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Abstract 

This paper is devoted to the output feedback consensus control problem for a class of nonlinear 
fractional-order multi-agent systems (MASs) with general directed topologies. It is worth noting that the 
considered fractional-order MASs including the second-order MASs as special cases. By introducing 
a distributed filter for each agent, a control algorithm uses only relative position measurements is 
proposed to guarantee the global leaderless consensus can be achieved. Also the derived results are 
further extended to consensus tracking problem with a leader whose input is unknown and bounded. 
Finally, two simulation examples are provided to verify the performance of the control design. 
© 2019 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Consensus control of multi-agent systems (MASs) is to design appropriate controller for
ach agent only using local information between neighbors such that the states of all agents
each general agreement. From the viewpoint of existing number of leaders in MASs, existing
onsensus problem of MASs can be classified into two categories: leaderless consensus prob-
em [1–3] and consensus tracking (or leader-follower consensus) problem with a leader [4–7] .
uring the last decade, consensus of MASs has received considerable attention and there
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are many results available in the literature, see the recent survey papers [8,9] and references
therein. 

Early work often focuses on consensus of integer-order MASs, i.e., first-order MASs 
[1,4,5] , second-order MASs [2,3,6] , and high-order MASs [7,10,11] . However, several phe-
nomena can be explained naturally by the collective group behavior of agents with fractional-
order dynamics rather than classical integer-order dynamics [12,13] . For example, the syn- 
chronization motion of multiple agents in fractional circumstances, i.e., viscoelastic materi- 
als, macromolecule fluids and porous media. Up to now, some researchers have tackled the
consensus control of MASs with fractional-order dynamics. Leaderless consensus problem 

of nonlinear fractional-order double integrator MASs is studied in [14,15] . Both leaderless 
consensus problem and consensus tracking problem are considered in [16] for fractional- 
order MASs with input time delay. Consensus tracking control problem is also presented for
fractional-order single integrator MASs with undirected topology [17] or directed topology 

[18,19] , and for fractional-order double integrator MASs with undirected topology [20] or 
directed topology [14,21] . It should be emphasized that fractional-order systems are an ex-
tension to the traditional integer-order ones, which have properties of infinity memory and 

hereditary due to the existence of a memory term in the model [22] . 
Note that state feedback-based controllers are mainly based on a restrictive assumption that 

the state variables of each agent can be measured directly. However, in many real applications,
full-state measurements are unavailable due to economical concerns or physical constraints. 
Especially when there exist multiple states in second-order or higher-order MASs, it is un-
realistic to obtain the information of multiple states accurately. Thus, state feedback-based 

control in those cases should be replaced by output feedback-based control. Some results on
output feedback-based consensus control problem are presented in MASs with general linear 
dynamics [23,24] , with second-order agent dynamics [25,26] and with high-order agent dy- 
namics [27] . So far, no author has studied the output feedback-based consensus problem for
MASs with nonlinear fractional-order dynamics. 

In reality, the agents might be affected by the interaction among neighboring agents, but
also by its own intrinsic nonlinear dynamic. So the MASs with intrinsic nonlinear dynamics 
are considered recently in [2,3,5,14,18] . Since the limited view field or nonuniform sensing
ranges of sensors, one agent may be able sense another agent, but not vice versa. The com-
munication topology among the agents, in general is directed. Taking into consideration these 
practical cases, in this paper, we consider the consensus problem of fractional-order double 
integrator MASs with intrinsic nonlinear dynamics and general directed topologies using only 

relative output information. Due to the well-known Leibniz rule for fractional derivatives is 
invalid [28] , how to construct a suitable Lyapunov function for analysing the stability of
nonlinear fractional-order MASs is very challenging. The output feedback based consensus 
control of double integrator MASs in the presence of nonlinear fractional-order dynamics is 
even more challenging as the communication topology among the agents is not only directed 

but also local. 
The main contributions of this paper are summarized as follows. Firstly, for the leaderless

consensus problem of fractional-order MASs with intrinsic nonlinear dynamics and directed 

graph, a novel distributed algorithm combined with a filter is derived. By generalizing an
important nonlinear fractional-order inequality, it is shown that all the agents can achieve 
global consensus if the interaction graph is strongly connected and the control parameters are
chosen properly. Secondly, for the tracking problem with a leader whose input is bounded 

and unknown to any follower, a newly distributed algorithm combined with a similar filter is
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urther developed to guarantee the tracking error and control input are uniformly ultimately
ounded (UUB). Of particular interest is all the algorithms designed in this paper can be
mplemented only using relative out measurements between neighbors. 

The rest of this paper is organized as follows. Some preliminaries are briefly presented in
ection 2 . Output feedback based leaderless consensus problem is first studied in Section 3 .
n Section 4 , the results are then extended to the output feedback based tracking problem
hen there exists an unknown leader. Simulation examples and conclusions are outlined in
ections 5 and 6 , respectively. 

Let R 

m×n and R 

m be the sets of m ×n real matrices and m -dimensional Euclidean space,
espectively. Let 1 n ∈ R 

n (0 n ∈ R 

n ) stand for the n ×1 column vector of all ones (zeros) and
 n ( O n ) be the n ×n identity (zero) matrix. Denote by diag (d 1 , . . . , d n ) ∈ R 

n×n a diagonal
atrix with diagonal entries d 1 to d n . We use � to represent the Kronecker product. For
 vector x = [ x 1 , . . . , x n ] T ∈ R 

n , ‖ x‖ = 

√ 

x T x denotes the Euclidean norm. Let λ(A ) ( λ(A ))

enote the maximal (minimum) eigenvalue of a positive definite matrix A ∈ R 

n×n . Let | b | and
( B ) be the absolute value of a real number b ∈ R and the maximal singular value of a matrix
 ∈ R 

m×n , respectively. 

. Preliminaries 

.1. Graph theory 

Let G = (V, E, A ) denote a weighted directed graph of order N , where V = { v 1 , . . . , v N }
nd E ⊆ V × V are, respectively, the set of nodes and the set of directed edges, and
 = [ a i j ] N×N is a weighted adjacency matrix with weights a ij > 0 if (v j , v i ) ∈ E and a i j = 0

therwise. Moreover, it is assumed that a ii = 0, ∀ i ∈ I = { 1 , . . . , N } . The edge (v j , v i ) ∈ E
eans that the node v i can access information from v j , then node v j is a neighbor of node
 i . The set of neighbors of node v i is denoted as N i = { j ∈ V : (v j , v i ) ∈ E} . The Laplacian
atrix L = [ l i j ] N×N is given by l i j = −a i j if i � = j and l ii = 

∑ N 
k=1 a ik . In the directed graph G,

 directed path from node v j to node v i is a sequence of edges e i 1 j , e i 2 i 1 , . . . , e ii l with nodes
 i k ∈ V, k = 1 , 2, . . . , l . A directed graph is said to be strongly connected if there exists a
irected path from every node to all other nodes. 

emma 1 [3] . If the directed graph G is strongly connected, there exists a positive vector
= [ ξ1 , . . . , ξN ] T with 1 

T 
N ξ = 1 such that ξT L = 0. Moreover, for ς ∈ R 

N and any positive
olumn vector ϑ ∈ R 

N , it holds that 

min 

 

T ϑ=0 
ς 

T ̂ L ς > 

λ2 ( ̂  L ) 

N 

ς 

T ς, 

here ̂ L = 

1 
2 (�L + L 

T �) , � = diag (ξ1 , . . . , ξN ) , and λ2 ( ̂  L ) denotes the minimum nonzero
igenvalue of ̂ L . 

.2. M -matrices 

efinition 1 [29] . A nonsingular matrix H = [ h i j ] ∈ R 

n×n is called an M -matrix if h ij ≤0
henever i � = j and all elements of H 

−1 are nonnegative. 
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Lemma 2 [30] . If H = [ h i j ] ∈ R 

n×n is an M-matrix, then there exists a positive diago-
nal matrix � such that �H + H 

T � > 0. One such � is give by diag (θ1 , . . . , θN ) , where
[ θ1 , . . . , θN ] T = (H 

T ) −1 1 N . 

2.3. Caputo fractional derivative and Mittag–Leffler function 

Definition 2 [22] . The Riemann–Liouville fractional integral of function f (t ) ∈ C 

n ([0, ∞ ) , R )

is defined as 

I q f (t ) = I q [ f (·)](t ) = 

∫ t 

0 

(t − τ ) q−1 

�(q) 
f (τ ) dτ, 

where n − 1 < q ≤ n, n ∈ { 1 , 2, . . . } and �( · ) is the well-known Gamma function, defined as
�(z) = 

∫ ∞ 

0 t z−1 e −t dt . 

Definition 3 [22] . The Caputo fractional derivative of function f (t ) ∈ C 

n ([0, ∞ ) , R ) is de-
fined as 

D 

q f (t ) = I n−q f (n) (t ) = 

∫ t 

0 

(t − τ ) n−q−1 

�(n − q) 
f (n) (τ ) dτ, 

where n − 1 < q ≤ n, n ∈ { 1 , 2, . . . } . 
Definition 4 [22] . The Mittag–Leffler function with two positive parameter a and b is defined
as 

E a,b (z) = 

∞ ∑ 

k=1 

z k 

�(ka + b) 
, 

where z is a complex number. Let E a, 1 (z) = E a (z) as b = 1 , further, E 1 , 1 (z) = e z . 

Lemma 3 [22] . If a < 2, b is an arbitrary real number, μ satisfies a π /2 < μ< min { π , a π} and
C is a positive real constant, then the estimate of Mittag–Leffler function is 

| E a,b (z) | ≤ C 

1 + | z| , μ ≤ | arg (z) | ≤ π, | z| ≥ 0, (1) 

where arg (z) denotes the argument of complex number z. 

Lemma 4 [22] . Let 0 < q ≤1, p ∈ R , and h ( t ) be a given continuous function. The solution
of the initial value problem D 

q x(t ) = px(t ) + h(t ) can be expressed by 

x(t ) = x(t 0 ) E q (p(t − t 0 ) 
q ) + 

∫ t 

t 0 

(t − τ ) q−1 E q,q (p(t − τ ) q ) h(τ ) dτ. (2) 

In particular, if q = 1 , then x (t ) = x (t 0 ) e p(t−t 0 ) + 

∫ t 
t 0 

e p(t−τ ) h(τ ) dτ . 

Some properties of the Mittag–Leffler function are given below, which can be seen in [31] .

Property 1. If 0 < a ≤1, b > 0 and t > 0, then 0 < E a (−bt a ) < 1 and E a,a (−bt a ) > 0. In
addition, t a E a,a+1 (−bt a ) is the monotone increasing function satisfying 0 < t a E a,a+1 (−bt a ) <
1 . 
b 
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.4. Some lemmas 

emma 5 [32] . Let x(t ) ∈ R 

n be a real continuous and differentiable vector function. Then,
or any time instant t ≥ t 0 , the following relationship holds: 

1 

2 

D 

q 
[
x T (t ) P x(t ) 

] ≤ x T (t ) P [ D 

q x(t )] , 0 < q ≤ 1 , (3)

here P ∈ R 

n×n is a positive definite symmetric matrix. 

emma 6 (Schur Complement [33] ) . The following linear matrix inequality ( LMI ) 
 

Q(x) S(x) 

S 

T (x) R(x) 

] 
> 0, 

here Q(x) = Q 

T (x) , R(x) = R 

T (x) , is equivalent to either of the following conditions: 

1) Q(x) > 0, R(x) − S 

T (x ) Q 

−1 (x ) S(x ) > 0;
2) R(x) > 0, Q(x) − S(x ) R 

−1 (x ) S 

T (x ) > 0. 

. Output feedback based leaderless consensus control 

We first consider the leaderless consensus problem for a group of N agents distributed on
 communication graph G. The dynamics of each agent is described by 

 

 

 

 

 

D 

q x i = w i , 

D 

q w i = f (t, x i , w i ) + u i , 

y i = x i , i ∈ I = { 1 , 2, . . . , N } , 
(4)

here 0 < q ≤1 x i ∈ R 

n , w i ∈ R 

n , u i ∈ R 

n and y i ∈ R 

n denote, respectively, the position, ve-
ocity, control input and output of agent i , and f (t, x i , w i ) ∈ R 

n is the intrinsic nonlinear
ynamics of agent i . 

ssumption 1. Suppose that there exist two constants ρ1 and ρ2 such that, ∀ x, v, y, z ∈ R 

n

nd t ≥0 

 f (t, x, v) − f (t, y, z) ‖ ≤ ρ1 ‖ x − y‖ + ρ2 ‖ v − z‖ . (5)

emark 1. Note that the Lipschitz assumption condition in Assumption 1 is mild, see [2,3,5] .
t is easy to verify that a class of Chaotic systems satisfy this assumption, such as Chua’s
scillator, Chua’s circuit, Chen system and Lorenz system, to name a few. Due to the agents
ften have the same dynamics in a MAS, each agent has exactly the same intrinsic nonlinear
ynamics is reasonable in this paper. 

In this section, the control objective is to design u i using only local output information
uch that the leaderless consensus is achieved asymptotically, that is lim t→∞ 

‖ x i (t ) − x j (t ) ‖ =
im t→∞ 

‖ D 

q x i (t ) − D 

q x j (t ) ‖ = 0 holds for any initial values, ∀ i, j ∈ I. 
It is clear that Lyapunov’s direct method provides a powerful tool to analyze the stability

f nonlinear system. For a continuous function V (t ) : [0, ∞ ) → R , if ˙ V (t ) ≤ −k 1 V (t ) +
 2 , where k 1 and k 2 are constants satisfying k 1 > 0 and k 2 ≥0, by using the Comparison
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Lemma (Lemma 3.4 in [34] ), the following inequality is derived: 

 (t ) ≤
(

V (0) − k 2 
k 1 

)
e −k 1 t + 

k 2 
k 1 

≤ V (0) e −k 1 t + 

k 2 
k 1 

. (6) 

If D 

q V (t ) ≤ −k 1 V (t ) + k 2 , however, the above inequality (6) is no longer applicable. To ana-
lyze the nonlinear fractional-order system stability, we need to extend the first-order inequality 

(6) to the case of fractional-order. 

Lemma 7. If 0 < q ≤1 and the q-order derivative of a continuous function V (t ) : [0, ∞ ) → R

satisfying 

D 

q V (t ) ≤ −k 1 V (t ) + k 2 (7) 

with k 1 > 0 and k 2 ≥0 being two constants, then 

 (t ) ≤ V (0) E q (−k 1 t 
q ) + 

k 2 
k 1 

, ∀ t ≥ 0. (8)

Proof. From Eq. (7) , we have that there exists a function M ( t ) ≥0 such that 

D 

q V (t ) = −k 1 V (t ) + k 2 − M(t ) . (9) 

According to Lemma 4 , the solution of Eq. (9) is written as 

 (t ) = V (0) E q (−k 1 t 
q ) + 

∫ t 

0 
(t − τ ) q−1 E q,q (−k 1 (t − τ ) q )[ k 2 − M(τ )] dτ. (10)

In virtue of Property 1 , one has that E q,q (−k 1 t q ) > 0 and 0 < t q E q,q+1 (−k 1 t q ) < 

1 
k 1 

. It thus
follows from Eq. (10) that 

 (t ) ≤ V (0) E q (−k 1 t 
q ) + k 2 

∫ t 

0 
(t − τ ) q−1 E q,q (−k 1 (t − τ ) q ) dτ

= V (0) E q (−k 1 t 
q ) + k 2 t 

q E q,q+1 (−k 1 t 
q ) 

≤ V (0) E q (−k 1 t 
q ) + 

k 2 
k 1 

, (11) 

where the first equality holds due to the fact in [22,31] that 
∫ t 

0 E a,b (ps a ) s b−1 ds = t b E a,b+1 (pt a )
with a > 0, b > 0 and p ∈ R being some constants. �

Remark 2. It is worth mentioning that when q = 1 , Lemma 7 reduces to the first-order
inequality (6) in [34] . By using Lemma 3 , we have that E q (−k 1 t q ) → 0 as t → ∞ , so V (t ) →
k 2 
k 1 

as t → ∞ . When k 2 = 0, Lemma 7 reduces to the fractional-order inequality in [14] , in
this case V ( t ) → 0 as t → ∞ . Thus, the new proposed Lemma 7 can be used to analyze the
convergence problem of fractional-order system, which generalizes the results in [14,34] . 

To derive the main results of this section, we need the following assumption. 

Assumption 2. The directed graph G is strongly connected. 
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Fig. 1. Framework of closed-loop system. 
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u i = − a 

N ∑ 

j=1 
a i j (y i − y j ) − bg i , 

g i = c 
N ∑ 

j=1 
a i j (y i − y j ) − z i , 

D 

q z i = cg i , 

(12)

here g i ∈ R 

n and z i ∈ R 

n are the filter output and an auxiliary filter vector, respectively, a ,
 , c are positive design parameters to be determined later. 

emark 3. The framework of closed-loop system is shown in Fig. 1 . It is readily seen from
ig. 1 that only relative positive coupling measurements between neighbors are utilized in the
lgorithm (12) . This is in contrast to the existing consensus algorithms in [14,15,20,21] for
ractional-order MASs with double-integrator dynamics, where not only the relative positive
oupling measurements but also the relative velocity coupling measurements are utilized in
he algorithm design. Due to the limitation of communication capability, the relative velocity
easurements are general very difficult to obtain in practice for second-order MASs, especially

or fractional-order MASs with double-integrator dynamics. 

For simplicity in this paper, we assume that n = 1 . All the results can be extended to the
ase as n > 1 by using the Kronecker product. 

heorem 1. Under Assumptions 1 and 2 , the leaderless consensus of fractional-order MASs
4) using protocol (12) is achieved if 

1 = 

a 

2 

N 

λ2 ( ̂  L ) −
(

aρ1 + 

aρ2 + bρ1 

2 

)
ξ > 0, (13)

2 = 

b 

2 

N 

λ2 ( ̂  L ) −
(

a + bρ2 + 

aρ2 + bρ1 

2 

)
ξ > 0, (14)
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c > bσ (L) + 

γ 2 
3 

γ1 
+ 

γ 2 
4 

γ2 
, (15) 

where γ3 = − ab ξ
2 − a 

2 σ (L 

2 ) −
√ 

2 ρ1 

2 σ (L) , γ4 = − b 2 ξ
2 − b 

2 σ (L 

2 ) −
√ 

2 ρ2 

2 σ (L) , ̂ L defined as in
Lemma 1 and ξ = max i∈I { ξi } . Moreover, u i in (12) is bounded and continuous everywhere. 

Proof. Introduce some error variables ˆ x i = x i − x̄ and ˆ w i = w i − w̄ , where x̄ = 

∑ N 
k=1 ξk x k ,

w̄ = 

∑ N 
k=1 ξk w k , and ξ i is clearly defined in Lemma 1 . For notational brevity, let ˆ x , ˆ w , u ,

f and g be the column stack vectors of ˆ x i , ˆ w i , u i , f (t, x i , w i ) and g i , respectively. Since
ξT L = 0, then we can get from Eqs. (4) and (12) that ⎧ ⎪ ⎨ ⎪ ⎩ 

D 

q ˆ x = ˆ w , 

D 

q ˆ w = −aL ̂  x + (I N − 1 N ξ
T )( f − bg) , 

D 

q g = cL ̂  w − cg. 

(16) 

Choose φ = g − L ̂  w , it thus follows from Eq. (16) that ⎧ ⎪ ⎨ ⎪ ⎩ 

D 

q ˆ x = ˆ w , 

D 

q ˆ w = −aL ̂  x − bL ̂  w + (I N − 1 N ξ
T ) ( f − bφ) , 

D 

q φ = −cφ − LD 

q ˆ w . 

(17) 

Note that L1 N = 0 N , we can further represent Eq. (17) as { 

D 

q e = Ae + G (t ) , 

D 

q φ = −cφ + aL 

2 ˆ x + bL 

2 ˆ w − L ( f − bφ) , 
(18) 

where e = [ ̂  x T , ˆ w 

T ] T , A = 

⎡ ⎣ O N I N 

− aL − bL 

⎤ ⎦ and G (t ) = 

⎡ ⎣ 0 N 

(I N −1 N ξT ) ( f −bφ) 

⎤ ⎦ . 
The Lyapunov function is constructed as follows: 

 (t ) = 

1 

2 

φT φ + 

1 

2 

e T Pe, (19) 

where P = 

⎡ ⎣ 2ab ̂  L a�

a� b�

⎤ ⎦ , ̂  L and � are clearly defined in Lemma 1 . According to Lemma 1 , one

gets ˆ x T ̂ L ̂  x > 

λ2 ( ̂  L ) 
N ˆ x T ˆ x ≥ λ2 ( ̂  L ) 

N ξ
ˆ x T � ˆ x , so 

 (t ) ≥ 1 

2 

φT φ + 

1 

2 

e T ( ̂  P � �) e, 

with 

̂ P = 

⎡ ⎣ 2ab 
N ξ

λ2 ( ̂  L ) a 

a b 

⎤ ⎦ . By using Lemma 6 , we can derive that ̂ P > 0 if λ2 ( ̂  L ) > 

a 
2b 2 N ξ . It

follows from Eq. (14) that λ2 ( ̂  L ) > 

a 
b 2 N ξ > 

a 
2b 2 N ξ, thus P ≥ ̂ P � � > 0. Clearly, V ( t ) ≥0

and V (t ) = 0 if and only if ˆ x = ˆ w = φ = 0 N . 
Let f ∗ = f (t, x̄ , w̄ ) and Q = 

1 
2 (PA + A 

T P ) . In virtue of Lemma 5 , taking the q -order
derivative of V yields 
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I

Q  

S

φ

 

I

‖

 

a

 

q V (t ) ≤ φT D 

q φ + e T P D 

q e 

= φT D 

q φ + e T 
PA + A 

T P 

2 

e + 

(
a ̂  x T + b ̂  w 

T 
)
�(I N − 1 N ξ

T ) ( f − bφ) 

= φT D 

q φ + e T Qe + 

(
a ̂  x T + b ̂  w 

T 
)
�( f − 1 N � f ∗ − bφ) , (20)

here the last equality holds due to 

a ̂  x T + b ̂  w 

T 
)
�1 N ξ

T ( f − bφ) = 

(
ax T + bw 

T 
)(

I N − ξ1 

T 
N 

)
�1 N ξ

T ( f − bφ) 

= 

(
ax T + bw 

T 
)(

ξξT − ξξT 
)
( f − bφ) = 0 

nd 

a ̂  x T + b ̂  w 

T 
)
�( 1 N � f ∗) = 

(
ax T + bw 

T 
)(

I N − ξ1 

T 
N 

)
�
[
1 N � f ∗

]
= 

(
ax T + bw 

T 
)
(ξ − ξ ) � f ∗ = 0. 

n view of ̂ L = 

1 
2 (�L + L 

T �) , one has 

 = 

1 

2 

(PA + A 

T P ) = 

[ 
−a 

2 ̂ L O N 

O N a� − b 

2 ̂ L 

] 
. (21)

ince L1 N = 0 N , one can obtain from Eq. (18) that 

T D 

q φ = φT 
[−cφ + aL 

2 ˆ x + bL 

2 ˆ w − L ( f − bφ) 
]

= − cφT φ + aφT L 

2 ˆ x + bφT L 

2 ˆ w − φT L ( f − 1 N � f ∗ − bφ) 

≤ − c‖ φ‖ 2 + aσ (L 

2 ) ‖ φ‖‖ ̂  x ‖ + bσ (L 

2 ) ‖ φ‖‖ ̂  w ‖ 
+ σ (L) ‖ φ‖ ‖ f − 1 N � f ∗‖ + bσ (L) ‖ φ‖ 2 . (22)

t easy to get from Assumption 1 that 

 f − 1 N � f ∗‖ = 

√ √ √ √ 

N ∑ 

i=1 

| f (t, x i , w i ) − f (t, x̄ , w̄ ) | 2 

≤
√ √ √ √ 

N ∑ 

i=1 

(ρ1 | ̂  x i | + ρ2 | ̂  w i | ) 2 

≤
√ √ √ √ 

N ∑ 

i=1 

2 

(
ρ2 

1 | ̂  x i | 2 + ρ2 
2 | ̂  w i | 2 

)

≤
√ √ √ √ 

N ∑ 

i=1 

2ρ2 
1 | ̂  x i | 2 + 

√ √ √ √ 

N ∑ 

i=1 

2ρ2 
2 | ̂  w i | 2 

= 

√ 

2 ρ1 ‖ ̂  x ‖ + 

√ 

2 ρ2 ‖ ̂  w ‖ (23)

nd 
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C

 

(
a ̂  x T + b ̂  w 

T 

)
�( f − 1 N � f ∗) 

= 

N ∑ 

i=1 

(
a ̂  x i + b ̂  w i 

)
ξi [ f (t, x i , w i ) − f (t, x̄ , w̄ )] 

≤
N ∑ 

i=1 

ξi 
[
aρ1 | ̂  x i | 2 + bρ2 | ̂  w i | 2 + ( aρ2 + bρ1 ) | ̂  x i || ̂  w i | 

]
≤

N ∑ 

i=1 

ξ

(
aρ1 + 

aρ2 + bρ1 

2 

)
| ̂  x i | 2 + 

N ∑ 

i=1 

ξ

(
bρ2 + 

aρ2 + bρ1 

2 

)
| ̂  w i | 2 

= e T Be, (24) 

where 

B = 

⎡ ⎢ ⎣ 

aρ1 + 

aρ2 + bρ1 

2 

0 

0 bρ2 + 

aρ2 + bρ1 

2 

⎤ ⎥ ⎦ 

� ξ . 

Combining Eqs. (20) –(24) , one can conclude that 

D 

q V (t ) ≤ − a 

2 λ2 ( ̂  L ) 

N 

‖ ̂  x ‖ 2 + 

(
a ξ − b 

2 λ2 ( ̂  L ) 

N 

)
‖ ̂  w ‖ 2 + e T Be + ( bσ (L) − c ) ‖ φ‖ 2 

+ 

(
ab ξ + aσ (L 

2 ) + 

√ 

2 ρ1 σ (L) 
)
‖ ̂  x ‖‖ φ‖ 

+ 

(
b 

2 ξ + bσ (L 

2 ) + 

√ 

2 ρ2 σ (L) 
)
‖ ̂  w ‖‖ φ‖ 

≤ −[ ‖ ̂  x ‖ , ‖ ̂  w ‖ , ‖ φ‖ ] C[ ‖ ̂  x ‖ , ‖ ̂  w ‖ , ‖ φ‖ ] T , (25) 

with 

 = 

⎡ ⎢ ⎣ 

γ1 0 γ3 

0 γ2 γ4 

γ3 γ4 c − bσ (L) 

⎤ ⎥ ⎦ 

where γi (i = 1 , 2, 3 , 4) defined as in Theorem 1 . It follows from Lemma 6 that C > 0 if ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

γ1 , γ2 > 0, 

c − bσ (L) − [γ3 γ4 
]⎡ ⎢ ⎢ ⎣ 

1 

γ1 
0 

0 

1 

γ2 

⎤ ⎥ ⎥ ⎦ 

[ 
γ3 

γ4 

] 
> 0. 

(26) 

Clearly C > 0 if inequalities (13) –(15) hold. It follows from (19) and (25) that 

D 

q V (t ) ≤ −λ(C)(‖ e ‖ 2 + ‖ φ‖ 2 ) ≤ −θV (t ) , 

where θ = 

2 λ(C) 

max { λ(P) , 1 } > 0. By using Lemma 7 , we have V (t ) ≤ V (0) E q (−θt q ) , t ≥0. It thus

follows from Eq. (25) that 

‖ e ‖ ≤
√ 

2V (t ) 

λ(P ) 
≤
√ 

2V (0) 

λ(P ) 
E q (−θt q ) → 0 (27) 



P. Gong and K. Wang / Journal of the Franklin Institute 357 (2020) 1473–1493 1483 

a  

(

a

u

 

f  

t

R

 

I  

T  

E  

E  

a

 

t  

a

A  

a

‖  

w

 

η  

u  

p  

c

T  

f

δ  

δ  

c  
s t → ∞ . Therefore, the fractional-order consensus is achieved in fractional-order MASs
4) with the protocol (12) . 

From Property 1 , one gets V (t ) ≤ V (0) E q (−θt q ) ≤ V (0) for t ≥0. Due to u = −aL ̂  x − bg
nd g = φ + L ̂  w , it holds that 

 ≤ aσ (L) ‖ ̂  x ‖ + b 

(‖ φ‖ + σ (L) ‖ ̂  w ‖ )
≤ (a + b) σ (L) ‖ e ‖ + b‖ φ‖ 

≤ (a + b) σ (L) 

√ 

2V (0) 

λ(P ) 
+ b 

√ 

2V (0) (28)

or t ≥0 and u → 0 N 

as t → ∞ . Thus u is bounded and continuous everywhere. This completes
he proof. �
emark 4. The conditions (13) and (14) are equivalent to 

λ2 ( ̂  L ) 

N ξ
> max 

{
ρ1 

a 

+ 

ρ2 

2a 

+ 

bρ1 

2a 

2 
, 
ρ2 

b 

+ 

ρ1 

2b 

+ 

aρ2 

2b 

2 
+ 

a 

b 

2 

}
. (29)

t should be noted that ρ1 

a + 

ρ2 

2a + 

bρ1 

2a 2 → 0 

+ and 

ρ2 

b + 

ρ1 

2b + 

aρ2 

2b 2 + 

a 
b 2 → 0 

+ as a, b → + ∞ .
herefore, one can always choose two sufficiently large parameters a and b such that
qs. (13) and (14) hold. Also, one can always choose a large parameter c such that
q. (15) holds. In particular, if b = a, one can choose a large parameter a satisfying
 > 

N ξ
λ2 ( ̂  L ) 

max 

{ 3 ρ1 + ρ2 

2 , 
ρ1 +3 ρ2 

2 + 1 

}
such that Eqs. (13) and (14) hold. 

As given in Remark 1 , although many systems satisfy the Lipschitz-type nonlinear condi-
ion in Assumption 1 . In the following part of this section, a more relaxed assumption given
s below is considered. 

ssumption 3. Suppose that there exist two constants ρ1 and ρ2 such that, ∀ x, v, y, z ∈ R 

n

nd t ≥0 

 f (t, x, v) − f (t, y, z) ‖ ≤ ρ1 ‖ x − y‖ + ρ2 ‖ v − z‖ + η(t ) , (30)

here η( t ) ≥0 is continuous and bounded. 

Compared with Assumption 1 , the condition (30) is more relaxed with an additional bound
( t ). For example, the systems can be those in Remark 1 with perturbations resulting from
ncertainties, modeling errors, process noise and disturbances that exist in many realistic
roblems. Under Assumption 3 , the following theorem shows that both positive and velocity
onsensus errors ˆ x and ˆ w are globally UUB. 

heorem 2. Under Assumptions 2 and 3 , both position and velocity consensus errors of
ractional-order MASs (4) using protocol (12) are globally UUB if 

1 = 

a 

2 

N 

λ2 ( ̂  L ) − ( 2aρ1 + aρ2 + bρ1 ) ξ > 0, (31)

2 = 

b 

2 

N 

λ2 ( ̂  L ) − ( a + 2bρ2 + aρ2 + bρ1 ) ξ > 0, (32)

 > bσ (L) + 

δ2 
3 

δ1 
+ 

δ2 
4 

δ2 
, (33)
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where δ3 = − ab ξ
2 − a 

2 σ (L 

2 ) − ρ1 σ (L) , δ4 = − b 2 ξ
2 − b 

2 σ (L 

2 ) − ρ2 σ (L) , ̂ L defined as in
Lemma 1 and ξ = max i∈I { ξi } . Moreover, u i in (12) is bounded and continuous everywhere. 

Proof. Consider the same Lyapunov function candidate V ( t ) as in Eq. (19) . Under
Assumption 3 , we can derive that 

‖ f − 1 N � f ∗‖ = 

√ √ √ √ 

N ∑ 

i=1 

| f (t, x i , w i ) − f (t, x̄ , w̄ ) | 2 

≤
√ √ √ √ 

N ∑ 

i=1 

[ ρ1 | ̂  x i | + ρ2 | ̂  w i | + η] 2 

≤
√ √ √ √ 

N ∑ 

i=1 

[
4 

(
ρ2 

1 | ̂  x i | 2 + ρ2 
2 | ̂  w i | 2 

)+ 2η2 
]

≤ 2ρ1 ‖ ̂  x ‖ + 2ρ2 ‖ ̂  w ‖ + 

√ 

2N η, (34) 

where we have used the fact that (x + y + z) 2 ≤ 2[(x + y) 2 + z 2 ] ≤ 4(x 2 + y 2 ) + 2z 2 for
x, y, z ∈ R . In light of Eq. (34) , we can further derive that (
a ̂  x T + b ̂  w 

T 
)
�( f − 1 N � f ∗) ≤ ‖ a ̂  x + b ̂  w ‖ σ (�) ‖ f − 1 N � f ∗‖ 

≤ ξ
(
a‖ ̂  x ‖ + b‖ ̂  w ‖ )(2ρ1 ‖ ̂  x ‖ + 2ρ2 ‖ ̂  w ‖ + 

√ 

2N η
)

≤ ( 2aρ1 + aρ2 + bρ1 ) ξ‖ ̂  x ‖ 2 + ( 2bρ2 + aρ2 + bρ1 ) ξ‖ ̂  w ‖ 2 
+ 

√ 

2N ξ
(
a‖ ̂  x ‖ + b‖ ̂  w ‖ )η. (35) 

Combining Eqs. (20) –(22), (34) and (35) yields 

D 

q V (t ) ≤ −
(

a 

2 

N 

λ2 ( ̂  L ) − ( 2aρ1 + aρ2 + bρ1 ) ξ

)
‖ ̂  x ‖ 2 

−
(

b 

2 

N 

λ2 ( ̂  L ) − ( a + 2bρ2 + aρ2 + bρ1 ) ξ

)
‖ ̂  w ‖ 2 

+ ( bσ (L) − c ) ‖ φ‖ 2 + 

(
ab ξ + aσ (L 

2 ) + 2ρ1 σ (L) 
)‖ ̂  x ‖‖ φ‖ 

+ 

(
b 

2 ξ + bσ (L 

2 ) + 2ρ2 σ (L) 
)‖ ̂  w ‖‖ φ‖ 

+ 

√ 

2N ξ
(
a‖ ̂  x ‖ + b‖ ̂  w ‖ )η + 

√ 

2N σ (L) ‖ φ‖ η
= − [ ‖ ̂  x ‖ , ‖ ̂  w ‖ , ‖ φ‖ ]�[ ‖ ̂  x ‖ , ‖ ̂  w ‖ , ‖ φ‖ ] T 

+ 

√ 

2N ξ
(
a‖ ̂  x ‖ + b‖ ̂  w ‖ )η + 

√ 

2N σ (L) ‖ φ‖ η (36) 

with � = 

⎡ ⎢ ⎢ ⎣ 
δ1 0 δ3 

0 δ2 δ4 

δ3 δ4 c−bσ (L) 

⎤ ⎥ ⎥ ⎦ , where δi (i = 1 , 2, 3 , 4) defined as in Theorem 2 . It follows

from Lemma 6 that �> 0 if conditions (31) –(33) hold. By using the Young’s inequality, i.e.,
2x y ≤ ax 2 + 

1 
a y 

2 for any a > 0, one has 

√ 

2N a ξ‖ ̂  x ‖ η ≤ λ(�) 

2 

‖ ̂  x ‖ 2 + 

a 

2 ξ
2 

λ(�) 
N η2 , (37) 
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I  

o

4

 

M  
 

2N b ξ‖ ̂  w ‖ η ≤ λ(�) 

2 

‖ ̂  w ‖ 2 + 

b 

2 ξ
2 

λ(�) 
N η2 , (38)

 

2N σ (L) ‖ φ‖ η ≤ λ(�) 

2 

‖ φ‖ 2 + 

σ 2 (L) 

λ(�) 
N η2 . (39)

n virtue of Eqs. (37) and (38) , we can further represent Eq. (36) as 

 

q V (t ) ≤ − λ(�) 

2 

(‖ e ‖ 2 + ‖ φ‖ 2 ) + 

(a 

2 + b 

2 ) ξ
2 + σ 2 (L) 

λ(�) 
N η2 , 

his together with Eq. (19) ensure that 

 

q V (t ) ≤ − k 1 V (t ) + k 2 , (40)

here k 1 = 

λ(�) 

max { λ(P) , 1 } > 0, k 2 = 

(a 2 + b 2 ) ξ
2 + σ 2 (L) 

λ(�) 
N ̄η2 and η̄ = max t≥0 η(t ) . It thus follows from

emma 7 that V (t ) ≤ V (0) E q (−k 1 t q ) + 

k 2 
k 1 

, which means that 

 e ‖ ≤
√ 

2V (t ) 

λ(P ) 
= 

√ 

2 

λ(P ) 

(
V (0) E q (−k 1 t q ) + 

k 2 
k 1 

)

≤
√ 

2 

λ(P ) 

(
V (0) + 

k 2 
k 1 

)
, t ≥ 0, (41)

nd ‖ e ‖ ≤
√ 

2k 2 
k 1 λ(P) 

as t → ∞ . Therefore, for all i ∈ I, the consensus errors ˆ x i and ˆ w i are

ooperative UUB. Similar to the proof procedure of Theorem 1 , we can conclude that u i is
ontinuous and bounded. This completes the proof. �
emark 5. In some practical applications, the state consensus error can hardly converge

o zero exactly under the influences of uncertainties, modeling errors, process noise and
isturbances. If both of the position and velocity consensus errors converge to a small residual
et around the origin asymptotically, then fractional-order MASs (4) is said to achieve the
onsensus with small residual error, which is acceptable in most practical circumstances. It
ollows from Eq. (41) that the consensus error e is globally UUB and can be made smaller
y letting k 2 smaller, i.e., making a , b , N and η̄ smaller. 

emark 6. Different with the existing consensus algorithms in [14,15,20,21] for fractional-
rder MASs with double-integrator dynamics, the term associated with the relative velocity
easurements 

∑ 

j∈N i 
a i j (w i − w j ) is replaced with a filter output g i in this paper. For any

iven initial value z i (0), g i can be calculated by Eq. (12) only using the relative position
easurements, which resulting in a local output feedback based consensus algorithm. It is

hown in Theorem 2 that the proposed distributed algorithm with filter can guarantee the
lobal stability of the closed-loop system even if there exist bounded noise and disturbances.
n fact, we can get from Eq. (41) that both positive and velocity consensus errors are not
nly UUB but also bounded at any time. 

. Output feedback based tracking control 

In this section, we focus on the output consensus tracking problem for a fractional-order
AS consisting of N followers and one leader. Let the leader indexed by 0 and all followers
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indexed by 1 , . . . , N . The dynamics of each agent is governed by ⎧ ⎪ ⎨ ⎪ ⎩ 

D 

q x i = w i , 

D 

q w i = f (t, x i , w i ) + u i , 

y i = x i , i ∈ I ∪ { 0} , 
(42) 

where we consider a more general case that the leader’s input u 0 is possibly time-varying
and nonzero. Moreover, the leader’s input information without being effected by those of the
followers or unknown to any follower. 

The control objective of this section is to design a control algorithm for Eq. (42) only using
relative out measurements between neighbors such that both position and velocity tracking 

errors are globally UUB. Before addressing the consensus tracking problem, the following 

two assumptions on the leader’s input and network topology among the N + 1 agents are
needed. 

Assumption 4. There exists a constant ρ0 such that ‖ u 0 ‖ ≤ρ0 , namely u 0 is bounded. 

Assumption 5. Suppose that there exists a directed path from the leader to all other followers.

The output feedback based consensus tracking control algorithm for Eq. (42) is designed 

as ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

u i = −a 

[ 
N ∑ 

j=1 
a i j (y i − y j ) + d i (y i − y 0 ) 

] 
− bg i , 

g i = c 

[ 
N ∑ 

j=1 
a i j (y i − y j ) + d i (y i − y 0 ) 

] 
− z i , 

D 

q z i = cg i , 

(43) 

in which d i > 0 whenever the follower i is a neighbor of the leader, otherwise d i = 0, and the
rest of the variables are the same as in Eq. (12) . 

Let ˜ x i = x i − x 0 and ˜ w i = w i − w 0 represent the position and velocity tracking errors. After
some manipulation, we can derive that ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

D 

q ˜ x i = ˜ w i , 

D 

q ˜ w i = f (t, x i , w i ) − f 0 − u 0 − a 

N ∑ 

j=1 
h i j ̃  x j − bg i , 

D 

q g i = c 

( 

N ∑ 

j=1 
h i j ˜ w j − g i 

) 

, 

(44) 

where f 0 = f (t, x 0 , w 0 ) , H = [ h i j ] N×N = L + D and D = diag (d 1 , . . . , d N ) . As shown in [29] ,
H is a nonsingular M -matrix if and only if Assumption 5 holds. 

For brevity, let ˜ x , ˜ w , f and g be the column stack vectors of ˜ x i , ˜ w i , f (t, x i , w i ) and g i ,
respectively. Choose ϕ = g − H ˜ w , it follows from Eq. (44) that ⎧ ⎪ ⎨ ⎪ ⎩ 

D 

q ˜ x = ˜ w , 

D 

q ˜ w = − aH ̃  x − bH ˜ w + f − 1 N � ( f 0 + u 0 ) − bϕ, 

D 

q ϕ = − cϕ + aH 

2 ˜ x + bH 

2 ˜ w − H 

[
f − 1 N � ( f 0 + u 0 ) − bϕ 

]
. 

(45) 
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heorem 3. Under Assumptions 3 –5 , both position and velocity consensus tracking errors of
ractional-order MASs (42) using Eq. (43) are globally UUB if 

1 = a 

2 λ( ̂  H ) − ( 2aρ1 + aρ2 + bρ1 ) θ > 0, (46)

2 = b 

2 λ( ̂  H ) − ( a + 2bρ2 + aρ2 + bρ1 ) θ > 0, (47)

 > bσ (H ) + 

ζ 2 
3 

ζ1 
+ 

ζ 2 
4 

ζ2 
, (48)

here ̂ H = 

1 
2 (�H + H 

T �) , � defined as in Lemma 2 , θ = max i∈I { θi } , ζ3 = − ab θ
2 −

a 
2 σ (H 

2 ) − ρ1 σ (H ) and ζ4 = − b 2 θ
2 − b 

2 σ (H 

2 ) − ρ2 σ (H ) . Moreover, u i in Eq. (43) is bounded
nd continuous everywhere. 

roof. Assumption 5 holds implies that H is an M -matrix, this together with Lemma 2 ensure
hat there exists a positive definite diagonal matrix � = diag (θ1 , · · · , θN ) such that ̂ H =
1 
2 (�H + H 

T �) > 0, so λ( ̂  H ) > 0. 
Choose a Lyapunov function 

 (t ) = 

1 

2 ̃

 e T � ˜ e + 

1 

2 

ϕ 

T ϕ, (49)

here ˜ e = [ ̃  x T , ˜ w 

T ] T and � = 

⎡ ⎣ 2ab ̂  H a�

a� b�

⎤ ⎦ . Under Assumptions 3 and 4 , it thus follows from

q. (34) that 

 f − 1 N � ( f 0 + u 0 ) ‖ ≤
√ √ √ √ 

N ∑ 

i=1 

| f (t, x i , w i ) − f 0 − u 0 | 2 

≤
√ √ √ √ 

N ∑ 

i=1 

[ | f (t, x i , w i ) − f 0 | + | u 0 | ] 2 

≤
√ √ √ √ 

N ∑ 

i=1 

[ ρ1 | ̃  x i | + ρ2 | ̃  w i | + η + ρ0 ] 2 

≤ 2ρ1 ‖ ̂  x ‖ + 2ρ2 ‖ ̂  w ‖ + 

√ 

2N (η + ρ0 ) . (50)

he result is then established by following the similar steps as those in Theorem 2 . We thus
mit it here for brevity. This completes the proof. �

emark 7. Similar to the analysis procedure of Remark 4 , one can always choose three large
nough parameters a , b , c such that conditions (46) –(48) hold. Although some global informa-
ion ( λ( ̂  H ) , θ, σ ( H ) and σ ( H 

2 )) and the Lipschitz constants ( ρ1 and ρ2 ) are used to determine
he control parameters. In fact, the conditions for the parameters in Theorem 3 might be con-
ervative. When implementing the control algorithm in practice, the control parameters can
e tuned according to the performance of the whole system, which might actually be chosen
uch smaller than what are given in Theorem 3 . So the accurate global graph information
ight not be needed in practice. 
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Fig. 2. Directed communication topology in Example 1 . 
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Fig. 3. Trajectories of consensus errors ˆ x i and ˆ w i . 

 

  

 

 

Remark 8. Note that the consensus tracking error ˜ e in Theorem 3 depends on η and ρ0 , that
is decreasing η and/or ρ0 leads to a smaller error ˜ e . And specifically when η = ρ0 = 0, ẽ
will converge to zero asymptotically. 

Remark 9. For the case where q = 1 , the fractional-order MASs (42) reduces to the second-
order MASs. And hence the existing consensus problem of second-order MASs in [2,6] can 

be regarded as a special case of this paper. Therefore, the results presented in this paper are
extensions of the results studied in [2,6] to fractional-order MASs. What’s more, the proposed 
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Fig. 4. Trajectories of filter output g i and control input u i in Example 1 . 
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Fig. 5. Trajectories of consensus error ‖ e ‖ with different orders. 
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Fig. 6. Directed communication topology in Example 2 . 
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Fig. 7. Trajectories of tracking errors ˜ x i and ˜ w i . 

 

consensus algorithm of this paper exhibits several salient advantages, such as (1) structurally 

simple; (2) robustness; and (3) less demanding in its design. 

5. Simulation examples 

To illustrate the effectiveness of our proposed algorithms, we provide the following two 

simulation examples. 

Example 1 (Leaderless consensus problem) . Consider the leaderless consensus problem for a 
group of six agents modeled by fractional-order MASs (4) . The topology structure G among 

the six agents is shown in Fig. 2 , where each nonzero edge weight is assumed to be 1. The
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Fig. 8. Trajectories of filter output g i and control input u i in Example 2 . 
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onlinear function is given by f (t, x i , w i ) = −0. 1 i sin x i − 0. 5 w i . Choose q = 0. 95 , a = b =
 and c = 10. The initial states are chosen as x i (0) = 0. 02i and w i (0) = 0. 01 i, i = 1 , 2, . . . , 6 .
he evolutions of the position and velocity consensus errors ˆ x i , ˆ w i , the filter output g i and the
ontrol input u i are provided in Figs. 3 and 4 , respectively, which implying that the leaderless
onsensus problem is indeed solved and all control inputs are bounded and smooth. 

Next, we consider the consensus error convergence speed of fractional-order MASs (4) with
ifferent orders by using Eq. (12) . The trajectories of consensus error ‖ e ‖ for fractional-order
ASs (4) using Eq. (12) with different orders and all other parameters given above are plotted

n Fig. 5 . It can be seen from Fig. 5 that the smaller q is the faster the decaying speed of ‖ e ‖
ill be. So the consensus control of fractional-order MAS has better convergence performance

han the one of second-order MAS. 

xample 2 (Consensus tracking problem) . To illustrate the obtained theoretical results of
heorem 3 , numerical simulation on a group of six followers and one leader is conducted.
he directed communication topology among the seven agents is shown in Fig. 6 , where

he weights are indicated on edges. Let f 0 = x 0 − 0. 18 w 0 + 0. 3 cos t, u 0 = −x 3 0 and f i =
 i − 0. 1 iw i + 0. 04i sin t, i = 1 , 2, . . . , 6 . Then the dynamics of the leader is described by the
ollowing fractional-order chaotic Duffing system [20] : 
 

 

 

 

 

D 

q x 0 = w 0 , 

D 

q w 0 = x 0 − x 3 0 − 0. 18 w 0 + 0. 3 cos t, 

y 0 = x 0 , 

(51)
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and the dynamics of each follower is described as ⎧ ⎪ ⎨ ⎪ ⎩ 

D 

q x i = w i , 

D 

q w i = x i − 0. 1 iw i + 0. 04i sin t + u i , 

y i = x i , i = 1 , . . . , 6 . 

(52) 

As given in [20] , the Duffing system (51) exhibits chaotic behaviors when q = 0. 97 and
the initial conditions are chosen as [ x 0 (0) , w 0 (0)] T = [0. 21 , 0. 13] T . The initial states of the
other followers are set as x i (0) = i and w i (0) = 0. 4i, i = 1 , 2, . . . , 6 . The control parameters
are given as a = 25 , b = 46 and c = 65 . The trajectories of tracking errors ˜ x i , ˜ w i , the filter
output g i and the control input u i are provided in Figs. 7 and 8 , respectively, which meaning
that both position and velocity consensus tracking errors are UUB, and all control inputs are
bounded and smooth. Therefore, the correctness of Theorem 3 is verified by these simulation
results. 

6. Conclusions 

This paper focus on designing output feedback based consensus protocols for nonlinear 
fractional-order MASs with double-integrator dynamics under general directed topologies. The 
leaderless consensus problem and consensus tracking problem are addressed in Sections 3 and 

4 , respectively, by proposing a distributed algorithm only using relative positive measure- 
ments between neighbors. By using the fractional Lyapunov direct method, some sufficient 
conditions are derived to guarantee the global leaderless consensus can be achieved for any 

strongly connected directed topology. The results can also be extended to tracking problem 

with an unknown leader for any communication digraph that there exists a directed path from
the leader to each follower. Future work will be focused on designing fixed-time consensus 
algorithm in fractional-order nonlinear MASs with general directed (switching) topology via 
output feedback control. It is interesting to solve the problem of this paper via event-triggered
control. 
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