

1 − t̃[p(ũ) + q(t̃)] − 2λ[c(ũ) + d(t̃)]cũ(ũ) + 2[r(ũ) + w(t̃)]rũ(ũ) = 0, (4.6)

2[e(ũ) + b(t̃)][p(ũ) + q(t̃)] + bt̃(t̃) = 0, (4.7)

[c(ũ) + d(t̃)][p(ũ) + q(t̃)] + [e(ũ) + b(t̃)][r(ũ) + w(t̃)] + dt̃(t̃) = 0, (4.8)

−t̃[e(ũ) + b(t̃)] + 2[r(ũ) + w(t̃)]cũ(ũ) + 2[c(ũ) + d(t̃)]rũ(ũ) = 0. (4.9)

Now we start to solve (4.4)–(4.9).
Firstly, we rewrite (4.4) and (4.7) as{

λ(e(ũ) + b(t̃))2 − (p(ũ) + q(t̃))2 = qt̃(t̃)
2(e(ũ) + b(t̃))(p(ũ) + q(t̃)) = −bt̃(t̃),

which implies that e(ũ) + b(t̃) and p(ũ) + q(t̃) do not depend on the variable ũ. As a consequence,
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p(ũ) = p0, e(ũ) = e0, (4.10)

where p0 and e0 are constants.
Differentiating (4.5) and (4.8) with respect to ũ and using (4.10), we derive

−λ(e(ũ) + b(t̃))cũ(ũ) + (p(ũ) + q(t̃))rũ(ũ) = 0, (4.11)
(p(ũ) + q(t̃))cũ(ũ) + (e(ũ) + b(t̃))rũ(ũ) = 0. (4.12)

Next, we are going to solve (4.4)–(4.9) in two different cases, according to whether p(ũ) + q(t̃) = 0 is 
valid or not.

(I) p(ũ) + q(t̃) = 0.
In this case, qt̃(t̃) = 0. By (4.4), (4.5) and (4.8), it is easy to check that e(ũ) + b(t̃) = 0, wt̃(t̃) = 0 and 

dt̃(t̃) = 0. Together with (4.10), we have

q(t̃) = −p0, b(t̃) = −e0, w(t̃) = w0, d(t̃) = d0, (4.13)

where d0 and w0 are constants. As a result,

f = c(ũ) + d0, g = r(ũ) + w0. (4.14)

In virtue of (4.10) and (4.13), one deduces from (4.6) and (4.9) that{
1 − 2λ(c(ũ) + d0)cũ(ũ) + 2(r(ũ) + w0)rũ(ũ) = 0
(r(ũ) + w0)cũ(ũ) + (c(ũ) + d0)rũ(ũ) = 0,

which indicates {
(λf2 − g2 − ũ)ũ = 0
(fg)ũ = 0.

(4.15)

By (4.14) and (4.15), we get the solutions of (1.7)–(1.10) as follows
solution 1 ⎧⎪⎨⎪⎩f(ũ, ṽ, t̃) =

√
−(c1−ũ)+

√
(c1−ũ)2+4λc22
2λ

g(ũ, ṽ, t̃) = ±
√

(c1−ũ)+
√

(c1−ũ)2+4λc22
2

where c1 ∈ R if λ > 0 and c1 > 0 if λ < 0, c2 ∈ R;
solution 2 ⎧⎪⎨⎪⎩f(ũ, ṽ, t̃) =

√
−(c1−ũ)−

√
(c1−ũ)2+4λc22
2λ

g(ũ, ṽ, t̃) = ±
√

(c1−ũ)−
√

(c1−ũ)2+4λc22
2

where λ < 0 and c1 > 0, c2 ∈ R;
solution 3 ⎧⎪⎨⎪⎩f(ũ, ṽ, t̃) = −

√
−(c1−ũ)+

√
(c1−ũ)2+4λc22
2λ

g(ũ, ṽ, t̃) = ±
√

(c1−ũ)+
√

(c1−ũ)2+4λc22
2

where c1 ∈ R if λ > 0 and c1 > 0 if λ < 0, c2 ∈ R;
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solution 4 ⎧⎪⎨⎪⎩
f(ũ, ṽ, t̃) = −

√
−(c1−ũ)−

√
(c1−ũ)2+4λc22
2λ

g(ũ, ṽ, t̃) = ±
√

(c1−ũ)−
√

(c1−ũ)2+4λc22
2

where λ < 0 and c1 > 0, c2 ∈ R.
(II) p(ũ) + q(t̃) �= 0.
By (4.11) and (4.12), we have

[λ(e0 + b(t̃))2 + (p0 + q(t̃))2]cũ(ũ) = 0. (4.16)

Based on the equality (4.16), we divide our deduction into two subcases according to whether cũ(ũ) = 0 is 
valid or not.

(i) cũ(ũ) = 0.
By (4.11) again, rũ(ũ) = 0, and then

c(ũ) = c0, r(ũ) = r0, (4.17)

where c0 and r0 are constants.
Substituting (4.17) into (4.6) and (4.9), one gets

p(ũ) + q(t̃) = p0 + q(t̃) = 1
t̃
, e(ũ) + b(t̃) = e0 + b(t̃) = 0. (4.18)

Now by (4.5) and (4.8), it indicates that

r(ũ) + w(t̃) = r0 + w(t̃) = c1

t̃
, c(ũ) + d(t̃) = c0 + d(t̃) = c2

t̃
, (4.19)

where c1 and c2 are constants.
Together with (4.17)–(4.19), we give a solution of the PDEs (1.7)–(1.10)
solution 5 {

f = c2
t̃

g = ṽ+c1
t̃

,

where c1 ∈ R, c2 ∈ R.
(ii) cũ(ũ) �= 0.
In virtue of (4.16), we get

λ(e0 + b(t̃))2 + (p0 + q(t̃))2 = 0. (4.20)

Notice that in this subcase, (4.11) can be rewritten as

e0 + b(t̃)
p0 + q(t̃)

= rũ(ũ)
λcũ(ũ) ,

which implies that each side of this equality is a constant. Denote

m = e0 + b(t̃)
p0 + q(t̃)

= rũ(ũ)
λcũ(ũ) , (4.21)

where the constant m will be determined later.
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Substituting (4.21) into (4.20), we have

1 + λm2 = 0. (4.22)

From now on, we need λ < 0, otherwise there is no solution in this subcase.
By (4.21) and (4.22), we deduce from (4.12) and (4.5), (4.8) respectively that

cũ(ũ) = −mrũ(ũ), dt̃(t̃) = mwt̃(t̃), (4.23)

which indicates that

c(ũ) = −mrũ(ũ) + mj, d(t̃) = mw(t̃) + m(k − j), (4.24)

where k and j are constants.
Multiplying (4.9) by 1

m , and then along with (4.6), we give

p0 + q(t̃) = 1
2t̃
, (4.25)

e0 + b(t̃) = m

2t̃
, (4.26)

where in the last equality we have used (4.21).
By (4.23)–(4.26), the equations (4.5) and (4.6) can be simplified as⎧⎨⎩

k
2t̃ + 1

t̃
w(t̃) + wt̃(t̃) = 0

1
2 + 2(2r(ũ) − k)rũ(ũ) = 0,

which, together with (4.24), leads to⎧⎨⎩r(ũ) + w(t̃) = ±
√
c1−ũ
2 + c2

2t̃

c(ũ) + d(t̃) = −m(±
√
c1−ũ
2 − c2

2t̃ ),
(4.27)

where c1 > 0, c2 ∈ R.
By (4.25)–(4.27), we obtain the solution of (1.7)–(1.10) with λ < 0
solution 6 ⎧⎨⎩f = ±

√
−1
λ (

√
c1−ũ
2 ± ṽ+c2

2t̃ )

g = ±
√
c1−ũ
2 + ṽ+c2

2t̃

where c1 > 0, c2 ∈ R, λ < 0.
Based on the above results, we have

Corollary 4.1. Let Br = {x ∈ Rn : |x| < r}, r > 0, and let F = |y|φ̃(ũ, ̃s, ̃v, ̃t), where φ̃ is given by (1.6)
with λ �= 0 and f , g are provided by solution 1 or solution 2, then

(1) F is a projectively flat Finsler metric with nonzero constant flag curvature λ �= 0 on Bε if ε(> 0) is 
small enough.

(2) For a fixed r0 > 0, F is a projectively flat Finsler metric with nonzero constant flag curvature λ �= 0
on Br0 if the constant c1 in solution 1 or solution 2 is large enough.
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Proof. For convenience, we only consider⎧⎪⎨⎪⎩f(ũ, ṽ, t̃) =
√√

(1−ũ)2+1−(1−ũ)
2

g(ũ, ṽ, t̃) =
√√

(1−ũ)2+1+(1−ũ)
2 .

In this case, c1 = 1, c2 = 1
2 , λ = 1. And it is sufficient to prove the conclusion (1). In fact, the general 

results of the conclusions (1) (2) can be proved in the same way by introducing the new variable x̃ = x√
c1

.
Set ε < 1. A direct computation shows that on Bε,

1
4 ≤ f(ũ) ≤ 1, |fũ(ũ)| ≤ 1, |fũũ(ũ)| ≤ 1,

1
2 ≤ g(ũ) ≤ 2, |gũ(ũ)| ≤ 1, |gũũ(ũ)| ≤ 1, (4.28)

and there exists a positive constant C independent of ε such that

1
40 ≤ φ̃ ≤ 4, |(φ̃2)ũ| ≤ Cφ̃2, |(φ̃2)ũũ| ≤ Cφ̃2,

|(φ̃2)s̃| ≤ Cφ̃2, |(φ̃2)s̃s̃| ≤ Cφ̃2, |(φ̃2)ũs̃| ≤ Cφ̃2. (4.29)

Observe that ũ = |x|2 − <x,y>2

|y|2 , s̃ = <x,y>
|y| , it is easy to check that

|s̃i| ≤
2ε
|y| , |s̃ij | ≤

4ε
|y|2 , |ũi| ≤

4ε
|y| , |ũij | ≤

8ε
|y|2 . (4.30)

Notice that

(F 2)ij = (|y|2φ̃2)ij = φ̃2(|y|2)ij + (φ̃2)i(|y|2)j + (φ̃2)j(|y|2)i + |y|2(φ̃2)ij
= φ̃2[(|y|2)ij + φ̃−2(2yi(φ̃2)ũ · ũj + 2yj(φ̃2)ũ · ũi + 2yi(φ̃2)s̃ · s̃j + 2yj(φ̃2)s̃ · s̃i
+ |y|2((φ̃2)ũũ · ũiũj + (φ̃2)ũs̃ · ũis̃j + (φ̃2)ũs̃ · ũj s̃i + (φ̃2)s̃s̃ · s̃is̃j
+ (φ̃2)ũ · ũij + (φ̃2)s̃ · s̃ij))].

Now denote Mij = (φ̃2)i(|y|2)j + (φ̃2)j(|y|2)i + |y|2(φ̃2)ij and the symmetric matrix M = (Mij). By (4.29)
and (4.30), we get |Mij | ≤ Cε for any i and j, where the constant C is independent of ε. As a result, 
((F 2)ij) = φ̃2(2I + M) is positive definite when ε is small enough, here the symbol I denotes the unit 
matrix. On the other hand, one can immediately verify that F (y) > 0 for any y �= 0 and F (ky) = |k|F (y)
for any k ∈ R. Hence, F is indeed a Finsler metric. Due to Theorems 1.1 and 1.2, it is also a projectively 
flat Finsler metric with nonzero constant flag curvature λ = 1. This completes the proof.

Remark 4.2. We have to remove solutions 3-6, because all these solutions do not guarantee that the metric 
F ≥ 0.

4.2. The second class of projectively flat Finsler metrics with constant flag curvature λ �= 0

In this subsection, we will solve (1.7)–(1.10) under the following assumption{
(g2 − λf2)ṽ = (g2 − λf2)ũ
(fg) = (fg) ,

(4.31)

ṽ ũ
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and then give another class of projectively flat Finsler metrics with constant flag curvature λ �= 0.
By (4.31), it is obvious that f and g have the form

{
f = φ̃1(ũ + ṽ, t̃)
g = φ̃2(ũ + ṽ, t̃).

Using (4.31) again and by (1.7)–(1.10), we get

{
2gt̃ + t̃gṽ − 1 = 0
2ft̃ + t̃fṽ = 0,

(4.32)

together with (1.9) and (1.10), which yields

{
(−t̃f + 2fg)t̃ = 0
(−t̃f + 2fg)ṽ = 0.

Thus

−t̃f + 2fg = c2, (4.33)

where c2 ∈ R.
Similarly, by (4.32), we deduce from (1.7) and (1.8) that

{
(ũ + ṽ − t̃g + g2 − λf2)t̃ = 0
(ũ + ṽ − t̃g + g2 − λf2)ṽ = 0.

Consequently,

ũ + ṽ − t̃g + g2 − λf2 = c1, (4.34)

where c1 ∈ R.
By (4.33) and (4.34), we obtain the solutions of (1.7)–(1.10) as follows
solution 7 ⎧⎪⎨⎪⎩

f(ũ, ṽ, t̃) =
√

−l+
√

l2+λc22
2λ

g(ũ, ṽ, t̃) = t̃
2 ±

√
l+

√
l2+λc22
2 ,

where l := l(ũ, ̃v, ̃t) = t̃2

4 − (ũ + ṽ) + c1, c1 ∈ R if λ > 0 and c1 > 0 if λ < 0, c2 ∈ R;
solution 8 ⎧⎪⎨⎪⎩

f(ũ, ṽ, t̃) =
√

−l−
√

l2+λc22
2λ

g(ũ, ṽ, t̃) = t̃
2 ±

√
l−

√
l2+λc22
2 ,

where l := l(ũ, ̃v, ̃t) = t̃2 − (ũ + ṽ) + c1, c1 > 0, λ < 0 and c2 ∈ R;
4
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solution 9 ⎧⎪⎨⎪⎩
f(ũ, ṽ, t̃) = −

√
−l+

√
l2+λc22

2λ

g(ũ, ṽ, t̃) = t̃
2 ±

√
l+

√
l2+λc22
2 ,

where l := l(ũ, ̃v, ̃t) = t̃2

4 − (ũ + ṽ) + c1, c1 ∈ R if λ > 0 and c1 > 0 if λ < 0, c2 ∈ R;
solution 10 ⎧⎪⎨⎪⎩

f(ũ, ṽ, t̃) = −
√

−l−
√

l2+λc22
2λ

g(ũ, ṽ, t̃) = t̃
2 ±

√
l−

√
l2+λc22
2 ,

where l := l(ũ, ̃v, ̃t) = t̃2

4 − (ũ + ṽ) + c1, c1 > 0, λ < 0 and c2 ∈ R.
Now, by Theorems 1.1 and 1.2, we conclude that

Corollary 4.3. Let Br = {x ∈ Rn : |x| < r}, r > 0, and F = |y|φ̃(ũ, ̃s, ̃v, ̃t), where φ̃ is given by (1.6) with 
λ �= 0 and f , g are presented by solution 7 or solution 8, then

(1) F is a projectively flat Finsler metric with nonzero constant flag curvature λ �= 0 on Bε if ε(> 0) and 
|a| are small enough.

(2) For a fixed r0 > 0, F is a projectively flat Finsler metric with nonzero constant flag curvature λ �= 0
on Br0 if the constant c1 in solution 7 or solution 8 is large enough.

The proof is completely similar to that of Corollary 4.1, we omit it.

Remark 4.4. We discard solutions 9, 10 since they do not assure that the metric F ≥ 0.

In a word, by Corollaries 4.1 and 4.3, we have constructed two classes of new projectively flat Finsler 
metrics with nonzero constant flag curvature.

5. Two classes of projectively flat Finsler metrics with constant flag curvature λ = 0

When λ = 0, (1.6)–(1.10) in Theorem 1.2 are reduced to

φ̃ = f

(s̃ + g)2 , (5.1)

where the functions f and g satisfy

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2gt̃ + (g2)ṽ = 0
−t̃gṽ + 1 + (g2)ũ = 0
ft̃ + (fg)ṽ = 0
t̃fṽ − 2(fg)ũ = 0.

(5.2)

In this section, using an argument similar to that in Section 4, we will give two classes of projectively 
flat Finsler metrics with constant flag curvature λ = 0 by solving the PDEs (5.2).
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5.1. The first class of projectively flat Finsler metric with constant flag curvature λ = 0

In this subsection, we are going to present a class of projectively flat Finsler metric with constant flag 
curvature λ = 0 by the method applied in Subsection 4.1.

By (5.2), we still have {
2gt̃ũ = −t̃gṽṽ

2ft̃ũ = −t̃fṽṽ.

And now we only discuss (5.2) under the assumption as follows{
2gt̃ũ = −t̃gṽṽ = 0
2ft̃ũ = −t̃fṽṽ = 0,

(5.3)

which implies that f and g have the form{
f(ũ, ṽ, t̃) = [e(ũ) + b(t̃)]ṽ + c(ũ) + d(t̃)
g(ũ, ṽ, t̃) = [p(ũ) + q(t̃)]ṽ + r(ũ) + w(t̃).

(5.4)

Substituting (5.3) to (5.2), we obtain the following equations by a comparison of the homogeneous 
coefficients of ṽ

[p(ũ) + q(t̃)]2 + qt̃(t̃) = 0, (5.5)

[p(ũ) + q(t̃)][r(ũ) + w(t̃)] + wt̃(t̃) = 0, (5.6)

1 − t̃[p(ũ) + q(t̃)] + 2[r(ũ) + w(t̃)]rũ(ũ) = 0, (5.7)

2[e(ũ) + b(t̃)][p(ũ) + q(t̃)] + bt̃(t̃) = 0, (5.8)

[c(ũ) + d(t̃)][p(ũ) + q(t̃)] + [e(ũ) + b(t̃)][r(ũ) + w(t̃)] + dt̃(t̃) = 0, (5.9)

−t̃[e(ũ) + b(t̃)] + 2[r(ũ) + w(t̃)]cũ(ũ) + 2[c(ũ) + d(t̃)]rũ(ũ) = 0. (5.10)

In order to solve (5.5)–(5.10), just as what we have done in Subsection 4.1, we still start with (5.5) and 
(5.8), which can be rewritten as

(p(ũ) + q(t̃))2 = −qt̃(t̃), (5.11)

2(e(ũ) + b(t̃))(p(ũ) + q(t̃)) = −bt̃(t̃). (5.12)

It follows from (5.11) that

p(ũ) = p0, (5.13)

where p0 is a constant. However, one can not conclude from (5.12) that e(ũ) must be a constant since 
p(ũ) + q(t̃) maybe be zero. This is different from (4.11) and (4.12) in Subsection 4.1.

Differentiating (5.6) with respect to ũ and by (5.13), we derive

(p(ũ) + q(t̃))rũ(ũ) = 0. (5.14)

Now we divide our discussion into two cases.
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(I) p(ũ) + q(t̃) = 0.
In this case, by (5.5) (5.6) and (5.8), it is obvious that qt̃(t̃) = 0, wt̃(t̃) = 0, bt̃(t̃) = 0, and then

q(t̃) = −p0, b(t̃) = b0, w(t̃) = w0, (5.15)

where b0, w0 ∈ R.
By (5.13) and (5.15), equations (5.7) (5.9) and (5.10) are simplified as

1 + 2(r(ũ) + w0)rũ(ũ) = 0, (5.16)
(e(ũ) + b0)(r(ũ) + w0) = −dt̃(t̃), (5.17)

−t̃(e(ũ) + b0) + 2(r(ũ) + w0)cũ(ũ) + 2(c(ũ) + d(t̃))rũ(ũ) = 0. (5.18)

We deduce from (5.16) that

r(ũ) + w(t̃) = r(ũ) + w0 = ±
√
c1 − ũ, (5.19)

where c1 > 0.
Next, (5.17) indicates that dt̃(t̃) is always a constant −c2, that is,

d(t̃) = −c2t + m, (5.20)

where c2, m ∈ R.
Substituting (5.19) and (5.20) into (5.17), we get

e(ũ) + b(t̃) = ± c2√
c1 − ũ

, (5.21)

where c2 is a constant.
Multiplying (5.18) by r(ũ) + w0, and by (5.16), (5.17), (5.19), we have

2(c1 − ũ)cũ(ũ) − c(ũ) = m,

which leads to

c(ũ) = −m + c3√
c1 − ũ

, (5.22)

where c3 is a constant.
Together with (5.19)–(5.22), we obtain the following solutions of (5.2)
solution 1# ⎧⎨⎩f = c2ṽ√

c1−ũ
+ c3√

c1−ũ
− c2t̃

g =
√
c1 − ũ,

where c1 > 0, c2, c3 ∈ R;
solution 2# ⎧⎨⎩f = − c2ṽ√

c1−ũ
+ c3√

c1−ũ
− c2t̃

g = −
√
c1 − ũ,

where c1 > 0, c2, c3 ∈ R.
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(II) p(ũ) + q(t̃) �= 0.
By (5.14), rũ(ũ) = 0, and then

r(ũ) = r0. (5.23)

Consequently, we deduce from (5.7) that

p(ũ) + q(t̃) = 1
t̃
. (5.24)

Substituting (5.23) (5.24) into (5.8) and (5.9), we find that

e(ũ) = e0, c(ũ) = c0, (5.25)

where c0, e0 ∈ R. And further, we deduce from (5.10) that

e(ũ) + b(t̃) = 0. (5.26)

Applying all the results above to (5.6) and (5.9), by a direct computation, we derive

{
r(ũ) + w(t̃) = c1

t̃

c(ũ) + d(t̃) = c2
t̃
.

(5.27)

Together with (5.23)–(5.27), we get the following solution of (5.2)
solution 3#

{
f = c2

t̃

g = ṽ+c1
t̃

,

where c1, c2 ∈ R.
Now, by Theorems 1.1 and 1.2, we have

Corollary 5.1. Let Br = {x ∈ Rn : |x| < r}, r > 0, and let F = |y|φ̃(ũ, ̃s, ̃v, ̃t), where φ̃ is given by (5.1) and 
f , g are provided by solution 1# with c3 > 0 or solution 2# with c3 > 0, then

(1) F is a projectively flat Finsler metric with zero flag curvature on Bε if ε(> 0) and |a| are small 
enough.

(2) For a fixed r0 > 0, F is a projectively flat Finsler metric with zero flag curvature on Br0 if the 
constant c1 in solution 1# or solution 2# is large enough and |a| is small enough.

The proof is analogous to that of Corollary 4.1, so we omit it too.

Remark 5.2. Solution 3# have to be removed because it does not guarantee that the metric F ≥ 0.

Remark 5.3. The metric F determined by solution 1# with the constants c2 = 0 and c3 = 1 has been given 
by L. Zhou in [12]. Z. Shen [10] has found the metric F derived by solution 2# with the constants c1 = 1, 
c2 = −1, c3 = 1.
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5.2. The second class of projectively flat Finsler metric with constant flag curvature λ = 0

In this subsection, we give another class of projectively flat Finsler metric with constant flag curvature 
λ = 0 under the assumption {

(g2)ṽ = (g2)ũ
(fg)ṽ = (fg)ũ,

(5.28)

which shows that the functions f and g have the form{
f = φ̃1(ũ + ṽ, t̃)
g = φ̃2(ũ + ṽ, t̃).

Combining (5.2)1 and (5.2)2 with (5.28), we have{
(g2 − gt̃ + ũ + ṽ)t̃ = 0
(g2 − gt̃ + ũ + ṽ)ṽ = 0.

Then

g2 − gt̃ = −(ũ + ṽ) + c1,

where c1 ∈ R.
Hence

g =
t̃±

√
t̃2 − 4(ũ + ṽ) + 4c1

2 . (5.29)

Similarly, along with (5.2)3 and (5.2)4, by (5.28), we get{
(t̃f − 2fg)t̃ = 0
(t̃f − 2fg)ṽ = 0,

which implies that

t̃f − 2fg = c2,

where c2 ∈ R. Namely, f = c2
t̃−2g .

By (5.29), it yields

f = c2√
t̃2 − 4(ũ + ṽ) + 4c1

, (5.30)

where c1 ∈ R, c2 ∈ R. So we obtain one of the solutions of (5.2) again
solution 4# ⎧⎪⎪⎨⎪⎪⎩

f = c2√
t̃2−4(ũ+ṽ)+4c1

g = t̃±
√

t̃2−4(ũ+ṽ)+4c1

2



G. Cai et al. / Differential Geometry and its Applications 68 (2020) 101579 19
where c1 > 0, c2 ∈ R.
Now, due to Theorems 1.1 and 1.2 again, we conclude

Corollary 5.4. Let Br = {x ∈ Rn : |x| < r}, r > 0, and let F = |y|φ̃(ũ, ̃s, ̃v, ̃t), where φ̃ is given by (5.1) and 
f , g are provided by solution 4# with c2 > 0, then

(1) F is a projectively flat Finsler metric with zero flag curvature on Bε if ε(> 0) and |a| are small 
enough.

(2) For a fixed r0 > 0, F is a projectively flat Finsler metric with zero flag curvature on Br0 if the 
constant c1 in solution 4# is large enough.

We still omit the proof since it is also similar to that of Corollary 4.1.
In summary, by Corollaries 5.1 and 5.4, we have also obtained two classes of new projectively flat Finsler 

metrics with zero flag curvature.
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