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a b s t r a c t 

We introduce a theoretical model of the active fund management industry (AFMI) in which 

performance and size depend on the AFMI’s competitiveness (concentration). Under plau- 

sible assumptions, as AFMI’s concentration decreases, so do fund managers’ incentives for 

exerting effort in search of alpha. Consequently, managers produce lower gross alpha, and 

rational investors, inferring lower expected AFMI performance, allocate a smaller portion 

of their wealth to active funds. Empirically, we find that a decrease in the US mutual fund 

industry concentration over our sample period is associated with a decrease in its net al- 

pha and size (relative to stock market capitalization). 
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1. Introduction 

An active area of research in financial economics exam-

ines the massive size of the active fund management in-

dustry (AFMI) and the high compensation of its mangers,

despite its unimpressive historical performance. 1 Recent

literature argues that neither its massive size nor its
nance Conference, and China International Conference in Finance. Jingrui 

Xu’s research was supported by the Fundamental Research Funds for the 

Central Universities , Grant Number 20720181061 . 
∗ Corresponding authors. 

E-mail addresses: dfeldman@unsw.edu.au (D. Feldman), k.saxena@ 

unsw.edu.au (K. Saxena), jingrui.xu@xmu.edu.cn (J. Xu). 
1 Studies examining active mutual fund performance include Jensen 

(1968), Gruber (1996), Carhart (1997), Brown et al. (1996), Daniel 

et al. (1997), Pastor and Stambaugh (2002), Wermers (2000), Cohen et al. 

(20 05), Kacperczyk et al. (20 05), Fama and French (2010), Glode (2011) , 

and Berk and van Binsbergen (2015) . Studies examining the relation be- 

tween active fund performance and size include Berk and Green (2004) , 
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ther concave or convex in AFMI concentration. 
performance is puzzling when gross alpha production is 

subject to decreasing returns to scale (see, for example, 

Berk and Green, 2004 ; BG and Pastor and Stambaugh, 

2012 ; PS). Intuitively, as more assets under management 

(AUM) chase opportunities, prices adjust, making gross al- 

pha harder to find. These insights lead to several interest- 

ing questions. For example, do other gross alpha produc- 

tion inputs play a significant role in determining AFMI size 

and performance? 

We posit that incentives of fund managers to exert 

effort in finding investment opportunities influence gross 

alpha production and that these incentives depend on 

AFMI concentration (a measure of its competitive environ- 

ment). 2 To formally analyze this, we introduce an AFMI 

model in which active fund managers choose (optimal) 

costly effort levels when competing over investment 

funds. In equilibrium, AFMI concentration levels influence 

optimal effort levels exerted by managers, which, in turn, 

influence AFMI performance and size. We find evidence, 

consistent with our model, that decreases in the concen- 

tration of the US mutual fund industry are associated with 

decreases in its performance and size (relative to stock 

market capitalization). 

In our model, gross alpha production by active man- 

agers depends on their fund sizes, optimal effort levels, 

and ability. We refer to ability as a measure of a fund man- 

ager’s decreasing returns to scale. That is, we ascribe man- 

agers with higher ability when they have “lower cost” for 

managing the same fund size. Competing managers max- 

imize profits by optimally choosing fees and costly effort 

levels, while offering net alpha (net of management fees) 

to investors. Mean-variance investors choose optimal port- 

folios of passive benchmarks and active funds (whose ex- 

pected net alphas are positive to compensate for active 

funds’ additional risk). 3 Investors’ pursuit of net alpha in- 

duces a positive relation between fund sizes and managers’ 

abilities. In equilibrium, all fund sizes adjust so that they 

offer similar expected net alphas to investors at break-even 

fees (sufficient to cover costs). 4 Any attempt to offer higher 

(lower) net alpha leads to insolvency (zero AUM allocation 

by investors). So, higher ability in our model is not asso- 

ciated with higher gross alpha or net alpha. Instead, it is 

associated with higher value added (gross alpha multiplied 
Chen et al. (2004), Yan (2008), Pastor and Stambaugh (2012) , and Pastor 

et al. (2015) . 
2 We use concentration and competition as opposites. Also, for simplic- 

ity and brevity, we use the term “AFMI concentration” for “AFMI market 

concentration” and “market concentration.”
3 While AFMI net alphas are positive in our model with risk-averse in- 

vestors, aggregate net alphas are zero-sum by construction, as they shift 

wealth between AFMI investors and other (unmodeled) investors. These 

unmodeled investors could be, for example, individuals with direct equity 

ownership (see Stambaugh, 2014 ). 
4 A fund-level decreasing returns scale does not necessarily imply a cor- 

relation between fund size and net alpha ( Berk and Green, 2004 ). While 

Pastor et al. (2015) find strong evidence of net alpha decreasing with size 

at industry level, they do not find a significant relation at the fund level. 

We also do not find a significant relation between fund net alpha and 

fund size (consistent with our model). The fund-level evidence in the lit- 

erature is mixed (see, for example, Grinblatt and Titman, 1989; Chen et 

al. 2004; Ferreira et al., 2013a, 2013b; Yan, 2008; Reuter and Zitzewitz, 

2013 ). 

Please cite this article as: D. Feldman, K. Saxena and J. Xu, Is the
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by fund size; the Berk and van Binsbergen, 2015 measure 

of skill). 

In this equilibrium, we study the impact of AFMI con- 

centration on managerial costly effort, net alpha produc- 

tion, and AFMI size, all three endogenously determined. A 

key quantity that determines these relations is the direct 

benefits of effort, which we define as the difference be- 

tween productivities of managerial effort s (which measure 

opportunities to find mispriced assets by exerting effort) 

and managerial effort s’ cost s (such as wages and research 

costs). We find that if higher concentration increases direct 

benefits of effort, then higher concentration induces higher 

equilibrium expected net alphas and larger AFMI size. 

As the level of AFMI concentration decreases (or com- 

petition increases), the direct benefits of fund managers’ 

effort s decrease, and they reduce their effort s. This effort- 

level reduction captures fund managers’ optimal decision 

to invest less time and expenses, per dollar of AUM, on 

research and information acquisition, thereby holding less 

(informed) active positions. As a result, the funds produce 

lower gross alpha and provide lower net alpha to investors. 

AFMI size decreases because rational investors infer this 

lower net alpha and reduce their investment in the AFMI 

until they are indifferent between leaving an extra dollar 

in the AFMI and investing it in the passive benchmark. In 

summary, a decrease in AFMI concentration reduces the 

incentives of fund managers to exert effort, resulting in 

lower AFMI performance and smaller AFMI size. 

Recent empirical studies find that performance declines 

as AFMI size increases ( Pastor et al., 2015 ; PST) and that 

most of the growth in the mutual fund industry is due to 

the growth in the number of funds, not in the median fund 

size ( Berk and van Binsbergen, 2015) . When these empiri- 

cal findings are combined, they seem to support our the- 

oretical predictions that performance depends positively 

on AFMI concentration. 5 Our model provides three further 

predictions for empirical analysis. First, even when con- 

trolling for size, higher concentration levels are associated 

with an increase in AFMI performance. Second, AFMI size 

and effort levels increase in AFMI concentration. 6 Third, 

the AFMI expected net alphas and AFMI size are both ei- 
7 
5 Other empirical studies relating mutual fund performance to com- 

petition include Wahal and Wang (2011), Khorana and Servaes (2011), 

Cremers et al. (2016) , and Hoberg et al. (2018) . Guercio and Reuter 

(2014) also find evidence consistent with the notion that weaker incen- 

tives due to lower competition faced by broker-sold funds lead to their 

lower performance. 
6 The technical conditions for such an equilibrium are, first, that 

higher concentration increases the gap between the marginal benefits and 

marginal costs of gross alpha production and, second, that the (further) 

sensitivity of this gap to increased effort levels does not reverse this prop- 

erty. See Lemma RA1(3) and Lemma RA1(5). 
7 Our model predicts that if equilibrium fund expected net alphas are 

concave in AFMI concentration, then AFMI’s benefits of effort are concave 

in AFMI concentration. Consequently, equilibrium AFMI size is also con- 

cave in AFMI concentration. On the other hand, if equilibrium AFMI size is 

convex in AFMI concentration, then the AFMI’s benefits of effort are con- 

vex in AFMI concentration and, consequently, equilibrium expected fund 

net alphas are convex in AFMI concentration. Note that the order of state- 

ments in the second (convex) case is different from that in the first case 

for reasons explained following Proposition RA3. 
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We evaluate three predictions in our empirical counter-

part for US AFMI. We find that, consistent with our model,

both AFMI size and net alphas are, on average, increas-

ing and concave with measures of AFMI concentration such

as the Herfindahl–Hirschman Index ( HHI ). 8 While effort is

largely unobservable, we suggest that aggregate manage-

rial effort affect s the average AFMI active share and track-

ing error. The reason is that any effort to outperform the

benchmark must involve taking positions that are different

from the benchmark (e.g., Cremers and Petajisto, 2009 ). We

find that both the average AFMI active share and tracking

error increase in concentration, consistent with our model

(assuming these measures proxy for effort). 9 

Our analysis is related to several recent papers, though

none of them addresses the question of how AFMI concen-

tration levels affect its performance and size. In particular,

our model incorporates key features from BG and PS. 

To the PS model, which presents an AFMI size–net al-

pha relation, we introduce two distinct and novel fea-

tures. The first is an AFMI concentration–alpha relation,

which also exists when controlling for the AFMI size–

net alpha relation modeled in PS. The second is an AFMI

concentration–size relation (for details, see Section 2.3 ). 

PS identify the AFMI equilibrium elegantly, without the

need to specify fund-level size or ability heterogeneity. Ig-

noring such heterogeneity, our model becomes the one in

PS if neither managers’ effort levels nor AFMI concentra-

tion affect managers’ search productivity or costs. 10 Even

when, in our model, the search productivity for mispriced

assets depends on effort levels, a special case of parameter

values leads to a solution in which the optimal allocated

effort is zero. 11 In this case as well, our model results be-

come as those in PS, where the AFMI net alpha and size

do not depend on AFMI concentration. 

Our model also incorporates fund-level decreasing re-

turns to scale, a feature in BG. In our model, this fea-
8 In the real world, AFMI concentration is likely to be affected by other 

forces (e.g., macroeconomic, regulatory) that we do not model. For in- 

stance, policy can restrict or incentivize certain investors toward a nar- 

rowly defined menu of funds, thereby increasing concentration ( Hong, 

2018 ). For convenience and parsimony, we assume exogenous concen- 

tration levels in our baseline model. In addition, we examine how our 

main empirical measure of concentration, HHI, can be endogenously de- 

termined (see Section 2.4 ). 
9 Cremers and Petajisto (2009) show that fund-level active share pre- 

dicts fund performance and that this performance is strongly persistent. 

Brown and Davies (2017) argue that shirking managers could “jam the 

signal” in active share by taking uninformed bets to increase their per- 

ceived active share, generating a false sense of truly active management. 

However, such signal jamming behavior is more likely to be an issue if 

a measure of active share is tied with fund manager incentives, which is 

not likely for our active share sample period that ends in 2009, the year 

when Cremers and Petajisto (2009) was published. Also signal jamming is 

of more concern at the fund level than at the aggregate AFMI level, where 

information asymmetry and its associated signal jamming is less likely to 

be a concern. 
10 Analytically, effort levels do not affect alpha production in our model, 

if the third addend of the right side of Eq. (7) does not exist and if we 

abandon our cost function, Eq. (18) , in favor of defining funds’ fees to be 

net of funds’ management costs. 
11 For the technical conditions that lead to this case, see Proposition 

PS and its corollary. Intuitively, this is the case if, for all concentration 

levels, costs of efforts producing alphas exceed the benefits of the pro- 

duced alphas. 
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ture facilitates the study of a range of interesting equi-

librium concentration levels by allowing fund size het-

erogeneity. This feature is not directly responsible for the

AFMI concentration–alpha relation in our model. For this

relation, managerial effort is essential. To see this, consider

the following alternative: What if we shut down the ef-

fort channel but keep the features of fund-level decreasing

returns to scale, as in BG, and industry-level decreasing re-

turns to scale, as in PS? In this case, any effect of fund-

level decreasing returns to scale on net alpha would be via

AFMI size. In this hypothetical model, concentration would

not influence net alpha (controlling for AFMI size). Intro-

ducing concentration and its influence on effort levels en-

ables us to model a distinct mechanism that influences net

alpha. 

The BG equilibrium is compatible with the case in our

model in which infinitely many small risk-neutral investors

compete. Here, the size of the fund endogenously ad-

justs to make the gross alpha equal the fee, so that ex-

pected net alpha is always zero. Even in this case, signifi-

cant differences exist between the models. For example, a

novel feature of our model is that AFMI size depends on

AFMI concentration even when investors are risk-neutral.

A higher AFMI concentration incentivizes managers to in-

crease effort levels. So, optimizing risk-neutral investors al-

locate more to the AFMI until they drive its net alpha to

zero. 

Another difference, compared with BG, is that managers

with more ability have larger fund sizes in our model.

More skilled managers receive more AUM until their gross

alphas are equal to those of less skilled managers. In equi-

librium, gross alpha and fees are the same across funds. So,

our model predicts that the cross-sectional distribution of

manager ability is reflected in the cross-sectional distribu-

tion of fund size and value added but not in gross alpha or

net alpha. This is consistent with the evidence in Berk and

van Binsbergen (2015) . The BG model does not make this

prediction: managers with more ability do not necessarily

manage larger funds. In BG, competitive pressures do not

force managers to choose the same fees, so a more skilled

manager is indifferent between more AUM with less fees

and less AUM with more fees (as long as their profits stay

the same). 12 

The paper proceeds as follows. Section 2 develops the

theoretical model; Section 3 describes tests of the model’s

predictions; Section 4 presents the empirical results; and

Section 5 concludes. 13 

2. Theoretical framework 

Within PS’s world, adopting their notation, we develop

a theoretical framework for modeling the effect of AFMI
12 The definition of manager ability in BG is different from ours. It cor- 

responds to the magnitude of expected excess return (over the passive 

benchmark) earned on the first dollar actively managed by a fund. The 

reason that fund size can be unrelated to ability is, in BG as explained 

above, managers’ indifference between larger fund sizes and higher fee 

levels. Differences in the definition of ability do not play a role here. 
13 Two online appendices are on the journal webpage. 
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15 For example, Garvey et al. (2017) decompose fund strategies into a 

combination of orthogonal and generic insights and suggest that many 

funds invest partly in orthogonal insights and partly in generic insights 

that are common across funds. Investing in multiple fund managers acts 

to concentrate risk into generic ideas. 
16 In a more concentrated market, if a fund manager controls most of 

the industry resources and develops advanced strategies to produce gross 
concentration on fund managers’ effort levels, fund fees, 

fund performance, AFMI size, and potential direct benefits. 

2.1. Setting 

For brevity and parsimonious notation, we assume that 

variables and functions are real, continuous, and at least 

twice differentiable. Within a one-period market, there are 

two types of agents: fund managers of M funds, M > 1, and 

N investors, N ≥ 1. Acting competitively, each manager sets 

a proportional management fee and chooses an effort level 

to maximize the fund expected net alpha to attract invest- 

ments. In this section and Section 2.2 , we consider the 

case in which infinitely many small mean-variance risk- 

averse investors (henceforth, risk-averse investors) allocate 

their investments to maximize their portfolios’ Sharpe ra- 

tios. By infinitely many small investors we mean that N → ∞ 

and with investors’ finite wealth, their choices do not af- 

fect fund sizes. We also consider the case of infinitely 

many small risk-neutral investors (henceforth, risk-neutral 

investors). 

Our model follows and builds on that of PS. In this 

partial equilibrium, the passive benchmark portfolio’s re- 

turns are exogenously given and are unaffected by interac- 

tions between investors and managers. Managers’ outper- 

formance of the passive benchmark portfolio (i.e., gross al- 

phas), could come at the expense of other investors, who 

could be noise traders, liquidity seekers, misinformed, or 

irrational. 14 

2.1.1. Fund alpha and the returns process 

Following PS, r F , a vector of M funds’ returns in excess 

of the riskless rate that investors receive, follows the re- 

gression model 

r F = α + βr p + u , (1) 

where r F is an M × 1 vector with elements r F,i , i = 

1 , . . . , M; α, β, and u are M × 1 vectors; α is the vector of 

fund net alphas received by investors; and β is the vector 

of fund betas. The scalar r P is the excess return on the pas- 

sive benchmark portfolio, with mean μp and variance σ 2 
p , 

and u is the residual vector, with elements that follow 

u i = x + ε i , i = 1 , . . . , M, (2) 

where ɛ i s are mean zero and variance σ 2 
ε idiosyncratic 

risks and are uncorrelated with each other, with x , and 

with r p . The common factor x has mean zero and variance 

of σ 2 
x and is uncorrelated with r p . The values of μp , σ 2 

p , 

σ 2 
ε , and σ 2 

x are strictly positive constants that are common 

knowledge to investors and managers. 

The benchmark-adjusted returns on the M funds that 

investors receive is 

r 
�= α + u . (3) 

As in PS [see their Eqs. (2) and (3) ], the factor struc- 

ture in Eqs. (1) –(3) means that the benchmark-adjusted 

returns of AFMI funds are correlated. An economic ratio- 

nale for a common component x in this factor structure 
14 Please see the detailed discussion in PS (p. 749). 
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is that similar opportunities are likely to be identified by 

AFMI funds, resulting in correlated benchmark-adjusted re- 

turns (see also PS, pp. 746–747). 15 Technically, this com- 

mon component x is necessary to guarantee that investors 

in AFMI portfolios cannot enjoy expected net alphas with- 

out increasing their risk, the variance of their portfolios. 

(This is the case because they can, plausibly, well diver- 

sify the ɛ i s in their AFMI returns.) That is, had the common 

component x not existed, the risks associated with invest- 

ing in AFMI funds could be fully diversified away by invest- 

ing in many of them while retaining the benefits of their 

positive expected net alphas. 

Each element in α has the following structure: 

αi = a − b 
S 

W 

+ A ( e i ; H ) − f i , (4) 

where a and b are positive, unknown scalar parameters, 

where b is the industry level decreasing returns to scale 

rate; S is the aggregate size of the active management in- 

dustry and is equal to the sum of all the funds’ sizes (i.e., 

S = 

∑ M 

i =1 s i ); W is the total wealth managed actively and 

passively and is equal to S plus the amount invested in the 

passive benchmark; A ( e i ; H ) is the productivity of manager 

i s proportional effort e i ∈ [0, ∞ ) to increase gross alpha un-

der AFMI concentration H ; and f i is the proportional fee 

charged by manager i . 

The expression for net alpha in PS corresponding to 

Eq. (4) does not contain the A ( e i ; H ) term, which captures

the alpha production function due to extra effort under 

AFMI concentration H . This is because PS focus on study- 

ing how investor beliefs about the unknown parameters a 

and b influence AFMI size. We build on their findings and 

study how AFMI concentration influences fund managers’ 

incentives to exert costly effort, thereby influencing AFMI 

size and alpha. 

2.1.2. Productivity of manager effort 

We assume that A ( e i ; H ), the productivity of effort un-

der H , is the same across funds and has the following func- 

tional characteristics: zero for zero effort, increasing and 

concave in effort, increasing in AFMI concentration, and 

positive cross-partial derivatives with respect to effort and 

AFMI concentration. The assumption that links concentra- 

tion to gross alpha is that the more concentrated AFMI is, 

the relatively more investment (mispriced) opportunities 

there are and the more marginally efficient is the use of 

industry resources. 16 Thus, managers can generate a higher 

increment in gross alpha for a given effort level e i . 

2.1.3. AFMI concentration 

Our main analysis assumes that H is a known ex- 

ogenous scalar parameter because it depends mainly on 
alphas, other funds can mimic this fund’s strategy and produce higher 

gross alphas given a particular effort level. So this assumption is still valid 

when a dominant fund in the market controls the majority of resources. 
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some exogenous factors. For example, industrial organiza-

tion theory posits that AFMI concentration depends not

only on the number of incumbents, but also on threats

of entry, activity-limiting regulation, and the competitive-

ness of related industries (see, for example, Claessens and

Laeven, 2003 ). (In Section 2.4 , we examine endogenous

measures of AFMI concentration.) Without loss of general-

ity, we assume that H ∈ [0, 1). If H = 0 , there are infinitely

many small funds in the market, and the market is fully

competitive. If H = 1 , the market is monopolistic. If fund

managers are competing (the case we consider), H belongs

to [0, 1). 

2.1.4. Expected alpha and investors’ information about 

unknown parameters 

The parameters a and b in Eq. (4) are positive, un-

known scalar parameters. The parameter a represents the

expected return on an initial small fraction of wealth

invested in active management, net of any proportional

costs. The parameter b is the industry level decreasing re-

turns to scale rate. As in PS, the first and second condi-

tional moments of a and b are 

E 

([
a 
b 

]∣∣∣∣D 

)
�= 

[
ˆ a 
ˆ b 

]
(5)

and 

var 

([
a 
b 

]∣∣∣∣D 

)
�= 

[
σ 2 

a 

σab 

σab 

σ 2 
b 

]
, (6)

where D denotes investors’ information set. 17 

As we do not focus on the effects of σ ab on the equi-

librium, we assume that σab = 0 . 18 In other words, condi-

tional on current information, we assume that how ˆ a devi-

ates from a is unrelated to how 

ˆ b deviates from b . Finally,

with f i being a proportional management fee charged by

manager i , the fund’s expected net alpha is 19 

E ( α | D ) = 

ˆ a − ˆ b 
S + 

ˆ A ( e ; H ) − f . (7)
i 
W 

i i 

17 See PS [p. 747, Eqs. (5) and (6) ]. 
18 We assume that σab = 0 , but we note that the value of σ ab affects 

the equilibrium results because it affects portfolio risks. If σ ab (in abso- 

lute value) is large relative to other risk sources, such as σ 2 
a , σ

2 
b 

, and σ 2 
x , 

changes in investors’ wealth allocations to funds would induce changes in 

their portfolio risks, affecting in turn their optimal demands. This would 

make our theoretical results in Propositions RA3 and RA4 more complex. 

We believe that consequences of such an analysis would not be directly 

material to the issues that we explore here and would obfuscate the anal- 

ysis. We, thus, assume that the precisions of estimates of a and b, condi- 

tional on current information, are not closely related, making σ ab → 0. 
19 Investors observe the passive benchmark and the AFMI funds’ returns. 

The difference between these returns comes from three components: net 

alphas, the common risk factor, and idiosyncratic risks. As the distribu- 

tions of the common risk and idiosyncratic risk are common knowledge, 

investors know the likelihood function of the net alphas. Given prior be- 

liefs of net alphas, they form posteriors and update their beliefs. In our 

one-period model, there is no dynamic Bayesian updating, but we sug- 

gest that investors reached a fixed-point equilibrium. Further, because in- 

vestors observe f i , H, S and W , they can also infer A ( e i , H ). Here, when 

equilibrium optimal effort levels of all managers are the same, the esti- 

mate ˆ A ( e i ; H ) could be subsumed in ˆ a . In equilibria when managers’ op- 

timal effort levels differ, the estimates ˆ A i ( e i ; H ) , could be subsumed in f i . 

For simplicity and brevity, we depress the notation of ˆ A ( e i ; H ) in favor of 

A ( e i ; H ) and follow the PS formulation. 
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2.1.5. Investor’s problem 

Let δj denote the M × 1 vector of weights that investor

j places on the M funds, with elements δ j,i , i = 1 , . . . , M.

Thus, investor j ’s excess return is 

r j = δj 
T r F + 

(
1 − δj 

T ιM 

)
r p , (8)

where ιM 

is an M × 1 vector with elements equal to one,

and superscript T is a transpose operator. Following PS (p.

750 and footnote 7), we assume that all funds have beta

loadings on the benchmark equal to one [i.e., β, as defined

in Eq. (1) , fulfills, β = ιM 

]. With funds’ holding unit beta

portfolios, the choice variable δj represents investor j ’s ex-

posure to the active part in the AFMI in excess of his or her

holding of the passive benchmark portfolio. As in PS, this

assumption allows parsimonious modeling of the active or

passive choice. 

Based on Eqs. (1) and (8) , we have 20 

r j = r p + δj 
T ( α + u ) . (9)

Further, we have 

E 

(
r j | D 

)
= μp + δj 

T E ( α| D ) , ∀ j, (10)

and 

Var 
(
r j | D 

)
= σ 2 

p + 

[
σ 2 

a + σ 2 
x + σ 2 

b 

(
S 

W 

)2 
](

δj 
T ιM 

)2 

+ σ 2 
ε 

(
δj 

T δj 

)
, ∀ j. (11)

We first focus on the case of infinitely many ( N → ∞ )

small mean-variance risk-averse investors, none of whom

can affect fund sizes. We also examine the case of infinitely

many small risk-neutral investors, facilitating comparison

with BG model. Investors’ investment in the AFMI dilutes

fund expected returns due to decreasing returns to scale in

funds. Mean-variance risk-averse investors face risk-return

tradeoffs in marginal allocations. Investor j ’s objective is to

maximize the portfolio’s Sharpe ratio by choosing portfolio

weights, δj , j = 1 , . . . M. 

Max 
δj 

E 

(
r j | D 

)√ 

Var 
(
r j | D 

) , (12)

subject to 

δT 
j ιM 

≤ 1 (13)

and 

δ j, i ≥ 0 , ∀ i. (14)

The argument of the objective function in Eq. (12) is

the ratio of Eqs. (10) and (11) . Condition (13) is a form

of wealth constraint, saying that investors cannot borrow

from the passive benchmark to invest in the AFMI. Condi-

tion (14) says that there is no short sale of funds. Also, as

we assume that there are no marginal diversification ben-

efits across funds, we set the idiosyncratic risk of investor

j ’s portfolio, σ 2 
ε δj 

T δj to be negligible (that is, zero) when
20 Eqs. (8) and (9) are similar to Eqs. (10) and (11) in PS. However, our 

functional forms, represented by variables in these equations (such as 

α, r F , δj , r j ), are different. 
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solving the optimization problem (12) . 21 Because the equi- 

librium is symmetric, we have 

δ∗T 
j ιM 

= S/W, ∀ j. (15) 

2.1.6. Fund manager’s problem 

f i is the proportional fee charged by manager i . The 

manager sets this fee considering its effect on the fund’s 

size. The manager also chooses the level of costly propor- 

tional effort to exert in order to find mispriced assets and 

produce additional gross alpha using A ( e i ; H ), which de- 

pends on AFMI concentration H . We define manager i ’s 

average (per dollar) cost to produce alpha as C i ( e i , s i ; H ). 

Therefore, manager i ’s economic profit is 

s i 
(

f i − C i ( e i , s i ; H ) 
)

(16) 

and, for fund i to survive, 

f i − C i ( e i , s i ; H ) ≥ 0 . (17) 

We assume that average cost functions, C i ( e i , s i ; H ), con- 

tain three independent positive scalar components: c 0, i , 

the average cost for fund i to operate in the market be- 

fore receiving investment and before manager i spends ef- 

fort; c 1, i s i , the average cost related to fund i ’s size, s i ; and 

c 2, i ( e i ; H ), the average cost of manager i ’s effort under a 

particular AFMI concentration. 22 That is, 

 

i ( e i , s i ; H ) = c 0 , i + c 1 , i s i + c 2 , i ( e i ; H ) . (18) 

Eq. (18) is also manager i ’s per dollar cost function, 

which, when multiplied by the fund size, s i , gives his or 

her total cost function. The coefficient c 1, i , then, induces 

a nonlinear (quadratic) increase in manager i ’s total cost 

function, making it convex in s i and representing the ex- 

tent of decreasing returns to scale in funds’ gross alpha 

production. This fund cost model is consistent with that 

of BG, who assume decreasing returns to scale at the fund 

level. 

Simplifying, we assume that c 0, i s, and c 2 ( e i ; H )s are the 

same across funds (we, thus, drop the subscript i ) but that 

c 1, i s are different across funds. Differences in the fund- 

level decreasing returns to scale parameters c 1, i measure 

differences in the rate at which managers’ costs in gener- 

ating gross alpha increase with size. 

We now introduce two terms, an AFMI’s individual 

manager skill and AFMI’s aggregate skill. In our model, 

c 1 , i 
−1 is the source of heterogenous manager ability or 

skill. A more skilled manager is one who has lower to- 

tal variable costs of active management for the same AUM 

and gross alpha. We define AFMI aggregate skill as the sum 

of individual managers’ skills, 
∑ M 

i =1 ( c 1 , i 
−1 ) . In our model, 

AFMI is more skilled when the sum of its mangers’ skills 

is higher. 
21 Here, too, we adopt PS notation. Note that σ 2 
ε δj 

T δj = σ 2 
ε δj 

T I δj , where 

I is an M × M identity matrix and σ 2 
ε I stands for the covariance matrix. 

22 To simplify our model, we assume no interaction between effort lev- 

els and size in the average cost function because it is unlikely that fund 

size affects managers’ per dollar effort. We also assume no interaction 

between concentration and size in the average cost function because it is 

unlikely that concentration affects managers’ average cost sensitivities to 

fund sizes. Even if these interacting effects do exist, they tend to be small 

in comparison with effects of other terms in the average cost function. 

Please cite this article as: D. Feldman, K. Saxena and J. Xu, Is the
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We show that higher AFMI’s aggregate skill corresponds 

to higher AFMI size and that higher individual fund man- 

ager skill, relative to other managers, correspond to a 

higher relative size of their fund. (See Proposition RA1 and 

the discussion following Lemma RA1 .) 

We assume that the function c 2 ( e i ; H ) has zero for zero

effort and is increasing and convex in effort. 

The average cost function implies that as fund i ’s size, 

s i , increases, manager i ’s average cost increases because 

larger trades are associated with larger price impacts and 

higher execution costs and because of other factors that 

create diseconomies of scale in operation. c 1, i is the av- 

erage cost sensitivity to fund i ’s size. Adding the three cost 

function components shows that the average cost function 

is increasing and convex in effort. 

We do not specify whether costs are increasing or de- 

creasing in concentration. When costs are decreasing in 

concentration, the advantage of higher concentration is 

twofold: more opportunities and lower costs. When costs 

do not change as a function of concentration, the ad- 

vantage of increasing opportunities due to an increase in 

concentration is left unmitigated. Moreover, we show in 

Lemma RA1 that even increasing costs in concentration, for 

the plausible parameters set, perhaps do not fully mitigate 

the advantages of the increasing opportunities. 

We assume no fixed costs for several reasons. First, 

fixed costs are lower in comparison with the costs that 

we model and, we believe, do not affect our analysis. 23 

Moreover, the larger funds, with fixed costs that are rela- 

tively lower, determine AFMI concentration. In addition, as 

we focus on modeling decreasing returns to scale in gross 

alpha production, positive fixed costs could obfuscate this 

property. 24 

With these assumptions, manager i ’s problem is 

Max 
e i , f i 

s i 
(

f i − C i ( e i , s i ; H ) 
)

(19) 

subject to e i ≥ 0 and f i ≥ 0. 25 

2.1.7. Information structure 

We follow the information structure of PS when rel- 

evant and extend it, in spirit, to the new model struc- 

ture that we introduce here. Model parameters and func- 

tional forms are common knowledge to managers and in- 

vestors, with the following exceptions. The values of a and 

b are unknown, but their first two moments specifications 

are common knowledge. The values of the parameters of 

managers’ cost functions and alpha production functions 

are private information (manager i ’s knows his or her cost 

and production functions). Sensitivities (assumptions on 
23 Fixed costs to manage funds, such as registration fees and equipment 

expenditure, are usually small in comparison with variable costs related 

to employees’ salaries and managers’ compensation. 
24 A nonzero fixed cost and decreasing returns to scale in gross alpha 

production (i.e., costs component that are increasing and convex in fund 

size) would induce an average cost function that is U-shaped in fund size. 

Thus, under some cases this can induce instances of increasing returns to 

scale in gross alpha production. 
25 For simplicity and brevity, we omit the condition in Eq. (17) from the 

problem statement as it is implied by the optimization and, thus, is not 

necessary. 
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derivatives) of cost functions and alpha production func-

tions are common knowledge. 

2.2. Equilibrium 

For the AFMI equilibrium, we begin by discussing

why the manager’s optimization problem is equivalent to

the problem of maximizing the expected net alpha. The

presentation of the latter problem helps to conveniently

describe the AFMI equilibrium. Our risk-averse investors

invest only in funds that offer the highest expected net

alphas. Fund managers, in turn, compete over expected

net alphas to attract investments. Manager i ’s problem

becomes 

Max 
e i , f i 

E ( αi | D ) (20)

subject to f i − C i ( e i , s i ; H ) ≥ 0 , e i ≥ 0 , and f i ≥ 0 . 

The online Main Appendix provides proof of the man-

agers’ maximization problems equivalence and also shows

that solving these problems leads to an AFMI unique Nash

equilibrium. The proof intuition is as follows. Under com-

petition, funds that offer lower expected net alphas lose all

investments. The possibility (threat) that other managers

will improve their expected net alphas induces all man-

agers to maximize expected net alphas to survive. Thus,

funds offer similar expected net alphas in a unique Nash

equilibrium. We are able to demonstrate that this aspect of

the equilibrium, which is similar to that in PS, holds under

various concentration levels, endogenous costly effort lev-

els, and endogenous fund sizes. 

To further study the equilibrium, we define the direct

benefits of effort function of manager i as 

B ( e i ; H ) 
�= A ( e i ; H ) − c 2 ( e i ; H ) , ∀ i, (21)

B ( e i ; H ) captures the direct benefit from effort exerted in

active fund management, in terms of increase in gross al-

pha production minus the effort cost. We should interpret

benefits generally, allowing them to be positive or nega-

tive. Whether manager i ’s marginal direct benefits of ini-

tial effort are positive [i.e., B e i ( 0 ; H ) > 0 , ∀ H] is an impor-

tant condition affecting the equilibrium. If this condition

is not met, our equilibrium becomes the one in PS (see

Proposition PS in Section 2.3 ). Whether the sensitivity of

manager i ’s direct benefits, at optimal effort, is positive

[i.e., 
dB ( e ∗

i 
;H ) 

dH 
> 0 ] or not is also an important condition af-

fecting the equilibrium. 26 

Also, the AFMI active search for net alphas could have

indirect effects that we do not model here. It could drive

security prices toward their true values, induce firms

to improve governance and performance and to reduce

agency costs, and induce transfer of wealth from less pro-

ductive firms or investors to more productive ones. Here,

as in the literature, gross alphas are zero-sum. (See, for

example PS, pp. 748–750, including footnote 6, and refer-

ences therein, and our footnote 4.) This is the case regard-

less of whether any manager’s direct and or indirect bene-
fits are nonzero or zero. 

26 See, for example, Proposition RA3 and the proof intuition to it. 

 

 

Please cite this article as: D. Feldman, K. Saxena and J. Xu, Is the

Journal of Financial Economics, https://doi.org/10.1016/j.jfineco.2
We are now ready to characterize the AFMI equilibrium

for risk-averse investors, induced by managers choosing

optimal effort levels and optimal fees. That is, we charac-

terize AFMI equilibrium expected net alphas, Sharpe ratios,

effort levels, fee rates, direct benefits of effort, AFMI size,

and fund market shares. In Proposition RA0 , we formally

state the AFMI Nash equilibrium. In Proposition RA1 , we

describe the qualitative properties of this equilibrium. In

Lemma RA1 , we describe technical properties of the AFMI

equilibrium, used to prove Propositions RA0 and RA1 . 

In Propositions RA0–RA4, PS , and RN1 , Corollaries to

Propositions RA2 and PS , and Lemma RA1 , we assume in-

finitely many mean-variance risk-averse investors. 

We first define AFMI’s equilibrium optimal allocations.

Let e ∗ be an M × 1 vector with managers’ optimal effort al-

locations, e ∗
i 
, f ∗ be an M × 1 vector with managers’ optimal

fee allocations, f ∗
i 

, and δ∗ be an M × N matrix with vectors

of investors’ optimal wealth weights allocations to funds,

δ∗
j 
. 

Proposition RA0 . Unique Nash equilibrium . 

There exists an AFMI unique Nash equilibrium, { e ∗, f ∗, δ∗} .

Proof of Proposition RA0 . See the online Main Appendix.

The proof intuition is below. 

Proposition RA1 . For manager i, i = 1 , . . . , M, if initial ef-

fort inputs generate positive direct benefits of effort, then, in

the AFMI equilibrium induced by managers choosing optimal

effort-fee combinations, ( e ∗
i 
, f ∗

i 
) , AFMI size, S / W, and AFMI

fund market shares, s i / S , ∀ i, adjust such that the following

eight properties are satisfied. 

1. Competition drives managers’ economic profits to zero, so

they can charge only break-even fees. 

2. Higher managers’ aggregate skill results in higher AFMI

size. 

3. Higher manager’s relative skill results in higher AFMI fund

market share (relative fund size). 

4. Managers offer the same market competitive expected net

alphas. 

5. Managers offer the same market competitive Sharpe ra-

tios. 

6. Investors hold the same AFMI portfolio weights (which are

proportional to AFMI fund sizes). 

7. Equilibrium effort levels and fees are the same across

funds. 

8. Equilibrium AFMI’s direct benefits of effort are the same

across funds. 

Proof of Proposition RA1 . See the online Main Appendix.

The proof intuition is below. 

To prove Proposition RA1 , we use the seven results of

Lemma RA1 , which characterize more specific properties of

the AFMI equilibrium. 

Lemma RA1 . For manager i, i = 1 , . . . , M, if initial ef-

fort inputs generate positive direct benefits of effort [ i.e. ,

B e i (0 ; H) > 0 , ∀ H], the equilibrium, induced by managers,

choosing optimal effort-fee combinations ( e ∗
i 
, f ∗

i 
) , has the fol-

lowing seven properties. 
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27 The condition in inequality ( 26 ) is equivalent to the condition that 

a > 0 in PS. See PS (p. 747) for further discussion and insights. 
1. Fees are equal to costs: 

f ∗i − C i (e ∗i , s i ; H) = 0 , ∀ i. (22) 

2. The impact of marginal efforts on gross alpha is set equal 

to the marginal average costs of effort. Thus manager i’s 

marginal direct benefits of effort under the optimal effort 

level are zero). 

A e i 

(
e ∗i ; H 

)
− c 2 e i 

(
e ∗i ; H 

)
= B e i 

(
e ∗i ; H 

)
= 0 , ∀ i. (23) 

3. When concentration is higher, equilibrium optimal effort 

levels are higher (lower) if and only if higher concentra- 

tion induces a larger (smaller) marginal effort impact on 

gross alphas than on costs. Or 

e ∗′ i ( H ) ≥ 0 ( < 0 ) i f f A e i , H 

(
e ∗i ; H 

)
− c 2 e i , H 

(
e ∗i ; H 

)
≥ 0 ( < 0 ) , where e ∗′ i ( H ) 

�= d e ∗i /d H. (24) 

4. Whether higher concentrations induce higher equilibrium 

optimal fees depends on whether they induce an increase 

in equilibrium AFMI sizes and whether they induce an in- 

crease in equilibrium optimal effort levels. 

5. When concentrations are higher, equilibrium manager i’s 

direct benefits of effort are higher (lower) if and only if 

higher concentrations induce a larger (smaller) impact on 

gross alphas than on costs. 

6. Pairwise relative fund sizes, s i / s j , ∀ i , j, are inversely 

proportional to their corresponding cost coefficients, 

c 1, i / c 1, j , ∀ i , j (where c 1, i represents the intensity of 

fund-level decreasing returns to scale in gross alpha 

production). 

7. AFMI fund market shares, s i / S’s, are 
s i 
S = ( c 1 , i 

∑ M 

j=1 

( c 1 , j 
−1 ) ) −1 , ∀ i . 

Proof of Proposition RA1 and Lemma RA1 . See the online 

Main Appendix. 

The proof intuition of Propositions RA0, RA1 and 

Lemma RA1 is as follows. 

Competing for investments, managers maximize fund 

expected net alphas by choosing optimal effort levels and 

fees, earning zero economic profits (break-even fees) in 

equilibrium. If managers increase fees, they would lower 

fund expected net alphas and lose all investments. If 

managers decrease fees, they would become insolvent, 

incurring negative cash flows (costs higher than fees). 

Deviating from equilibrium effort level would also induce 

a loss of investments (if decreasing effort) or insolvency (if 

increasing effort). Therefore, managers have no incentive 

to deviate. 

Also, with no diversification benefits across funds, man- 

agers who attempt to provide higher expected net alphas 

attract investments. Consequently, due to decreasing re- 

turns to scale in performance, on the one hand, and in- 

creasing fund costs, on the other hand, alpha gains are 

more than mitigated by a (break-even) fees increase, re- 

sulting in an overall decrease in expected net alpha. Thus, 

in equilibrium, the allocation of investments, or fund sizes, 

set expected net alphas to be equal across funds. If fund 

managers cannot produce the AFMI highest expected net 

alpha, even for an infinitesimal fund size, they lose all in- 

vestments and go out of the market. 
Please cite this article as: D. Feldman, K. Saxena and J. Xu, Is the
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In addition, as funds have the same expected net al- 

phas, they have the same expected returns. As the source 

of fund returns’ variance is the same across funds, the fund 

return variance is the same across funds. Therefore, man- 

agers offer the same competitive Sharpe ratio. Because in- 

vestors cannot obtain a higher Sharpe ratio, they have no 

incentives to deviate. 

These result in a unique Nash equilibrium in which 

neither investors nor managers have incentives to deviate 

from their chosen strategies. 

If higher concentrations induce a higher (lower) 

marginal effort impact on gross alphas than a marginal 

effort impact on costs, managers optimally choose higher 

(lower) effort levels in producing fund net alphas. If 

higher concentrations induce higher equilibrium optimal 

effort levels, managers’ costs are driven higher, resulting in 

higher break-even fees. In addition, higher concentrations 

have two effects on manager i ’s direct benefits of effort. 

First, they directly affect the levels of gross alphas pro- 

duction function and of costs, A ( e i ; H ) and c 2 ( e i ; H ), be-

ing a parameter of each of these functions. Second, they 

change the equilibrium optimal effort levels, consequently 

changing the levels of gross alphas and costs. In equilib- 

rium, the latter (net) effect is zero because managers keep 

increasing effort levels until the marginal effort impact 

on gross alphas is equal to the marginal effort impact on 

costs. Thus, the effect of higher concentration through ef- 

fort on gross alphas is canceled out by its effects on costs. 

Therefore, in equilibrium (as the net second effect is zero), 

changes in the concentration level affect gross alphas and 

costs through the (direct) first effect only. Consequently, 

if higher concentration levels induce higher direct impacts 

on gross alphas than on costs, manager i ’s direct benefits 

of effort increase in concentration levels. 

Managers’ different costs of producing gross alphas 

(skills) induce different fund sizes in equilibrium. A sepa- 

ration exists between the determination processes of AFMI 

size (that is, AFMI’s weight in total wealth, S / W ) and AFMI

fund market shares (that is, relative fund sizes within 

AFMI). The former is driven by managers’ aggregate skill 

(cost) and the latter by managers’ relative skills (costs). In 

other words, how investors weight the funds inside the 

AFMI, or investors’ optimal AFMI portfolio, is unaffected 

by how investors weight the AFMI as a whole relative to 

the passive benchmark. This separation property facilitates 

later results. 

For convenience in describing the equilibrium in 

Propositions RA2 and RA3 , we define the equilibrium opti- 

mal expected net alphas of an initial marginal investment 

in the AFMI (when S = 0 ) as X( e ∗
i 
, H ) . Quantitatively, 

X 

(
e ∗i ; H 

) �= 

ˆ a + A 

(
e ∗i ; H 

)
−

[
c 0 + c 2 

(
e ∗i ; H 

)]
. (25) 

For the AFMI to exist, we must have positive expected 

net alphas for initial infinitesimal investments into it: 27 

X 

(
e ∗i ; H 

)
> 0 , ∀ H. (26) 

If inequality (26) is violated, investors receive no advantage 

in diverting funds from the passive index to the AFMI. Also, 
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28 Where S/W = 1 , it is the case that S / W is unrelated to industry con- 

centration, higher concentration induces higher (lower) equilibrium ex- 

pected net alphas if and only if higher concentration induces a larger 

(smaller) impact on gross alphas than on costs, and equilibrium expected 

net alphas are concave (convex), in concentration, if and only if the equi- 
to offer meaningful results, we assume that initial marginal

allocations of effort generate positive AFMI direct benefits

of effort; that is, 

B e i ( 0 ; H ) > 0 , ∀ i, ∀ H, (27)

such that the optimal effort e ∗
i 

is positive, finite, and at-

tainable, i.e., B e i ( e 
∗
i 
; H ) = 0 , e ∗

i 
< K, ∀ i, ∀ H for some positive

constant K . We focus on the case in which the optimal ef-

fort is positive. 

As in PS (see their Proposition 2), the explicit analytic

solutions for S / W are solutions of a cubic equation and are

cumbersome. Proposition RA2 presents the cubic equation

and its corollary presents properties of its solution. 

Proposition RA2 . Equilibrium optimal allocations . 

For i = 1 , 2 , . . . , M, 

1. E( αi | D ) | { e ∗, f ∗, δ∗} > 0 ; and 

2. when N → ∞ , the equilibrium optimal S / W is either one

or a real positive solution (smaller than one) of the fol-

lowing first-order condition (a cubic equation) of the

investors’ problem [ Eqs. (12) –(14) ]. After we substitute

δ∗T 
j 

ιM 

= S/W , 

−γ σ 2 
b 

(
S 

W 

)3 

−

⎡ ⎣ γ σ 2 
a + γ σ 2 

x + ̂

 b + 

( 

M ∑ 

i =1 

c 1 , i 
−1 

) −1 

W 

⎤ ⎦ 

S 

W 

+ X 

(
e ∗i ; H 

)
= 0 , (28)

where γ
�= μp /σ 2 

p . 

Proof of Proposition RA2 . See the online Main Appendix. 

The intuition of Proposition RA2 is as follows. Investors

allocate investments to funds based on their risk-return

tradeoffs. Investing wealth in the AFMI increases a portfo-

lio’s risk, so they choose to limit these investments, leav-

ing E( αi | D ) | { e ∗, f ∗, δ∗} > 0 . The risk-return tradeoff of poten-

tially investing the last dollar, the dollar that would drive

fund expected net alphas to zero, is in the variance favor.

That is, the marginal cost of risk, of investing this last dol-

lar, is higher than the marginal benefit of the gained net

alpha. This prevents optimizing risk-averse investors from

allocating it to the AFMI, leaving fund expected net alphas

to be positive. The properties of the cubic equation guar-

antee exactly one real positive root. If the positive root is

larger than one, then S/W = 1 . 

We can now write the following corollary, characteriz-

ing AFMI equilibrium relations between performance and

size, and between the rate of returns to scale decrease and

size. 

Corollary to Proposition RA2 . For large enough W, such that

S / W < 1 . 

1. Higher equilibrium optimal expected net alphas of an ini-

tial marginal investment in the AFMI induce a larger equi-

librium AFMI size relative to total wealth; and 

2. A higher rate of decrease in aggregate AFMI’s re-

turns to scale [fund level and industry level; ˆ b +
( 
∑ M 

i =1 c 1 , i 
−1 ) −1 W ] induces a smaller equilibrium AFMI
size . 
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Proof of Corollary to Proposition RA2 . See the online Main

Appendix. 

The intuition of this corollary is as follows. A higher

level of equilibrium optimal expected net alpha of an ini-

tial marginal investment, X( e ∗
i 
, H ) , attracts more invest-

ments to the AFMI. Also, ˆ b is the industry level ex-

pected decreasing returns to scale rate at the coming

from the alpha production function, based on current in-

formation, whereas ( 
∑ M 

i =1 c 1 , i 
−1 ) −1 W can be regarded as

the equilibrium decreasing returns to scale factor coming

from AFMI managers’ costs of alpha production (calculated

by aggregating all the fund average cost sensitivities to

size, c 1, i ’s). The latter decreasing returns to scale factor,

( 
∑ M 

i =1 c 1 , i 
−1 ) −1 W , is inversely proportional to AFMI’s ag-

gregate skill. Thus, the factor ˆ b + ( 
∑ M 

i =1 c 1 , i 
−1 ) −1 W can be

regarded as the combined decreasing returns to scale fac-

tor. Investors invest less in funds if the effect of decreasing

returns to scale is stronger in the AFMI. 

Proposition RA3 offers comparative statics, which un-

derlie our main empirical analysis. 

Proposition RA3 . AFMI size and expected net alphas sensi-

tivities to concentration . 

When S / W < 1 , we have the following results. 28 

1. Higher concentration induces larger (smaller) equilibrium

AFMI size and higher (lower) equilibrium expected net al-

phas if and only if higher concentration induces a larger

(smaller) impact on gross alphas than on costs. 

2. Concave, in concentration, equilibrium direct benefits of

effort function indicates concave, in concentration, equi-

librium AFMI size. (Convex, in concentration, equilibrium

AFMI size indicates convex, in concentration, equilibrium

direct benefits of effort function.) 

3. Concave, in concentration, equilibrium expected net al-

phas indicates concave, in concentration, equilibrium di-

rect benefit function. (Convex, in concentration, equilib-

rium direct benefit function indicates convex, in concen-

tration, equilibrium expected net alphas.) 

Proof of Proposition RA3 . See the online Main Appendix. 

The intuition behind Proposition RA3(1) is as follows.

A change of H affects expected net alpha, E( αi | D ) | { e ∗, f ∗, δ∗} ,
in two stages. In the first stage, if a higher H induces a

larger (smaller) impact on gross alphas than on costs, it in-

creases (decreases) managers’ ability to produce expected

net alphas, thereby increasing (decreasing) the level of ex-

pected net alphas produced. In the second stage, investors

react to the increase (decrease) in fund expected net al-

phas by increasing (decreasing) investment levels in funds,

consequently decreasing (increasing) expected net alphas,

due to decreasing returns to scale. The risk-return trade-

off of risk-averse investors makes their reaction to changes
librium direct benefit function is concave (convex), in concentration. 
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in fund expected net alphas less intense. That is, they 

subdue their additional investments to funds when infer- 

ring higher fund expected net alphas due to risk increase, 

and they limit their reduction in investments to funds 

when observing lower fund expected net alphas due to risk 

decrease. 

The first stage and second stage, the latter as affected 

by risk attitudes, result in a change of AFMI’s optimal ef- 

fort level. AFMI’s new optimal effort level, in turn, af- 

fects both the level of alpha production and the effort 

costs producing it. The overall outcome depends on the 

relative sensitivity, to concentration, of the alpha produc- 

tion function, on the one hand, and of the effort cost 

function, on the other. We formally show that whether 

a higher H increases the equilibrium expected net al- 

pha, E( αi | D ) | { e ∗, f ∗, δ∗} , depends on whether it has a larger 

impact on gross alphas than on the costs producing it 

[i.e., the sign of d E( αi | D ) /d H | { e ∗, f ∗, δ∗} depends on the sign 

of 
dB ( e ∗

i 
;H ) 

dH 
= A H ( e 

∗
i 
; H ) − c 2 H ( e 

∗
i 
; H ) , as shown in Lemma 

RA1(5)]. 29 Thus, a higher H induces a larger expected net 

alpha if and only if it induces higher equilibrium direct 

benefits, B ( e ∗
i 
; H ) . This explains the expected net alpha part 

of Proposition RA3 (1). 

If a higher H induces a larger (smaller) impact on gross 

alphas than on costs, then it attracts more (less) invest- 

ments to the AFMI [if investors have additional wealth to 

allocate to funds (i.e., S / W < 1)]. This explains the size part 

of Proposition RA3 (1). 

Examining the second-order effects of concentration on 

size, we first note that changes in H that induce a larger 

S / W result in a larger allocation to AFMI funds and, in 

turn, in a higher investors’ overall portfolio risk. Mean- 

variance risk-averse investors facing risk-return tradeoffs 

respond to an increase in marginal portfolio risks, holding 

other parameters constant, by optimally lowering invest- 

ment in funds. Thus, how changes in H affect changes in 

equilibrium S / W depend on how changes in H affect this 

risk-return tradeoff. The implications for the second-order 

derivative d 2 ( S / W )/ dH 

2 are in the proof of Proposition RA3 , 

which expresses this tradeoff analytically by identifying 

d 2 ( S / W )/ dH 

2 as a sum of two addends. The first addend is

negative (positive) if the direct benefits function is concave 

(convex) in H , and the second one is always negative. This 

shows that a concave B ( e ∗
i 
; H ) in H implies an S / W concave 

in H and that a convex S / W in H implies a convex B ( e ∗
i 
; H )

in H . This explains Proposition RA3 (2). 

Examining the second-order effects of concentra- 

tion on expected net alphas, we show that, as H 

changes, the change of marginal E( αi | D ) | { e ∗, f ∗, δ∗} (i.e., 

d 2 E( αi | D ) /d H 

2 | { e ∗, f ∗, δ∗} ) is positively proportional to the 

change of marginal B ( e ∗
i 
; H ) , i.e., d 2 B ( e ∗

i 
; H ) /d H 

2 , plus an 

adjustment term that captures the effects of risk. This ad- 

justment term ensures that, holding all other parameters 

constant, if investors’ marginal portfolios risks of invest- 

ing in funds are higher, investors optimally invest less 

in funds. In doing so, they exert a smaller negative im- 

pact on expected net alphas. A higher H thus induces a 
29 This total derivative of AFMI direct benefits with respect to H is the 

same as its partial derivative with respect to H . 
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higher marginal E( αi | D ) | { e ∗, f ∗, δ∗} . When d 2 B ( e ∗
i 
; H ) /d H 

2 is 

positive, d 2 E( αi | D ) /d H 

2 | { e ∗, f ∗, δ∗} must be positive, whereas 

if d 2 E( αi | D ) /d H 

2 | { e ∗, f ∗, δ∗} is negative, d 2 B ( e ∗
i 
; H ) /d H 

2 must 

be negative. This explains Proposition RA3 (3). 

When investors have no additional wealth to allocate 

to funds, i.e., S/W = 1 , they exert no impact on marginal 

E( αi | D ) | { e ∗, f ∗, δ∗} , making the marginal equilibrium optimal 

expected net alphas depend only on the effect of H on 

managers’ ability to produce net alphas. 

2.3. Relation to Berk and Green (2004) and Pastor and 

Stambaugh (2012) 

Our model follows the pivotal works of BG and PS 

in several respects. Central features of our model include 

industry-level decreasing returns to scale and risk-averse 

investors, as in PS, as well as fund-level decreasing returns 

to scale, as in BG. We highlight the main differences be- 

tween our model and those of PS and BG. We discuss the 

special cases in which their model and ours overlap and 

we obtain results similar to theirs. 

2.3.1. Relation to Pastor and Stambaugh (2012) 

While PS model and compare expected net alpha and 

AFMI size, within two extreme regimes, a fully competi- 

tive equilibrium ( M → ∞ ) and a monopolistic equilibrium 

( M = 1 ), we model and study tradeoffs across a continuum 

of AFMI concentration levels for any given M , where M > 1. 

This concentration–alpha relation in our model is a mech- 

anism distinct from and additional to the AFMI size–alpha 

relation in PS. In our model, the concentration–alpha re- 

lation also exists when controlling for the size of the in- 

dustry (or the growth of the industry). Analytically, this is 

the case because concentration affects the optimal level of 

effort by affecting effort productivity [the third addend of 

the right side of Eq. (7) ] and the cost of effort [Eq. (18)] . 

In our model, heterogeneous fund-level decreasing re- 

turns to scale are required for making the AFMI concen- 

tration nontrivial by allowing funds to have heterogeneous 

sizes. (PS’s model identifies the AFMI equilibrium elegantly, 

without the need to specify fund-level heterogeneity in 

fund size.) Fund-level decreasing returns does not directly 

influence alpha in our model. It influences alpha only via 

effort, concentration, and size. If we do not model effort, 

our model with only fund-level decreasing returns will not 

generate the concentration–alpha relation. The gist of the 

argument is that introducing fund heterogeneity would af- 

fect AFMI size and expected net alphas only if, in ag- 

gregate, it affects the industry’s alpha production. Such 

aggregate effects are fully captured within the industry 

returns to scale structure (as in PS). The only difference 

is that in PS the industry returns to scale parameter is 
ˆ b , while in our model the aggregate industry returns to 

scale parameter is ˆ b + ( 
∑ M 

i =1 c 1 , i 
−1 ) −1 W (see the Corollary 

to Proposition RA2 ). Introducing fund-level heterogeneity 

that does not have industry aggregate effect would not af- 

fect the AFMI size and expected net alphas. In other words, 

changes in AFMI concentration due to introducing fund- 

level heterogeneity, without all effort effects, either are 

captured by industry returns to scale effects or have no 

effect. 
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30 For risk-neutral investors, Proposition RA1(2) follows directly from Eq. 

(A49). 
Our model becomes similar to the one in PS in our

special case in which neither AFMI concentration nor

managers’ effort affect s managers’ search productivity

for mispriced assets. Analytically, effort does not affect

alpha production in our model if the third addend of the

right side of Eq. (7) does not exist and if we abandon

our cost function, Eq. (18) , in favor of defining fund fees

to be the net of fund management costs. Even when, in

our model, the search productivity for mispriced assets

depends on effort, a special case of parameter values leads

to a solution in which optimal allocated effort is zero. We

report the conditions for this special case in Proposition

PS and its corollary. Intuitively, this is the case if, for all

concentration levels, costs of efforts to improve alpha

production exceed the benefits of the resulting increase

in alphas. That is, market conditions are insufficiently

conducive to launching a costly search for favorable in-

vestment opportunities. Thus, optimally, no extra effort is

exerted, and our model results resemble those in PS. 

Proposition PS . For manager i, i = 1 , 2 , . . . , M if initial ef-

fort inputs generate non-positive AFMI direct benefits of ef-

fort [ i.e., equilibrium optimal proportional effort levels e ∗
i 

are

zero [ i.e. , e ∗
i 

= 0 , ∀ i ], and the optimal proportional fee f ∗
i 

equals the average cost of operating funds c 0 + c 1 , i s i ( i.e. ,

f ∗
i 

= c 0 , i + c 1 , i s i , ∀ i ]. 

Corollary to Proposition PS . Under the conditions in

Proposition PS , the equilibrium here resembles the one in PS.

That is, effort is not exerted, and managers optimally choose

not to charge fees above break-even costs. Eq. (4) becomes 

αi = a − b 
S 

W 

− f i , (29)

identical to Eq. (8) in PS. 

Proof of Proposition PS . See the online Main Appendix. 

This corollary says that AFMI concentration will not in-

fluence the AFMI size or AFMI expected net alpha if, for all

concentration levels, the optimal effort of fund managers is

zero, given their trade-off between productivity and costs.

The industry-level decreasing returns to scale mechanism

of PS will still function and generate a negative relation be-

tween AFMI size and AFMI expected net alpha. While the

latter effect represents how managers’ ability to outper-

form passive benchmarks declines with AFMI size, the for-

mer effect represents how a manager’s incentives to exert

individual effort to outperform passive benchmarks are in-

fluenced by AFMI’s concentration (for the same AFMI size

and number of managers). 

2.3.2. Relation to Berk and Green (2004) 

As in PS, our baseline model assumes risk-averse in-

vestors. This assumption produces positive AFMI expected

net alpha. When investors are risk-averse, expected net al-

phas are positive because investors require compensation

to bear the risk of investing in active funds. BG do not

solve the investor’ optimization problem and fix expected

net alpha to be zero by invoking the assumption that non-

benchmark risk can be completely diversified away across

many funds (see also the discussion in PS, p. 775). This

feature of the BG equilibrium is compatible with the case,
Please cite this article as: D. Feldman, K. Saxena and J. Xu, Is the
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in our model, in which infinitely many small risk-neutral

investors compete, and the size of the fund endogenously

adjusts to make the gross alpha equal to the fee so that ex-

pected net alpha is always zero. In the case of risk-neutral

investors, our model, and the corresponding model in PS,

produces zero AFMI expected net alpha. This is formally

stated in Proposition RN1 . 

In the case of risk-neutral investors, the AFMI Nash

equilibrium ( Proposition RA0 ) and the equilibrium char-

acterizations of Proposition RA1 and Lemma RA1 hold as

well. As the proofs are highly similar, for brevity, we omit

them here. 30 We describe the different equilibrium charac-

teristics for which investors are risk-neutral. 

Proposition RN1 . For N → ∞ risk-neutral investors, equilib-

rium optimal allocations induce AFMI size to be 

δ∗T 
j ιM 

= S/W = min 

{ 

X 

(
e ∗

i 
, H 

)
ˆ b + 

(∑ M 

i =1 c 
−1 
1 ,i 

)−1 
W 

, 1 

} 

, ∀ j, (30)

and equilibrium expected net alphas to be 

E ( αi | D ) | { e ∗, f ∗, δ∗} = 0 , where S/W < 1 , (31)

and 

E ( αi | D ) | { e ∗, f ∗, δ∗} = X 

(
e ∗i , H 

)
−

⎡ ⎣ ̂

 b + 

( 

M ∑ 

i =1 

c −1 
1 ,i 

) −1 

W 

⎤ ⎦ ≥ 0 ,

where S/W = 1 . (32)

Proof of Proposition RN1 . See the online Main Appendix. 

Risk-neutral investors keep investing in the AFMI as

long as they expect to earn positive net alphas. Eventu-

ally, either they drive alphas to zero and have E( αi | D ) = 0

and S / W ≤ 1 or they run out of funds and have E( αi | D ) ≥ 0

and S/W = 1 . If some of the wealth is passively man-

aged ( S / W < 1), then, irrespective of AFMI concentration

or AFMI size, equilibrium expected net alpha will be zero

[ E( αi | D ) = 0 ] . This result parallels the results of BG and

the risk-neutral case (with perfect competition) of PS. Our

additional result is that, even in the risk-neutral case, the

AFMI size will depend on AFMI concentration through its

effect on X( e ∗
i 
, H ) . The intuition is that, even though the

AFMI expected net alphas are driven to zero, higher AFMI

concentration incentivizes managers to invest more ef-

fort for finding mispriced assets. (Expected net alphas are

driven to zero along a path of search for investment oppor-

tunities when managers exert more effort.) This increase in

optimal effort increases the AFMI size at which investors

are indifferent between investing an additional dollar with

the AFMI and the passive benchmark. 

Another difference between BG and our model is the

source of heterogenous manager ability. In BG, the source

of heterogenous manager ability is the expected excess re-

turn (over the passive benchmark) earned on the first dol-

lar actively managed by a fund. In our model, this quan-

tity is the same across funds. The source of heterogenous

manager ability in our model is the fund-level decreasing
 active fund management industry concentrated enough? 
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31 In an M -fund AFMI, for example, the HHI could have values between 

the highest concentration, 1, where one of the funds captures practi- 

cally all the market share, and the lowest concentration, 1/ M , where 

market shares are evenly divided. That is, in an M -funds’ market, HHI ∈ 
[ 1 

M 
, 1) . 〈 / END 〉 In our model, predictions 1 and 2 follow if and only if direct 

benefits of effort increase with concentration. Therefore, empirical sup- 

port for these predictions also provides additional evidence in support of 

our assumption that direct benefits of effort increase with concentration. 

Prediction 3 relies on an alternative assumption described in Footnote 6. 
returns to scale parameter c 1, i , which measures the rate 

at which the manager’s costs in generating gross alpha in- 

crease with size. A more skilled manager in our model is 

one who has lower total variable costs of active manage- 

ment for the same AUM and gross alpha. Therefore, in our 

equilibrium, managers with the lower fund-level decreas- 

ing returns to scale parameter ( c 1, i ) have more AUM. While 

the fund-level decreasing returns to scale parameter in BG 

influences the fund’s AUM in the same way [large parame- 

ter corresponds to a smaller fund, see their Eq. (27) ], they 

assume this parameter to be the same across funds. 

Our choice of modeling heterogeneity in c 1, i (as a 

source of heterogenous manager ability) enables us to 

obtain heterogeneity in equilibrium fund sizes as well 

as a positive equilibrium fee charged by managers (see 

Lemma RA1 ). In the competitive equilibrium of PS, the fee 

is zero. If the fee (net of costs) were, instead, equal to some 

positive value in PS, then any fund manager would set 

an infinitesimally lower fee to attract all investment from 

other funds. We model costs explicitly, and in equilibrium 

fees compensate managers for their costs [fund managers 

charge (positive) break-even fees], which include a compo- 

nent related to size and a component related to effort (see 

Lemma RA1 ). 

Fund managers in the BG model are indifferent to the 

fee they charge as long as two conditions are met (see 

their Section II.A ): (1) this fee is less than the hypotheti- 

cal fee they could charge to maximize their compensation, 

and (2) they can expand their fund by investing in the pas- 

sive benchmark (i.e., closet indexing). They show that, un- 

der their assumptions, managers are indifferent between 

large AUM with a small fee and small AUM with a large 

fee as long as their profits stay the same. In BG’s frame- 

work, fund managers can choose their AUM independently 

of competing fund managers’ skills. This assumption allows 

fund size to be arbitrary and unrelated to skill. 

We model competition between managers with differ- 

ent returns to scale parameters. In our equilibrium, this 

competition for finite AUM results in zero profits and 

break-even fees charged by managers, as well as in relative 

fund sizes that correspond to the relative rates at which 

fund-level returns to scale decrease (our measure of abil- 

ity). In other words, the AFMI fund size distribution re- 

flects the distribution of ability. This implies a tight link 

between skill of an AFMI fund manager ( c 1 , i 
−1 ), the man- 

ager’s fund size, the manager fund’s market share, and the 

manager fund’s net alpha. In Proposition RA4 , we describe 

how a decrease in skill (increase in the cost, c 1, i ) of one 

fund manager leads to a decrease in the manager’s fund 

size and an increase in the fund sizes of competing man- 

agers. Such a decrease in an AFMI manager skill will also 

have an industry-wide effect of a decreasing the AFMI net 

alpha. Such effects of changes in skill of one fund manager 

on the fund sizes and alphas of other fund managers are 

absent in the BG equilibrium. 

Proposition RA4 . Relation between skill, market share and net 

alpha . 

When S / W ≤ 1, a decrease (increase) in manager i’s skill, 

c 1 , i 
−1 , while manager j’s skill, c 1 , j 

−1 , ∀ j 
 = i is unchanged, in- 

duces 
Please cite this article as: D. Feldman, K. Saxena and J. Xu, Is the
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1 A decrease (increase) in s i / S and an increase (decrease) in 

s j / S , ∀ j 
 = i and 

2 A decrease (increase) in E( αi | D ) | { e ∗, f ∗, δ∗} and a decrease 

(increase) in E( α j | D ) | { e ∗, f ∗, δ∗} , ∀ j 
 = i . 

Proof of Proposition RA4 . See the online Main Appendix. 

According to Proposition RA4 , a decrease in manager i ’s 

skill leads to a decrease in i ’s market share, s i / S . Some of

the assets that fund i loses are invested in all other funds, 

thereby increasing the market share of all other funds. 

A higher skill (lower c 1, i ) affects E( αi | D ) | { e ∗, f ∗, δ∗} in two 

stages. In the first stage, it decreases manager i ’s average 

cost and, thus, induces higher fund expected net alphas. As 

manager i offers a higher fund expected net alpha, invest- 

ments shift into fund i from other funds, making all those 

fund expected net alphas higher due to decreasing returns 

to scale at fund level. At the second stage, an increase 

in fund expected net alphas attracts investments into the 

AFMI, which drives down fund expected net alphas due to 

decreasing returns to scale at industry level. When N → ∞ 

and S / W < 1, investors’ portfolio risks increase (decrease) 

when they invest more (less) in the AFMI. Thus, they sub- 

due AFMI investments increases when observing an in- 

crease in fund expected net alphas, and they limit invest- 

ment reductions when observing a decrease in fund ex- 

pected net alphas. Investors’ risk aversion mitigates the 

countered effect at the second stage and makes the first 

stage’s effect dominant. 

When S/W = 1 , investors have no additional wealth to 

allocate to funds, so their investments have no impact on 

marginal equilibrium optimal expected net alphas, causing 

the first stage’s effect to dominate. 

In summary, this proposition describes novel results, 

compared with BG, arising from modeling competition be- 

tween managers with different fund-level returns to scale 

parameters. 

2.4. Endogeneity in measures of AFMI concentration 

Our model allows for an endogenous measure of AFMI 

concentration. Modeling an endogenous measure of con- 

centration facilitates the use of available and prevalent 

empirical measures. If we define concentration to be the 

Herfindahl–Hirschman Index ( HHI ), which is the sum of 

market shares squared, then, HHI is endogenous to our 

model. 31 Using funds’ equilibrium market share, as iden- 

tified in Lemma RA1 , we can write the equilibrium AFMI 

concentration HHI ∗ as 

H H I ∗ �= 

M ∑ 

i =1 

(
s i 
S 

)2 

= 

M ∑ 

i =1 

( 

c 1 , i 

M ∑ 

j=1 

(
c 1 , j 

−1 
)) −2 

. (33) 
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33 More generally, these two measures have different possible 

concentration-level intervals. Independent of the number (greater than 

one) of industry firms, under the NHHI all concentration distributions are 

on the interval [0, 1). Under the HHI , an M -firm industry ( M > 1) has a 

concentration distribution on the interval [ 1 
M 

, 1) . At concentration levels 

near one, one of the funds captures practically all the market share, 
HHI ∗ is determined by c 1, i s. Depending on the size of

c 1, i relative to that c 1, j , ∀ j 
 = i , an increase in c 1, i , holding

c 1, j , ∀ j 
 = i constant, increases or decreases HHI ∗. For fur-

ther analysis and discussion of the endogenous measure of

AFMI concentration, see the online Main Appendix. 

In general, we expect the theoretical concentration level

in our framework to be influenced by industry characteris-

tics such as regulations, transaction costs, tax rates, bar-

riers to entry, and funds’ idiosyncratic outcomes, in ad-

dition to funds’ cost sensitivity to size (i.e., c 1, i s). For ex-

ample, Hong (2018) finds that a policy reform in Hong

Kong (the 2012 Employee Choice Arrangement) substan-

tially increased competition in the fund management in-

dustry by dramatically expanding the choices for pension

plan participants from an average of 11 funds to more than

four hundred funds. In these cases, the concentration level

can change even when all the cost sensitivities (or fund

manager skill) are constant. We do not model the various

determinants of concentration levels and simply assume

them to be exogenous. As long as real-world concentra-

tion is not exactly determined by the c 1, i s (or any other ex-

ogenous parameter of our model), we are back to the case

that when concentration is exogenous (that is, has an ex-

ogenous component), our predictions remain unaltered re-

garding the relation between changes in exogenous AFMI

concentration level, the equilibrium fund expected net al-

phas, and AFMI size. 

3. Empirical predictions and test method 

In this section, we describe key empirical predictions

that our theoretical model generates, followed by our data

and methodology to test these predictions. 

3.1. Empirical predictions 

Underlying our empirical predictions is the theoretical

scenario in which an increase in the AFMI concentration

has a larger effect on the availability of mispriced invest-

ment opportunities than on any associated costs of exploit-

ing these opportunities (higher concentration induces a

larger marginal effort impact on gross alpha than on costs).

For instance, costs associated with an increase in effort can

be staff’s increase in compensation (endogenously deter-

mined). We assume that these costs are less than the value

added to the firm due to the increase in effort. We claim

this is a reasonable assumption. [See, for example, Ibert

et al. (2017) , who find concavity of managerial compensa-

tion in firm revenue and weak sensitivity of pay to perfor-

mance.] This assumption means that the direct benefits of

effort [as defined in Eq. (21) ] increase with concentration.

Based on this scenario, we predict that a higher concentra-

tion level is associated with larger AFMI size [ Proposition

RA3 (1)], higher AFMI net alpha [ Proposition RA3 (1)], and

higher AFMI effort [Lemma RA1(3)]. 32 
32 We also omit some rare cases in which more than five years’ return 

observations are missing in a ten-year window. This improves the esti- 

mation of our style-matching model with a five-year rolling estimation 

window. 
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Effort is largely unobservable. Even the salaries of man-

agers are difficult to observe. Therefore, it is difficult to

test the third prediction directly. Instead, we provide in-

direct suggestive evidence in favor of our model. We use

aggregate AFMI active share and tracking error as prox-

ies for effort. 33 These proxies are likely to be correlated

with effort because any attempt to outperform the bench-

mark must involve taking positions that are different from

the benchmark ( Cremers and Petajisto, 2009 ). One rea-

son active share can be uncorrelated with effort is that

fund managers could jam the signal in active share by

taking uninformed bets to increase their perceived active

share, generating a false sense of truly active management

( Brown and Davies, 2017 ). Such signal jamming behavior is

more likely to be an issue if a measure of active share is

tied with fund manager incentives, which is not likely in

our sample period (our sample for active share tests ends

in 2009, the same year as the publication of Cremers and

Petajisto, 2009 . Also, information asymmetry and its as-

sociated signal jamming in Brown and Davies (2017) per-

tains to fund-level active share. Our prediction is for aggre-

gate AFMI-level effort (not relative effort of funds), where

information asymmetry and signal jamming” are less

important. 

Our model also has a second-order prediction that we

test, that is, the AFMI net alphas and AFMI size are both ei-

ther concave or convex in AFMI concentration [ Proposition

RA3 (2) and Proposition RA3 (3)]. 

3.2. Data 

We obtain our active fund data from Morningstar Di-

rect. Our sample contains 1374 actively managed US (do-

mestic) equity-only mutual funds from January 1979 to

December 2014. We include both open-ended and closed-

ended funds. We exclude index funds, enhanced index

funds, funds of funds, international funds, industry sector

funds, real estate funds, and other non-equity funds. While

we analyze fund-level data, the Morningstar data are of-

ten at the fund share class level. We use the fund identi-

fication provided by Morningstar to aggregate fund share

class-level information to fund-level information (because

many mutual funds offer multiple share classes, which rep-

resent claims on the same underlying assets but have dif-

ferent fee structures; see also PST, footnote 11). Because we

use a five-year rolling window to estimate fund net alphas,

we require each of our active equity mutual funds to have

at least ten years of monthly return observations. 34 The

online Empirical Appendix details the keywords and filters
and at the lowest concentration, 1/ M , market shares are evenly divided. 

A three-firm industry would induce a concentration-level distribution 

on [0.33, 1), and a four-firm industry would induce a concentration 

distribution on [0.25, 1). 
34 As in PST, we do not use the Fama–French factors ( Fama and French, 

1993 ) as our benchmark. PST (p. 31) note, “The Fama–French factors are 

popular in mutual fund studies because their returns are freely avail- 
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used to construct our sample of actively managed US eq- 

uity mutual funds. 

We also obtain data on index funds from Morn- 

ingstar. These index funds, which we use to benchmark 

the performance of active mutual funds, include those 

from the Morningstar Institutional Categories of Small Core 

(Vanguard Small Cap Index), Large Core (EQ/Common Stock 

Index Portfolio), and Standard & Poor’s 500 Tracking (Van- 

guard 500 Index). We require index funds to have no miss- 

ing observations in our sample period. All the fund returns 

are net of administrative and management fees and other 

costs taken out of fund assets. 

We obtain quarterly data on fund-level active share 

and tracking error from the Antti Petajisto website ( www. 

petajisto.net/data.html ). Petajisto (2013) contains a descrip- 

tion of how these data are constructed. 

3.3. Variable definitions 

We now define how we measure key variables in our 

analysis. 

AFMI Size represents the active equity mutual fund 

AFMI size relative to total stock market capitalization. Our 

measure of AFMI size ( SoW t , size over wealth) is the sum 

of the net AUM of US active equity funds in our sample, 

divided by stock market capitalization, which is defined as 

the sum of all individual stocks’ market capitalization in 

Center for Research in Security Prices (CRSP) (share code 

of 10 or 11) in the same month. 

AFMI Active Share is the quarterly average active share 

of active funds (in Petajisto’s database). We exclude in- 

dex funds and enhanced index funds in the database when 

identifying active funds. 

AFMI Tracking Error is the AFMI tracking error as the av- 

erage tracking error of active funds (excluding index funds 

and enhanced index funds) in that quarter. 

MS i , t is the market share of fund i at time t , measured 

by the fund’s AUM at time t over the total AFMI’s AUM 

at time t. We use fund net asset value data at a monthly 

frequency to calculate MS i , t . 

AFMI Concentration , following the literature, is mea- 

sured using three indices (see, for example, Berger and 

Hannan, 1989; Geroski, 1990; Berger, 1995; Goldberg and 

Rai, 1996; Nickell, 1996; Berger et al., 1999; Cremers et al., 

2008; Giroud and Mueller, 2011 ). All three indices are con- 

structed using two variables: MS i , t and m t , where m t is the 

number of funds at time t . We calculate m t at a monthly 

frequency. 

Our three measures of AFMI concentration are HHI , the 

normalized HHI ( NHHI ), and the sum of the first five largest 

funds’ market shares (5 FI ). 
able. Yet the Fama–French factors are not obvious choices because they 

are long-short portfolios whose returns cannot be costlessly achieved by 

mutual fund managers or investors.” In addition, Cremers, Petajisto, and 

Zitzewitz (2012) and Grinblatt and Saxena (2017) argue that the Fama–

French model produces biased assessments of alpha. To avoid such prob- 

lems and remain consistent with our model in which investors compare 

active funds with a traded passive benchmark, we use Sharpe style anal- 

ysis and identify an appropriate traded benchmark for each mutual fund 

in our sample. 
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For the HHI , 

H H I t = 

m t ∑ 

i 

MS 2 i, t . (34) 

The HHI is a commonly used measure of concentration 

(see, for example, Cremers et al., 2008 and Giroud and 

Mueller, 2011 ) and is well grounded in theory (see Tirole, 

1988 , pp. 221–223). As the value of the HHI is related to 

the number of funds ( m t ), for a robustness check, we also 

use two measures not related to the number of funds to 

measure AFMI concentration: the NHHI used by Cremers 

et al. (2008) and the 5 FI , another common measure of 

AFMI concentration. 

For the NHHI , 

NH H I t = 

H H I t − 1 
m t 

1 − 1 
m t 

. (35) 

The NHHI induces similarity in possible concentration-level 

distributions. For example, it is zero for an industry in 

which all firms have equal market shares, regardless of 

whether it has three or four firms. In contrast, the HHI is 

0.33 for the three-firm industry with equal market shares 

and 0.25 for the four-firm industry. 35 

For the five-fund index, 

5 F I t = 

5 ∑ 

i =1 

M S i, t . (36) 

Our model provides a relation between these measures 

of AFMI concentration and fund-level decreasing returns to 

scale parameters. Using the HHI as the measure of AFMI 

concentration HHI ∗ and fund equilibrium market shares, 

as identified in Lemma RA1 , we can write an expression 

for equilibrium AFMI concentration HHI ∗ [Eq. (33)] . (Sim- 

ilar relations can be obtained for NHHI and five-fund in- 

dex.) This expression shows a relation between HHI ∗ and 

the c 1, i ’s. The question of which of the two quantities is 

exogenous, or whether both are determined together in 

equilibrium, is a complex one that is beyond the scope of 

this paper (see Section 2.4 for a discussion of this issue). 

We simply use these empirical measures as proxies for the 

true level of AFMI concentration (or competition) and do 

not enforce restrictions between cost parameters and HHI . 

Fund net alpha. Our measure of net alpha ( αi, t ) is the 

difference between a fund’s net return and the net re- 

turn on the benchmark we assign to the fund. The bench- 

mark against which we judge a fund’s net alpha is a set of 

(traded) index funds selected using style analysis ( Sharpe, 

1992 ). 36 These index funds are intended to represent the 

next-best investment opportunity available to investors as 
35 To be a valid instrument of M S i, t−1 , M S i, t−1 must satisfy the relevance 

and exclusion conditions. The relevance condition is likely to hold because 

both M S i, t−1 and M S i, t−1 are derived from M S i, t−1 and are, thus, likely to 

be closely related. The exclusion condition is also likely to hold because 

the backward-looking information in M S i, t−1 is unlikely to be helpful in 

predicting the forward-looking net alpha information in ε i, t , where ε i, t is 

the residual in the RD method. We correct the second-stage standard er- 

ror estimates of β1 by incorporating the estimation errors from the first- 

stage regression. 
36 To be a valid instrument of M S i, t−1 , M S i, t−1 must satisfy the relevance 

and exclusion conditions. The relevance condition is likely to hold because 

 active fund management industry concentrated enough? 

019.08.009 

http://www.petajisto.net/data.html
https://doi.org/10.1016/j.jfineco.2019.08.009


D. Feldman, K. Saxena and J. Xu / Journal of Financial Economics xxx (xxxx) xxx 15 

ARTICLE IN PRESS 

JID: FINEC [m3Gdc; September 9, 2019;7:23 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a tradable passive index ( Berk and van Binsbergen, 2015 ).

In our model, we assume that a single passive benchmark

exists and is common knowledge to investors and man-

agers. In the theoretical analysis, we make this assumption

for parsimony. Relaxing it does not alter the key insights

from our model. In Section 4 , we allow for multiple bench-

marks and match each active equity mutual fund to a set

of tradable index funds that reasonably replicate passive

alternatives available to an average mutual fund investor.

We estimate the equation 

R i, t = αi, t + b 1 i, t F 
1 

t + b 2 i, t F 
2 

t + · · · + b n i, t F 
n 

t , (37)

where the indices i and t represent the fund and time in-

dices, and n indicates the number of tradable index funds

in the market. R i , t is the return net of management fee of

a fund, and F 1 t through F n t are the returns net of manage-

ment fees of tradable index funds in different asset classes.

We also allow for a risk-free fund by including the CRSP

Fama–French risk-free rate as a potential benchmark. We

treat the index funds F 1 t through F n t as a basis fund set that

can be used to replicate the returns on any passive bench-

marks used by mutual fund investors. 

We perform this analysis on a rolling basis, using re-

turns from months (t − 60) to (t − 1) , in order to avoid a

look-ahead bias. For each active fund in our sample, we

identify coefficients, b 1 
i, t 

to b n 
i, t 

, that minimize the vari-

ance of the residuals, which are also the tracking errors

between the active fund return and a corresponding pas-

sive benchmark portfolio return ( Sharpe, 1992 ). These co-

efficients are constrained to be between zero and one (we

do not allow short selling), and their sum is constrained to

be one. These coefficients identify the portfolio weights, on

our basis index fund set, that provide the estimated pas-

sive benchmark portfolio for a fund. This portfolio gives

the minimum tracking error. Our empirical design of iden-

tifying passive benchmarks using matching tradable index

funds fits our theoretical structure, which assumes the ap-

propriate passive benchmarks for each fund. 

To calculate a fund’s net alphas in month t , we subtract

the returns on the identified set of passive portfolios (the

style benchmark) for month t from the active equity fund’s

returns in month t [see Eq. (37) ] . This provides us with

fund net alphas in each month for each fund. 

To evaluate the robustness of our results, we use an al-

ternative method to measure fund net alphas. This method

addresses the possibility that traded index funds do not

capture unobserved risk factors that drive excess returns.

Errors in our set of passive benchmarks or our matching

strategy can result in net alphas that measure exposure to

unobserved common risk factors instead of fund manager

performance. Using the method developed by Connor and

Korajczyk (1988) , we estimate unobserved common factors

in our estimated fund net alphas using the principal com-

ponents (PC) of our estimated fund net alphas series. We
both M S i, t−1 and M S i, t−1 are derived from M S i, t−1 and are, thus, likely to 

be closely related. The exclusion condition is also likely to hold because 

the backward-looking information in M S i, t−1 is unlikely to be helpful in 

predicting the forward-looking net alpha information in ε i, t , where ε i, t is 

the residual in the RD method. We correct the second-stage standard er- 

ror estimates of β1 by incorporating the estimation errors from the first- 

stage regression. 
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use these estimated PC factors to control for unobserved

common factors in fund net alphas. We regress (without

a constant term) each fund’s net alphas on the first two

PC factors. We refer to the residuals of these regressions

as PC-adjusted fund net alphas and use them as the de-

pendent variable in our robustness analysis. See the on-

line Empirical Appendix for details on how we calculate

PC-adjusted fund net alphas. 

We control for fund-level decreasing returns to scale by

adding lagged fund size as a control. Following PST, we

measure Fund size as the fund’s AUM at the end of the pre-

vious month, inflated to December 2014 dollars by using

the ratio of the total stock market capitalization in Decem-

ber 2014 to its value at the end of the previous month.

They argue that this is a reasonable way to measure the

limitations on a fund due to its size. It captures the size

of the fund relative to the universe of stocks that the fund

can buy. 

3.4. Methodology 

We analyze the impact of AFMI concentration on AFMI

size, AFMI active share, and tracking error (predictions 1

and 3) at industry level. We analyze the impact of AFMI

concentration on AFMI alpha (prediction 2) using fund-

level data to control for potential effects of market share

(fund size divided by total AFMI size) on performance

and an associated omitted-variable and finite sample bias

(see PST). We study second-order predictions using both

industry-level data and fund-level data as prediction 4 re-

quires that AFMI net alphas (measured using fund-level

data) and AFMI size (measured using industry-level data)

are both either concave or convex in AFMI concentration. 

3.4.1. Industry-level analysis 

Using monthly data, in analyzing the relation between

AFMI size and AFMI concentration, we use vector autore-

gression (VAR). The main equation in the VAR system is 

So W t = b 0 + b 1 So W t−1 + b 2 H H I t−1 + b 3 H H I 2 t−1 + e t , (38)

Where SoW t is AFMI size and e t represents regression

residuals. In the VAR system, we also have equations in

which HHI t depends on H H I t−1 and So W t−1 and H H I 2 t de-

pends on H H I 2 
t−1 

. 

In addition, we use two effort proxies, active share ( AS t )

and tracking error ( TE t ), which are likely to represent dif-

ferent dimensions of effort. According to Cremers and Peta-

jisto (2009) , the active share measure emphasizes stock

selection, and tracking error volatility emphasizes bets on

systematic risk factors. Therefore, we include the effects of

both these dimensions in testing prediction 3, using VAR:

A S t = b 01 + b 11 A S t−1 + b 11 T E t−1 + b 31 H H I t−1 + e 1 t (39)

T E t = b 02 + b 12 A S t−1 + b 12 T E t−1 + b 32 H H I t−1 + e 2 t , (40)

where e 1 t and e 2 t represent regression residuals. In the

VAR system, we also have the equation in which HHI t de-

pends on H H I t−1 , A S t−1 , and T E t−1 . 
 active fund management industry concentrated enough? 

019.08.009 

https://doi.org/10.1016/j.jfineco.2019.08.009


16 D. Feldman, K. Saxena and J. Xu / Journal of Financial Economics xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: FINEC [m3Gdc; September 9, 2019;7:23 ] 
3.4.2. Fund-level analysis 

We follow PST’s methodology to control for omitted- 

variable and finite-sample bias in our alpha analysis. The 

omitted-variable problem arises from the cross-sectional 

variation in performance that is due to differences in skill 

across funds. PST note that fund fixed effects can con- 

trol for this heterogeneity as long as fund skill is time- 

invariant. However, adding fund fixed effects introduces 

finite-sample bias due to the positive contemporaneous 

correlation between changes in fund size and unexpected 

fund returns. To avoid these biases, we use the PST recur- 

sive demeaning (RD) estimator. We estimate the effects of 

a fund’s market share ( β1 ), AFMI concentration ( β2 and 

β3 ), and AFMI size ( β4 ) on fund net alphas using the panel 

regression 

αi,t = β1 M S i,t−1 + β2 H t−1 + β3 H 

2 
t−1 

+ β4 So W t−1 + ε i,t . 

(41) 

The bar above the variables denotes forward-demeaned 

variables: 

αi,t = αi,t −
1 

T i − t + 1 

T i ∑ 

s = t 
αi,s , (42) 

M S i,t = M S i,t −
1 

T i − t + 1 

T i ∑ 

s = t 
M S i,s , (43) 

So W t = So W t − 1 

T i − t + 1 

T i ∑ 

s = t 
So W s , (44) 

H H I t = H H I t − 1 

T i − t + 1 

T i ∑ 

s = t 
H H I s , (45) 

and 

H H I 2 t = H H I 2 t −
1 

T i − t + 1 

T i ∑ 

s = t 
H H I 2 t , (46) 

where T i is the number of time series observations of fund 

i . We run robustness checks by replacing HHI with NHHI 

and with 5 FI. 

The RD method in Eq. (41) can control for the fund 

fixed effect. We include market share as a control, not only 

because the equilibrium market share provides informa- 

tion on a fund’s cost sensitivity to fund size ( Lemma RA1 ), 

but also because empirical studies show a linear relation 

between changes in market share and fund performance 

( Spiegel and Zhang, 2013 ) and use it as a firm-level mar- 

ket power measure (e.g., Berger et al., 1999 and Nickell, 

1996 ). Endogeneity (reverse causality) could exist between 

AFMI shares and fund net alphas because when fund net 

alphas are higher, corresponding asset values increase and 

funds attract investments, both leading to a higher mar- 

ket share. This endogeneity issue could bias our results. 

Following PST, we address this issue using an instrumen- 

tal variable method. 37 In the first stage, we regress M S i, t−1 
37 To be a valid instrument of M S i, t−1 , M S i, t−1 must satisfy the relevance 

and exclusion conditions. The relevance condition is likely to hold because 

both M S i, t−1 and M S i, t−1 are derived from M S i, t−1 and are, thus, likely to 

be closely related. The exclusion condition is also likely to hold because 

the backward-looking information in M S i, t−1 is unlikely to be helpful in 
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(recursively forward-demeaned market share) on M S i,t−1 

(recursively backward-demeaned market share) without a 

constant term. In the second stage, we use the fitted value 

from the first stage to run Eq. (41) , where 

M S i,t = M S i,t −
1 

t − 1 

t−1 ∑ 

s =1 

M S i,s . (47) 

There is no reason to believe that individual fund net 

alphas, which are fund-level variables, are endogenous to 

industry-level measures such as AFMI concentration ratios 

(see, for example, footnote 17 of PST). Thus, to test the 

concentration–alpha relation, we do not use a backward- 

demeaned instrument. We just use the recursive forward- 

demeaned AFMI concentration ratios in Eq. (41) . 

4. Empirical results 

Table 1 reports the summary statistics. Monthly fund 

net alphas are positive on average but exhibit a wide 

variation. We also report summary statistics of the fit of 

our passive benchmark-matching method using R -squared, 

which is measured as 

Rsq r i,t = 1 − V ar ( αi,t ) 

V ar ( R i,t ) 
, (48) 

where Var (.) denotes variance. On average, our style- 

matching model fits well with an average R -squared of 

0.86 and a standard deviation of about 0.12. The summary 

statistics of AFMI size (total AFMI funds’ net assets divided 

by stock market capitalization) and fund sizes in Decem- 

ber 2014 dollars (funds’ net assets divided by stock market 

capitalization in the same month, multiplied by the stock 

market capitalization in December 2014) are similar to the 

sample in PST. 

The number of active equity mutual funds in our sam- 

ple increases over time and the AFMI concentration mea- 

sures, such as the HHI, NHHI , and 5 FI , with fluctuations, 

tend to decrease over time. Fig. 1 shows the HHI value 

from January 1984 to December 2014. Before 1990, the HHI 

value was relatively high, fluctuating from 0.02 to 0.03. Af- 

ter that, it continued decreasing. In the most recent years, 

it has reached 0.006, which is around a quarter of the val- 

ues before 1990. This figure shows that the concentration 

of the US active equity mutual fund market decreased sub- 

stantially. Alternative AFMI concentration measures, such 

as NHHI and 5 FI , show similar trends. 

Because our sample differs from PST, we check for any 

alarming systematic differences by evaluating the returns 

to scale relation in our sample. In unreported results, we 

find results consistent with PST’s: fund net alpha is signif- 

icantly negatively associated with lagged AFMI size and is 

negatively (but insignificantly) associated with lagged fund 

size. The results suggest decreasing returns to scale at in- 

dustry level. 
predicting the forward-looking net alpha information in ε i, t , where ε i, t is 

the residual in the RD method. We correct the second-stage standard er- 

ror estimates of β1 by incorporating the estimation errors from the first- 

stage regression. 
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Table 1 

Statistical summary. 

Our sample period is from January 1979 to December 2014, and monthly data are used. Panel A reports the summary statistics for fund-level data, and 

Panel B reports those for industry-level data. Fund net return and fund net alpha are in percentages, and both are net of administrative and management 

fees and other costs taken out of fund assets. HHI, NHHI , and 5 FI are Herfindahl–Hirschman index, normalized Herfindahl–Hirschman index, and five-fund 

index, respectively. MS is fund market share, calculated as a fund’s net assets under management (AUM) divided by the sum of all funds’ net AUM in the 

same month. SoW is AFMI size, calculated as the sum of funds’ net AUM divided by the stock market capitalization in the same month. AS is AFMI active 

share, measured as the average active share of active funds (in Antti Petajisto’s database, www.petajisto.net/data.html ) in a quarter. TE is AFMI tracking 

error, calculated as the average tracking error of active funds in a quarter. Style-matching model R-squared, MS, HHI, NHHI , 5 FI, AS , and TE are in decimals. 

Fund size is measured in $100 million and is equal to the fund’s total net AUM, divided by the stock market capitalization in the same month and multiplied 

by the stock market capitalization in December 2014. Number of funds is in units. 

Percentile 

Variable 

Number of 

observations Mean 

Standard 

deviation 1st 25th 50th 75th 99th 

Panel A: Fund-level data 

Fund net return (percent) 321,456 0.8736 5.1508 −14.4922 −1.7976 1.2998 3.8907 13.0053 

Fund net alpha (percent) 246,553 0.0349 1.9499 −5.4465 −0.8570 0.0215 0.9156 5.5982 

Style-matching model R-squared 

(decimal) 

246,557 0.8607 0.1175 0.4223 0.8178 0.8953 0.9408 0.9894 

Fund size (hundreds of millions 

of December 2014 dollars) 

314,083 28.7796 95.3306 0.0399 1.3833 5.5718 20.1835 416.9203 

MS (decimal) 314,083 0.0012 0.0041 0.0000 0.0000 0.0002 0.0007 0.0185 

Panel B: Industry-level data 

SoW (decimal) 432 0.0982 0.0591 0.0200 0.0389 0.1035 0.1638 0.1801 

Number of funds 432 850.2 659.5 86.0 249.0 677.5 1468.5 2126.0 

HHI (decimal) 432 0.0191 0.0230 0.0061 0.0101 0.0157 0.0243 0.0382 

NHHI (decimal) 432 0.0157 0.0139 0.0057 0.0094 0.0141 0.0201 0.0269 

5FI (decimal) 432 0.2166 0.0765 0.1240 0.1640 0.1986 0.2650 0.3438 

AS (decimal) 119 0.8349 0.0416 0.7620 0.7980 0.8440 0.8740 0.8940 

TE (decimal) 119 0.0755 0.0260 0.0382 0.0606 0.0707 0.0868 0.1954 

Fig. 1. Herfindahl–Hirschman Index ( HHI ) value January 1984–December 2014. 

This figure shows the monthly HHI values from January 1984 to December 2014. The HHI is calculated as the sum of the funds’ market shares squared, 

where each fund’s market share is calculated as the fund’s net assets under management (AUM) divided by the sum of all the funds’ net AUM. The HHI ’s 

value is in decimals. The gray bars represent the recession periods. 
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Table 2 

Industry-level analysis: active fund management industry (AFMI) size and AFMI concentration. 

This table reports the results of the main equations in various vector autoregression models, in which AFMI size, SoW , is the dependent variable. The 

sample period is from January 1979 to December 2014, and monthly data are used. SoW is the sum of funds’ net assets under management divided by the 

stock market capitalization in the same month. HHI, NHHI , and 5 FI are Herfindahl–Hirschman index, normalized Herfindahl–Hirschman index, and five-fund 

index, respectively, and HHI 2 , NHHI 2 , and 5 FI 2 are their squared terms. Panels A, B, and C report the results of using HHI, NHHI , and 5 FI as the concentration 

measures, respectively. Time trend is set to be one for January 1979 and to increase by one each month. Small sample-adjusted standard errors are used 

and presented in parentheses. ∗∗∗ , ∗∗ , and ∗ represent the 1%, 5%, and 10% significant level in a two-tail t -test, respectively. 

SoW SoW SoW SoW 

(1) (2) (3) (4) 

Panel A: HHI results 

Lagged SoW 1.0033 ∗∗∗ 1.0052 ∗∗∗ 0.9952 ∗∗∗ 0.8772 ∗∗∗

(0.0014) (0.0035) (0.0063) (0.0293) 

Lagged HHI 0.0287 ∗∗∗ 0.0491 ∗ 0.0754 ∗∗ 0.9341 ∗∗∗

(0.0037) (0.0278) (0.0310) (0.1126) 

Lagged HHI 2 −0.1361 ∗ −0.2044 ∗∗ −2.4601 ∗∗∗

(0.0761) (0.0846) (0.3003) 

Time trend 0.0000 ∗

(0.0000) 

Constant −0.0005 ∗∗ −0.0009 −0.0017 ∗ 0.0155 ∗∗∗

(0.0002) (0.0008) (0.0009) (0.0054) 

Year dummies No No No Yes 

Number of observations 431 431 431 431 

R -squared 0.999 0.999 0.999 0.999 

Panel B: NHHI results 

Lagged SoW 1.0040 ∗∗∗ 1.0097 ∗∗∗ 0.9999 ∗∗∗ 0.8660 ∗∗∗

(0.0015) (0.0029) (0.0064) (0.0286) 

Lagged NHHI 0.0497 ∗∗∗ 0.1328 ∗∗∗ 0.1425 ∗∗∗ 1.0085 ∗∗∗

(0.0063) (0.0335) (0.0341) (0.1148) 

Lagged NHHI 2 −0.6050 ∗∗∗ −0.6446 ∗∗∗ −4.2975 ∗∗∗

(0.1493) (0.1515) (0.4981) 

Time trend 0.0000 

(0.0000) 

Constant −0.0008 ∗∗∗ −0.0024 ∗∗∗ −0.0025 ∗∗∗ 0.0175 ∗∗∗

(0.0002) (0.0007) (0.0008) (0.0052) 

Year dummies No No No Yes 

Number of observations 431 431 431 431 

R -squared 0.999 0.999 0.999 0.999 

Panel C: 5FI results 

Lagged SoW 1.0090 ∗∗∗ 1.0052 ∗∗∗ 0.9961 ∗∗∗ 0.8526 ∗∗∗

(0.0020) (0.0032) (0.0062) (0.0291) 

Lagged 5FI 0.0109 ∗∗∗ 0.0122 ∗∗ 0.0149 ∗∗∗ 0.1353 ∗∗∗

(0.0015) (0.0052) (0.0055) (0.0208) 

Lagged 5FI 2 −0.0114 ∗∗∗ −0.0132 ∗∗∗ −0.0977 ∗∗∗

(0.0043) (0.0045) (0.0156) 

Time trend 0.0000 

(0.0000) 

Constant −0.0029 ∗∗∗ −0.0022 ∗ −0.0028 ∗∗ 0.0101 

(0.0005) (0.0012) (0.0013) (0.0062) 

Year dummies No No No Yes 

Number of observations 431 431 431 431 

R -squared 0.999 0.999 0.999 0.999 
We begin our empirical analysis by evaluating the rela- 

tion between AFMI size and AFMI concentration. The re- 

sults of the main equations of the VARs are shown in 

Table 2 . The first column of each model specification shows 

how AFMI size is positively associated with HHI . The re- 

sult of interest in this table is that AFMI size is signifi- 

cantly positively associated with lagged HHI (Model Spec- 

ification 1) and is significantly negatively associated with 

the second order of lagged HHI (Model Specification 2). 

If we further include a time trend or year dummies into 

the model, we find consistent results (Model Specifications 

3 and 4). That is, AFMI size is increasing and concave in 

AFMI concentration. In Panels B and C, we analyze the 
Please cite this article as: D. Feldman, K. Saxena and J. Xu, Is the
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sensitivity of our results to alternative measures of AFMI 

concentration: NHHI and 5 FI . We generally find consistent 

results. Thus, we conclude that the data supports predic- 

tion 1. From our model’s perspective, the positive rela- 

tion between AFMI size and AFMI concentration indicates 

that higher AFMI concentration levels, on average, increase 

gross alphas more than they increase effort costs. 

Next, we evaluate the relation between fund net alphas 

and AFMI concentration. The results using the RD method 

are shown in Table 3 . Panel A reports the results using 

fund net alpha as the dependent variable. In the first two 

columns, we find that the coefficient of the first-order term 

of lagged HHI is significantly positive and the coefficient 
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Table 3 

Fund-level analysis: fund net alpha and active fund management industry (AFMI) concentration. 

This table reports the results of our recursive demeaning panel regression model. Results are presented using fund net alpha in columns (1)–(5) and 

PC-adjusted fund net alpha (adjusted by the first two principal components of fund net alphas) in columns (6)–(8), as the dependent variables. SoW is AFMI 

size, calculated as the sum of funds’ net assets under management (AUM) divided by the stock market capitalization in the same month. MS is fund market 

share, calculated as a fund’s net AUM divided by the sum of all funds’ net AUM in the same month. HHI, NHHI , and 5 FI are Herfindahl–Hirschman index, 

normalized Herfindahl–Hirschman index, and five-fund index, respectively, and HHI 2 , NHHI 2 , and 5FI 2 are their squared terms. Panels A, B, and C report 

the results of using HHI, NHHI , and 5FI as the concentration measures, respectively. The unit of coefficients is percentage. Standard errors are clustered by 

fund and presented in parentheses. ∗∗∗ , ∗∗ , and ∗ represent the 1%, 5%, and 10% significant level in a two-tail t -test, respectively. 

Fund net alpha PC-adjusted fund net alpha 

(1) (2) (3) (4) (5) (6) (7) (8) 

Panel A: HHI results 

Lagged HHI 6.5277 ∗∗∗ 40.0796 ∗∗∗ 39.1271 ∗∗ 35.3591 ∗∗∗ 34.8497 ∗∗ 2.5033 ∗∗∗ 11.8816 ∗∗∗ 9.4626 ∗∗

(1.0362) (4.8085) (17.7560) (4.6913) (17.4796) (0.8485) (4.3336) (4.1665) 

Lagged HHI 2 −1110.4260 ∗∗∗ −1081.2070 ∗ −1402.0231 ∗∗∗ −1394.8592 ∗∗ −310.3817 ∗∗ −459.8112 ∗∗∗

(156.2080) (589.6182) (184.4615) (700.8128) (142.7130) (161.0837) 

Lagged MS −12.0701 −15.1453 

(23.6434) (24.8670) 

Lagged SoW −1.8946 ∗∗∗ −1.9440 −0.9709 ∗∗∗

(0.3977) (1.4847) (0.2800) 

Number of observations 245,178 245,178 239,537 245,178 239,537 245,179 245,179 245,179 

R -squared 0.0002 0.0004 0.0004 0.0006 0.0006 0.0000 0.0001 0.0002 

Adjusted R -squared 0.0002 0.0004 0.0004 0.0006 0.0006 0.0000 0.0001 0.0002 

Panel B: NHHI results 

Lagged NHHI 7.8880 ∗∗∗ 46.4840 ∗∗∗ 45.7624 ∗∗ 44.3478 ∗∗∗ 44.2149 ∗∗ 2.9822 ∗∗∗ 12.4672 ∗∗ 11.4107 ∗∗

(1.2448) (5.4655) (20.1084) (5.4142) (20.0634) (0.9912) (4.9857) (4.9085) 

Lagged NHHI 2 −1468.6397 ∗∗∗ −1452.2241 ∗ −1884.2091 ∗∗∗ −1917.8119 ∗∗ −360.9219 ∗ −566.4512 ∗∗∗

(204.1014) (766.9316) (244.4729) (922.9258) (187.9899) (213.4361) 

Lagged MS −11.3222 −14.6674 

(23.4579) (24.8045) 

Lagged SoW −1.6200 ∗∗∗ −1.7313 −0.8012 ∗∗∗

(0.3354) (1.2683) (0.2422) 

Number of observations 245,178 245,178 239,537 245,178 239,537 245,179 245,179 245,179 

R -squared 0.0002 0.0004 0.0004 0.0006 0.0006 0.0000 0.0001 0.0002 

Adjusted R -squared 0.0002 0.0004 0.0004 0.0006 0.0006 0.0000 0.0001 0.0001 

Panel C: 5FI results 

Lagged 5FI 0.7589 ∗∗∗ 5.1426 ∗∗∗ 5.1090 6.9152 ∗∗∗ 7.0271 ∗∗ 0.2624 ∗∗ 1.3057 ∗ 2.1864 ∗∗∗

(0.1499) (0.8780) (3.2665) (0.9451) (3.5546) (0.1118) (0.7587) (0.8358) 

Lagged 5FI 2 −11.3079 ∗∗∗ −11.2617 −20.0470 ∗∗∗ −20.4280 ∗ −2.6911 −7.0332 ∗∗∗

(2.2138) (8.3831) (2.8461) (10.8268) (1.9786) (2.4875) 

Lagged MS −9.9791 −14.8748 

(23.0337) (24.8087) 

Lagged SoW −1.8969 ∗∗∗ −1.9487 −0.9425 ∗∗∗

(0.3570) (1.3386) (0.2559) 

Number of observations 245,178 245,178 239,537 245,178 239,537 245,179 245,179 245,179 

R -squared 0.0001 0.0002 0.0002 0.0006 0.0006 0.0000 0.0000 0.0002 

Adjusted R -squared 0.0001 0.0002 0.0002 0.0006 0.0006 0.0000 0.0000 0.0002 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the second-order term is significantly negative. This re-

sult is robust to including lagged market share and lagged

AFMI size as controls. This suggests that the effect of con-

centration is distinct from the effect of decreasing returns

to scale at the fund and industry levels. To control for

the possibility of unaccounted common factors in the es-

timated net alphas, we also use PC-adjusted fund net al-

phas as the dependent variable (Panel B) and find similar

results. 

The main result of this table is that fund net alphas,

on average, are increasing concave in AFMI concentration.

Our theoretical results indicate that, for plausible parame-

ter values, higher levels of AFMI concentration induce in-

creases in gross alpha production opportunities that are

higher than those in managers’ effort costs. 

Table 4 analyzes the relation between AFMI active

share, AFMI tracking error, and AFMI concentration. We
Please cite this article as: D. Feldman, K. Saxena and J. Xu, Is the
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find support for prediction 3, in that active share increases

with all measures of concentration we consider. The rela-

tion with tracking error is less robust. This could reflect

that the relation between concentration and effort is more

due to the effort involved in stock picking (as measured

by active share), rather than the effort involved in factor

timing (as measured by tracking error). Given the difficul-

ties in measuring effort, we leave a more fuller analysis

of the relation between effort and concentration for future

research. 

4.1. Robustness 

In addition to the reported tables, we examine the sen-

sitivity of the results in Table 3 by using fund fixed effect

regressions instead of the RD method. Most of the results

are consistent, except when regressing the PC-adjusted
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Table 4 

Industry-level analysis: active fund management industry (AFMI) active share, tracking error, and AFMI concentration. 

This table reports the results of the main equations in various vector autoregression models, in which AFMI active share, AS , and AFMI tracking error, 

TE , are dependent variables. The sample period is from 1980 to 2009, and the frequency is quarterly. AS is measured as the average active share of active 

funds (in Antti Petajisto’s database, www.petajisto.net/data.html ) in a quarter. TE is calculated as the average tracking error of active funds in a quarter. 

HHI, NHHI , and 5 FI are Herfindahl–Hirschman index, normalized Herfindahl–Hirschman index, and five-fund index, respectively. Eqs. (1) and (2) –(4) , and 

(5) and (6) report the results of the three concentration measures, HHI, NHHI , and 5 FI , respectively. Small sample-adjusted standard errors are used and 

presented in parentheses. ∗∗∗ , ∗∗ , and ∗ represent the 1%, 5%, and 10% significant level in a two-tail t -test, respectively. 

AS TE AS TE AS TE 

(1) (2) (3) (4) (5) (6) 

Lagged HHI 0.6279 ∗∗∗ 0.7652 ∗

(0.1865) (0.4302) 

Lagged NHHI 0.4732 ∗∗ 0.7533 

(0.2365) (0.5321) 

Lagged 5FI 0.0872 ∗∗∗ 0.0822 

(0.0284) (0.0654) 

Lagged AS 0.8979 ∗∗∗ −0.0971 0.9430 ∗∗∗ −0.0590 0.9023 ∗∗∗ −0.0680 

(0.0315) (0.0728) (0.0283) (0.0637) (0.0326) (0.0751) 

Lagged TE −0.0299 0.7111 ∗∗∗ −0.0111 0.7297 ∗∗∗ −0.0165 0.7319 ∗∗∗

(0.0280) (0.0645) (0.0279) (0.0627) (0.0272) (0.0628) 

Constant 0.0753 ∗∗∗ 0.0884 0.0406 ∗ 0.0577 0.0631 ∗∗∗ 0.0587 

(0.0240) (0.0554) (0.0212) (0.0476) (0.0224) (0.0516) 

Number of observations 118 118 118 118 118 118 

R -squared 0.969 0.574 0.967 0.570 0.968 0.569 

 

 

 

fund net alpha on AFMI concentration measures. We find 

that the significance of AFMI concentration measure is re- 

duced. We also analyze whether our results are driven by 

small funds. We redo our main analyses using observa- 

tions after restricting our sample to funds with a net as- 

set value above $15 million in any month of our sample 

period. Again, we find consistent results. To test whether 

our main results are stable across subsamples, we redo our 

analyses for three subperiods. We find a significantly pos- 

itive relation between fund net alphas and lagged HHI in 

all three subperiods. 

5. Conclusion 

We introduce a model in which optimal fund man- 

ager effort to find mispriced assets influences AFMI size 

and performance for a continuum of AFMI concentration 

levels. While models that focus on decreasing returns to 

scale suggest that AFMI performance must be low in an 

economy with a massive AFMI, our model says that, even 

in such an AFMI, if managers exert more effort, they can 

achieve higher net alpha. 

Increased effort productivity and lower effort costs in- 

centivize managers to exert more effort. We identify an 

equilibrium in which less competition (or more concentra- 

tion) leads to improved productivity and lowers costs. If a 

higher concentration results in lower search costs or more 

unexplored investment opportunities, per manager and per 

dollar of AUM, it provides stronger managerial incentives 

to exert effort. According to our model, this higher concen- 

tration could be due to a wider distribution of fund man- 

ager skills, with some highly skilled managers allocated a 

sizable proportion of the AFMI AUM. (We allow for ex- 

ogenous AFMI concentration to accommodate other forces 

that influence the competitive environment or increases 

optimal effort such as technological advances or regulatory 

changes.) In our model, increases in fund managers’ efforts 
Please cite this article as: D. Feldman, K. Saxena and J. Xu, Is the
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improve AFMI performance and increase its size, even at 

elevated levels of AUM. 

This model reproduces several empirical regularities 

and makes new predictions. We test these new predictions 

using US mutual fund data and find that, on average, AFMI 

net alphas, size, and effort (proxied by active share and 

tracking error) are increasing concave with AFMI concen- 

tration. Additional tests using natural experiments (with 

exogenous changes in concentration levels) and better data 

(e.g., direct measures of effort) are left for future research. 

While our findings identify the AFMI’s performance and 

direct benefits sensitivities to concentration, because we 

model a partial equilibrium, statements regarding general 

societal benefits will have to wait for future research. If 

we hypothesize AFMI’s gains to be coming mainly from 

noise or liquidity traders and from disciplining firms to- 

ward higher managerial productivity, one would have to 

model those to be confident about policy implications with 

respect to general societal welfare. In view of our findings, 

we suggest that regulators act judiciously when regulating 

AFMI concentration. Future research could also extend our 

analysis to international fund markets, pension funds, and 

hedge funds. 

References 

Berger, A.N. , 1995. The profit-structure relationship in banking–tests of 

market-power and efficient-structure hypotheses. J. Money Credit 

Bank. 27, 404–431 . 
Berger, A.N. , Bonime, S.D. , Covitz, D.M. , Hancock, D. , 1999. Why are bank

profits so persistent? The roles of product market competition, infor- 
mational opacity, and regional/macroeconomic shocks. J. Bank. Financ. 

24, 1203–1235 . 
Berger, A.N. , Hannan, T.H. , 1989. The price-concentration relationship in 

banking. Rev. Econ. Stat. 71, 291–299 . 

Berk, J.B. , Green, R.C. , 2004. Mutual fund flows and performance in ratio-
nal markets. J. Polit. Econ. 112, 1269–1295 . 

Berk, J.B. , van Binsbergen, J.H. , 2015. Measuring skill in the mutual fund
industry. J. Financ. Econ. 118, 1–20 . 

Brown, D.C. , Davies, S.W. , 2017. Moral hazard in active asset management. 
J. Financ. Econ. 125, 311–325 . 
 active fund management industry concentrated enough? 

019.08.009 

http://www.petajisto.net/data.html
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0001
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0001
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0002
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0002
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0002
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0002
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0002
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0003
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0003
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0003
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0004
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0004
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0004
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0005
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0005
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0005
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0006
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0006
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0006
https://doi.org/10.1016/j.jfineco.2019.08.009


D. Feldman, K. Saxena and J. Xu / Journal of Financial Economics xxx (xxxx) xxx 21 

ARTICLE IN PRESS 

JID: FINEC [m3Gdc; September 9, 2019;7:23 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Brown, K.C. , Harlow, W.V. , Starks, L.T. , 1996. Of tournaments and tempta-
tions: an analysis of managerial incentives in the mutual fund indus-

try. J. Financ. 51, 85–110 . 
Carhart, M.M. , 1997. On persistence in mutual fund performance. J. Financ.

52, 57–82 . 
Chen, J. , Hong, H. , Huang, M. , Kubik, J. , 2004. Does fund size erode mutual

fund performance? Am. Econ. Rev. 94, 1276–1302 . 

Claessens, S. , Laeven, L. , 2003. What drives bank competition? Some in-
ternational evidence. J. Money Credit Bank. 36, 563–583 . 

Cohen, R. , Coval, J. , Pastor, L. , 2005. Judging fund managers by the com-
pany they keep. J. Financ. 60, 1057–1096 . 

Connor, G. , Korajczyk, R.A. , 1988. Risk and return in an equilibrium APT
application of a new test methodology. J. Financ. Econ. 21, 255–289 . 

Cremers, M. , Ferreira, M.A. , Matos, P. , Starks, L. , 2016. Indexing and ac-
tive fund management: international evidence. J. Financ. Econ. 120

(3), 539–560 . 

Cremers, M. , Nair, V.B. , Peyer, U. , 2008. Takeover defenses and competi-
tion: the role of stakeholders. J. Empir. Leg. Stud. 5, 791–818 . 

Cremers, M. , Petajisto, A. , 2009. How active is your fund manager? A
new measure that predicts performance. Rev. Financ. Stud. 22 (9),

3329–3365 . 
Cremers, M. , Petajisto, A. , Zitzewitz, E. , 2012. Should benchmark indices

have alpha? Revisiting performance evaluation. Crit. Financ. Rev. 2,

1–48 . 
Daniel, K. , Grinblatt, M. , Titman, S. , Wermers, R. , 1997. Measuring mutual

fund performance with characteristic-based benchmarks. J. Financ. 52,
1035–1058 . 

Fama, E.F. , French, K.R. , 1993. Common risk factors in the returns on
stocks and bonds. J. Financ. Econ. 33 (1), 3–56 . 

Fama, E.F. , French, K.R. , 2010. Luck versus skill in the cross section of mu-

tual fund returns. J. Financ. 65, 1915–1947 . 
Ferreira, M.A. , Keswani, A. , Miguel, A.F. , Ramos, S. , 2013a. Testing the Berk

and Green model Around the World. Nova School of Business and
Economics, Lisbon, Portugal Unpublished Working Paper . 

Ferreira, M.A. , Keswani, A. , Miguel, A.F. , Ramos, S.B. , 2013b. The determi-
nants of mutual fund performance: a cross-country study. Rev. Financ.

17 (2), 483–525 . 

Garvey, G. , Kahn, R.N. , Savi, R. , 2017. The dangers of diversification: man-
aging multiple manager portfolios. J. Portf. Manag. 43 (2), 13–23 . 

Geroski, P.A. , 1990. Innovation, technological opportunity, and market
structure. Oxf. Econ. Pap. 42, 586–602 . 

Giroud, X. , Mueller, H.M. , 2011. Corporate governance, product market
competition, and equity prices. J. Financ. 2, 563–600 . 

Glode, V. , 2011. Why mutual funds “underperform.”. J. Financ. Econ. 99

(3), 546–559 . 
Goldberg, L.G. , Rai, A. , 1996. The structure-performance relationship for

European banking. J. Bank. Financ. 20, 745–771 . 
Grinblatt, M. , Titman, S. , 1989. Mutual fund performance: an analysis of

quarterly portfolio holdings. J. Bus. 62, 393–416 . 
Please cite this article as: D. Feldman, K. Saxena and J. Xu, Is the

Journal of Financial Economics, https://doi.org/10.1016/j.jfineco.2
Grinblatt, M. , Saxena, K. , 2017. When factors don’t span their basis port-
folios. J. Financ. Quant. Anal. 53 (6), 2335–2354 (Dec. 2018) . 

Gruber, M.J. , 1996. Another puzzle: the growth in actively managed mu-
tual funds. J. Financ. 51, 783–810 . 

Guercio, D.D. , Reuter, J. , 2014. Mutual fund performance and the incentive
to generate alpha. J. Financ. 69, 1673–1704 . 

Hoberg, G. , Kumar, N. , Prabhala, N.R. , 2018. Mutual fund competi-

tion, managerial skill, and alpha persistence. Rev. Financ. Stud. 31,
1896–1929 . 

Hong, C. , 2018. Freedom of Choice in Pension Plans: Evidence From a
Quasi-Natural Experiment. Shanghai Advanced Institute of Finance,

Shanghai, China Unpublished Working Paper . 
Ibert, M. , Kaniel, R. , Van Nieuwerburgh, S. , Vestman, R. , 2017. Are Mutual

Fund Managers Paid for Investment Skill?. National Bureau of Eco-
nomic Research, Cambridge, MA Unpublished Working Paper . 

Jensen, M.C. , 1968. The performance of mutual funds in the period

1945–1964. J. Financ. 23, 389–416 . 
Kacperczyk, M. , Sialm, C. , Zheng, L. , 2005. On the industry concentration

of actively managed equity mutual funds. J. Financ. 60, 1983–2011 . 
Khorana, A. , Servaes, H. , 2011. What drives market share in the mutual

fund industry? Rev. Financ. 16 (1), 81–113 . 
Nickell, S.J. , 1996. Competition and corporate performance. J. Polit. Econ.

104, 724–746 . 

Pastor, L. , Stambaugh, R.F. , 2002. Mutual fund performance and seemingly
unrelated assets. J. Financ. Econ. 63, 315–349 . 

Pastor, L. , Stambaugh, R.F. , 2012. On the size of the active management
industry. J. Polit. Econ. 120, 740–781 . 

Pastor, L. , Stambaugh, R.F. , Taylor, L.A. , 2015. Scale and skill in active man-
agement. J. Financ. Econ. 116, 23–45 . 

Petajisto, A. , 2013. Active share and mutual fund performance. Financ.

Anal. J. 69 (4), 73–93 . 
Reuter, J. , Zitzewitz, E. , 2013. How Much Does Size Erode Mutual Fund

performance? A Regression Discontinuity Approach. Boston College,
Chestnut Hill, MA Unpublished Working Paper . 

Sharpe, W.F. , 1992. Asset allocation: management style and performance
measurement. J. Portf. Manag. 18, 7–19 . 

Spiegel, M. , Zhang, H. , 2013. Mutual fund risk and market share-adjusted

fund flows. J. Financ. Econ. 108, 506–528 . 
Stambaugh, R.F. , 2014. Presidential address: investment noise and trends.

J. Financ. 69, 1415–1453 . 
Tirole, J. , 1988. The Theory of Industrial Organization. MIT Press, Cam-

bridge, MA . 
Wahal, S. , Wang, A.Y. , 2011. Competition among mutual funds. J. Financ.

Econ. 99, 40–59 . 

Wermers, R. , 20 0 0. Mutual fund performance: an empirical decomposi-
tion into stock-picking talent, style, transactions costs, and expenses.

J. Financ. 55, 1655–1695 . 
Yan, X. , 2008. Liquidity, investment style, and the relation between fund

size and fund performance. J. Financ. Quant. Anal. 43, 741–768 . 
 active fund management industry concentrated enough? 

019.08.009 

http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0007
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0007
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0007
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0007
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0008
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0008
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0009
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0009
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0009
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0009
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0009
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0010
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0010
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0010
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0011
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0011
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0011
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0011
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0012
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0012
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0012
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0013
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0013
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0013
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0013
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0013
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0014
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0014
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0014
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0014
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0015
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0015
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0015
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0016
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0016
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0016
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0016
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0017
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0017
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0017
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0017
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0017
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0018
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0018
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0018
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0019
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0019
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0019
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0020
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0020
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0020
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0020
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0020
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0021
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0021
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0021
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0021
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0021
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0022
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0022
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0022
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0022
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0023
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0023
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0024
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0024
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0024
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0025
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0025
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0026
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0026
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0026
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0027
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0027
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0027
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0028
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0028
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0028
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0029
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0029
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0030
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0030
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0030
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0031
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0031
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0031
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0031
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0032
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0032
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0033
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0033
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0033
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0033
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0033
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0034
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0034
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0035
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0035
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0035
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0035
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0036
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0036
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0036
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0037
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0037
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0038
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0038
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0038
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0039
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0039
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0039
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0040
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0040
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0040
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0040
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0041
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0041
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0042
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0042
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0042
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0043
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0043
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0044
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0044
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0044
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0045
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0045
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0046
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0046
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0047
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0047
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0047
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0048
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0048
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0049
http://refhub.elsevier.com/S0304-405X(19)30213-2/sbref0049
https://doi.org/10.1016/j.jfineco.2019.08.009

	Is the active fund management industry concentrated enough?
	1 Introduction
	2 Theoretical framework
	2.1 Setting
	2.1.1 Fund alpha and the returns process
	2.1.2 Productivity of manager effort
	2.1.3 AFMI concentration
	2.1.4 Expected alpha and investors’ information about unknown parameters
	2.1.5 Investor’s problem
	2.1.6 Fund manager’s problem
	2.1.7 Information structure

	2.2 Equilibrium
	2.3 Relation to Berk and Green (2004) and Pastor and Stambaugh (2012)
	2.3.1 Relation to Pastor and Stambaugh (2012)
	2.3.2 Relation to Berk and Green (2004)

	2.4 Endogeneity in measures of AFMI concentration

	3 Empirical predictions and test method
	3.1 Empirical predictions
	3.2 Data
	3.3 Variable definitions
	3.4 Methodology
	3.4.1 Industry-level analysis
	3.4.2 Fund-level analysis


	4 Empirical results
	4.1 Robustness

	5 Conclusion
	References


