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Abstract

To study the well-posedness problem of a hyperbolic—parabolic mixed type equation,
the usual boundary value condition is overdetermined. Since the equation is with strong
nonlinearity, the optimal partially boundary value condition can not be expressed by
Fichera function. By introducing the weak characteristic function method, a different
but reasonable partial boundary value condition is found first time, basing on it, the
stability of the entropy solutions is established.
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1 Introduction

Consider the hyperbolic—parabolic mixed type equation

g—': = AA®) + div(b)), in Q7 = Q2 x (0,T), (1.1)

where @ ¢ R¥ is an unbounded domain with a C? boundary, and

Au) = /u a(s)ds, a(s) > 0. (1.2)
0

Equation (1.1) arises from reaction diffusion process and many other applied
fields. The Cauchy problem of Eq. (1.1) has been deeply investigated [1-13]. On
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the initial-boundary value problem, there are a lot of papers [14-20] devoting to the
well-posedness of the weak solutions. In general, the initial value condition is always
required

u(x,0) =up(x), xeQ. (1.3)

But instead of the Dirichlet homogeneous boundary condition
u(x,t) =0, (x,1) €92 x(0,7), 1.4)
since a(s) > 0 and the equation is degenerate, only a partial boundary value condition
ux,t) =0, (x,1)e X, x0,T), (1.5)

is needed generally, where ¥, C 0€2 is a relative open subset. By using the Fechira
function, we have given a conjecture to describe the geometric characteristics of %,
formally in [18,19], but the conjecture still remains open, only when X, = 0%,
the stability of the solutions had been proved. At the same time, by generalizing the
definition of the trace to a weaker sense, Refs. [14—17] had succeeded to establish the
well-posedness of the solutions of Eq. (1.1) in some special senses. In addition, we
had studied Eq. (1.1) when Q = Rﬁ is the half space [20]. However, when the domain
2 is unbounded, the problem is far to be solved.

Since Eq. (1.1) is with hyperbolic—parabolic mixed type, we should use the entropy
solution to consider the uniqueness problem. We will continue to use some ideas in our
previous works [7,8,18-20] to define the entropy solutions in B V},.(Q 7). The essential
improvement lies in that the partial boundary ¥, C 9€2, where the homogeneous
boundary value is imposed as (1.5), is depicted out first time. Moreover, the stability
of the entropy solutions can be proved without any boundary value condition in some
special cases.

2 The definition and the main results

For small n > 0, let

S, (s) = /S ho ()T, ho(s) = 2 (1 — ﬂ) . 2.1)
0 n nJy

The purpose of S, is to approximate the sign function. Obviously 4,(s) € C(R), and

hy(s) =0, [shy(s) <1, ]8,()|<1; limS,(s) = sgns, limsS;}(s) =0.
n—0 n—0
2.2)

Definition 2.1 A function u is said to be the entropy solution of Eq. (1.1) with the
initial value (1.3) and with the partial boundary value (1.5), if
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1. u satisfies

0

U € BVioe(Q1) N L¥(07), 5/0 Ja®)yds € L Qg x (0,T)),  (2.3)

where Qp = {x € Q: |x| < R}, for any positive constant R.
2. For any ¢, ¢ € Cg(QT), ¢ > 0, for any k € R, for any small > 0, u satisfies

/ / [mu — g — Bl (. kgy,
or

+ Ay (u, k) Ap — S;)(u —k) ’V/u Va(s)ds
0

2
(p:| dxdt > 0. (2.4)

3. For any positive constant R,

lim | u(x,t) —uog(x) | dx =0. 2.5)

t—0 Qr

4. The boundary value (1.5) is satisfied in the sense of trace,
yu|s,=0. (2.6)
Here and the after, the double indices i represents the sum from 1 to N, and
. u .
B, (u, k) =/k b (5)S,(s — k)ds,
u
Ay(u, k) = / a(s)S, (s — k)ds,
k
u—k
Ly(u—k)= / Sy(s)ds.
0
To explain the reasonableness of Definition 2.1, in one way, if Eq. (1.1) has a

classical solution u, multiplying (1.1) by ¢S, (v — k) and integrating over Qr, we are
able to show that u satisfies (2.4). In another way, let n — 0 in (2.4). Then

f /Q [ = Klgr = sen(u — G @) = b (K)px;sen(u — k)
(AQu) — A(k))Ago] dxdt > 0.

Thus if u is the entropy solution in Definition 2.1, then u is a entropy solution defined
in [1-3] et al.

Since the domain is unbounded, we use some techniques, which had been used in
considering the Cauchy problem of the equation, to prove the existence of the entropy
solutions.
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Theorem 2.2 Suppose that A(s) is C3, bi(s) is C%, ug(x) € L>(K), Then Eq. (1.1)
with the initial boundary value conditions (1.3), (1.5) has a entropy solution in the
sense of Definition 2.1.

The main aims of the paper are to establish the stability of the entropy solutions.
For simplicity, we assume that the domain €2 can be depicted out as

Q={xeRV:gx)>0}, 9Q={xeR":gx) =0}, 2.7)

where g(x) is a continuous function and is a C? function when x is near to the
boundary 2. By comparing with the usual characteristic function x (x) of @ c RV,
say, x(x) = 1 when x € @, while x(x) = 0if x € RN \ €2, we can call g(x) is a
weak characteristic function of €2. Certainly, unlike the usual characteristic function,
g(x) is not unique.

Theorem 2.3 Suppose that A(s) is C% bi(s)isCl,

b () < (1 —dals). | (2.8)
|A(s1) — A(s2)] < alsi —sal, [Bi(s) —b ()| <¥'lsi —sal. (29)

Let u, v be solutions of Eq. (1.1) with the different initial values uo(x), vo(x) € L*>®(Q2)
respectively, but without any boundary value condition. If g(x) € C*(Q), and

Ag +|Vg| <0, (2.10)
then
/Q lu(x, 1) — v(x, )| vs(x)g(x)dx
5/9 lup(x) — vo(x) | vs(x)g(x)dx, ae.t €[0,T), (2.11)
where

—5+/ 2
U(S(X) —e 8 1+|x| ,

and § is a small positive constant, a, y' are constants.

Theorem 2.4 Suppose that A(s) is C2, bi(s) is C1, bi/(s) > 0 such that (2.6) is true.
Let u, v be solutions of Eq. (1.1) with the different initial values ug(x), vo(x) € L*°(2)
respectively, and with the same partial homogeneous boundary value condition

u(x, ) =v(x,1) =0, (x,1)e X, x 0,T). (2.12)
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Then
/Q lu(x,t) —v(x,t)|vs(x)dx < C/Q| up(x) — vo(x)| vs(x)dx. (2.13)

Here
Y, ={xe€0Q:Ag+|Vgl >0} (2.14)
Noticing that X, only depends on the the function g(x), we can call the method

used in this paper as the weak characteristic function method. This method is easily
to be generalized to study the stability of the other degenerate parabolic equations.

3 Proof of Theorem 2.2

Lemma 3.1 [21] Assume that Q@ C RY is an open set and let fy, f € L1(2), as
k — oo, fy— f weakly in L1(R2),1 < g < 0. Then

hm inf | fi ||Lq(g2) > f ”Lq(Q) (3.1

Consider the following regularized problem

du = AA(u) + 1A + L, (x,t) € Qur = 2, x (0, T), (3.2)
ot 0x;

with the initial boundary conditions with initial boundary value conditions

u(x,t) =0, (x,1)€d, x(0,7T), (3.3)
u(x,0) = ug,(x), x €2y, (3.4)

where for large enough n, 2, = {x € Q : |x| < n}, and ug, (x) € Cgo (£2;;) such that
1o, (x) locally uniform converges to ug(x).

It is well known that there are classical solutions u, € C>(Q,7)()C>(Qur) of
this problem provided that A, b; satisfy the assumptions in Theorem 2.2, one can refer
to the eighth chapter of [22] for this fact.

We need to make some estimates for u,, of (3.2). Firstly, by the maximum principle,
we have

lup| < lluonllpe =< c. 3.5

Secondly, we have the following important estimate of the solutions u,, of (3.2) with
the initial boundary value conditions (3.3), (3.4).
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Lemma 3.2 Let u, be the solution of (3.2) with (3.3), (3.4). If the assumptions of
Theorem 2.2 are true, then

[ |gradu, |vs(x)dx < c. 3.6)
Q

where |gradu|* = ZlNzl |%|2 + |%—';|2, ¢ is independent of n. o is a given positive
1
constant, and

vs(x) = exp (—o\/l + |x|2) .

Proof We generalize the solution u,, to the whole space R" such that when x € R \
Q,, u, = 0. We denote the generalized function by u,,, for simplicity, we denote it as u

for the time being. Differentiate (3.2) withrespecttox;,s = 1,2, -, N, N+ 1, xy4+1 =
Sy (Jgradul)

Tgrada] V3 (x), and

t, and sum up for s after multiplying the resulting relation by u,,

integrating over RV yields

Sy (|gradu|)
|gradu|
Sn (Igradul)
|gradu|

d 1
— I (|gradu|)vs (x)dx — —/ Aty Uy, vs(x)dx
n JrnN

dt RN

—/ i(a(u)uxiuxj +a(u)Au)uy, vs(x)dx
R

N 8)6,‘
/ Ab wyuy,)  Sy(lgradul)
RN !

ax; | gradu|
=0. (3.7)

vs(x)dx

Here and the after, the double indices such s, p represent the sum from 1 to N + 1,
the double indices i, j represent the sum from 1 to N.
Noticing that, for any & = (&1, &2, -, €N, EN+1)s

L = S0ED
ﬂ _ S,;(ISI)\S\Epléglgsn(\é\)épés’ if s p,
&0 Sl,(l%‘I)ISISpéxl;Sn(ISI)SpES . S,,‘(;‘SD’ if 5=p.
Integrating by part, we have
%1,

UxgxiUxpx; Vs (x)dx

d 1
= | I(grad dx — - | —L
ar [l Dnleradulvs nfRN T

/ () : . xgxi U px; V5 (X)
alu u -u vs(x)dx
RN 8&58517 a0

aa’ (u
—fRN a( )ux,-(lgradulSn(lgradM) — I/(|gradu|))vs (x)dx

1
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ab’ (u)
—/ (lgradu|S, (Igradu|) — I, (|gradul))vs (x)dx
RN 3xi
—/ a’(u)Au(|gradu|Sn(|gradu|) — I (Jgradu|))vs (x)dx
RN
=0. (3.8)
Letting n — 0, and noticing that
lin%) [|gradu|Sn(|gradu|) — I,7(|gradu|)] =0,
n—
similar as the proofs of [17,18,20]. We can show that
d
—f |gradu|vs(x)dx < ci +02/ |gradu|vs(x)dx,
dt RN RN
by the well-known Gronwall Lemma, we have
/ |gradu|vs(x)dx < c.
RN
Accordingly, denoting back u as u,,, we have
/ |gradu, |vs(x)dx < c. 3.9
RN
By (3.2), (3.9), it is not difficult to show that
T 1
f f |:a(ﬁn) + —} |Vun|?dxdt < c. (3.10)
0 RN n
Then, by (3.9)—(3.10), we have
/ |gradu, |vs(x)dxdt < c. (3.11)
Q
T 1
/ / |:a(u_n) + —} | Vi, |2vs (x)dxdt < c. (3.12)
0 Ja n
The proof is complete. O

Thus there exists a subsequence of {u,} (we still denote it as u,) and a function

u € BV (Q1) NL*°(Q7) such that u,, — u a.e.on Q7.
Proof of Theorem 2.2 First of all, by (3.12)

9 [

ax; Jo

8 u
\/a(s)ds—\a—/ Va(s)ds weakly in L>(Qg x (0, T)), VR >0,
Xi Jo
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a
3)6,'

u
/ Va(s)yds € LX(Qr x (0,T)), YR>0,i=1,2,...,N.
0

Let ¢ > 0, ¢ € C>(Q7). Multiplying (2.2) by ¢S, (u, — k), and integrating over
O, we obtain

9
/ / 08y (i — k)dxdt = / / AAGUn) @S, (uy — k)dxdt
or ot or

1 b (uy)
+— Aup@Sy(u, — k)dxdt + @Sy(up — k)dxdt.
n or or 0Xi
(3.13)

Let’s calculate every term in (3.13).

9
/ / o 8,y — k)dxdt = — f f Iy (up — K)prdcdt. (3.14)
or ot or

1
— // Aup@Sy(u, — k)dxdt
n or

1
=—— // Vin (Sy(un — )V + ¢S, (uy — k)Vuy)dxdt
n QnT

1 1
S // Vi, Sy — k)Vodxdt — — // | Yy [* S} (un — k)pdxdt,
n Onr n or
(3.15)

// AA(uy) Sy (u, — k)dxdt
or
=— // VA (un)(Sy(un — )V + ¢S, (uy — k)Vuy)dxdt
Or
= — // VAQu,)Sy(u, — k)Vodxdt — // a(uy) | Vuy |2 S;(u,, — k)pdxdt
or or

= // Ay(up, k) Apdxdt — f/ a(uy) | Vuy |2 S;](un — k)pdxdt, (3.16)
Or or

ab'
/ / Wn) o, (un — Kdxdr
or 0%
ouy,

__ e — i | 92 _ o —
- //Q ) b(k)]|:8x Syt = )+ S g — ) 2

i Xi

] dxdt

= —// B} (uy, k)@, dxdt. (3.17)
or
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From (3.13)—(3.17), we have

// Ly (uy, — k)w,dxdt+/f Ay (uy, k) Apdxdt — f/ B! (u,,,k)(pxldxdt
QnT

——// Vuy, - VoS, (u, — k)dxdt — —f/ | Vuy, | S’ (up — k)pdxdt
n or

—// a(uy) | Vuy |? S,y — k)pdxdt
or

=0. (3.18)
By that
lim — // Vu, - VoS, (u, — k)dxdt =0, (3.19)
n—-oon or
—= // | Vi [* S} (un — k)pdxdt <0, (3.20)
n or

and using Lemma 3.1,

lim inf / / S/ (it — k)a(un)au"

- /[ s:,w—k)‘v Mds
Or 0

Letn — oo in (3.18). By (3.19)—(3.21), we get (2.4).

At last, we can prove that the initial value (1.3) is satisfies in the sense of Defini-
tion 2.1 in a similar way as [2,8], we omit the details here. Thus, we have accomplished
the proof of Theorem 2.2. O

pdxdt. (3.2

4 Proof of Theorem 2.3

Let I';, be the set of all jump points of u € BV (Qr), vthenormal of T';, at X = (x, 1),
ut(X)andu~ (X) the approximate limits of u at X € I',, withrespectto (v, ¥ —X) > 0
and (v, Y — X) < Orespectively. For continuous function p(u, x, t) andu € BV (Qr),
define

1
plu,x, 1) = / prut + (1 —u", x, t)dr,
0

which is called the composite mean value of p. Moreover, if f(s) € CY(R), u €
BV (Qr), then f(u) € BV(Qr) and

0/ _ 2y o2 NN+1. 4.1y
0x; ax;’

where x4 = t as usual.
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Lemma 4.1 Let u be a solution of (1.1). Then
a(s) =0, s e I (x,1),u"(x,1)) a.e.onTy, 4.2)

which I(a, B) denote the closed interval with endpoints a and 8, and (4.2) is in the
sense of Hausdorff measure Hy (I'y).

The lemma and its proof can be found in [7].

Proof of Theorem 2.3 Let u, v be two entropy solutions of (1.1) with initial values
u(x,0) =up(x), v(x,0) =wvo(x), (4.3)

but without any boundary value condition.
Foranyn > 0,k,l € R, forany 0 < ¢ € Cg(QT), we have

//; |:I,,(u —k)o, — B;(u’ k)@x;

+ Ay (u, ) Ap — S (u — k) ‘V /u Va(s)ds
0

//Q |:I,7(v — l)(pr - B;(U, l)‘Py,'

+A,(v,DAp — S,’7(v =1 ‘V/v va(s)ds
0

2
(p] dxdt > 0, “4.4)

2
goj| dydt > 0. 4.5)

Letyr(x,t,y,7) = ¢(x, 1) ju(x—y,1—1). Here ¢ (x, 1) > 0, ¢p(x,7) € CF(Q7),
and

N
=yt =)= — ) [ Jeontxi — i), (4.6)
i=1
wp(s) = %w (%) Cw(s) e %:O(R), w(s) >0, w(s) =0
if [s] > 1, /‘00 w(s)ds = 1. “.7)

We choose k = v(y, 1), | = u(x,t), ¢ = ¥(x,t,y, 1) in (4.4) (4.5), integrate
over Q7, to obtain

//; ,/,/Q { I:IU(M v +VYr) — (B:](u, 'U)’(//Xi + B;'](v7 u)]//yi)

Ay, V) ALY + Ay (v, u)Ayw]
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u 2 v
_ S;](u —v) <‘V/ JVa(s)ds| + 'V/ va(s)ds
0 0

2
) w} dxdtdydt > 0. (4.8)

By a complicated calculation (similar as [20]), letting n — 0, 2 — 0 in (4.8), using
Lemma 4.1, we can deduce that

/ 0 {lu(x, 1) —v(x, )|dr — sgn(u — v)[b; (u)
—bi(0)1¢x, + |A) — A(v)|A¢} dxdr = 0. (4.9)

For0 <t <s < T, we choose

s—t
n() = / ac(0)do, € <min{t, T — s},
T

—t

where « () is the kernel of mollifier with «. (r) = O fort ¢ (—e, €). Let us chose the
test function

¢ =n)5(x),
in (4.9), in which &(x) € CgO(SZ). Then
/ lu(x,s) —v(x,s)|Ex)dx — f lu(x, ) —v(x, 7)|[E(x)dx
Q Q

= —/.S/ sgn(u — v)[b; (u) — b; (v)1&y,dxdt + /Y/ |[A(u) — A(v)|Aédxdt,
T JQ : Ja

(4.10)
By a process of limit, we can choose
§ =vs(x)g(x), (4.11)
where
vy = e OV I+
as before.
In the first place, we have the following direct calculations
Xi
Vo, = —0V§—F———,
V14 |x]?
2 L+ 0 12
X -
Vs = 8205 —1 2=t 6T (4.12)

—5\)5
1+ |x|? (1~|—|x|2)%
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x;g(x)
Ex, = Vo 8(X) + Vsg, () = —8vs————e + Vg, (X).
1+ |x|?

A§ = Avsg(x) + 2vsy, 8x; +v5A8

x| N+ (N - D|x|? Xi&x;
=4 -4 — 28V ——2— 4 ysAg.
[ PR T ) ]g(x) AV EEr
(4.13)
Since we assume that 0 < Ibi/(s)| < (1 —=9¥8)a(s),
—sgn(u — v)[b; (u) — b; (v)]&y; + |A(u) — A(v)|AE
= —sgn(u — v)(b; (u) — b;j (v)) [—ngJ% + V58x; (x):|
|x|? N+ (N —D|x|?
— 82 -3
+1A®m) — A(v)| |: K e Vs PR ]g(X)
F1A®W) — A@)| | —20v5—85 4 A
8\/1 + |x|? o8
2x;
< s [IA(M) —A()|Ag —8lA(u) — A(v)lﬁgn + |bi (1) — bi(v)|gx,~:|

+ 8+ yHvsg(x)lu — vl.
— Vs AG) — AW)| [Ag + (a 2l 'bl/(‘;)'> |ng|}
VIi+x2 a®) ’
+ 8 + ¥ Hvsg(x)u — v
< Vsl A(u) — AW)I[Ag + (6 + 1 —8)lgy 11+ cde + yHvsg(x)u — vl
< vslA(u) — A(W)|(Ag + |Vgl) + cd(a + ¥y Hvsg(x)|u — vl (4.14)

where the Cauchy mean value theorem is used,

bi(u) — b (v)
Aw) — A(v)

_bor

at) —

Since Ag + |Vg| < 0, by (4.10)—(4.14), we have

/ lu(x,s) —v(x,s)|vsg(x)dx — / lu(x, ) —v(x, v)|vsg(x)dx
Q Q

N
< c/ / vsg(x)|lu — vldxdt, 4.15)
T JQ



The well-posedness problem of a hyperbolic—parabolic... 1861

By the Gronwall inequality, we have

/ lu(x, s) —v(x, s)|vs(x)g(x)dx < c/ lu(x, 1) — v(x, t)|vs(x)g(x)dx. (4.16)
Q Q

Let Tt — 0. We have the conclusion. O

Proof of Theorem 2.4 Letu, v be two entropy solutions of (1.1) with the different initial
values u(x, 0), v(x, 0), and with the same partial homogeneous boundary values

ux,t)=vx,t) =0, (x,1)eX,x(0,71), 4.17)
where
Y, ={xec0Q:Ag+|Vgl =0}

Similar as the proof of Theorem 2.3, we have (4.10).
For small enough A, we set

89 - if 0 < g(x) <A,

on(x) = ; i g(r) > A, (4.18)
let
& = pr(x)vs(x), (4.19)
and denote
Q. ={xe:gkx) <AL
Then, when x € Q\Q;,
0.(x)y; =0, Api(x) =0. (4.20)
When x € 2,
o0y = £ Agr0 = 55, @21)

Since we assume that 0 < |bi/(s)| < (1 —8)a(s), we have

—sgn(u — v)[b; () — b; (v)]&x; + |A(u) — A(v)|AE
X @3 (x) i|

= —sgn(u — v)(b; (u) — b; (v)) |:—5V3\/TT + vs@ux; (x)
X
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2 _ 2
+|A(u)—A(v)||:52V5 x| N+ N ”'x'}om

_ sy
T+ P (1+xP)3

xi (pkxi

V14 |x]?

<vs |:|A(u) — AW)[A@p(x) — §|A(u) — A(v)|

+[A) — A(v)] |:—25va + vaAfp/\(x):|

2x;
/71 + |x|2(p)\xi
+sgn(u — v)(b; () — b; (1)@, (x)]
+ e+ yHvsen (x)|u — v

20| b ()]
< vs|A(u) — AW)| | Aga(x) + (8 + ) @i |

JI+ 2 a®)

+ 8o+ ¥ s (0)|u — vl .
< sl A@) — AW)I[A () + (6 + 1 — 8)lgay | + 8@ + ¥ s@r ()l — v]
< w3 A) — AWIIAR (x) + Ve (01 + (e + ¥ ) vsg)lu — vl (4.22)

where

L]
a@)

'bi(u) — b (v)
A) — A()

as before.
Noticing (4.19)—(4.21), we have

1
Apr(x) + Vor ()] = - (Ag + Vel

only when x € Q,, while x € Q\ ,, it vanishes.
If we denote

Q1 =1{x e Q;,:Ag+1|Vg| >0},
substituting (4.22) into (4.10),we have
/Qlu(x,S) —v(x, 8)|pr(x)dx < /Q lu(x, 7) — v(x, T)|@r(x)dx

+/sl/ Vsl AG) — AW)[(Ag + [Vegldxd
T A Q1

+c/ / vsg(x)|lu — v|dxdt. (4.23)
T JQ
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According to the definition of the trace, by the partial boundary value condition
.1
lim — vs|A(u) — A(v)|(Ag + |Vgdx
A—=0 A Qi

= / vs|A(u) — A(v)|(Ag + |VgdE = 0. (4.24)

Zp

Letting A — 0 in (4.23), we have

/ lu(x,s) —v(x, s)|vs(x)dx < [ lu(x, t) — v(x, 7)|vs(x)dx
Q Q

+c/ / lu — v|vs(x)dxdt. (4.25)
T JQ

Then

/ lu(x,s) —v(x, s)|vs(x)dx < / lu(x, t) —v(x, 7)|vs(x)dx.
Q Q

Let T — 0. We have the conclusion. |
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