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a b s t r a c t

In this paper, we consider the structured perturbation analysis for multiple right-hand
side linear systems with parameterized coefficient matrix. Especially, we present the
explicit expressions for structured condition numbers for multiple right-hand sides
linear systems with {1;1}-quasiseparable coefficient matrix in the quasiseparable and
the Givens-vector representations. In addition, the comparisons of these two condition
numbers between themselves, and with respect to unstructured condition number are
investigated. Moreover, the effective structured condition number for multiple right-
hand sides linear systems with {1;1}-quasiseparable coefficient matrix is proposed. The
relationships between the effective structured condition number and structured condi-
tion numbers with respect to the quasiseparable and the Givens-vector representations
are also studied. Numerical experiments show that there are situations in which the
effective structured condition number can be much smaller than the unstructured ones.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The concepts of backward errors and condition numbers play an important role in numerical linear algebra [1]. For
example, to solve the linear system

Ax = b, (1.1)

the backward errors are used to measure the minimal magnitude perturbations on the data A and b such that the
computed solution is the exact solution to the perturbed linear system. On the other hand, condition numbers describe
the worst-case sensitivity of the solution x of (1.1) to all possible small perturbations on both data A and data b [2]; see
the recent comprehensive monograph [3] for more details. The forward error of the computed solution can be bounded
by the product of the backward error and condition number, which can tell us the loss of the procession of the numerical
algorithm for solving the problem.

Many papers and books had been devoted to the condition number theory for the linear system (1.1); see [1,4] and their
references therein. There are two types of condition numbers, called normwise and componentwise condition numbers;
see [1, Chap.7]. The normwise condition numbers measure the input and output error by means of norms, while the
componentwise condition numbers use componentwise perturbations to measure the error of the input data. We should
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point out that when the data is sparse and badly-scaled, it is more suitable to adopt the componentwise condition number
to define the conditioning of the problem, because the normwise condition numbers ignore the sparsity and scaling of
the data and may overestimate the exact conditioning of the problem. For structured linear systems, it is reasonable
to investigate structured perturbations on the input data, because structure-preserving algorithms that preserve the
underlying matrix structure can enhance the accuracy and efficiency of solving linear systems. The structured condition
numbers for structured linear systems can be found in [5–8].

In this paper, we focus on the linear system with multiple right-hand sides

AX = B, (1.2)

where A ∈ Rn×n is nonsingular and B ∈ Rn×m. The above equation is a generalization of linear system (1.1). The multiple
right-hand side linear system (1.2) is indeed a special case of the linear matrix equation–Sylvester equation

AX + XC = B (1.3)

by taking C = 0. Matrix equations including Sylvester equations and algebraic Riccati equations have many applications
in problems of control [9], discretization of PDE [10], block-diagonalization [4], and many others. For recent numerical
algorithm developments for solving Sylvester equations and algebraic Riccati equations, we refer to papers [11–13].
Especially, the multiple right-hand side linear system (1.2) arises naturally in many applications such as Quantum
Chromo Dynamics [14], dynamics of structures [15], quasi-Newton methods for solving nonlinear equations with multiple
secant equations [16], computing the lengths of nucleon–nucleon scattering [17], wave propagation phenomena [18]. For
perturbation analysis for (generalized) Sylvester equation, *-Sylvester equation and algebraic Riccati equation, we refer
to papers [19–23].

The low-rank structured matrix has been studied extensively in numerical linear algebra and has many applications;
see the recent books [24,25] and references therein. The large submatrices of the low-rank structured matrix have
ranks much smaller than the size of the matrix. Based on the above observation, the n-by-n low-rank structured
matrix can be represented by different sets of O(n) parameters, which is named as representations [26, Chap. 2].
This kind of representations can help us to develop fast algorithms, which directly operate on the parameters of the
representation, with the computational costs of O(n) for solving linear systems or O(n2) for solving eigenvalue problems.
Semiseparable matrices [27] are a special category of low-rank structured matrices, which appear in several types of
applications, e.g. the field of integral equations [28,29], boundary value problems [28,30–32], in the theory of Gauss-
Markov processes time-varying linear systems [33,34], acoustic and electromagnetic scattering theory [35] and rational
interpolation [36]. Furthermore, it was shown that in [37] semiseparable matrices have other equivalent representations
which are named as quasiseparable matrices. Faster solver for the low-rank structured Sylvester and Lyapunov equations
has been proposed in [38]. It was shown that for Sylvester equations (1.3), when A, B and C are quasiseparable, the
solution X is numerically quasiseparable. Therefore, it is interesting to consider the conditioning of the solution X with
respect to the representations of the low-rank structured coefficient matrices.

Recently, structured componentwise condition numbers for low-rank structured matrices have been introduced for
eigenvalue problems [39], linear systems [5], and generalized eigenvalue problems [40] with parameterized quasisepara-
ble matrices [37]. In this paper, we consider the structured componentwise condition numbers of the multiple right-hand
side linear system (1.2) when the coefficient matrix A is a quasiseparable matrix. Especially, we focus on the case that
A is a {1;1}-quasiseparable matrix. The class of {1;1}-quasiseparable matrices incorporates the class of semiseparable
matrices of semiseparability rank, tridiagonal matrices and unitary Hessenberg matrices etc.; see [28,29] for details. In
this paper, we mainly focus on two most important representations for {1;1}-quasiseparable coefficient matrix A. One
is the general quasiseparable representation [26], which is non unique, and another is the essentially unique Givens-
vector representation [37], which is introduced to improve the numerical stability of fast matrix computations involving
quasiseparable matrices. The explicit expression of structured componentwise condition numbers for the multiple right-
hand side linear system (1.2) with respect to these two representations is derived. We should point out that recent
works [41,42] have been done by exploiting the sparsity of the multiple right-hand sides to reduce the computational
cost of the direct solver for (1.2). The linear system (1.2) with sparse multiple right-hand sides arises in several real-
life applications, for example, 3D frequency-domain full waveform inversion and 3D controlled-source electromagnetic
inversion [43]. Therefore, it is suitable to consider condition numbers for the solution to (1.2) with respect to the
sparsity of B. In this paper, we propose the effective structured componentwise condition number for the solution of
(1.2), which can be used to measure the structured conditioning of (1.2) with respect to the structured perturbations on
the coefficient matrix and sparse multiple right-hand sides. Numerical examples show that there are bigger differences
between the structured effective condition number and the unstructured ones, which means that (1.2) is less sensitive to
the structured perturbations on A and B. The above observation can help us to understand why structure-preserving
algorithms are important in solving the multiple right-hand side linear system (1.2) in addition to reducing the
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computational complexity, since the forward error of the algorithm can be reduced significantly with respect to the
structured componentwise perturbations on the coefficient matrix A and sparse multiple right-hand sides B.

This paper is organized as follows. The basic results of {1;1}-quasiseparable matrices are reviewed in Section 2.
Different types of condition numbers for multiple right-hand sides linear systems with general parameterized coefficient
matrices are investigated in Section 3, which can be used to derive explicit expressions for the condition number of
multiple right-hand side linear systems with {1;1}-quasiseparable coefficient matrix with respect to the quasiseparable
representation [27] and the Givens-vector representation via tangent [5,37,39] in Section 4. We study relationships
between different structured and unstructured condition numbers for multiple right-hand side linear systems with
parameterized coefficient matrix in Section 5. Numerical experiments are implemented for random generated parameters
defining A and B in Section 6. Concluding remarks are drawn and future research topics are pointed out in Section 7.

Notations. In this paper, we adopt the following notations. For any two conformal matrices A and B of size n × n,
A ≤ B should be understood componentwise. The notation 0 ≤ A implies that A is nonnegative, and the similar notation
is adopted for vectors. B/A := (bi,j/ai,j) where ai,j is (i, j)th entry of A and if ai,j = 0 the corresponding (i, j)th entry of B/A
and B should be zero, A⊤ is the transpose matrix of A, |A| is obtained by taking absolute values operation on each entry
of A, vec(A) is a column vector formed by the columns of A one by one, A(:, i) and A(j, :) are ith column and jth row of
A respectively, A(i1 : i2, j1 : j2) is a submatrix of A ∈ Rn×n consisting of rows i1 up to and including i2 and columns j1 up
to and including j2 of A with 1 ≤ i1 ≤ i2 ≤ n and 1 ≤ j1 ≤ j2 ≤ n, diag(a) ∈ Rp×p is a diagonal matrix with the diagonal
entries being the corresponding entries of a ∈ Rp×1, ∥x∥∞ is the ∞-norm of a vector x, ∥A∥F is the Frobenius norm of A,
∥A∥max = maxi,j |ai,j|. The inequality 0 ̸= X means that 0 ̸= X(i, j) for all i, j.

2. Preliminaries

In this section, we will give a brief review about {1;1}-quasiseparable matrices, which are a particular class of
quasiseparable matrices. Especially, the general quasiseparable representation and Givens-vector representation for
{1;1}-quasiseparable matrices are introduced. Moreover, the explicit derivatives expressions of entries of the {1;1}-
quasiseparable matrix A with respect to its parameters in the general quasiseparable representation and Givens-vector
representation of A are reviewed, which will help us to derive the componentwise condition numbers for multiple
right-hand side linear systems with {1;1}-quasiseparable coefficient matrix A with respect to the parameters defining
A.

Quasiseparable matrices introduced firstly in [27] are particular cases of low-rank structured matrices. The {1;1}-
quasiseparable matrix is a special subclass of quasiseparable matrices, which satisfies that maxi rank(A(i+1 : n, 1 : i)) = 1
and maxi rank(A(1 : i, i + 1 : n)) = 1. Moreover, the maximum rank of the lower and the upper submatrix is equal to 1.
In this paper we adopt the representation of n-by-n {1;1}-quasiseparable matrices with O(n) parameters instead of its n2

entries; see more details in [5,39].

Definition 2.1. A matrix A ∈ Rn×n is a {1;1}-quasiseparable matrix if and only if it can be parameterized in terms of the
following set of 7n − 8 real parameters,

ΩQS =

(
{pi}

n
i=2, {ai}

n−1
i=2 , {qi}

n−1
i=1 , {di}

n
i=1, {gi}

n−1
i=1 , {bi}

n−1
i=2 , {hi}

n
i=2

)
, (2.1)

as follows,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 g1h2 g1b2h3 · · · g1b2 · · · bn−1hn

p2q1 d2 g2h3 · · · g2b3 · · · bn−1hn

p3a2q1 p3q2 d3 · · · g3b4 · · · bn−1hn

p4a3a2q1 p4a3q2 p4q3 · · · g4b5 · · · bn−1hn
...

...
...

. . .
...

pnan−1 · · · a2q1 pnan−1 · · · a3q2 pnan−1 · · · a4q3 · · · dn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In the following lemma, we will review the explicit derivative expressions of entries of the {1;1}-quasiseparable matrix
A with respect to the parameters ΩQS given in Definition 2.1.

Lemma 2.1 ([39, Theorem 4.4]). Let A ∈ Rn×n be a {1;1}-quasiseparable matrix and A = AL +AD +AU , with AL strictly lower
triangular, AD diagonal, and AU strictly upper triangular. Let ΩQS be a quasiseparable representation of A given in Definition 2.1.
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Then the entries of A are differentiable functions of the parameters in ΩQS and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)
∂A
∂di

= eie⊤

i , i = 1, 2, . . . , n,

(2) pi
∂A
∂pi

= eiAL(i, :), i = 2, . . . , n,

(3) ai
∂A
∂ai

=

[
0 0

A(i + 1 : n, 1 : i − 1) 0

]
, i = 2, . . . , n − 1,

(4) qi
∂A
∂qi

= AL(:, i)e⊤

i , i = 1, 2, . . . , n − 1,

(5) gi
∂A
∂gi

= eiAU (i, :), i = 1, 2, . . . , n − 1,

(6) bi
∂A
∂bi

=

[
0 A(1 : i − 1, i + 1 : n)
0 0

]
, i = 2, . . . , n − 1,

(7) hi
∂A
∂hi

= AU (:, i)e⊤

i , i = 2, . . . , n,

where ei is the ith column of the n-by-n identity matrix.

Another important representation for the {1;1}-quasiseparable matrices, which is named as Givens-vectors representa-
tion, was introduced in [5,37,39]. Givens-vectors representation can improve the numerical stability of fast computations
involving quasiseparable matrices. In the following definition we will recall this type of representation.

Definition 2.2. A matrix A ∈ Rn×n is a {1;1}-quasiseparable matrix, if and only if it can be parameterized in terms of
the following set of real parameters.

• {ci, si}, where (ci, si) is a pair of consine–sine with c2i + s2i = 1 for every i ∈ {2, 3, . . . , n − 1},

• {vi}n−1
i=1 , {di}

n
i=1, {wi}

n−1
i=1 , where all of them are independent real parameters,

• {ri, ti}n−1
i=2 , where (ri, ti) is a pair of cosine–sine with r2i + t2i = 1 for every i ∈ {2, 3, . . . , n − 1},

as follows:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 w1r2 · · · w1t2 · · · tn−2rn−1 w1t2 · · · tn−1

c2v1 d2 · · · w2t3 · · · tn−2rn−1 w2t3 · · · tn−1

c3s2v1 c3v2 · · · w3t4 · · · tn−2rn−1 w3t4 · · · tn−1
...

...
...

. . .
...

cn−1sn−2 · · · s2v1 cn−1sn−2 · · · s3v2 · · · dn−1 wn−1

sn−1sn−2 · · · s2v1 sn−1sn−2 · · · s3v2 · · · vn−1 dn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This representation is denoted by ΩGV
QS , i.e., Ω

GV
QS := ({ci, si}n−1

i=2 , {vi}n−1
i=1 , {di}

n
i=1, {wi}

n−1
i=1 ,

{ri, ti}n−1
i=2 ).

Because of the dependency of ci and si, which is also true for {ri, ti}, there are correlated parameters in the Givens-vector
representation. In this paper, we will focus on arbitrary componentwise perturbations of ΩGV

QS , which obviously destroy the
cosine–sine pairs, thus it is more reasonable to restrict perturbations that preserve such relationships of the cosine–sine
pairs. In [39], additional parameters of these pairs {ci, si} and {ri, ti} are introduced by using their corresponding tangents,
which are called as the Givens-vector representation via tangent for the {1;1}-quasiseparable matrix.

Definition 2.3. For any Givens-vector representation ΩGV
QS given in Definition 2.2 of {1;1}-quasiseparable matrix A ∈ Rn×n,

we define the Givens-vector representation via tangent as

ΩGV :=

(
{li}n−1

i=2 , {vi}n−1
i=1 , {di}

n
i=1, {wi}

n−1
i=1 , {ui}

n−1
i=2 ,

)
, (2.2)

where

ci =
1√

1 + l2i
, si =

li√
1 + l2i

, ri =
1√

1 + u2
i

, ti =
ui√

1 + u2
i

, for i = 2, 3, . . . , n − 1.

Lemma 2.2 gives explicit derivative expressions of entries of the {1;1}-quasiseparable matrix A with respect to the
tangent-Givens-vector representation, which appeared in [39].
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Lemma 2.2. Let A ∈ Rn×n be a {1;1}-quasiseparable matrix and let ΩQS be the tangent-Givens- vector representation of A,
where ΩGV =

(
{li}n−1

i=2 , {vi}n−1
i=1 , {di}

n−1
i=1 , {wi}

n−1
i=1 , {ui}

n−1
i=2

)
. Then the entries of A are differentiable functions of the parameters

in ΩGV and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1) li

∂A
∂li

=

⎡⎣ 0 0
−s2i A(i, 1 : i − 1) 0

c2i A(i + 1 : n, 1 : i − 1) 0

⎤⎦ , i = 2, 3, . . . , n − 1,

(2) ui
∂A
∂ui

=

[
0 −t2i A(1 : i − 1, i + 1 : n) r2i A(1 : i − 1, i + 1 : n)
0 0 0

]
, i = 2, 3, . . . , n − 1.

Remark 2.1. Recalling that {di}
n
i=1, {vi}

n−1
i=1 , {wi}

n−1
i=1 in the tangent-Givens-vector representation of A can be viewed as

{di}
n
i=1, {qi}

n−1
i=2 , {gi}n−1

i=1 in a quasiseparable representation of A, we have similar expressions of the partial derivatives with
respect to the parameters in {di}

n
i=1, {vi}

n−1
i=1 , {wi}

n−1
i=1 as (1), (4) and (5) in Lemma 2.1.

3. Condition numbers for multiple right-hand side linear systems with general parameterized coefficient matrix

In this section, we will first review unstructured componentwise condition number for (1.2). A general parameterized
representation for A and B in (1.2) is introduced in Definition 3.2, where we assume that there are some common
parameters defining A and B simultaneously. In Theorem 3.1, we will introduce the structured componentwise condition
number with respect to parameters introduced in Definition 3.2. We apply the result of Theorem 3.1 to the case that B is
a general dense matrix in Theorem 3.2, i.e., the parameter representation of B is just its entries. The multiple right hand
sides B is usually sparse in some practical applications, for example, 3D frequency-domain full waveform inversion and 3D
controlled-source electromagnetic inversion [43]. Therefore, when B is sparse, we derive the structured componentwise
condition number of the solution to (1.2) with respect to the sparse pattern of B and parameterized representation of A
in Theorem 3.3. When A is a general unstructured matrix and B is sparse, the componentwise condition number of (1.2)
with respect to the parameter representation of B and entries of A is given in Corollary 3.1.

In Definition 3.1 we first review the componentwise condition number KE,F (A,B) for (1.2), which was introduced
in [44, Definition 2.2]. Furthermore, the explicit expression of KE,F (A,B) appeared in [44, Theorem 2.3].

Definition 3.1 ([44]). Let AX = B, where A ∈ Rn×n is nonsingular, B ∈ Rn×m and 0 ̸= X ∈ Rn×m. Then, for 0 ≤ E ∈ Rn×n

and 0 ≤ F ∈ Rn×m, we define the componentwise condition number as

KE,F (A,B) := lim
η→0

sup

{
∥δX∥max

η∥X∥max
: (A + δA)(X + δX) = B + δB,

|δA| ≤ η E, |δB| ≤ η F

}

=

 ⏐⏐A−1
⏐⏐ E |X | +

⏐⏐A−1
⏐⏐ F

max

∥X∥max
. (3.1)

The weight matrices E and F are flexible, for example if we take F = 0 there are no perturbations on the multiple
right-hand sides. A natural choice of E and F is |A| and |B|, respectively. Furthermore, if E = |A| and F = |B|, from (3.1)
we have

K|A|,|B|(A,B) =

 ⏐⏐A−1
⏐⏐ |A| |X | +

⏐⏐A−1
⏐⏐ |B|


max

∥X∥max
. (3.2)

Remark 3.1. For the case B = b (i.e., m = 1) is a vector, (3.1) degenerates into the relative componentwise condition
number for the linear system Ax = b defined by:

KE,y(A, b) := lim
η→0

sup

{
∥δx∥∞

η∥x∥∞

: (A + δA)(x + δx) = b + δb, |δA| ≤ ηE, |δb| ≤ η y

}
,

=

|A−1
|E|x| + |A−1

|y


∞

∥x∥∞

.

See [1, Chap.7] for more details. Here y ≥ 0.

Because many interesting classes of matrices can be represented by sets of parameters instead of their entries, it
is interesting to consider the componentwise perturbations for these parameters, which lead to the following compo-
nentwise condition number (3.3) for (1.2), where both the coefficient matrix A and multiple right-hand sides B have
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parametric representations. In Definition 3.2, we consider a general situation that A and B have common parameters
defining themselves simultaneously.

Definition 3.2. Let AX = B, where A ∈ Rn×n is an invertible matrix whose entries are differentiable functions of a
real parameter vector ΩA = [ω1, ω2, . . . ,ωp, ωp+1, . . . ,ωN ]

⊤
∈ RN , B ∈ Rn×m whose entries are differentiable functions

of a real parameter vector ΩB = [ω1, ω2, . . . ,ωp, ω
B
p+1, . . . ,ω

B
M ]

⊤
∈ RM , and 0 ̸= X ∈ Rn×m. Let the weight vectors

corresponding to the parameterized representations ΩB and ΩA be given by 0 ≤ f = [e1, e2, . . ., ep, fp+1, . . . , fM ]
⊤

∈ RM

and 0 ≤ E = [e1, e2, . . . , ep, ep+1, . . . , eN ]
⊤

∈ RN , respectively. Then, we define

KE,f (A(ΩA),B(ΩB)) := lim
η→0

sup

{
1
η

∥δX∥max

∥X∥max
: A(ΩA+δΩA)(X + δX) = B(ΩB + δΩB),

|δΩA| ≤ ηE, |δΩB| ≤ ηf

}
. (3.3)

In order to find an explicit formula for KE,f (A(ΩA),B(ΩB)), we need Lemma 3.1, which states the explicit derivative
expressions of A−1 and X with respect to the parameter vectors ΩA and ΩB. Since the proof of the following lemma is
trivial and we omit it here.

Lemma 3.1. Let AX = B, where A ∈ Rn×n is an invertible matrix whose entries are differentiable functions of a vector of real
parameters

ΩA = [ω1, ω2, . . . ,ωp, ωp+1, . . . ,ωN ]
⊤

∈ RN ,

B ∈ Rn×m whose entries are differentiable function of a vector of parameters

ΩB = [ω1, ω2, . . . ,ωp, ω
B
p+1, . . . ,ω

B
M ]

⊤
∈ RM ,

and 0 ̸= X ∈ Rn×m. Then, the following equalities hold:

(1)
∂A−1

∂ωk
= −A−1 ∂A

∂ωk
A−1, k = 1, . . . , p,

(2)
∂X
∂ωB

k
= A−1 ∂B

∂ωB
k
, k = p + 1, . . . ,M,

(3)
∂X
∂ωk

= −A−1 ∂A
∂ωk

X, k = p + 1, . . . ,N,

(4)
∂X
∂ωk

= −A−1 ∂A
∂ωk

X + A−1 ∂B
∂ωk

, k = 1, . . . , p.

In the next theorem, we give the explicit expressions of the componentwise relative condition number KE,f (A(ΩA),
B(ΩB)) introduced in Definition 3.2.

Theorem 3.1. Let AX = B, where A ∈ Rn×n is an invertible matrix whose entries are differentiable functions of real parameter
vector ΩA = [ω1, . . . ,ωp, ωp+1, . . . ,ωN ]

⊤
∈ RN , B ∈ Rn×m whose entries are differentiable functions of real parameter vector

ΩB = [ω1, ω2, . . . ,ωp, ω
B
p+1, . . . ,ω

B
M ]

⊤
∈ RM , and 0 ̸= X ∈ Rn×m. Let 0 ≤ f = [e1, e2, . . ., ep, fp+1, . . . , fM ]

⊤
∈ RM and

E = [e1, e2, . . . , ep, ep+1, . . . , eN ]
⊤

∈ RN with nonnegative entries. Then the explicit expression for KE,f (A(ΩA),B(ΩB)) is
given by

KE,f (A(ΩA),B(ΩB)) = c/∥X∥max, (3.4)

where

c =


p∑

k=1

⏐⏐⏐⏐A−1 ∂A
∂ωk

X − A−1 ∂B
∂ωk

⏐⏐⏐⏐ ek +

N∑
k=p+1

⏐⏐⏐⏐A−1 ∂A
∂ωk

X
⏐⏐⏐⏐ ek +

M∑
k=p+1

⏐⏐⏐⏐A−1 ∂B
∂ωB

k

⏐⏐⏐⏐ fk

max

.

Proof. Because A and B are differentiable functions of the parameter vectors ΩA and ΩB, from X = A−1B, it is easy to
see that X is also a differentiable function of ΩA and ΩB, we can use differential calculus to obtain the following result:

δX =

p∑
k=1

∂X
∂ωk

δωk +

N∑
k=p+1

∂X
∂ωk

δωk +

M∑
k=p+1

∂X
∂ωB

k
δωB

k + O(∥(δΩA, δΩB)∥2).
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From Lemma 3.1, it yields that

δX =

p∑
k=1

(
−A−1 ∂A

∂ωk
X + A−1 ∂B

∂ωk

)
δωk +

N∑
k=p+1

(
−A−1 ∂A

∂ωk
X
)

δωk

+

M∑
k=p+1

(
A−1 ∂B

∂ωB
k

)
δωB

k + O(∥(δΩA, δΩB)∥2).

Thus, by taking vec operation, we obtain that

vec(δX) =

p∑
k=1

vec

(
−A−1 ∂A

∂ωk
X + A−1 ∂B

∂ωk

)
δωk +

N∑
k=p+1

vec

(
−A−1 ∂A

∂ωk
X
)

δωk

+

M∑
k=p+1

vec

(
A−1 ∂B

∂ωB
k

)
δωB

k + O(∥(δΩA, δΩB)∥2)

= Cdiag(a)
δa
a

+ O(∥(δΩA, δΩB)∥2), (3.5)

where C ∈ R(mn)×(N+M−p), a ∈ RN+M−1 and δa ∈ RN+M−1 are given by

C (:, 1 : p) =

[
vec

(
−A−1 ∂A

∂ω1
X + A−1 ∂B

∂ω1

)
, . . . , vec

(
−A−1 ∂A

∂ωp
X + A−1 ∂B

∂ωp

)]
,

C (:, (p + 1) : N) =

[
vec

(
−A−1 ∂A

∂ωp+1
X
)

, . . . , vec

(
−A−1 ∂A

∂ωN
X
)]

,

C (:, (N + 1) : (N + M − p)) =

[
vec

(
A−1 ∂B

∂ωB
p+1

)
, . . . , vec

(
A−1 ∂B

∂ωB
M

)]
,

δa = [δΩ⊤

A , δωB
p+1, . . . , δω

B
M ]

⊤, a = [E⊤, fp+1, . . . , fM ]
⊤.

In the last equality, we use the fact that if ai = 0 holds, then δai must be zero. Moreover, the inequalities |δΩA| ≤ η E
and |δΩB| ≤ ηf implyδa

a


∞

≤ η.

From (3.5) and the property of infinity norm, we deduce that

∥δX∥max = ∥vec(δX)∥∞ ≤ η ∥Cdiag(a)∥∞ + O(∥(δΩ, δB)∥2),

= η

|C | |diag(a)| 1


∞

+ O(
(δΩ, δB

)2),
= η


p∑

k=1

⏐⏐⏐⏐A−1 ∂A
∂ωk

X − A−1 ∂B
∂ωk

⏐⏐⏐⏐ ek +

N∑
k=p+1

⏐⏐⏐⏐A−1 ∂A
∂ωk

X
⏐⏐⏐⏐ωk,

+

M∑
k=p+1

⏐⏐⏐⏐A−1 ∂B
∂ωB

k

⏐⏐⏐⏐ fk

max

+ O(∥(δΩA, δΩB)∥2),

where 1 is a vector with all components being one. Let η tend to zero, from Definition 3.2, then we finish the proof of
this theorem. □

When the entries of multiple right-hand sides B are independent of the parameter vector ΩA of the coefficient matrix
A, we consider the case that B is a function of its entries bi,j. Suppose that |δB| ≤ η F in Definition 3.2. It is easy to see
that

∂B
∂bi,j

= ei,(n)e⊤

j,(m), i = 1, . . . , n, j = 1, . . . ,m, (3.6)

where ei,(n) ∈ Rn is the ith column of the n-by-n identity matrix In. Since there are no common parameters of ΩA and B,
we have p = 0 in the expression of KE,F (A(ΩA),B) given by Theorem 3.1. Substituting (3.6) into (3.4) and noting

n∑
i=1

m∑
j=1

⏐⏐A−1ei,(n)e⊤

j,(m)

⏐⏐ |fi,j| =
⏐⏐A−1

⏐⏐ |F |,

we have the following theorem.
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Theorem 3.2. Let AX = B, where A ∈ Rn×n is an invertible matrix whose entries are differentiable functions of a vector of
real parameters ΩA = [ω1, ω2, . . . ,ωp, ωp+1, . . . ,ωN ]

⊤
∈ RN , B ∈ Rn×m whose parameter vector is the set of its all entries,

and 0 ̸= X ∈ Rn×m. Let 0 ≤ E = [e1, e2, . . . , ep, ep+1, . . . , eN ]
⊤

∈ RN and 0 ≤ F ∈ Rn×m. In addition, we assume that
ΩA ∩ B = ∅. For KE,F (A(ΩA),B) defined in Definition 3.2, we have its explicit expression as follows

KE,F (A(ΩA),B) =

|A−1
|F +

∑N
k=1

⏐⏐A−1 ∂A
∂ωk

X
⏐⏐ek

max

∥X∥max
.

In the following, we will show the explicit expression of KE,F (A,B) in (3.1) can be deduced from Theorem 3.2 by
considering ΩA as the set of entries of A. Since

KE,F (A,B) =

⏐⏐A−1
⏐⏐F +

∑n
i=1
∑m

j=1

⏐⏐⏐A−1 ∂A
∂ai,j

X
⏐⏐⏐ ei,j

max

∥X∥max
,

and using the fact that ∂A
∂ ai,j

= eie⊤

j , we have

n∑
i=1

n∑
j=1

⏐⏐A−1 ∂A
∂ai,j

X
⏐⏐ei,j =

n∑
i=1

n∑
j=1

⏐⏐⏐A−1eie⊤

j X
⏐⏐⏐ei,j =

n∑
i=1

n∑
j=1

⏐⏐⏐A−1(:, i)X(j, :)
⏐⏐⏐ei,j,

=

n∑
j=1

⏐⏐⏐⏐⏐
n∑

i=1

A−1(:, i)ei,j

⏐⏐⏐⏐⏐ ⏐⏐X(j, :)
⏐⏐ = |A−1

|E|X |,

which gives the expression of KE,F (A,B) in (3.1).
As shown in [41–43], the sparsity of right-hand sides has practical background and enhances the efficiency of the direct

solver for (1.2). Therefore, we introduce the sparse representation of B in (3.7), where we assume that the non-zero entries
of B are independent of the parameters ΩA defining A. Denote

B =

M∑
k=1

ωB
kSk, (3.7)

where Sk ∈ Rn×m are matrices of constants, typically 0s and 1s, which describe the sparse pattern of B and ΩB = {ωB
k }

M
k=1

are independent parameters. In the remainder of this paper, we always assume that the parameters ΩB = {ωB
k }

M
k=1 are

independent of the parameter vector ΩA defining the matrix A. Thus from Lemma 3.1 and (3.7), we deduce that

∂B
∂ωB

k
= Sk.

Noting the above equation, the following theorem holds from Theorem 3.1.

Theorem 3.3. Let AX = B. Assume that B has the sparse representation (3.7) and A ∈ Rn×n is an invertible matrix whose
entries are differentiable functions of real parameter vector ΩA = [ω1, ω2, . . . ,ωp, ωp+1, . . . ,ωN ]

⊤
∈ RN , B ∈ Rn×m whose

entries are differentiable functions of ΩB = {ωB
k }

M
k=1. Suppose that 0 ̸= X ∈ Rn×m. Let 0 ≤ E = [e1, e2, . . . , eN ]

⊤
∈ RN and

0 ≤ f ∈ RM , and assume that ΩA ∩ ΩB = ∅ and E ∩ f = ∅. For KE,f (A(ΩA),B(ΩB)) defined in Definition 3.2, we have its
explicit expression as follows

KE,f (A(ΩA),B(ΩB)) =

∑N
k=1

⏐⏐⏐A−1 ∂A
∂ωk

X
⏐⏐⏐ ek +

∑M
k=1

⏐⏐A−1Sk
⏐⏐ fk

max

∥X∥max
.

Remark 3.2. If B is sparse, its sparse patten is preserved during numerical computations since only non-zero entries and
its positions are stored in computer. Thus it is reasonable to measure the conditioning of the linear system with multiple
right-hand sides (1.2) under componentwise perturbation analysis. If B is not sparse and hence is general unstructured,
i.e., the parameter representation of B is just the set of all entries of B, we can take Sij = ei,(n)e⊤

j,(m), thus Theorem 3.3
reduces to Theorem 3.2.

In the next corollary, we will consider componentwise condition numbers of (1.2) for the case that A is a general
unstructured matrix and B is sparse. In this situation, the perturbation on A is assumed to be arbitrary while the
perturbation on B should preserve the sparse pattern of B.
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Definition 3.3. Let AX = B, where A ∈ Rn×n is a nonsingular matrix whose parameter representation vector ΩA is the
set of all entries of A, B ∈ Rn×m whose entries are differentiable function of a vector of parameters ΩB = [ωB

1, . . . ,ω
B
M ]

⊤

∈ RM such that B can be expressed as (3.7), and 0 ̸= X ∈ Rn×m. Let 0 ≤ f = [f1, . . . , fM ]
⊤

∈ RM and E ∈ Rn×n with
nonnegative entries. Then, we define

KE,f (A,B(ΩB)) := lim
η→0

sup

{
1
η

∥δX∥max

∥X∥max
: (A+δA)(X + δX) = B(ΩB + δΩB),

|δA| ≤ η E, |δΩB| ≤ ηf

}
.

Corollary 3.1. Let AX = B, where A ∈ Rn×n is an invertible matrix and B ∈ Rn×m is a sparse matrix which has the sparse
representation (3.7), and 0 ̸= X ∈ Rn×m. Let 0 ≤ f = [f1, . . . , fM ]

⊤
∈ RM and E ∈ Rn×n with nonnegative entries. For

KE,f (A,B(ΩB)) defined in Definition 3.3, we have its explicit expression as follows:

KE,f (A,B(ΩB)) =

 ⏐⏐A−1
⏐⏐ E |X | +

∑M
k=1

⏐⏐A−1Sk
⏐⏐ fk

max

∥X∥max
.

Furthermore, if E = |A| and f = |ΩB| is given in (3.7), we have

K|A|,|ΩB|(A,B(ΩB)) =

 ⏐⏐A−1
⏐⏐ |A| |X | +

∑M
k=1

⏐⏐A−1Sk
⏐⏐ |ωB

k |


max

∥X∥max
. (3.8)

In the following section, we will apply Theorem 3.3 to the case that the coefficient matrix A in (1.2) belongs to
{1;1}-quasiseparable matrices and multiple right-hand sides B is sparse.

4. Condition number for multiple right-hand side linear systems with {1;1} -quasiseparable coefficient matrices

In this section, when the matrix B of the multiple right-hand side linear system (1.2) has the sparse representation
(3.7) and A is a {1;1}-quasiseparable matrix, we will focus on deriving explicit expressions for the condition number
of the multiple right-hand side linear system with respect to the quasiseparable representation and the Givens-vector
representation via tangent.

4.1. The general quasiseparable representation

In this subsection, we will consider the componentwise condition number for the solution of multiple right-hand side
linear system (1.2), where B has the sparse representation (3.7), and A has the quasiseparable representation ΩQS given
in Definition 2.1. Since the norm of the vector ΩQS of parameters does not determine the norm of the matrix A, it is more
natural to consider componentwise perturbations of ΩQS . We will apply Theorem 3.3 to derive the explicit expressions
for the componentwise condition number of the solution of the multiple right-hand side linear system (1.2) with respect
to the general quasiseparable representation ΩQS given in Definition 2.1.

Recall that when A has a general quasiseparable representation (2.1) and B ∈ Rn×m has the sparse representation (3.7),
in view of Definition 3.2, we introduce the weight vector

EQS =

(
{epi}

n
i=2, {eai}

n−1
i=2 , {eqi}

n−1
i=1 , {egi}

n−1
i=1 , {ebi}

n−1
i=2 , {ehi}

n
i=2, {edi}

n
i=1

)
(4.1)

with respect to the general quasiseparable representation (2.1) of A. Therefore, using Definition 3.2, we introduce the
structure componentwise condition number for (1.2) with respect to the general quasiseparable representation (2.1) of A
and the sparse representation (3.7) of B in Theorem 4.1.

Theorem 4.1. Let AX = B, where 0 ̸= X ∈ Rn×m, A ∈ Rn×n is a nonsingular {1;1}-quasiseparable matrix with a quasiseparable
representation ΩQS (2.1), B ∈ Rn×m has the sparse representation (3.7), and A = AL+AD+AU , with AL strictly lower triangular,
AD diagonal, and AU strictly upper triangular. Let the weight vectors 0 ≤ f ∈ RM and 0 ≤ EQS ∈ R7n−8, where EQS is given by
(4.1). Suppose ΩQS ∩ ΩB = ∅. Then

KEQS ,f (A(ΩQS),B(ΩB)) =
1

∥X∥max


M∑

k=1

⏐⏐A−1Sk
⏐⏐ fk + |A−1

∥Dd∥X | + |A−1
∥Dp∥ALX |

+ |A−1AL∥Dq∥X | + |A−1AU∥Dg∥AUX | + |A−1AU∥Dh∥X |
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+

n−1∑
i=2

⏐⏐⏐⏐A−1
[

0 0
A(i + 1 : n, 1 : i − 1) 0

]
X
⏐⏐⏐⏐ ⏐⏐⏐⏐eaiai

⏐⏐⏐⏐
+

n−1∑
i=2

⏐⏐⏐⏐A−1
[
0 A(1 : i − 1, i + 1 : n)
0 0

]
X
⏐⏐⏐⏐ ⏐⏐⏐⏐ebibi

⏐⏐⏐⏐

max

,

where

ΩQS =

(
{pi}

n
i=2, {ai}

n−1
i=2 , {qi}

n−1
i=1 , {gi}n−1

i=1 , {bi}
n−1
i=2 , {hi}

n
i=2, {di}

n
i=1

)
,

Dd = diag
(
ed1 , . . . , edn

)
,Dp = diag

(
1,

ep2
p2

, . . . ,
edn
pn

)
,

Dq = diag
(eq1
q1

, . . . ,
eqn−1

qn−1
, 1
)
,Dg = diag

(eg1
g1

, . . . ,
egn−1

gn−1
, 1
)
,

Dh = diag
(
1,

eh2
h2

, . . . ,
ehn
hn

)
. (4.2)

Proof. The proof is proceeded by calculating the contribution of each subset of parameters to the expression for
KEQS ,f (A(ΩQS),B(ΩB)) given in Theorem 3.3 step by step. For the parameters {di}

n
i=1, from (1) in Lemma 2.1 together

with Theorem 3.3, using the fact⏐⏐a · b⊤
⏐⏐ =

⏐⏐a⏐⏐ · ⏐⏐b⊤
⏐⏐ , (4.3)

where a and b are two column vectors, we derive that

κd :=

n∑
i=1

⏐⏐⏐A−1 ∂A
∂di

X
⏐⏐⏐|edi | =

n∑
i=1

⏐⏐⏐A−1eie⊤

i X
⏐⏐⏐|edi | =

n∑
i=1

⏐⏐A−1ei
⏐⏐⏐⏐e⊤

i X
⏐⏐|edi | = |A−1

∥Dd∥X |.

As for the parameters {pi}
n
i=2, from (2) in Lemma 2.1 and using (4.3) again, it can be deduced that

κp : =

n∑
i=1

⏐⏐⏐A−1 ∂A
∂pi

X
⏐⏐⏐⏐⏐epi ⏐⏐ =

n∑
i=1

⏐⏐⏐⏐A−1pi
∂A
∂pi

X
⏐⏐⏐⏐ ⏐⏐⏐⏐epipi

⏐⏐⏐⏐
=

n∑
i=1

⏐⏐A−1eiAL(i, :)X
⏐⏐ ⏐⏐⏐⏐epipi

⏐⏐⏐⏐ =

n∑
i=1

⏐⏐A−1ei∂AL(i, :)X
⏐⏐ ⏐⏐⏐⏐epipi

⏐⏐⏐⏐
=

n∑
i=1

⏐⏐A−1(:, i)∂ALX(i, :)
⏐⏐ ⏐⏐⏐⏐epipi

⏐⏐⏐⏐ = |A−1
∥Dp∥ALX |.

Now we want to computer the term related to {ai}
n−1
i=2 in the condition number expression. From (3) in Lemma 2.1, we

have

κa : =

n−1∑
i=2

⏐⏐⏐⏐A−1 ∂A
∂ai

X
⏐⏐⏐⏐ |eai | =

n−1∑
i=2

⏐⏐⏐⏐A−1ai
∂A
∂ai

X
⏐⏐⏐⏐ ⏐⏐⏐⏐eaiai

⏐⏐⏐⏐
=

n−1∑
i=2

⏐⏐⏐⏐A−1
[

0 0
A(i + 1 : n, 1 : i − 1) 0

]
X
⏐⏐⏐⏐ ⏐⏐⏐⏐eaiai

⏐⏐⏐⏐.
Again for {qj}

n−1
j=1 , from (4) in Lemma 2.1 and (4.3), we have

κq : =

n−1∑
j=1

⏐⏐⏐A−1 ∂A
∂qj

X
⏐⏐⏐|eqj | =

n−1∑
j=1

⏐⏐⏐A−1AL(:, j)e⊤

j X
⏐⏐⏐ ⏐⏐⏐⏐eqjqj

⏐⏐⏐⏐
=

n−1∑
j=1

⏐⏐⏐A−1AL(:, j)∂X(j, :)
⏐⏐⏐|eqj | = |A−1AL∥Dq∥X |.
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Similarly for the contributing terms in KEQS ,f (A(ΩQS),X) with respect to parameters {gi}n−1
i=1 , {bi}

n−1
i=2 , and {hi}

n
i=2, based on

the above technique, we can derive that

κg :=

n−1∑
i=1

⏐⏐⏐A−1 ∂A
∂gi

X
⏐⏐⏐⏐⏐⏐egi

gi

⏐⏐⏐ = |A−1
∥Dg∥AUX |,

κh :=

n∑
i=2

⏐⏐⏐A−1 ∂A
∂hi

X
⏐⏐⏐|ehi | = |A−1AU∥Dh∥X |,

κb :=

n−1∑
i=2

⏐⏐⏐⏐A−1 ∂A
bi

X
⏐⏐⏐⏐ =

n−1∑
i=2

⏐⏐⏐⏐A−1
[
0 A(1 : i − 1, i + 1 : n)
0 0

]
X
⏐⏐⏐⏐ ⏐⏐⏐⏐ebibi

⏐⏐⏐⏐ .
According to Theorem 3.3 we have that

KEQS ,f (A(ΩQS),B(ΩB)) =
1

∥X∥max


M∑

k=1

⏐⏐A−1Sk
⏐⏐ fk + κd + κp + κq + κa + κh + κg + κb


max

,

which completes the proof of this theorem. □

Remark 4.1. If the multiple right-hand sides B is not sparse but general unstructured, from Theorem 3.2, the explicit
expression for KEQS ,F (A(ΩQS),B) of (1.2), where A is a {1;1}-quasiseparable nonsingular matrix with a quasiseparable
representation ΩQS and B is a general dense matrix, can be characterized by

KEQS ,F (A(ΩQS),B) := lim
η→0

sup

{
1
η

∥δX∥max

∥X∥max
: A(ΩQS + δΩQS)(X + δX) = B + δB,

|δΩQS | ≤ η EQS, |δB| ≤ ηF

}

=
1

∥X∥max

|A−1
|F + |A−1

∥Dd∥X | + |A−1
∥Dp∥ALX |

+ |A−1AL∥Dq∥X | + |A−1AU∥Dg∥AUX | + |A−1AU∥Dh∥X |

+

n−1∑
i=2

⏐⏐⏐⏐A−1
[

0 0
A(i + 1 : n, 1 : i − 1) 0

]
X
⏐⏐⏐⏐ ⏐⏐⏐⏐eaiai

⏐⏐⏐⏐
+

n−1∑
i=1

⏐⏐⏐⏐A−1
[
0 A(1 : i − 1, i + 1 : n)
0 0

]
X
⏐⏐⏐⏐ ⏐⏐⏐⏐ebibi

⏐⏐⏐⏐

max

. (4.4)

For the linear system Ax = b with a {1;1}-quasiseparable coefficient matrix A(ΩQS) in the general quasiseparable
representation ΩQS , Dopico and Pomés [5] introduced the componentwise condition number of x with respect to the
general quasiseparable representation ΩQS and the corresponding explicit formula [5, Theorem 4.5] is given below

condEQS ,y(A(ΩQS), b) := lim
η→0

sup

{
1
η

∥δx∥∞

∥x∥∞

: A(ΩQS + δΩQS)(x + δx) = b + δb,

|δΩQS | ≤ η EQS, |δb| ≤ ηy

}

=
1

∥x∥∞

|A−1
|y + |A−1

∥Dd∥x| + |A−1
∥Dp∥ALx|

+ |A−1AL∥Dq∥x| + |A−1AU∥Dg∥AUx| + |A−1AU∥Dh∥x|

+

n−1∑
i=2

⏐⏐⏐⏐A−1
[

0 0
A(i + 1 : n, 1 : i − 1) 0

]
x
⏐⏐⏐⏐ ⏐⏐⏐eaiai

⏐⏐⏐
+

n−1∑
i=1

⏐⏐⏐⏐A−1
[
0 A(1 : i − 1, i + 1 : n)
0 0

]
x
⏐⏐⏐⏐ ⏐⏐⏐ebibi

⏐⏐⏐
∞

, (4.5)
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where ΩQS, EQS, Dd, Dq, Dg and Dh are defined in (4.2). When the column dimension of the multiple right-hand side
linear system (1.2) is 1, (1.2) degenerates to the linear system Ax = b. Thus it is easy to see that KEQS ,F (A(ΩQS),B) given
in (4.4) reduces to condEQS ,y(A(ΩQS), b) given by (4.5) when F = y.

In Theorem 4.1, it is natural to take the choice of EQS (4.1) as EQS = |ΩQS |, where ΩQS is given by (2.1) and is
the general quasiseparable representation introduced in Definition 2.1 of A. Under this situation, noting Dd = |AD|,
Dp = Dq = Dg = Dh = I , and

⏐⏐ eai
ai

⏐⏐ =
⏐⏐ ebi
bi

⏐⏐ = 1, we have

Corollary 4.1. Let AX = B, where 0 ̸= X ∈ Rn×m, B ∈ Rn×m has the sparse representation (3.7), and A ∈ Rn×n is a
{1;1}-quasiseparable nonsingular matrix with a quasiseparable representation ΩQS (2.1) such that A = AL +AD +AU , with AL
strictly lower triangular, AD diagonal, AU strictly upper triangular. Then

K|ΩQS |,|ΩB|(A(ΩQS),B(ΩB)) =
1

∥X∥max

 M∑
k=1

⏐⏐A−1Sk
⏐⏐ |wB

k | + |A−1
| |AD| |X ||A−1AL | |X |

+ |A−1
| |ALX | + |A−1

| |AUX | + |A−1AU | |X |

+

n−1∑
i=2

⏐⏐⏐A−1
[

0 0
A(i + 1 : n, 1 : i − 1) 0

]
X
⏐⏐⏐

+

n−1∑
i=2

⏐⏐⏐⏐A−1
[
0 A(1 : i − 1, i + 1 : n)
0 0

]
X
⏐⏐⏐⏐ 

max
,

where {ωB
k }

M
k=1 is the parameterized vector of the sparse representation (3.7) for B.

Remark 4.2. When B is not sparse and just a general unstructured matrix, from (4.4) and Corollary 4.1, it yields

K|ΩQS |,|B|(A(ΩQS),B) =
1

∥X∥max

 ⏐⏐A−1
⏐⏐ |B| + |A−1

| |AD| |X ||A−1AL | |X |

+ |A−1
| |ALX | + |A−1

| |AUX | + |A−1AU | |X |

+

n−1∑
i=2

⏐⏐⏐A−1
[

0 0
A(i + 1 : n, 1 : i − 1) 0

]
X
⏐⏐⏐

+

n−1∑
i=2

⏐⏐⏐⏐A−1
[
0 A(1 : i − 1, i + 1 : n)
0 0

]
X
⏐⏐⏐⏐ 

max
.

(4.6)

From Corollary 4.1, we can claim that K|ΩQS |,|ΩB|(A(ΩQS),B(ΩB)) only depends on the entries of A, X , Sk and |ΩB|.

Proposition 4.1. Let AX = B, where 0 ̸= X ∈ Rn×m, A ∈ Rn×m is a {1;1}-quasiseparable nonsingular matrix, and B ∈ Rn×m

is given by (3.7). Then, for any two vectors ΩQS and Ω ′

QS of quasiseparable parameters of A, we have

K|ΩQS |,|ΩB|(A(ΩQS),B(ΩB)) = K|Ω ′
QS |,|ΩB|(A(Ω ′

QS),B(ΩB)).

4.2. The givens vector representation via tangents

The Givens-vector representation, introduced first in [37], is another important representation for quasiseparable ma-
trices. Later, its minor variant called tangent-Givens-vector representation (2.2) was presented in [39]. In this subsection,
an explicit expression of the componentwise condition number for the solution of (1.2) with a quasiseparable matrix of
coefficients with respect to the Givens-vector representation via tangents (2.2) is presented in Theorem 4.2. The proof is
straightforward from Theorem 4.1, Lemma 2.2, Remark 2.1. Therefore, we omit the proof of Theorem 4.2.

Suppose that A has a Givens-vector representation via tangents (2.2) and B ∈ Rn×m has the sparse representation (3.7).
Considering Definition 3.2, we introduce the weight vector

EGV =

(
{eli}

n−1
i=2 , {evi}

n−1
i=1 , {edi}

n
i=1, {ewi}

n−1
i=1 , {eui}

n−1
i=2

)
. (4.7)

with respect to the Givens-vector representation via tangents (2.2) of A. Therefore, using Definition 3.2, we introduce the
structure componentwise condition number for (1.2) with respect to the Givens-vector representation via tangents (2.2)
of A and the sparse representation (3.7) of B in Theorem 4.2.

Theorem 4.2. Let AX = B, where X ∈ Rn×m, B ∈ Rn×m has the sparse representation (3.7) and A ∈ Rn×n is a {1;1}-
quasiseparable nonsingular matrix with a tangent-Givens-vector representation ΩGV (2.2), A = AL +AD +AU , with AL strictly



Q. Meng, H. Diao and Q. Yu / Journal of Computational and Applied Mathematics 368 (2020) 112527 13

lower triangular, AD diagonal, and AU strictly upper triangular. Let 0 ≤ f ∈ RM and 0 ≤ EGV ∈ R5n−6, where EGV is given by
(4.7). Suppose ΩGV ∩ ΩB = ∅, then

KEGV ,f (A(ΩGV ),B(ΩB)) =
1

∥X∥max


M∑

k=1

⏐⏐A−1Sk
⏐⏐ fk + |A−1

∥Dd∥X | + |A−1AL∥Dv∥X |

+ |A−1
∥Dw∥AUX | +

n−1∑
i=2

⏐⏐⏐⏐⏐⏐A−1

⎡⎣ 0 0
−s2i A(i, 1 : i − 1) 0

c2i A(i + 1 : n, 1 : i − 1) 0

⎤⎦X

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐elili

⏐⏐⏐⏐
+

n−1∑
i=2

⏐⏐⏐⏐A−1
[
0 −t2i A(1 : i − 1, i) r2i A(1 : i − 1, i + 1 : n)
0 0 0

]
X
⏐⏐⏐⏐ ⏐⏐⏐⏐euiui

⏐⏐⏐⏐

max

,

where

ΩGV =

(
{li}n−1

i=2 , {vi}n−1
i=1 , {di}

n
i=1, {wi}

n−1
i=1 , {ui}

n−1
i=2

)
, (4.8)

Dd = diag
(
ed1 , . . . , edn

)
,Dv = diag

(ev1
v1

, . . . ,
evn−1

vn−1
, 1
)
,Dw = diag

(ew1

w1
, . . . ,

ewn−1

wn−1
, 1
)
.

Remark 4.3. As in Remark 4.1, we consider the situation that multiple right-hand sides B is not sparse but general
unstructured. According to Theorem 4.2, the explicit expression for KEGV ,F (A(ΩGV ),B) of the multiple right-hand sides
linear system (1.2), where A is a nonsingular {1;1}-quasiseparable matrix with a quasiseparable representation ΩGV and
B is a general dense matrix, can be characterized by

KEGV ,F (A(ΩGV ),B) := lim
η→0

sup

{
1
η

∥δX∥max

∥X∥max
: A(ΩGV + δΩGV )(X + δX) = B + δB,

|δΩGV | ≤ ηEGV , |δB| ≤ ηF

}

=
1

∥X∥max

|A−1
|F + |A−1

∥Dd∥X | + |A−1AL∥Dv∥X |

+ |A−1
∥Dw∥AUX | +

n−1∑
i=2

⏐⏐⏐⏐⏐⏐A−1

⎡⎣ 0 0
−s2i A(i, 1 : i − 1) 0

c2i A(i + 1 : n, 1 : i − 1) 0

⎤⎦X

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐elili

⏐⏐⏐⏐
+

n−1∑
i=2

⏐⏐⏐⏐A−1
[
0 −t2i A(1 : i − 1, i) r2i A(1 : i − 1, i + 1 : n)
0 0 0

]
X
⏐⏐⏐⏐ ⏐⏐⏐⏐euiui

⏐⏐⏐⏐

max

.

For the linear system Ax = b with a {1;1}-quasiseparable coefficient matrix A(ΩGV ) in the Givens-vector representation
via tangents ΩGV , Dopico and Pomés [5] introduced the componentwise condition number of x with respect to ΩGV and
the corresponding explicit formula [5, Theorem 5.6] is given below

condEGV ,y(A(ΩGV ), b) =
1

∥x∥∞

|A−1
|y + |A−1

∥Dd∥x| + |A−1AL∥Dv∥x|

+ |A−1
∥Dw∥AUx| +

n−1∑
i=2

⏐⏐⏐⏐⏐⏐A−1

⎡⎣ 0 0
−s2i A(i, 1 : i − 1) 0

c2i A(i + 1 : n, 1 : i − 1) 0

⎤⎦ x

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐elili

⏐⏐⏐⏐
+

n−1∑
i=2

⏐⏐⏐⏐A−1
[
0 −t2i A(1 : i − 1, i) r2i A(1 : i − 1, i + 1 : n)
0 0 0

]
x
⏐⏐⏐⏐ ⏐⏐⏐⏐euiui

⏐⏐⏐⏐


∞

,

where ΩGV , EGV , Dd , Dv and Dw is defined in (4.8). For the case m = 1, when B = b and F = y, it is not difficult to see
that the condition number of the multi-right side linear system KEGV ,F (A(ΩGV ),B) is identical to condEGV ,y(A(ΩGV ), b).

In view of Theorem 4.1, a natural choice of EGV (4.7) is EGV = |ΩGV |, where ΩGV is given by (2.2) and is the Givens-vector
representation via tangents introduced in Definition 2.3 of A. Under this situation, noting Dd = |AD|, Dv = De = I , and⏐⏐ eli

li

⏐⏐ =
⏐⏐ eui
ui

⏐⏐ = 1, we have

Corollary 4.2. Let AX = B, where 0 ̸= X ∈ Rn×m, B ∈ Rn×m, and A ∈ Rn×n is a {1;1}-quasiseparable nonsingular matrix
with a tangent-Givens-vector representation ΩGV (2.2), B ∈ Rn×m has the sparse representation (3.7), and A = AL + AD + AU ,
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with AL strictly lower triangular, AD diagonal and AU strictly upper triangular. Suppose ΩGV ∩ ΩB = ∅. Then

K|ΩGV |,|ΩB|(A(ΩGV ),B(ΩB)) =
1

∥X∥max


M∑

k=1

⏐⏐A−1Sk
⏐⏐ |wB

k | + |A−1
| |AD| |X | + |A−1AL | |X |

+ |A−1
| |AUX | +

n−1∑
i=2

⏐⏐⏐⏐⏐⏐A−1

⎡⎣ 0 0
−s2i A(i, 1 : i − 1) 0

c2i A(i + 1 : n, 1 : i − 1) 0

⎤⎦X

⏐⏐⏐⏐⏐⏐
+

n−1∑
i=1

⏐⏐⏐⏐A−1
[
0 −t2i A(1 : i − 1, i) r2i A(1 : i − 1, i + 1 : n)
0 0 0

]
X
⏐⏐⏐⏐

max

.

Remark 4.4. When B is not sparse and just a general unstructured matrix, it follows from (4.4) and Corollary 4.1 that

K|ΩGV |,|B|(A(ΩGV ),B) =
1

∥X∥max

 ⏐⏐A−1
⏐⏐ |B| + |A−1

| |AD| |X | + |A−1AL | |X |

+ |A−1
| |AUX | +

n−1∑
i=2

⏐⏐⏐⏐⏐⏐A−1

⎡⎣ 0 0
−s2i A(i, 1 : i − 1) 0

c2i A(i + 1 : n, 1 : i − 1) 0

⎤⎦X

⏐⏐⏐⏐⏐⏐
+

n−1∑
i=1

⏐⏐⏐⏐A−1
[
0 −t2i A(1 : i − 1, i) r2i A(1 : i − 1, i + 1 : n)
0 0 0

]
X
⏐⏐⏐⏐

max

.

(4.9)

Comparing the expressions in Corollaries 4.2 and 4.1, we know that the structured condition number K|ΩGV |,|ΩB|(A(ΩGV ),
B(ΩB)) with respect to the Givens-vector representation (2.2) depends on not only all elements of A but also the
parameters {ci, si} and {ri, ti}. On the contrary, the structured condition number K|ΩQS |,|ΩB|

(
A(ΩQS),B(ΩB)

)
with respect

to the quasiseparable representation (2.1) does not rely on these quasiseparable representation parameters defining A.

5. Relationships between different condition numbers for multiple right-hand side linear systems with parameter-
ized coefficient matrices

In this section, in Proposition 5.1 we will compare K|ΩQS |,|ΩB|(A(ΩQS),B(ΩB)) given in Corollary 4.1 with the unstruc-
tured componentwise condition number K|A|,|ΩB|(A,B(ΩB)) given by (3.8). The relationship between

K|ΩQS |,|ΩB|(A(ΩQS),B(ΩB)) and K|ΩGV |,|ΩB|(A(ΩGV ),B(ΩB))

given in Corollary 4.2 is also investigated in Theorem 5.2. The effective condition number Keff(A(ΩQS),B(ΩB)) is introduced
in Definition 5.1, which can bound the exact condition numbers K|ΩQS |,|ΩB|(A(ΩQS),B(ΩB)) and K|ΩGV |,|ΩB|(A(ΩGV ),B(ΩB))
up to the order of n. An important feature of the effective condition number is that it can be computed in O(mn) operations
based on some previous results on {1;1}-quasiseparable matrices from [27] and [45].

In Proposition 5.1, we will investigate the relationship between the structured componentwise condition number
K|ΩQS |,|ΩB|(A(ΩQS),B(ΩB)) and the corresponding unstructured one K|A|,|ΩB|(A,B(ΩB)) given in Corollary 3.1.

Proposition 5.1. Let AX = B, where A ∈ Rn×n is a {1;1}-quasiseparable nonsingular matrix, B ∈ Rn×m has the sparse
representation as (3.7), and 0 ̸= X ∈ Rn×m. Let ΩQS be a quasiseparable representation of A and ΩB be a sparse representation
of B. Then the following relation holds,

K|ΩQS |,|ΩB|(A(ΩQS),B(ΩB)) ≤ n K|A|,|ΩB|(A,B(ΩB)).

Proof. From Corollary 4.1 and using standard properties of absolute values and norms we obtain:

K|ΩQS |,|ΩB|(A(ΩQS),B(ΩB)) ≤
1

∥X∥max

 M∑
k=1

⏐⏐A−1Sk
⏐⏐ |wB

k | + |A−1
∥AD∥X | + 2|A−1

∥AL∥X |

+ 2|A−1
∥AU∥X | +

n−1∑
i=2

|A−1
∥AL∥X | +

n−1∑
i=2

|A−1
∥AU∥X |


max

≤
n

∥X∥max

 M∑
k=1

⏐⏐A−1Sk
⏐⏐ |wB

k | + |A−1
∥A∥X |


max

,

which finishes the proof. □
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From the above proposition, the structured condition number K|ΩQS |,|ΩB|(A(ΩQS),B(ΩB)) is smaller than the unstruc-
tured condition number K|A|,|ΩB|(A,B(ΩB)), except for a factor n. In addition, we will see in the numerical experiments
presented in Section 6 that it can be much smaller.

In the following theorem, we will study the relationship between K|ΩGV |,|ΩB|(A(ΩGV ),B(ΩB)) and K|ΩQS |,|ΩB|(A(ΩQS),
B(ΩB)). The similar conclusions had been obtained for eigenvalue, generalized eigenvalue computations and linear
system solving for {1;1}-quasiseparable matrices in [5,39,40], respectively. Before that, we need to review Lemma 5.1,
which describes the perturbation magnitude relationship between the Givens-vector representation via tangents given in
Definition 2.3 and the quasiseparable representation given in Definition 2.1. In the rest of this paper, we will adopt the
following brevity notations:

K
QS

|B|
:= K|ΩQS |, |B|(A(ΩQS), |B|), K

QS
|ΩB|

:= K|ΩQS |,|ΩB|(A(ΩQS), |ΩB|), (5.1)

where K|ΩQS |, |B|(A(ΩQS), |B|) and K|ΩQS |,|ΩB|(A(ΩQS), |ΩB|) are given in (4.6) and Corollary 4.1, respectively;

K GV
|B|

:= K|ΩGV |, |B|(A(ΩGV ), |B|), K GV
|ΩB|

:= K|ΩGV |,|ΩB|(A(ΩGV ), |ΩB|), (5.2)

where K|ΩGV |, |B|(A(ΩGV ), |B|) and K|ΩGV |,|ΩB|(A(ΩGV ), |ΩB|) are given in (4.9) and Corollary 4.2, respectively;

K|B| := K|A|,|B|(A,B), K|ΩB| := K|A|,|ΩB|(A, ΩB), (5.3)

where K|A|,|B|(A,B) and K|A|,|ΩB|(A, ΩB) are given in (3.2) and (3.8), respectively.

Lemma 5.1 ([39, Lemma 6.2]). With the notations before, we have⏐⏐δΩGV
QS

⏐⏐ ≤ η
⏐⏐ΩGV

QS

⏐⏐ ⇒ |δ′ΩGV | ≤ (3(n − 2)η + O(η2)) |ΩGV | .

Theorem 5.1. Let AX = B, where X ∈ Rn×m, A ∈ Rn×n is a nonsingular {1;1}-quasiseparable matrix with a tangent-Givens-
vector representation ΩGV (2.2) and a quasiseparable representation ΩQS (2.1). Suppose B has the sparse representation (3.7),
and assume that ΩQS ∩ ΩB = ∅ and ΩGV ∩ ΩB = ∅. Then the following relationship holds:

K GV
|ΩB|

≤ K
QS

|ΩB|
≤ (3n − 2)K GV

|ΩB|
.

Proof. First, we show K GV
|ΩB|

≤ K
QS

|ΩB|
. In view of the expressions of K GV

|ΩB|
and K

QS
|ΩB|

given by Corollaries 4.2 and 4.1,
respectively, we only need to compare the last two terms in the expressions of K GV

|ΩB|
with the corresponding parts of

K
QS

|ΩB|
as follows:

n−1∑
i=2

⏐⏐⏐⏐⏐⏐A−1

⎡⎣ 0 0
−s2i A(i, 1 : i − 1) 0

c2i A(i + 1 : n, 1 : i − 1) 0

⎤⎦X

⏐⏐⏐⏐⏐⏐ ≤

n−1∑
i=2

⏐⏐⏐⏐⏐A−1

[ 0 0
A(i, 1 : i − 1) 0

0 0

]
X

⏐⏐⏐⏐⏐
+

n−1∑
i=2

⏐⏐⏐⏐⏐A−1

[ 0 0
0 0

A(i + 1 : n, 1 : i − 1) 0

]
X

⏐⏐⏐⏐⏐
=

n−1∑
i=2

⏐⏐A−1ei · AL(i, :)X
⏐⏐+ n−1∑

i=2

⏐⏐⏐⏐A−1
[

0 0
A(i + 1 : n, 1 : i − 1) 0

]
X
⏐⏐⏐⏐

≤
⏐⏐A−1

⏐⏐ |ALX | +

n−1∑
i=2

⏐⏐⏐⏐A−1
[

0 0
A(i + 1 : n, 1 : i − 1) 0

]
X
⏐⏐⏐⏐ ,

where in the last two inequality we use (4.3). Similarly, we can prove that
n−1∑
i=1

⏐⏐⏐⏐A−1
[
0 −t2i A(1 : i − 1, i) r2i A(1 : i − 1, i + 1 : n)
0 0 0

]
X
⏐⏐⏐⏐

≤ |A−1AU | |X | +

n−1∑
i=2

⏐⏐⏐⏐A−1
[
0 A(1 : i − 1, i + 1 : n)
0 0

]
X
⏐⏐⏐⏐ .

Thus we complete the first part of the proof. Now we turn to the second part of the proof. Note that from Definition 3.2
and from Lemma 5.1 we have

K
QS

|ΩB|
≤ lim

η→0
sup

{
∥δX∥max

η∥X∥max
: (A(ΩGV + δΩGV ))(X + δX) = B(ΩB + δΩB),
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|δΩGV | ≤
[
3(n − 2) η + O(η2)

]
|ΩGV |, |δ B| ≤

[
3(n − 2) η + O(η2)

]
|ΩB|

}
.

By considering the change of variable η′
= (3(n − 2)η + O(η2)), we obtain

K
QS

|ΩB|
≤ lim

η′→0

{
∥δX∥max

η∥X∥max
: (A(ΩGV + δ ΩGV ))(X + δ X) = B(ΩB + δΩB),

|δ ΩGV | ≤ η′
|ΩGV |, |δ ΩB| ≤ η′

|ΩB|

}
= 3(n − 2) K GV

|ΩB|
. □

Although the explicit expressions of K
QS

|ΩB|
and K GV

|ΩB|
have been derived in Corollaries 4.1 and 4.2, respectively, the

formulas involve two sums, which can result in expensive computational costs. Therefore it is desirable to consider other
condition numbers having the similar contributions of K

QS
|ΩB|

or K GV
|ΩB|

. In Definition 5.1 we will propose the effective
condition number Keff(A(ΩQS),B(ΩB)). Moreover, we will investigate the relationship between Keff(A(ΩQS),B(ΩB)) and
K

QS
|ΩB|

/K GV
|ΩB|

in Theorems 5.2 and 5.3.

Definition 5.1. Let AX = B, where 0 ̸= X ∈ Rn×m, B has the sparse representation (3.7), and A ∈ Rn×n is a nonsingular
{1;1}-quasiseparable matrix with a quasiseparable representation ΩQS (2.1) such that A = AL + AD + AU , with AL strictly
lower triangular, AD diagonal, and AU strictly upper triangular. Assume that ΩQS ∩ ΩB = ∅. Then, we define the effective
relative condition number Keff(A(ΩQS),B(ΩB)) for the solution of AX = B as

Keff(A(ΩQS),B(ΩB)) :=
1

∥X∥max


M∑

k=1

⏐⏐A−1Sk
⏐⏐ |wB

k | + |A−1
∥AD∥X | + |A−1

| |ALX |

+ |A−1AL | |X | + |A−1
| |AUX | + |A−1AU | |X |


max

.

Remark 5.1. In [45, Algorithm 5.2], it was shown that the inverse of a nonsingular quasiseparable matrix A ∈ Rn×n is
also quasiseparable and its quasiseparable representation can be obtained in 58(n − 2) + 20 flops. Clearly, AL and AU
are quasiseparable. Furthermore, from [27, Algorithm 4.4] the matrix–vector multiplication Av can be calculated in O(n),
where A ∈ Rn×n is a quasiseparable matrix. Therefore, Keff(A(ΩQS),B(ΩB)) can be computed in O(mn) flops. The detailed
descriptions of the routine for computing Keff(A(ΩQS),B(ΩB)) are omitted.

In the following theorem, we will investigate the relationship between Keff(A(ΩQS),B(ΩB)) and K
QS

|ΩB|
.

Theorem 5.2. Let AX = B, where 0 ̸= X ∈ Rn×m and A ∈ Rn×n is a nonsingular {1;1}-quasiseparable matrix with a
quasiseparable representation ΩQS (2.1), B ∈ Rn×m has the sparse representation (3.7). Let ΩQS ∩ ΩB = ∅. Then the following
relations hold:

Keff(A(ΩQS),B(ΩB)) ≤ K
QS

|ΩB|
≤ (n − 1)Keff(A(ΩQS),B(ΩB)).

Proof. Clearly, Keff(A(ΩQS),B(ΩB)) ≤ K
QS

|ΩB|
is easily obtained from Corollary 4.1 and Definition 5.1. On the other hand,

it yields⏐⏐⏐⏐A−1
[

0 0
A(i + 1 : n, 1 : i − 1) 0

]
X
⏐⏐⏐⏐ =

⏐⏐⏐⏐A−1
[

0 0
AL(i + 1 : n, 1 : i − 1) 0

]
X
⏐⏐⏐⏐

=

⏐⏐⏐⏐A−1
[

0 0
AL(i + 1 : n, 1 : i − 1) AL(i + 1 : n, i : n)

]
X

+ A−1
[
0 0
0 −AL(i + 1 : n, i : n)

]
X
⏐⏐⏐⏐

≤ |A−1
|

⏐⏐⏐⏐ [ 0
AL(i + 1 : n, :)

]
X
⏐⏐⏐⏐

+

⏐⏐⏐⏐A−1
[
0 0
0 AL(i + 1 : n, i : n)

] ⏐⏐⏐⏐|X |

≤
⏐⏐A−1

⏐⏐ |ALX | +
⏐⏐A−1AL

⏐⏐ |X | .
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Thus we can deduce that
n−1∑
i=2

⏐⏐⏐⏐A−1
[

0 0
A(i + 1 : n, 1 : i − 1) 0

]
X
⏐⏐⏐⏐ ≤ (n − 2)

⏐⏐A−1
⏐⏐ |ALX | + (n − 2)

⏐⏐A−1AL
⏐⏐ |X | . (5.4)

Similarly, it can be derived that
n−1∑
i=2

⏐⏐⏐⏐A−1
[
0 A−1(1 : i − 1, i + 1 : n)
0 0

]
X
⏐⏐⏐⏐ ≤ (n − 2)

⏐⏐A−1
⏐⏐ |AUX | + (n − 2)

⏐⏐A−1AU
⏐⏐ |X | . (5.5)

Combining (5.4) and (5.5), we finish the proof. □

From Theorems 5.1 and 5.2, it is not difficult to deduce the relationship between Keff(A(ΩQS),B(ΩB)) and K GV
|ΩB|

in the
following theorem.

Theorem 5.3. Let AX = B, where A ∈ Rn×n is a nonsingular {1;1}-quasiseparable matrix with tangent-Givens-vector
representation ΩGV (2.2), B ∈ Rn×m has the sparse representation (3.7). For any quasiseparable representation ΩQS of A, if
ΩQS ∩ ΩB = ∅ and ΩGV ∩ ΩB = ∅, then the following relations hold:

Keff(A(ΩQS),B(ΩB))
3(n − 2)

≤ K
QS

|ΩB|
≤ (n − 1)Keff(A(ΩQS),B(ΩB)).

In view of Theorems 5.2 and 5.3, it is easy to see that the structured condition numbers K
QS

|ΩB|
and K GV

|ΩB|
can be bounded

by the effective condition number up to a factor of order n.

6. Numerical experiments

In this section, we do some numerical examples to illustrate the theoretical results for the multiple right-hand
side linear system (1.2). All the numerical experiments are carried out by Matlab R2018a, with the machine epsilon
µ ≈ 2.2 × 10−16. Recall the condition number notations defined in (5.1), (5.2), and (5.3). For a given quasiseparable
matrix A ∈ Rn×n and a multiple right-hand sides B ∈ Rm×n, where B may be sparse or a general unstructured dense
matrix, we compute the solution X to (1.2) by X = A\B in Matlab. All condition numbers presented in this paper are
computed directly from their explicit expressions in Matlab.

Example 6.1. Let

A =

⎡⎢⎢⎢⎢⎣
1 −2.9442 0 0 0

7.2688 · 104 1 1.4383 · 10 0 0
−2.6958 · 106

−3.0344 · 102 1 3.2519 · 10−1 0
−2.9947 · 109

−3.3709 · 105 2.9387 · 102 1 −7.5493 · 10−1

−8.5754 · 1012
−9.6526 · 108 8.4150 · 105

−7.8728 · 102 1

⎤⎥⎥⎥⎥⎦ ,

B1 =

⎡⎢⎢⎢⎣
1.0933 0
1.1093 0

−8.6365 · 10−1 0
0 7.7359 · 10−2

0 −1.2141

⎤⎥⎥⎥⎦ , B2 =

⎡⎢⎢⎢⎣
1.0000 · 10−3 1

1 1
1 1
1 1
1 1

⎤⎥⎥⎥⎦ ,

where A is a {1;1}-quasiseparable matrix, B1 is a sparse matrix with a sparsity of 0.5 and B2 is a dense matrix. In Table 1,
we report the unstructured condition number K|ΩB1 |, the structured effective condition number Keff(A(ΩQS), B1(ΩB1 )),
and structured condition number K

QS
|ΩB1 |

in quasiseparable representation for the multiple right-hand side linear system

AX = B1. Furthermore, the unstructured and structured condition numbers K|B2|, Keff(A(ΩQS),B2) and K
QS

|B2|
of the multiple

right-hand side linear system AX = B2 are also reported in Table 1. From Table 1, the unstructured condition number
can be much larger than the structured effective condition number and the structured condition number with respect
to the general quasiseparable representation while there are little differences between the structured effective condition
number and the structured condition number with respect to the general quasiseparable representation, which coincide
with the collusions of Proposition 5.1 and Theorem 5.2.

Example 6.2. In this example, we test random quasiseparable matrix A and the multiple right hand sides B. First we fixed
n = 60 and chose different m, where n is the dimensionality of the square matrix A and m is the column numbers of the
multiple right hand sides B. We use the Matlab’s built-in function sprand(n, m, ρ) to generate sparse multiple right hand
sides B1 and use the Matlab’s command randn to generate dense multiple right hand sides B2. The {1;1}-quasiseparable
A ∈ R60×60 is generated by its Givens-vector representation via tangent (2.2): l ∈ R58, v ∈ R59, d ∈ R60, e ∈ R59, and
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Table 1
Comparisons of unstructured number and effective structured condition
number for multiple right-hand side linear system (1.2) with fixed n = 5
and m = 2.

K|ΩB1 | Keff(A(ΩQS ),B1(ΩB1 )) K
QS
|ΩB1 |

6.1526 · 105 5.9573 · 10 6.8460 · 10

K|B2 | Keff(A(ΩQS ),B2) K
QS
|B2 |

7.9145 · 104 1.3532 · 10 1.4920 · 10

Table 2
Comparison of the unstructured and structured condition numbers of multiple right-hand
side linear system (1.2) with a fixed n = 60 and different choices of m.

m ρ K GV
|ΩB1 |

K
QS
|ΩB1 |

Keff(A(ΩQS ),B(ΩB1 )) K|ΩB1 |

20 0.01 1.6207 · 102 1.8997 · 102 1.5390 · 102 2.0438 · 102

40 0.01 1.1936 · 103 1.3766 · 103 1.1429 · 103 1.1258 · 103

60 0.01 8.5737 · 101 9.3135 · 101 7.2672 · 101 2.7635 · 102

m K GV
|B2 |

K
QS
|B2 |

Keff(A(ΩQS ),B2) K|B2 |

20 2.7182 · 102 4.0633 · 102 3.2123 · 102 3.1474 · 102

40 9.3369 · 102 1.3666 · 103 1.1354 · 103 1.1166 · 103

60 6.9029 · 10 9.7076 · 10 7.5664 · 10 2.8257 · 102

u ∈ R58, where each vector is obtained by using the Matlab’s command randn. From Table 2, for different choices of m,
the relationship between K GV

|ΩBi |
, K

QS
|ΩBi |

, Keff(A(ΩQS),B(ΩBi )) and K|ΩBi |
is consistent with Theorems 5.2 and 5.1, and 5.3.

Example 6.3. In this example, the parameter vectors describing the {1;1}-quasiseparable matrix A are generated randomly
as follows:

p ∈ Rn−1, a ∈ Rn−2, q ∈ Rn−1, d ∈ Rn, g ∈ Rn−1, b ∈ Rn−2, and h ∈ Rn−1. (6.1)

From the numerical results from the general generated random parameters (6.1), there are marginal differences between
the structured effective componentwise condition number and the corresponding unstructured ones. Therefore, in order to
make the differences between the unstructured componentwise condition number K|ΩB| given in (5.3) and the structured
one Keff(A(ΩQS),B(ΩB)) to be large, we use the following procedure to construct the parameter vectors (6.1). First, we
randomly select ℓ1 indexes of p, and ℓ2 indexes of a are chosen, where ℓ1 = ⌊30%× (n−1)⌋ and ℓ2 = ⌊30%× (n−2)⌋. For
the selected indexes of p in the ascending order, we multiply the corresponding component of p by the weight 10αi+3,
where αi = 1 + (i − 1) · 4/(ℓ1 − 1). On the other hand, in a similar way, we multiply the select component of a by the
weight 10βi+3, where βi = αℓ2−i+1. The vectors of d and g are rescaled by factors 10−3 and 103, respectively. We use
the command randn of Matlab to construct vectors b, h and q, respectively. Under this situation, entries of b, h and q
satisfy the standard Gaussian distribution and are independent with other entries.

In Table 3, let the multi right-hands B ∈ Rn×m be generated by using Matlab’s command randn, which means that
B is a dense and unstructured matrix. From Table 3, we can conclude that the unstructured condition number K|B| given
in (5.3) indeed much larger than the structured one Keff(A(ΩQS),B) defined in Definition 5.1 when ΩB = |B|, and there
exist such multiple right-hand side linear systems with {1;1}-quasiseparable coefficient matrices which have ill condition
number with respect to perturbations of the entries of the matrix, but have well one with respect to perturbations on the
quasiseparable parameters representing the matrix.

Next, we generate the sparse multiple right-hand sides B of (1.2) by using Matlab’s built-in function sprand(n, m, ρ).
Thus B is a random, n-by-m, sparse matrix with approximately ρmn uniformly distributed nonzero entries. The numerical
values of K|ΩB| given in (5.1) and K

QS
|ΩB|

, where ΩB is a vector composed by the nonzero absolute values of entries of B, are
reported in Table 4. Similar to the observation of Table 3, the structured effective condition number Keff(A(ΩQS),B(ΩB))
can be much smaller than the corresponding unstructured condition number K|ΩB|. Thus it is necessary to develop
structure-preserving algorithms for solving (1.2) when its coefficient matrix is a {1;1}-quasiseparable matrix because
structure-preserving algorithms can reduce the forward error significantly of the solution with respect to the structured
componentwise perturbations on the coefficient matrix A and sparse multiple right-hand sides B.

7. Concluding remarks

We presented the explicit expressions for structured condition numbers for multiple right-hand sides linear systems
with {1;1}-quasiseparable coefficient matrix in the quasiseparable and the Givens-vector representations. Relationships
between different condition numbers for multiple right-hand side linear systems with parameterized coefficient matrices
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Table 3
The ratios between K|B| and Keff(A(ΩQS ),B) for n = 20, 40, and 60 with
different choices of m.

n m
K|B|

Keff(A(ΩQS ),B)
K|B| Keff(A(ΩQS ),B)

20 4 1.6703 · 1016 2.8277 · 1017 1.6929 · 101

8 5.2754 · 1015 1.0712 · 1017 2.0306 · 101

12 1.3456 · 1016 7.8757 · 1017 5.8529 · 101

16 2.1251 · 1016 7.5164 · 1017 3.5370 · 101

40 10 1.7507 · 1016 1.8809 · 1017 1.0744 · 101

20 6.9995 · 1015 2.0532 · 1017 2.9334 · 101

30 1.3697 · 1016 6.7985 · 1018 4.9634 · 102

40 2.8216 · 1016 4.7127 · 1018 1.6702 · 102

60 30 7.9458 · 1015 5.1320 · 1017 6.4587 · 101

40 2.0569 · 1016 1.2443 · 1018 6.0492 · 101

50 1.4127 · 1016 1.9905 · 1018 1.4090 · 102

60 9.9333 · 1015 1.1307 · 1018 1.1383 · 102

Table 4
The ratios between K|ΩB | and Keff(A(ΩQS ),B(ΩB)) for n = 20, 40 and 60 with different
choices of m and ρ.

n m ρ
K|ΩB |

Keff(A(ΩQS ),B(ΩB))
K|ΩB | Keff(A(ΩQS ),B(ΩB))

20 10 0.1 3.6276 · 1015 6.7572 · 1016 1.8627 · 101

10 0.3 9.9256 · 1015 3.4805 · 1017 3.5066e · 101

10 0.5 1.2218 · 1016 7.5646 · 1016 6.1912 · 100

20 0.1 1.1558 · 1016 3.9404 · 1016 3.4094 · 100

20 0.3 8.6307 · 1015 2.2244 · 1017 2.5773 · 101

20 0.5 8.9736 · 1015 1.5430 · 1017 1.7195 · 101

40 20 0.1 9.1705 · 1015 4.7061 · 1017 5.1317 · 101

20 0.3 6.3252 · 1014 2.1572 · 1016 3.4105 · 101

20 0.5 1.8175 · 1016 6.8781 · 1017 3.7843 · 101

40 0.1 7.0644 · 1014 8.1673 · 1016 1.1561 · 102

40 0.3 1.3172 · 1016 1.9833 · 1017 1.5057 · 101

40 0.5 1.8856 · 1016 3.0811 · 1018 1.6340 · 102

60 40 0.1 1.2153 · 1015 1.5341 · 1017 1.2623 · 102

40 0.3 1.1415 · 1016 3.0454 · 1017 2.6680 · 101

40 0.5 2.0185 · 1016 6.8578 · 1018 3.3974 · 102

50 0.1 2.0709 · 1016 1.5371 · 1018 7.4226 · 101

50 0.3 4.4566 · 1015 2.7132 · 1018 6.0882 · 102

50 0.5 1.1465 · 1016 1.7395 · 1018 1.5173 · 102

were investigated. We proposed the effective structured condition number for multi-right hand linear systems with
{1;1}-quasiseparable coefficient matrix. From the numerical experiments, there were some situations that the effective
structured condition number can be much smaller than the unstructured ones. In this paper, we only consider the case
that the coefficient matrix A is nonsingular for the multiple right-hand side linear system. We believe that our finding in
this paper can be extended to the case that A is singular where we should consider the condition numbers for linear least
squares solution to the multiple right hand linear system [46] or a more general linear matrix equation [47]. As shown
in [38], for Sylvester equations (1.3), when A, B and C are quasiseparable, the solution X is numerically quasiseparable.
Therefore, our result can be extended to the condition number study for Sylvester equations involving quasiseparable
structure. We will report our research progresses on the above topics elsewhere in the future.
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