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ABSTRACT

Gene-environment (G-E) interactions have important implications for the etiology and progression of many
complex diseases. Compared to continuous markers and categorical disease status, prognosis has been less in-
vestigated, with the additional challenges brought by the unique characteristics of survival outcomes. Most of
the existing G-E interaction approaches for prognosis data share the limitation that they cannot accommodate
long-tailed or contaminated outcomes. In this study, for prognosis data, we develop a robust G-E interaction
identification approach using the censored quantile partial correlation (CQPCorr) technique. The proposed
approach is built on the quantile regression technique (and hence has a solid statistical basis), uses weights to
easily accommodate censoring, and adopts partial correlation to identify important interactions while properly
controlling for the main genetic and environmental effects. In simulation, it outperforms multiple competitors
with more accurate identification. In the analysis of TCGA data on lung cancer and melanoma, biologically
sensible findings different from using the alternatives are made.

1. Introduction

For many complex diseases, gene-environment (G-E) interactions
have important implications for etiology, progression, and response to
treatment beyond the main genetic (G) and environmental (E) effects.
Many statistical approaches have been developed for detecting im-
portant G-E interactions, especially for categorical responses such as
disease status. We refer to [1-3] for a survey. Recent studies have also
shown that G-E interactions play a critical role for the prognosis of
many diseases. For instance, it has been suggested that the interaction
between gene TP53 and age affects the prognosis of glioblastoma [4].
Literature review suggests that there is less research on G-E interactions
for prognosis, which may be caused by the challenging characteristics
of prognosis data (non-negative distributions, censoring, etc.). Recent
methodological developments for identifying G-E interactions for
prognosis include [5, 6], and a few others.

For the identification of important G-E interactions, there are two
generic paradigms. The first paradigm conducts marginal analysis and
analyzes one or a small number of genes at a time. The second conducts
joint analysis and includes a large number of genes in a single model.
Both types of analysis have been extensively conducted, with marginal
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analysis perhaps being more popular. Comparatively, marginal analysis
is computationally simpler, and the results are more stable. In this ar-
ticle, we conduct marginal analysis and briefly discuss the possibility of
extending to joint analysis. In the literature, the commonest marginal
analysis strategy proceeds as follows. For each gene, fit a model con-
sisting of one E factor (or a few E factors), the gene itself, and its in-
teraction with the E factor. As the model is low-dimensional, standard,
especially likelihood-based, estimations are conducted. This model fit-
ting is cycled through all genes and E factors, and the p-values for in-
teractions (and main effects) can be obtained. Important interactions
can be identified based on the p-values. With a prognosis outcome,
popular models include the accelerated failure time (AFT) model with
weighted least squared estimation [7], Cox model with partial like-
lihood estimation, and others. A common limitation shared by most of
the existing studies is that they adopt non-robust estimations and
cannot accommodate long-tailed/contaminated prognosis data.

In practical genetic studies, long-tailed distributions and con-
tamination in prognosis response are not uncommon. These studies
usually cannot afford conducting strict subject selection, and as such,
the subjects are less homogeneous than in for example clinical trials.
Sometimes there are some extremely good or bad survivals, which has
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Fig. 1. Analysis of the LUAD and SKCM data: the empirical densities of log(survival time) (solid line) and best-fitted Normal densities (dashed line).

been observed in quite a few studies. In addition, human errors (for
example, mistakes in death records) can also cause long-tailed dis-
tributions and contamination. For relevant discussions, refer to [8, 9].
As demonstrating examples, consider the LUAD (lung adenocarcinoma)
and SKCM (cutaneous melanoma) data collected by TCGA (The Cancer
Genome Atlas). More information on these data can be found in the
data analysis section of this article as well as the TCGA website. For the
262 LUAD subjects analyzed in this study, one has survival time
238.11 months, while the rest 261 have survival times ranging from
0.13 to 129.43 months. For the 225 SKCM subjects, three have survival
times 241.20, 268.53, and 339.88 months, while the rest 222 have
survival times ranging from 2.04 to 228.42 months. In Fig. 1, we pre-
sent the empirical densities of the log survival time as well as the best-
fitted Normal densities. Compared to Normal, we observe longer left
tails. P-values for LUAD and SKCM from the Kolmogorov-Smirnov test
are 0.001 and 0.002, suggesting a significant difference from Normal. In
“classic” statistical analysis, it has been noted that data with long-tails/
contamination cannot be appropriately accommodated by non-robust
estimations: even a single extreme value can lead to biased estimation
and misleading inference. For low-dimensional biomedical studies, ro-
bust methods have been extensively developed and implemented. For
example, a robust censored quantile regression (CQR) approach has
been proposed in [10], which uses a recursive weighting strategy and a
generalized Kaplan-Merier (KM) estimator. In [11], a robust least ab-
solute deviation estimation (KMW-LAD) has been developed based on
the AFT model and KM weights. Other examples include the rank-based
regression [12], S-estimation [13], and others. Overall, development
and implementation in G-E interaction analysis with prognosis data are
still much limited.

In this study, we conduct G-E interaction analysis for data with
prognosis responses. To accommodate long-tailed distributions/con-
tamination in the response, we develop a robust censored quantile
partial correlation (CQPCorr) approach, which can be potentially ex-
tended to the analysis of categorical and continuous data. This study
advances from the existing literature in the following aspects. First, we
specifically consider the scenario with long-tailed distributions/con-
tamination in the prognosis response, which is not uncommon but has
been little investigated. Second, the proposed approach is built on the
quantile regression technique and may have a more solid statistical
basis than some alternatives. Quantile regression has been well devel-
oped for low-dimensional data [14], and its asymptotic distribution,
robustness, and statistical inference have been well established [15].
Compared to non-robust for example least squares regression, quantile
regression has been demonstrated to have comparable efficiency for
Normal error distribution and perform much better for a wide class of
non-Normal error distributions. It has been more recently adopted for
high-dimensional main effect analysis, and shown to have good
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properties, including consistency, asymptotic normality, and others
[16, 17]. Although quantile regression has been a popular tool in sta-
tistical analysis, its applications to genetic interaction analysis are still
limited. Different from the standard quantile regression technique, the
proposed approach adopts data-dependent weights to accommodate
censoring. In addition, tailored to interaction analysis, the partial cor-
relation technique is adopted. Third, compared to some alternative
robust techniques, the quantile-based is computationally more feasible,
making the proposed approach suitable for high-dimensional analysis.
It is noted that although components of the proposed approach have
roots in existing techniques, development and implementation in the
present context are new and innovative. In addition, our extensive
numerical study shows that the proposed approach can outperform
multiple direct competitors. Overall, this study provides a useful new
venue for identifying G-E interactions with prognosis responses.

2. Methods
2.1. Modeling

Consider a dataset with n independent subjects. For subject i, let T;
be the transformed (e.g., log) survival time of interest, and
X; = Xa, -, Xig) and Z; = (Zy,,Z;) be the g- and p-dimensional
vectors of E and G variables. To study the interaction between the kth E
factor and jth gene, consider the model

T = ay + ayXu + ByZy + OyXuZy + &, 6))
where ay; is the intercept, ayj, By, and 6y; are unknown coefficients, and
¢; is the random error with P(e; < 0|Xy,Z;) = 7. Note that here a very
weak assumption is made on the error distribution, whereas with non-
robust estimations, usually very stringent assumptions (for example,
Normal distribution) are needed. In the above model, one E factor, one
G factor and their interaction are considered. This strategy has been
commonly adopted in the literature. See for example [18, 19]. The
proposed approach can straightforwardly accommodate multiple E
factors, one G factor and their interactions in a single model. In prac-
tice, right censoring is usually present. For subject i, denote C; as the
transformed censoring time, then we observe Y; = min (T;,C;) and §; = I
(T; = C.

2.2. The CQPCorr approach

Denote X, Z; and T as the random variables corresponding to the
kth E factor, jth G factor and transformed survival time. In most of the
existing studies, the importance of interaction X;Z; on T is quantified by
the magnitude or p-value of 6y; [5]. Significantly different from the
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existing studies, we propose quantifying the importance of interaction
XiZ; using the quantile partial correlation defined as

gpcorr, (kj)
covi, (T — 18 — Xk = 02 2) X2 — v§ — 0 Xu — 3 2}

var{y, (T = nd = Xic — 09 Z)} var (X Zj — v — 0 Xk — 13 Z)

(2)

Here for a quantile 0 <7< 1, w(@=7—-1(u < 0) and
p(w) = uy,(W). (n5.n,.n)) = argmin E[p, (T — 7, — 7,Xc — 1,2)] and
@270, vy = argmin E[(XiZ; — % — nXk — $Z)?]. [E is the expectation
function with respect to the random variables X;, Z; and T. Note that 7,
11, N2, Yo, Y1 and yo take possibly different values for different k and j.
We omit the dependence on (k,j) to simplify notations.

The adopted quantile partial correlation measure has multiple de-
sirable properties. The same as the classic Pearson correlation coeffi-
cient, it lies between —1 and 1, and is scale-free and easy to compare
across variables. Unlike the simple correlation coefficient, it is defined
based on quantile and hence is robust to long-tailed distributions/
contamination. In (2), the main effects of G and E variables are first
removed from T and X;Z;, and then the correlation is computed. Thus,
the main effects are removed in a more explicit manner. In the litera-
ture, the quantile partial correlation has been used for screening pre-
dictors under high-dimensional settings and shown to be competitive
[20]. However, there is a lack of application in the context of G-E in-
teraction analysis. In our analysis, there is one additional significant
complication: T is subject to right censoring. To tackle this problem, we
propose the censored quantile partial correlation (CQPCorr) technique,
which advances from the quantile partial correlation by adopting
weights to accommodate censoring. Overall, the proposed approach
consists of the following steps.

Step I Conduct the censored quantile regression of the response on
the main effects, which corresponds to the first term in the numerator of
(2). Specifically, (76°,71°%,12°%) is estimated as

n
(7/7\0, ﬁla ﬁz) = argmin Z [Wipr (Yl - 770 - 771Xik - 7}2Zij)

i=1

+ (1 —w)p, (Yr® — 1y — 0 Xie — 1,Z)].

Y* ~ is a fixed value which is large enough.

Here we adopt the weights w/s to accommodate censoring. The
basic strategy is to redistribute the mass of a censored observation to
the non-censored observations to the right. This is achieved by creating
pseudo-observations with weights w;’s for censored observations and
complementary weights 1 — w;’s at a point large enough. Motivated by
the literature [10], w; is defined for a censored observation as

_ T—F(Ci |Xik:Zij)
1= F(Ci | Xu, Zy)

wi
3
if F(Ci|Xy,Zz) < 7, where F(t|Xy,Z;) is the conditional cumulative
distribution function of the survival time given the covariates. For
better computational feasibility, we approximate F(t| Xy, Z;) using the
Kaplan-Meier (KM) estimator and calculate the weight function at the
tth quantile as

T—F(G) s _ B
w = J1-F@ if ;=0 and F(G) <,
1 otherwise,

fori=1, .., n Here F(t)=1— Hi:t(i)ﬁ [1 - (n—i+ 1), where
the subscript “(i)” refers to the ith subject in the sorted data (according
to the observed times, from the smallest to the largest).

Step II Remove the main G and E effects from the interaction, and
obtain the “net” G-E interaction effect. Specifically, estimate
(vo%v1%72") as

n
(o o %) = argmin Y XacZy — % — nXu — 1Zy)*

i=1
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Step III Results from the above two steps are combined to assess
whether the interaction has an effect on prognosis after accounting for
the main effects. Specifically, for interaction X;Z;, the censored quantile
partial correlation is defined as

n Y [0 = wil (P (k) < 0)1r® (k.j)
Vot —wee) 230 (2 )y

cqpeorr, (k,j) =
@

where
O (k) = Y; — By — 5 Xu — 5,2
@ (k) = XuZyj — 7 — P Xk — B2

w=n" Z w;, and w?=n"! Z w?.
i i

As in Step I, the weights are introduced to accommodate censoring.

After applying the above procedure to all G and E factors, important
interactions can be identified in at least two ways. First, the CQPCorr
values can be directly compared, and the interactions that have larger
absolute CQPCorr values are concluded as more important. Second,
when more rigorous results are desired, the following inference can be
conducted. P-values of the CQPCorrs can be obtained using a permu-
tation approach, which has been a popular choice in the literature [21].
Then, the interactions with smaller p-values are regarded as more im-
portant. In our numerical studies, to be more rigorous, we adopt the
second strategy. To more clearly demonstrate the operation of the
permutation process, we provide the permutation distributions under
the null in Fig. A1 (Appendix). With the null distribution, one possi-
bility is to fit for example a parametric distribution and compute the p-
value analytically. In our numerical analysis, to generate more precise
p-values (especially for limited sample data), we use the empirical p-
value directly. It is noted that it may also be possible to apply alter-
native inference procedures, for example based on bootstrap [22, 23].

Remarks Advancing from the existing quantile partial correlation
studies, the proposed approach introduces weights to accommodate
censoring. In survival analysis, there are multiple ways to estimate F
(t|Xik,Zij) in (3) to accommodate censoring. Both (parametric, semi-
parametric) model-based and nonparametric approaches are available.
We adopt the KM based approach as it is computationally simpler and
has been commonly adopted in the literature. It also has the advantage
of making no assumption on the underlying data distribution, leading to
more robust results. It is noted that, although may seem “straightfor-
ward”, coupling the KM weights with quantile partial correlation to
achieve robustness with censored data has not been pursued in the
literature. Examining the procedures described above suggests that the
proposed approach can be directly applied to analysis with multiple E
factors. Setting all weights equal to one, the proposed approach can
directly accommodate continuous responses without censoring.

2.3. Computation

A significant advantage of the proposed approach is that it is com-
putationally much feasible. Step I conducts standard quantile regression
and can be realized using the R function rq. Step II is a linear regression
and can be realized using the R function Im. The last step includes a
straightforward calculation and does not demand any special function/
algorithm. As marginal analysis is conducted, to reduce computational
time, the proposed procedure can be realized in a highly parallel
manner. In addition, the computation of p-values via permutation can
also be realized in a parallel manner. To facilitate data analysis and
applications beyond this study, we have developed R code and made it
publicly available at www.github.com/shuanggema.

2.4. Toy examples

We further consider two toy examples with 100G factors to
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investigate the operating characteristics of the proposed approach. Data
are simulated under Scenarios C3 and C4 with the AR correlation
structure (p = 0.5) and Error 2, but with a lower dimensionality (see
Section 3 for details). Under both scenarios, the relative magnitudes of
interactions to main effects are small, making the identification of in-
teractions challenging. We conduct analysis using the proposed ap-
proach, censored quantile correlation (CQCorr), censored quantile re-
gression (CQR), and least absolute deviation estimation based on the
AFT model and KM weights (KMW-LAD). CQCorr is the one-step
counterpart of the proposed approach, where the correlation between
the interaction and response is directly computed without conducting
Steps I and II of the proposed approach. The comparison with CQCorr
can in a relatively direct way establish the merit of the proposed Steps I
and II which remove the effects of main E and G factors. CQR and KMW-
LAD analyze each interaction as well as its corresponding main effects
using the regression model (1), and the analysis framework is different
from the proposed correlation-based. All four approaches are robust. In
Fig. A2 (Appendix), we present the true values of 6;;’s, together with the
average estimated correlations using CQPCorr and CQCorr, and the
average estimated regression coefficients using CQR and KMW-LAD
over 100 replicates. Compared to CQCorr, the proposed approach is
able to identify important interactions more accurately, which provides
a strong support to the proposed Steps I and II. With CQR and KMW-
LAD, differences across the estimates are also observed, however, not as
distinct as the proposed approach. The superior performance of the
proposed approach over CQR and KMW-LAD may result from removing
main effects in Steps I and II as well as the censored quantile partial
correlation framework in Step III. More conclusive results are presented
in the next section.

3. Simulation

Simulation is conducted to gauge performance of the proposed ap-
proach and compare with competitors. For all simulated data, we set
n = 200, p = 1000, and q = 5. There are thus a total of 5000 interac-
tions and 1005 main effects. Other settings are as follows. (a) The G
factors are generated from a multivariate Normal distribution with
marginal mean O and variance 1. The continuous distribution mimics
gene expression data analyzed below. The Normal distribution, al-
though somewhat simpler than practically encountered, has been ex-
tensively adopted in published studies. Following published literature,
we consider the auto-regressive (AR) correlation structure, where the
jth and Ith G variables have correlation coefficient p! 1. Two levels of
correlation with p = 0.5 and 0.3 are examined. (b) There are five
continuous E factors (E1) that are generated from a multivariate
Normal distribution with marginal mean 0, marginal variance 1, and
AR correlation (p = 0.5). (c) The log event time Y is computed from the
following AFT model,

p

9 q p
Y= Zaka+ ﬁjzj-l- Z Z@ijij+E,
k=1 j=1 k=1 j=1

)

where ¢ is the random error. Note that this is a joint model, under which
prognosis is determined by the joint effects of multiple main effects and
interactions. We choose this model as it may better describe “biological
reality”. We have verified that the interactions and main effects im-
portant in this joint model are also important in a marginal sense (see
Appendix for details). Thus, it is sensible to conduct marginal analysis
and compare results to the data generating mechanisms described
above. Additionally, the log censoring times are generated from uni-
form distributions and conditionally independent of the event times
(conditional on covariates). The parameters are adjusted so that the
censoring rates are around 20%. (d) Consider three error distributions:
N(0,1) (Error 1), 90 % N(0,1) + 10 % N( = 50,1) (Error 2) and 80 % N
(0,1) + 20% N(0,50) (Error 3). The last two scenarios represent dif-
ferent types/levels of long-tailed distributions/contamination. (e) There
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are 16 important G-E interactions together with two main E effects and
five main G effects. Although the proposed approach focuses on inter-
action identification, the main effects are assumed to make the simu-
lated dataset closer to practical data. There are two types of important
interactions. The first type includes ten interactions (6, k = 1, 2 and
j =1, -, 5) with both main E (a; and a,) and G (;,j = 1, ---, 5) effects.
The second type includes six interactions (6, k = 3,4,5 and j = 6, 7)
without main effects, which violates the “main effects, interactions”
hierarchy. Five specific scenarios are considered.

Cl has 6;=2, ax =1, fj=1for k=1,2 and j=1, -, 5, and
0y =1 for k = 3,4,5 and j = 6, 7. All other coefficients are 0. Under
this scenario, the first type interactions are stronger than the corre-
sponding main effects.

C2 is the same as C1 except that the first type interactions and the
corresponding main effects are at the same level. Specifically,
Oj=a=pf=15fork=1,2andj=1, -, 5.

C3 is the same as C1 except that the magnitudes of the main effects
are larger. Specifically, a; = ay = f3; = - =5 = 3.

C4 is the same as C1 except that the magnitudes of the interactions
are smaller. Specifically, 6;; = 0.5 for k=1, 2 and j=1, -, 5, and
k=345andj=6,7.

C5 is the same as C1 except that the first type interactions have
negative effects. Specifically, 6;j= —2fork=1,2andj=1, -, 5.

We also examine some other settings with a larger sample size,
binary E factors, a banded correlation structure and a higher censoring
rate (see Section 3.1 and Appendix for details), covering a wide spec-
trum of settings.

3.1. Comparison with the alternative approaches

Besides the proposed approach, we also consider four alternatives
with the same covariate effects as in (1), including the AFT model, Cox
model, CQR, and KMW-LAD. As introduced in Section 1, AFT and Cox
models are perhaps the most popular approaches for analyzing prog-
nosis data, but without the capacity of accommodating long-tailed
distributions and contamination. Note that our simulation is based on
the AFT model, and so the Cox model is mis-specified. Due to its po-
pularity and satisfactory performance, the Cox model has been adopted
as an alternative approach in many published studies [24, 25]. Thus, we
also include the Cox model for comparison. CQR and KMW-LAD are
also robust. Different from the proposed three-step correlation-based
approach, they analyze each interaction and its corresponding main
effects under the one-step regression framework. For the proposed ap-
proach and four alternatives, p-values are computed and used to rank
and identify interactions. We note that there are other G-E interaction
analysis methods that are potentially applicable to the simulated data.
The above four approaches are chosen because their analysis frame-
works are the closest to the proposed and also because of their popu-
larity and competitive performance demonstrated in published studies.
With the proposed approach and CQR, we set quantile 7= 0.5.
Choosing this specific quantile makes the proposed approach more
comparable to KMW-LAD (which is a special case of quantile regression
with 7 = 0.5).

The main goal of our analysis is to accurately identify important
interactions. Identification accuracy is evaluated using multiple mea-
sures, including: (a) TP20, which is the number of true positives when
20 interactions are selected; (b) TP40, which is defined in a similar way
as TP20; (c) pAUC, which is the standardized partial area under the
ROC curve when the number of false positives are restricted to 150
[26]; (d) TP.FDR, which is the number of true positives when the
number of important interactions is selected using the false discovery
rate (FDR) approach with target FDR=0.1; (e) FP.FDR, which is the
corresponding number of false positives; and (f) E.FDR, which is the
estimated FDR. All five measures have been adopted in multiple pub-
lications.

Under each setting, we simulate 200 replicates. Summary results for
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Table 1
Simulation results for Scenario C1 with the AR correlation structure. In each cell, mean (sd) based on 200 replicates.
Error Approach TP20 TP40 pAUC TP.FDR FP.FDR E.FDR
p=03 1 AFT 9.8(1.2) 10.7(0.9) 0.79(0.05) 10.9(1.2) 69.0(57.0) 0.78(0.17)
Cox 9.6(1.6) 10.5(1.7) 0.83(0.05) 9.0(2.0) 16.2(27.8) 0.49(0.22)
CQR 3.11.4) 4.9(1.8) 0.67(0.04) 7.9(2.0) 116.1(31.3) 0.93(0.02)
KMW-LAD 7.1(2.3) 8.8(2.4) 0.81(0.06) 3.2(2.3) 0.8(1.3) 0.12(0.16)
CQPCorr 8.6(1.8) 10.2(2.0) 0.84(0.06) 4.8(2.2) 0.8(0.9) 0.11(0.11)
2 AFT 4.8(1.8) 5.8(1.7) 0.71(0.05) 3.2(2.3) 4.9(6.0) 0.38(0.34)
Cox 6.9(2.0) 8.3(2.1) 0.78(0.06) 4.1(2.4) 2.2(2.6) 0.32(0.24)
CQR 2.9(1.3) 4.1(1.8) 0.65(0.05) 6.3(2.5) 94.4(36.4) 0.94(0.02)
KMW-LAD 6.4(1.7) 8.3(1.7) 0.79(0.05) 1.2(1.1) 0.3(0.6) 0.08(0.17)
CQPCorr 7.7(1.9) 8.8(2.1) 0.81(0.05) 3.31.7) 0.4(0.6) 0.07(0.11)
3 AFT 3.2(2.4) 4.3(2.8) 0.65(0.08) 1.8(2.3) 5.7(9.0) 0.43(0.41)
Cox 5.0(2.9) 6.4(2.9) 0.72(0.09) 2.3(2.5) 1.7(1.8) 0.30(0.30)
CQR 1.8(1.4) 3.0(1.7) 0.62(0.06) 5.8(2.5) 105.0(39.2) 0.94(0.02)
KMW-LAD 4.0(1.3) 5.4(1.6) 0.71(0.05) 0.9(1.0) 0.2(0.4) 0.11(0.21)
CQPCorr 6.0(2.4) 7.7(2.6) 0.77(0.07) 2.4(1.9) 0.5(0.8) 0.09(0.15)
p=0.5 1 AFT 11.2(1.4) 12.5(1.7) 0.84(0.06) 14.1(1.3) 142.9(165.7) 0.84(0.11)
Cox 11.6(1.2) 13.2(1.2) 0.90(0.04) 12.9(1.7) 29.8(29.6) 0.60(0.17)
COR 4.7(1.6) 6.9(1.8) 0.74(0.06) 11.5(2.0) 133.0(33.1) 0.92(0.02)
KMW-LAD 10.6(1.8) 12.3(1.7) 0.90(0.05) 7.9(2.3) 2.3(1.6) 0.21(0.13)
CQPCorr 12.2(1.6) 13.8(1.5) 0.94(0.03) 10.9(2.0) 3.3(2.5) 0.21(0.12)
2 AFT 9.3(1.7) 10.2(1.5) 0.81(0.04) 9.4(2.7) 22.1(29.6) 0.50(0.29)
Cox 10.4(1.3) 11.4(1.7) 0.86(0.04) 9.9(1.9) 6.3(4.1) 0.35(0.13)
CQR 5.2(1.4) 7.1(1.5) 0.73(0.04) 9.6(2.1) 108.4(23.8) 0.91(0.02)
KMW-LAD 9.0(2.0) 9.9(1.8) 0.84(0.05) 5.6(2.5) 1.2(1.3) 0.17(0.17)
CQPCorr 10.4(1.7) 12.0(2.0) 0.89(0.05) 8.0(2.4) 1.6(1.2) 0.16(0.09)
3 AFT 7.0(2.1) 8.1(2.1) 0.77(0.06) 5.9(2.9) 17.1(20.7) 0.56(0.28)
Cox 9.3(1.5) 10.2(1.6) 0.84(0.05) 8.4(2.1) 8.0(13.2) 0.35(0.22)
COR 4.5(1.6) 6.3(1.7) 0.70(0.05) 9.0(1.9) 105.8(44.7) 0.92(0.03)
KMW-LAD 8.7(1.9) 10.7(1.9) 0.86(0.06) 4.0(2.0) 0.8(1.0) 0.13(0.16)
CQPCorr 10.7(1.7) 12.2(1.9) 0.90(0.06) 7.5(2.4) 1.3(1.4) 0.14(0.11)

Table 2
Simulation results for Scenario C2 with the AR correlation structure. In each cell, mean (sd) based on 200 replicates.
Error Approach TP20 TP40 pAUC TP.FDR FP.FDR E.FDR
p=03 1 AFT 9.5(1.6) 11.1(2.0) 0.82(0.06) 11.3(3.1) 67.6(64.0) 0.73(0.21)
Cox 8.8(1.6) 10.5(2.0) 0.85(0.05) 7.2(2.6) 5.1(7.6) 0.29(0.20)
CQR 3.0(1.6) 4.4(1.9) 0.67(0.05) 8.4(2.3) 122.4(44.7) 0.93(0.02)
KMW-LAD 6.2(1.8) 8.2(2.0) 0.80(0.06) 2.0(1.5) 1.0(1.2) 0.26(0.30)
CQPCorr 8.1(2.0) 9.8(2.0) 0.84(0.06) 3.9(2.3) 1.2(1.3) 0.17(0.19)
2 AFT 3.2(1.8) 4.8(2.4) 0.66(0.07) 1.41.9) 4.3(6.6) 0.45(0.43)
Cox 5.4(2.2) 6.9(2.5) 0.73(0.07) 2.3(2.3) 2.8(4.8) 0.36(0.38)
CQR 2.3(1.3) 3.5(1.6) 0.63(0.04) 6.1(2.1) 111.3(32.9) 0.94(0.02)
KMW-LAD 5.7(2.0) 7.4(2.4) 0.77(0.06) 1.5(2.3) 0.2(0.5) 0.04(0.12)
CQPCorr 7.2(2.4) 9.0(2.2) 0.81(0.06) 2.4(1.9) 0.1(0.4) 0.03(0.07)
3 AFT 1.5(1.49) 2.2(1.4) 0.58(0.06) 0.4(1.0) 2.7(6.2) 0.47(0.48)
Cox 3.9(2.3) 4.9(2.8) 0.69(0.09) 1.0(1.6) 1.5(2.6) 0.26(0.39)
CQR 2.2(1.2) 3.2(1.5) 0.62(0.04) 5.4(2.1) 105.2(38.0) 0.95(0.02)
KMW-LAD 4.2(1.4) 5.7(1.8) 0.73(0.06) 0.3(0.5) 0.1(0.2) 0.03(0.12)
CQPCorr 5.4(2.2) 7.2(2.3) 0.76(0.07) 1.21.49) 0.1(0.2) 0.01(0.06)
p=0.5 1 AFT 11.9(1.4) 13.4(1.4) 0.88(0.05) 14.1(1.5) 86.6(100.4) 0.75(0.14)
Cox 12.4(1.5) 13.6(1.8) 0.92(0.04) 12.6(2.0) 11.6(13.6) 0.38(0.20)
CQR 5.0(2.0) 7.0(2.1) 0.73(0.06) 11.0(2.0) 138.2(40.5) 0.92(0.03)
KMW-LAD 10.9(1.8) 12.5(1.8) 0.91(0.05) 7.4(2.4) 1.9(1.8) 0.18(0.15)
CQPCorr 12.0(1.5) 13.8(1.5) 0.95(0.03) 10.1(2.5) 2.5(2.0) 0.17(0.12)
2 AFT 7.7(1.9) 9.1(2.0) 0.79(0.06) 7.3(3.4) 27.8(49.0) 0.53(0.27)
Cox 10.1(2.1) 11.3(2.1) 0.86(0.06) 8.1(3.4) 3.2(4.8) 0.20(0.20)
CQR 4.8(1.5) 6.4(2.0) 0.72(0.05) 9.9(2.0) 112.1(39.1) 0.91(0.03)
KMW-LAD 9.5(2.1) 11.6(2.1) 0.88(0.06) 5.8(2.3) 1.11.2) 0.14(0.15)
CQPCorr 11.2(2.0) 12.8(2.0) 0.91(0.05) 8.2(2.5) 1.4(1.3) 0.13(0.10)
3 AFT 5.0(3.1) 6.3(3.3) 0.72(0.10) 4.3(4.4) 12.1(17.4) 0.56(0.38)
Cox 6.9(2.7) 8.7(3.0) 0.80(0.08) 5.0(4.0) 5.0(11.3) 0.26(0.28)
CQR 3.9(1.5) 5.5(1.5) 0.70(0.04) 8.8(2.0) 110.5(36.4) 0.92(0.02)
KMW-LAD 8.5(2.0) 10.7(1.9) 0.85(0.05) 4.0(2.5) 1.0(1.3) 0.15(0.18)
CQPCorr 9.6(1.8) 11.2(2.3) 0.87(0.06) 5.8(3.0) 1.4(1.5) 0.15(0.13)

Scenarios C1 and C2 are presented in Tables 1 and 2, respectively. It is
observed that the proposed approach has similar or better performance
than the alternatives. When there is no contamination (Error 1), the
proposed approach may be slightly inferior to the non-robust alter-
natives. This is reasonable as the non-robust alternatives can be more
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efficient for data with no contamination. Although the true model is not
Cox, the Cox-model-based approach is observed to have satisfactory
performance. Both the Cox and AFT models are transformation models.
The “robustness” of the Cox model (to model mis-specification) has also
been observed in the literature. The proposed approach can more
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accurately identify important interactions than the robust alternatives.
For example in Table 2 with p = 0.3 and Error 1, the proposed approach
selects on average 8.1 true nonzero interactions when the model size is
20, while CQR and KMW-LAD select 3.0 and 6.2 on average. When
there are strong correlations which are common in practice, the ad-
vantage of the proposed approach over the alternatives gets more
prominent, even over AFT and Cox for data without contamination. For
example in Table 1 with p = 0.5 and Error 1, the proposed approach has
pAUC=0.94, compared to 0.84 (AFT), 0.90 (Cox), 0.74 (CQR), and
0.90 (KMW-LAD). When data have contamination, the proposed ap-
proach has significant advantages. For example in Table 1 with p = 0.3
and Error 3, the proposed approach has pAUC=0.77, compared to 0.65
(AFT), 0.72 (Cox), 0.62 (CQR), and 0.71 (KMW-LAD). We also examine
an example of the partial ROC curves in Fig. A4 (Appendix) under
Scenario C1 with p = 0.3 and Error 3. It is shown that the solid line
representing the proposed approach is superior to the others.

With a target FDR of 0.1, it can be seen that the proposed approach
performs better in achieving the nominal FDR control and has the
smallest estimated FDR under most settings. Except for KMW-LAD, the
alternatives do not have a reasonable FDR control. For example, in
Table 1 with p=0.3 and Error 1, the proposed approach has
E.FDR=0.11, compared to 0.78 (AFT), 0.49 (Cox), 0.93 (CQR), and
0.12 (KMW-LAD). Under the settings with p = 0.3, the values of TP.FDR
with the proposed approach are relatively small which is likely to be
caused by the limited sample size. We further examine the results for
Scenario C1 with p = 0.3 and various sample sizes in Tables A1-A3
(Appendix). With a larger sample size, the proposed approach is able to
identify the majority of the true positives with the estimated FDR ap-
proximately being 0.1. The improvement of TP.FDR is also observed
when there is a stronger correlation (p = 0.5) even with a small sample
size.

In addition, we conduct analysis on the simulated data under
Scenarios C3-C5 with p = 0.5. Summary results are provided in Tables
A4-A6 (Appendix). It can be seen that all approaches perform slightly
worse under these three scenarios compared to Scenario C1. This may
due to that the relative magnitudes of interactions to main effects under
Scenarios C3 and C4 are smaller, and the interactions and their corre-
sponding main effects have different directions under Scenario C5.
Similar to under the previous simulation scenarios, the proposed ap-
proach performs better than or comparable to the alternatives. For
example in Table A5 with Error 2 (Scenario C4), the proposed approach
has TP20=7.6, compared to 1.2 (AFT), 4.2 (Cox), 3.4 (CQR), and 7.2
(KMW-LAD). For Scenarios C1 and C2, we also examine other settings
which have G factors with the banded correlation structure, E factors
with binary measurements, and a higher censoring rate (35%). Detailed
results are provided in Appendix. Similar patterns are observed for the
G factors with the banded correlation structure. Performance of all
approaches deteriorates when the datasets have binary E factors or a
higher censoring rate, which is as expected. However, the proposed
CQPCorr still has superior or comparable performance.

An advantage of quantile-based approaches is that multiple quan-
tiles can be potentially examined to generate a more comprehensive
picture. We analyze the simulated data under Scenario C1 with p = 0.5
using the proposed approach and CQR with various values of z, and
present the summary results in Table A15 (Appendix). The proposed
approach can achieve favorable performance with multiple quantiles.

3.2. Computational cost

Simulation suggests that the proposed analysis is computationally
feasible. The analysis of 5000 interactions (along with the corre-
sponding main effects) can be accomplished within ten seconds using a
laptop with standard configurations. Although a large number of per-
mutations may need to be computed, as they can be analyzed in a
highly parallel manner, the overall computational cost is still much
affordable. For example, for 10,000 permutations, the analysis can be
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accomplished within 10 min using 100 parallel jobs on a cluster (Intel
Xeon CPU E5-2620 v3 at 2.40GHz). A higher degree of parallel com-
puting can further reduce computer time.

4. Data analysis

TCGA is a recent collective effort organized by the NCI. For multiple
cancer types, comprehensive data collection has been conducted, gen-
erating clinical, environmental, and genetic data. With a high quality,
TCGA provides an ideal testbed. We analyze TCGA data on lung ade-
nocarcimona (LUAD) and cutaneous melanoma (SKCM). We refer to the
TCGA website for more information on the study design. Data analyzed
are downloaded from TCGA Provisional using the R package cgdsr.

4.1. Analysis of LUAD data

We focus on primary tumor samples of the Whites. The response of
interest is overall survival. Data are available for 262 subjects, among
whom 93 died during followup. The survival times range from 0.13 to
238.11 months with median 20.65 months. The E factors analyzed in-
clude smoking pack years (smoking), age, American Joint Committee
on Cancer (AJCC) tumor pathologic stage (stage), and gender, all of
which have been suggested to be potentially associated with lung
cancer prognosis [27]. Following the literature, here we take a loose
definition of E factors to also include clinical variables. For G factors,
we analyze mRNA gene expressions, which have been collected using
the MluminaHiseq RNAseq V2 platform. A total of 20,189 measure-
ments are available. As the number of relevant genes is not expected to
be large, we conduct a simple prescreening and select the top 2000
genes with the largest variances across all samples for downstream
analyses.

When applying the proposed approach, we compute p-values based
on 10,000 permutations and use the FDR approach to identify im-
portant interactions. With a target FDR of 0.1, 48 G-E interactions are
identified, and the CQPCorr values are shown in Table 3. Literature
search suggests that the identified genes and interactions may have
important biological implications. For example, a negative correlation
between survival and the AP3D1-Gender interaction is observed. Gene
AP3D1 has been reported as being involved in fusions in lung cancer
and overexpressed in lung adenocarcinoma in women compared with
men. Gene BPIFB1 (LPLUNC1) is a secretory protein that is pre-
dominantly present in lung tissues and has been shown to be potentially
relevant to lung carcinogenesis. Gene CHEK2 is a cell cycle-control gene
encoding a pluripotent kinase that can cause arrest or apoptosis in re-
sponse to DNA damage, and its mutations have been shown to be as-
sociated with an increased risk of lung cancer. CPSF4 has been found to
play an important role in regulating lung cancer cell proliferation and
survival, and has been suggested as a potential prognostic biomarker
and therapeutic target for lung adenocarcinoma. Gene DKK1 has been
observed to increase the migratory activity of mammalian cells and
suggested as a novel serologic and histochemical biomarker for lung
adenocarcinoma. Published analysis has also suggested that inhibition
of gene PCSK9 induces apoptosis and inhibits proliferation of lung
adenocarcinoma cells via endoplasmic reticulum stress and mitochon-
drial signaling pathways. WFS1 protein is expressed in various tissues
but at higher levels in lung and has been found to probably contribute
to the relationship of cigarette smoking and lung cancer.

Data are also analyzed using the alternatives. The summary of
comparison is presented in the upper sub-table of Table Al6
(Appendix). When evaluating the differences in findings, we use both
the simple numbers of findings as well as the RV-coefficients [28],
which measure the common information of two matrices of interac-
tions, with a larger value indicating a higher degree of similarity. The
RV-coefficient can effectively account for correlations of different genes
and is a more objective and rigorous measure of overlap. More detailed
identification results of the alternative approaches are available from
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Table 3 Table 4
Analysis of the LUAD data using CQPCorr: identified G-E interactions. Analysis of the SKCM data using CQPCorr: identified G-E interactions.
Smoking Age Stage Gender Breslow thickness  Clark level  Age Stage Gender
ABI2 -0.178 ABCA8 -0.198
ABR —0.200 ADGRD1 -0.197
AKR1D1 0.186 AGPAT2 -0.211
AP3D1 -0.197 ANAPC2 —-0.194
BPIFB1 0.133 ATAD3A -0.211
BRE.AS1 0.206 ATP5G2 -0.223
C190RF57 0.200 ATP5SL 0.217
C10RF229 0.188 AURKAIP1 -0.217
CIRL 0.193 BOLA2 -0.205
C3ORF38 -0.185 C150RF41 0.222
C60RF163 0.187 C190RF53 -0.251
CAPN7 -0.175 C10RF204 0.220
CHEK2 0.185 C10RF226 0.231
CST5 0.188 C4A -0.200
CSTF2 -0.197 C9ORF85 -0.220
DAGLA -0.210 CASP7 0.205
DKK1 -0.184 CD164 0.240
EIF2B5 0.197 CECR1 -0.198
ETV5 -0.188 CEP57L1 0.211
FAF2 -0.214 CHMP1A 0.197
FAM114A2 -0.260 CHRD -0.215
HABP4 -0.204 COX6A1 -0.219
HIST2H2AC -0.222 CTXN2 0.222
LINC01547 0.209 DDT -0.210
LINGO1 0.183 DERL3 -0.204
MFAP3 -0.187 DPPA3 -0.211
MMP25 -0.222 DUSP26 -0.222
MRFAP1L1 0.214 E2F6 0.212
MTF2 0.197 ECSIT -0.212
MZF1.AS1 0.212 EIF3G -0.226
NCAPD2 -0.182 FATE1 -0.221
PAXIP1.AS1 0.172 FGFR10P 0.208 0.241
PCDHA11 -0.207 GADD45GIP1 ~ —0.223
PCSK9 0.181 GSN -0.208
PIGR 0.176 KCNE3 -0.213
RAETIL 0.192 KCNK17 -0.195
RCOR2 0.196 KIAA2013 —-0.194
RNF14 -0.207 KLK4 -0.203
SNX4 0.236 LHB -0.192 -0.200
SP2 -0.197 LRSAM1 -0.209
TAPT1 0.191 LYRM5 0.221
TTTY14 0.197 MAF1 -0.191
UBE2S -0.191 MAGOHB 0.218
UBLCP1 -0.212 MAPK4 -0.207
UGT1A3 0.185 MZB1 -0.202
WEFS1 0.185 NCKAP1 0.214
ZNF174 -0.199 NDUFA11 -0.206
ZNF721 0.211 NDUFB7 -0.221
NFKBIE -0.222
NKX2.4 -0.197
the authors. Table A16 suggests that although there are overlapping NOSIAP 0.221
. e . i . . NTMT1 -0.222
identifications, the proposed approach identifies a different set of in- NUDT19 0.235
teractions. As the numbers of interactions identified by different ap- PARVB ~0.191
proaches are quite different, we also consider the top 40 interactions PDSS1 0.219
and evaluate overlap. Note that because of ties, the numbers can be PEBP1 —0.199
slightly off. The results are shown in the lower sub-table of Table A16 glﬁ[s);37 0.197 0.232
(Appendix). Again it is observed that although there are overlaps, the RNF144A 0.236 '
proposed approach makes different findings. With practical data, it is SMYD4 0.235
difficult to objectively evaluate identification accuracy. Here we eval- SRR 0.233
uate the stability of findings, which may provide some insight into the SSR2 —0.216
. . - SURF2 -0.215
analysis. Specifically, we compute the observed occurrence index (OOI) TBC1D10A —0.218
[29], which lies between 0 and 1 and can be roughly interpreted as the TCTA —0.215
probability of an interaction being identified in random samples and TCTE1 -0.220
with a larger value indicating higher stability. For the interactions THEM6 —0.203
identified using the FDR controlling procedure, we compute the OOI iﬁfy 159 0.217 0208
values. The proposed approach has mean OOI (across the identified TRPM2 —0.206 '
interactions) 0.41, compared to 0.26 (AFT), 0.34 (Cox), 0.18 (CQR), UQCRQ —0.216
and 0.14 (KMW-LAD). The OOI values are moderate, which has also VAMP4 0.207
been observed in the literature. This may due to the complex correla- VCAN -0.199
VSTM5 0.231

tion structure, low signal-to-noise ratio, high censoring rate, small
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Table 4 (continued)

Breslow thickness  Clark level  Age Stage Gender
WDR4 —0.209
ZFP41 —-0.213
ZNF671 —0.239
ZUFSP 0.198

sample size, and other factors. However, the proposed approach still
has better stability, which provides support to its superiority.

4.2. Analysis of SKCM data

We focus on metastatic samples of the Whites. Data are available for
225 subjects. The response of interest is overall survival. Among the
subjects, 93 died during followup, with survival times ranging from
2.04 to 339.88 months (median 56.31 months). For E variables, we
consider Breslow thickness at diagnosis, Clark level, age, AJCC tumor
pathologic stage, and gender, all of which have been suggested in the
literature. For G variables, we consider gene expressions, for which
20,189 measurements are available. With the same processing as above,
2000 gene expressions are selected for downstream analysis.

The proposed approach identifies 80 G-E interactions with the FDR
control. Details are presented in Table 4. Most of the identified inter-
actions are with Breslow thickness and Clark level, which are the most
important prognostic parameters in evaluating primary tumors [30].
Published studies suggest potentially important implications of the
findings. For example, gene GSN has been shown to be crucial for mi-
gration and invasion of melanoma cell lines, indicating its potential
effects on cutaneous melanoma. Gene NFKBIE has been suggested as a
candidate oncogene in melanomas, of which recurrent mutations have
been found at several nearby hotspots in melanomas. The expression
levels of gene PEBP1 (RKIP) in melanoma cancer cell lines have been
found to be lower relative to primary melanocytes, indicating its im-
portant role in melanoma turmorgenesis. Gene PLD1 has been observed
to be strongly expressed in primary and metastatic melanomas, en-
hancing the activity of basal phospholipase D enzyme in a protein
phosphorylation-independent manner in melanoma cells. Gene
RNF144A has been found to be specifically upregulated in melanocytes,
which function to avoid uncontrolled proliferation and to be a part of
embryonic development, acting as cancer development modulators.
Gene SSR2 exerts a prosurvival functionality in human melanoma cells,
and higher expression levels of SSR2 have been observed to be asso-
ciated with an unfavorable disease outcome in primary melanoma pa-
tients. Gene TRPM2 is capable of inducing melanoma apoptosis and
necrosis, and has been suggested as an important diagnostic and
prognostic marker for primary cutaneous melanoma.

Data are also analyzed using the alternatives. The summary com-
parison results are shown in Table A16 (Appendix). Both the FDR
control results and (roughly) top forty lists suggest that the proposed
approach identifies interactions different from the alternatives. Stability
is also evaluated. For the proposed approach, the average OOI is 0.37,
compared to 0.26 (AFT), 0.28 (Cox), 0.19 (CQR), and 0.22 (KMW-LAD).

5. Conclusions

The identification of G-E interactions is an important task in genetic
epidemiology studies. In this article, we focus on prognosis data.
Prognosis is an essential endpoint in the study of cancer, cardiovascular
diseases, and many others. Different from most existing studies, we
have developed a novel approach which can accommodate long-tailed
distributions/contamination in the prognosis response. The proposed
approach has an intuitive formulation and solid statistical basis, and
can more explicitly remove main G and E effects so as to facilitate the
analysis of interactions. By examining a wide spectrum of simulation
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settings, we have shown that the proposed approach can outperform
direct competitors. It is interesting to note that it has more accurate
identification than two robust approaches. In the analysis of TCGA lung
and skin cancer data, interactions different from using the alternatives
are identified. Literature search shows that the identified genes and
interactions have sound biological interpretations. In addition, the
proposed approach has more stable identifications.

The proposed approach conducts marginal analysis, which is more
popular than joint analysis in the current literature. It can be potentially
extended to joint analysis. The formulations in the three steps may
directly hold. However, with the high dimensionality of joint analysis,
the estimation demands regularization. This extension is expected to be
highly nontrivial and warrants a separate investigation. The proposed
approach may not respect the “main effects, interactions” hierarchy,
which has been stressed in some recent studies [31, 32]. With hier-
archy, an interaction can only be identified if the corresponding main
effects are also identified. In (4), when the main E and G factors are not
associated with the response, the estimated 7, #, and 7, in Pk, Jj) can
be close to zero. Then, no information is removed from the response,
and the proposed CQPCorr can still work. Thus, the identified interac-
tions do not necessarily have corresponding main effects. As our main
interest is to identify interactions, no specific attention is paid to the
identification of main effects. More studies on the identification of main
effects and “main effects, interactions” hierarchy are deferred to future
investigation. In Step II, we adopt the least squared regression, as it is
computationally simpler and generates satisfactory results in simulation
and data analysis. If needed, robust regression, such as quantile-based,
can be conducted as in Step I. Besides the KM estimator, it can be of
interest to estimate the conditional cumulative distribution function F
(t| X, Z) using other approaches. The details will be studied in the
future. The proposed approach can also be extended to accommodate
non-linear or nonparametric G-E interactions. In Steps I and II, a non-
parametric model, such as the varying coefficients model, can be
adopted. In Step III, the censored quantile partial correlation can be
developed based on a correlation measuring nonlinear dependence, for
example the distance correlation. In the study, we have focused on
methodological development and numerical examination. Theoretical
study for robust methods under high-dimensional settings is still much
limited and will be postponed to future research. In numerical study, we
set quantile = 0.5 which is one of the most popular choices in the
literature. More numerical analysis with multiple quantiles may be of
interest. For example, following the literature [33], we can compare the
identified interactions across different quantiles. In data analysis, sig-
nificant differences across approaches are observed. High-dimensional
interaction identification can be more challenging than the identifica-
tion of main effects. Even in simulation (which has simpler settings), a
few false positives are observed. The significant differences observed in
Table A16 (Appendix) are at least partly attributable to potential false
positives. In the literature, G-E interaction analysis for lung and skin
cancers is still limited. The sound biological implications of the iden-
tified genes provides at least partial support to the validity of our
analysis. This is further supported by the improved stability measured
using OOI. More functional studies are needed to confirm the findings.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
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References

[1]
[2]

[3]

[4]

(5]

[6]

71

[8]

[91
[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

D.J. Hunter, Gene-environment interactions in human diseases, Nat. Rev. Genet. 6
(2005) 287-298.

D. Thomas, Gene-environment-wide association studies: emerging approaches,
Nat. Rev. Genet. 11 (2010) 259-272.

N.L Simonds, A.A. Ghazarian, C.B. Pimentel, S.D. Schully, G.L. Ellison,

E.M. Gillanders, L.E. Mechanic, Review of the gene-environment interaction lit-
erature in cancer: what do we know? Genet. Epidemiol. 40 (2016) 356-365.

T.T. Batchelor, R.A. Betensky, J.M. Esposito, L.D.D. Pham, M.V. Dorfman,

N. Piscatelli, S. Jhung, D. Rhee, D.N. Louis, Age-dependent prognostic effects of
genetic alterations in glioblastoma, Clin. Cancer Res. 10 (2004) 228-233.

X. Shi, J. Liu, J. Huang, Y. Zhou, Y. Xie, S. Ma, A penalized robust method for
identifying gene—environment interactions, Genet. Epidemiol. 38 (2014) 220-230.
N. Sharafeldin, M.L. Slattery, Q. Liu, C. Franco-Villalobos, B.J. Caan, J.D. Potter,
Y. Yasui, A candidate-pathway approach to identify gene-environment interactions:
analyses of colon cancer risk and survival, J. Natl. Cancer Inst. 107 (2015).

W. Stute, Distributional convergence under random censorship when covariables
are present, Scand. J. Stat. (1996) 461-471.

J.W. Osborne, A. Overbay, The power of outliers (and why researchers should al-
ways check for them), Pract. Assessment. Res. Eval. 9 (2004) 1-12.

A.D. Shieh, Y.S. Hung, Detecting outlier samples in microarray data, Stat. Appl.
Genet. Mol. Biol. 8 (2009) 1-24.

H.J. Wang, L. Wang, Locally weighted censored quantile regression, J. Am. Stat.
Assoc. 104 (2009) 1117-1128.

J. Huang, S. Ma, H. Xie, Least absolute deviations estimation for the accelerated
failure time model, Stat. Sin. (2007) 1533-1548.

Y.G. Wang, M. Zhu, Rank-based regression for analysis of repeated measures,
Biometrika 93 (2006) 459-464.

K. Tharmaratnam, G. Claeskens, C. Croux, M. Salibian-Barrera, S-estimation for
penalized regression splines, J. Comput. Graph. Stat. 19 (2010) 609-625.

R. Koenker, G. Bassett Jr., Regression quantiles, Econom. J. Econom. Soc. (1978)
33-50.

R. Koenker, J.A.F. Machado, Goodness of fit and related inference processes for
quantile regression, J. Am. Stat. Assoc. 94 (1999) 1296-1310.

H.J. Wang, L.A. Stefanski, Z. Zhu, Corrected-loss estimation for quantile regression
with covariate measurement errors, Biometrika 99 (2012) 405-421.

S. Lee, Y. Liao, M.H. Seo, Y. Shin, Oracle estimation of a change point in high

1123

[18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

Genomics 111 (2019) 1115-1123

dimensional quantile regression, J. Am. Stat. Assoc. (2017), https://doi.org/10.
1080/01621459.2017.1319840.

H.R. Frost, L. Shen, A.J. Saykin, S.M. Williams, J.H. Moore, A.D.N. Initiative,
Identifying significant gene-environment interactions using a combination of
screening testing and hierarchical false discovery rate control, Genet. Epidemiol. 40
(2016) 544-557.

P. Zhang, J.P. Lewinger, D. Conti, J.L. Morrison, W.J. Gauderman, Detecting gene-
environment interactions for a quantitative trait in a genome-wide association
study, Genet. Epidemiol. 40 (2016) 394-403.

S. Ma, R. Li, C.L. Tsai, Variable screening via quantile partial correlation, J. Am.
Stat. Assoc. 112 (2017) 650-663.

D. Lee, T. Neocleous, Bayesian quantile regression for count data with application
to environmental epidemiology, J. R. Stat. Soc.: Ser. C: Appl. Stat. 59 (2010)
905-920.

B. Efron, R. Tibshirani, Bootstrap methods for standard errors, confidence intervals,
and other measures of statistical accuracy, Stat. Sci. (1986) 54-75.

A. Hagemann, Cluster-robust bootstrap inference in quantile regression models, J.
Am. Stat. Assoc. 112 (2017) 446-456.

R. Song, W. Lu, S. Ma, X. Jessie Jeng, Censored rank independence screening for
high-dimensional survival data, Biometrika 101 (2014) 799-814.

Y. Liang, H. Chai, X.Y. Liu, Z.B. Xu, H. Zhang, K.S. Leung, Cancer survival analysis
using semi-supervised learning method based on Cox and AFT models with L; »
regularization, BMC Med. Genet. 9 (2016) 11.

X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.C. Sanchez, M. Muller,
PROC: an open-source package for R and S+ to analyze and compare ROC curves,
BMC Bioinforma. 12 (2011) 77.

P.M. Westcott, K.D. Halliwill, M.D. To, M. Rust Rashid, et al., The mutational
landscapes of genetic and chemical models of Kras-driven lung cancer, Nature 517
(2015) 489-492.

AK. Smilde, H.A.L. Kiers, S. Bijlsma, C.M. Rubingh, M.J. Van Erk, Matrix correla-
tions for high-dimensional data: the modified RV-coefficient, Bioinformatics 25
(2008) 401-405.

J. Huang, S. Ma, Variable selection in the accelerated failure time model via the
bridge method, Lifetime Data Anal. 16 (2010) 176-195.

P.V. Dickson, J.E. Gershenwald, Staging and prognosis of cutaneous melanoma,
Surg. Oncol. Clin. N. Am. 20 (2011) 1-17.

J. Liu, J. Huang, Y. Zhang, Q. Lan, N. Rothman, T. Zheng, S. Ma, Identification of
gene—environment interactions in cancer studies using penalization, Genomics 102
(2013) 189-194.

C. Wu, Y. Jiang, J. Ren, Y. Cui, S. Ma, Dissecting gene-environment interactions: A
penalized robust approach accounting for hierarchical structures, Stat. Med. 37
(2018) 437-456.

A. Wey, L. Wang, K. Rudser, Censored quantile regression with recursive parti-
tioning-based weights, Biostatistics 15 (2013) 170-181.


https://doi.org/10.1016/j.ygeno.2018.07.006
https://doi.org/10.1016/j.ygeno.2018.07.006
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0005
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0005
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0010
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0010
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0015
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0015
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0015
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0020
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0020
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0020
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0025
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0025
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0030
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0030
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0030
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0035
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0035
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0040
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0040
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0045
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0045
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0050
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0050
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0055
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0055
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0060
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0060
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0065
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0065
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0070
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0070
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0075
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0075
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0080
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0080
https://doi.org/10.1080/01621459.2017.1319840
https://doi.org/10.1080/01621459.2017.1319840
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0090
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0090
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0090
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0090
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0095
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0095
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0095
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0100
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0100
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0105
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0105
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0105
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0110
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0110
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0115
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0115
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0120
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0120
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0125
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0125
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0125
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0130
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0130
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0130
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0135
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0135
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0135
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0140
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0140
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0140
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0145
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0145
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0150
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0150
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0155
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0155
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0155
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0160
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0160
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0160
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0165
http://refhub.elsevier.com/S0888-7543(18)30210-6/rf0165

	Robust identification of gene-environment interactions for prognosis using a quantile partial correlation approach
	Introduction
	Methods
	Modeling
	The CQPCorr approach
	Computation
	Toy examples

	Simulation
	Comparison with the alternative approaches
	Computational cost

	Data analysis
	Analysis of LUAD data
	Analysis of SKCM data

	Conclusions
	Acknowledgments
	Supplementary data
	References




