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a b s t r a c t 

Automatic facial expression recognition has attracted increasing attention for a variety of applications. 

However, the problem of low-resolution generally causes the performance degradation of facial ex- 

pression recognition methods under real-life environments. In this paper, we propose to perform low- 

resolution facial expression recognition from the filter learning perspective. More specifically, a novel 

image filter based subspace learning (IFSL) method is developed to derive an effective facial image rep- 

resentation. The proposed IFSL method mainly includes three steps: Firstly, we embed the image filter 

learning into the optimization process of linear discriminant analysis (LDA). By optimizing the cost func- 

tion of LDA, a set of discriminative image filters (DIFs) corresponding to different facial expressions is 

learned. Secondly, the images filtered by the learned DIFs are added together to generate the combined 

images. Finally, a regression learning technique is leveraged for subspace learning, where an expression- 

aware transformation matrix is obtained using the combined images. Based on the transformation matrix, 

IFSL effectively removes irrelevant information while preserving useful information in the facial images. 

Experimental results on several facial expression datasets, including CK + , MMI, JAFFE, SFEW and RAF-DB, 

show the superior performance of the proposed IFSL method for low-resolution facial expression recog- 

nition, compared with several state-of-the-art methods. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

During the past few decades, automatic facial expression recog-

ition has attracted extensive attention in computer vision and

attern recognition. It plays an important role in a variety of

pplications, including human computer interaction (HCI), data-

riven animation [1–5] . Despite significant progress, facial expres-

ion recognition is still a difficult task, due to the variations caused

y pose, illumination, and so on. One critical problem that is not

ell solved is low-resolution (LR). In real-life environments, the

esolution of facial images captured by an ordinary camera may be

ow. The LR facial images usually lack sufficient visual information

o extract informative features, thus leading to the performance

egradation of facial expression recognition methods [6] . There-

ore, effectively distinguishing different facial expressions based on

he LR facial images is very challenging but meaningful for practi-
al tasks. 
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To deal with the problem of LR facial expression recognition,

xisting methods mainly focus on two aspects: (1) face super-

esolution (SR) [7,8] , and (2) facial image representation [6,9,10] .

he first aspect usually adopts two criteria to perform SR: pixel-

evel visual fidelity and image-level face identity preservation. The

econd aspect aims to extract the compact and discriminative fea-

ure representation. In this paper, we mainly study the second as-

ect. 

SR methods aim to construct a high-resolution (HR) image from

he corresponding LR image [11] . Theoretically, by applying the SR

ethods on the LR facial images to construct HR images, the re-

onstructed images can be used for facial expression recognition.

owever, the computational complexity of existing SR methods is

sually high and these SR methods cannot guarantee that the re-

ulting HR facial images are optimal for recognition [12] . 

Facial image representation also plays a critical role for LR fa-

ial expression recognition. The methods of representing facial ex-

ression images can be roughly categorized into geometric feature-

ased methods [13] and appearance-based methods [14] . Geomet-

ic feature-based methods detect salient facial feature points and

haracterize the variations of these points, which can achieve good

https://core.ac.uk/display/343508836?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.sigpro.2019.107370
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2019.107370&domain=pdf
mailto:yanyan@xmu.edu.cn
mailto:zizhao@cise.ufl.edu
mailto:chensi@xmut.edu.cn
mailto:hanzi.wang@xmu.edu.cn
https://doi.org/10.1016/j.sigpro.2019.107370


2 Y. Yan, Z. Zhang and S. Chen et al. / Signal Processing 169 (2020) 107370 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

t  

T  

c

 

b  

g

 

H  

w

 

 

 

 

 

 

 

 

 

S  

d  

p  

m  

t

2

 

n  

r  

T  

S  

S

2

 

g  

e  

r  

m  

c

 

t  

i  

s  

p  

l  

l

 

t  

t  

r  

s  

l  

b  

i  

f  

a  

w  

t  

d  
performance on action unit recognition [15] . However, precise lo-

calization of facial feature points is not a trivial task for LR facial

images. Appearance-based methods represent the variations of fa-

cial appearance based on the whole face or specific regions in a

facial image. This kind of methods usually attempts to extract dis-

criminative features in facial images to distinguish different facial

expressions. 

The appearance-based methods can be further classified into

handcrafted feature-based methods [16–18] and feature learning-

based methods [19–21] . Representative handcrafted feature-based

methods include local binary patterns (LBP) [16] , Haar-like fea-

tures [17] and Gabor-wavelet features [18] . However, these man-

ually designed features may not effectively handle the challenges

caused by the non-linear facial appearance variations due to differ-

ent poses, occlusions and etc. More recently, feature learning-based

methods, such as auto-encoder [19] and convolutional neural net-

works (CNNs) [20,21] , have attracted much attention. Zhang et al.

[19] present a spatially coherent feature-learning method for pose-

invariant facial expression recognition. They combine the learning-

based features and the corresponding geometry features to con-

struct robust features. Xie and Hu [20] propose a deep compre-

hensive multipatches aggregation CNNs method, which consists of

two CNN branches to respectively extract the holistic features and

local features, to solve the problem of facial expression recogni-

tion. Li et al. [21] present the CNN with an attention mechanism

(ACNN) for facial expression recognition in the presence of occlu-

sions. These methods show the excellent ability to extract the dis-

criminative representation from the raw data. 

Psychologists have shown that the crucial features for recogniz-

ing facial expressions are usually distributed around salient facial

feature points, such as mouth, nose and eyes [1] . The variations of

the salient facial feature points are the useful information for facial

expression recognition. In contrast, the facial identities of differ-

ent persons are the irrelevant information, which should be sup-

pressed or removed (although such information is important for

identifying a person) for the task of facial expression recognition.

In particular, the information in the LR facial images is relatively

limited. Therefore, the irrelevant information may significantly de-

crease the performance of LR facial expression recognition. There-

fore, how to extract the discriminative facial image representation

from the limited information is critical. 

In this paper, we propose to perform LR facial expression recog-

nition from the filter learning perspective, where a novel and effec-

tive facial image representation is developed for facial expression

recognition. The process of constructing the facial image represen-

tation for LR facial expression recognition can be considered as the

process of suppressing irrelevant information (e.g., facial identity

differences), while enhancing the valuable information (e.g., wrin-

kled eyebrow, smiling mouth and other features that are critical

for discriminating different expressions) in facial images. 

More specifically, we propose a novel image filter based sub-

space learning (IFSL) method to achieve an effective image rep-

resentation for LR facial expression recognition. In particular, we

learn a discriminative image filter (DIF), based on the two-class

linear discriminant analysis (LDA) technique [22] , to discriminate

a non-neural expression from the neutral expression. The learned

DIF extracts discriminative information by mapping the facial im-

ages to a subspace where the intra-class variations are minimized

and the inter-class variations are maximized. Therefore, the DIF is

able to find subtle variations of facial expression among different

LR facial images. When a set of learned DIFs (corresponding to dif-

ferent expressions) is applied to a multi-class classification task

(e.g., facial expression recognition in this paper), we propose to

use a regression learning technique (i.e., the linear ridge regression

(LRR) technique [23] ) to derive a new facial image representation

with high discriminability, based on the filtered images rather than
he original images. As a result, an expression-aware transforma-

ion matrix that encodes the expression information is obtained.

his strategy extends the classification ability of the DIF from two-

lass to multi-class classification. 

In summary, we present a novel image representation method

y taking advantage of the discriminative image filter and the re-

ression learning technique. 

The preliminary versions of this work were reported in [24,25] .

owever, we have made several significant extensions compared

ith the previous versions. The new contributions include: 

• We provide a general formulation of the image filter learn-

ing, where the image filter can take different forms (such as

element-wise product, linear transform and convolution) as

long as it is differentiable. 
• We reformulate the original method and develop a more gen-

eral framework for image filter based subspace learning. We

also offer more mathematical details and motivations of the

proposed method for facial expression recognition. 
• We conduct extensive experiments on both in-the-lab datasets

and in-the-wild datasets to demonstrate the effectiveness of the

proposed method for LR facial expression recognition. 

The remainder of this paper is organized as follows. In

ection 2 , we review related work. In Section 3 , we introduce the

etails of the proposed IFSL method. In Section 4 , we evaluate the

erformance of IFSL and compare IFSL with several state-of-the-art

ethods on various facial expression recognition datasets. Finally,

he conclusion is drawn in Section 5 . 

. Related work 

This section reviews related work in LR facial expression recog-

ition. Firstly, the recently developed methods on face super-

esolution and LR recognition are introduced in Section 2.1 .

hen, some facial image representation methods are reviewed in

ection 2.2 . Finally, some filter learning methods are discussed in

ection 2.3 . 

.1. Face super-resolution and low-resolution recognition 

Traditional methods for handling the LR facial images aim to

enerate high-resolution (HR) facial images, based on which facial

xpression recognition can be performed. These methods can be

oughly classified into two categories: generic super-resolution (SR)

ethods [7] , and class-specific SR methods (also called face hallu-

ination) [8] . 

Generic SR methods take advantage of the priors that ubiqui-

ously exist in natural images without relying on the face class

nformation. For instance, Gu et al. [26] develop a convolutional

parse coding method for image SR instead of the conventional

atch-based methods. Dong et al. [7] use the CNNs to learn a non-

inear mapping function between LR and HR images based on a

arge-scale image dataset. 

On the other hand, face hallucination methods exploit the sta-

istical information of faces and they usually achieve better results

han generic SR methods for facial expression recognition or face

ecognition. For example, Ma et al. [27] use multiple local con-

traints learned from exemplar facial images to perform face hal-

ucination. Wang et al. [28] propose to apply the global constraints

etween LR and HR facial images, and then hallucinate HR facial

mages based on the eigen-transformation. However, the output HR

acial images may suffer from ghosting artifacts. Note that, gener-

tive adversarial networks (GANs) [29] can generate facial images

ith sharp details due to the discriminative networks. However,

he generated images are only similar to one another in the class

omain but they are different in the appearance domain [30] . In
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eneral, the computational complexity of these face hallucination

ethods is usually high. 

Except for the above SR methods, some methods have been

pecifically developed for LR facial expression recognition/face

ecognition. These methods aim to extract resolution-insensitive

eatures [6] or learn cross-resolution transformations [31–34] . 

For example, Khan et al. [6] propose a novel feature descrip-

or PLBP (Pyramid of LBP) for LR facial expression recognition. In

act, LR face recognition has achieved significant progress in the

ast few years. Ren et al. [31] propose a coupled kernel embed-

ing (CKE) method for feature extraction with its application to LR

ace recognition. Jiang et al. [32] develop a coupled discriminant

ulti-manifold analysis (CDMMA) for LR face recognition. By ex-

loiting the neighborhood information and local geometric struc-

ure of the manifold, CDMMA learns two mappings to project LR

nd HR images to a unified discriminative feature space. Xing and

ang [33] develop couple manifold discriminant analysis with bi-

artite graph embedding (CMDA_BGE) to solve the problem of LR

ace recognition. Chu et al. [34] propose a cluster-based regular-

zed simultaneous discriminant analysis (C-RSDA) method for LR

ace recognition with single sample per person. Note that these

R face recognition methods usually match the LR probe faces

gainst the HR gallery images. In this paper, we concentrate on

he more general settings, where both the training and test images

re LR. 

.2. Facial image representation 

Automatic facial expression recognition usually consists of two

ain steps: feature extraction and facial expression classification

1] . Feature extraction extracts generative or discriminative repre-

entations from raw facial images to effectively represent the facial

mages. Generally, current methods for representing facial expres-

ion images can be divided into geometric feature-based methods

13] and appearance-based methods [9,16,17,35] . In this paper, we

ainly review the appearance-based methods. 

The representative appearance-based methods, including lo-

al binary patterns (LBP) [6,16,36,37] , Haar-like features [17] and

abor-wavelet features [18] , have been successfully applied into

acial expression analysis. Specifically, several LBP-based variants,

uch as m-LBP (representing salient micro-patterns in facial im-

ges) [36] and Boost-LBP (using a boosting algorithm to learn

he most discriminative LBP histograms) [37] , are proposed and

chieve the state-of-the-art performance. Classical subspace learn-

ng methods, such as linear discriminant analysis (LDA) [38] and

rinciple component analysis (PCA) [39] , are also widely used for

eature extraction. 

The above methods consider the facial image as a whole with-

ut specifically emphasizing the important role of salient facial fea-

ure points. Actually, some local facial regions (e.g., eyes, eyebrows

nd mouths) contain critical information for expression recogni-

ion, since different expressions accompany the variations in differ-

nt local facial regions. In recent years, some methods [9,35] have

een proposed to analyze non-holistic facial images. For instance,

hong et al. [35] propose a multi-task sparse learning framework

o explore discriminative information in local facial regions for dif-

erentiating different expressions, and suggest that different local

acial regions should be assigned with different weights. They use

BP to partition the facial images into isometric non-overlapping

egions, where the relationship among different local facial regions

s exploited. Experimental results in [35] show that the most im-

ortant local facial regions for recognizing the expressions are the

yes, eyebrows, nose and mouths. 

Recently, deep learning has achieved outstanding performance

n a variety of computer vision tasks, including facial expression

ecognition [20,21,40–44] . For example, Xie et al. [40] propose the
eep attentive multi-path CNN (DAM-CNN) method, which not

nly automatically locates the expression-related regions, but also

enerates an effective facial expression representation. Li and Deng

41] develop a deep locality-preserving CNN (DLP-CNN) method

or unconstrained facial expression recognition, which uses a new

ocality-preserving loss layer for deep learning. Moreover, they in-

roduce a new real-world facial expression dataset (i.e., RAF-DB)

aptured from the Internet. In [42] , a deep emotion-conditional

daption network (ECAN) method for unsupervised cross-dataset

acial expression recognition is developed. 

Recently, the video-based facial expression recognition has re-

eived great interest. Compared with a static image, a video se-

uence not only contains the spatial appearance, but also pro-

ides facial motions. Gupta et al. [45] develop a scale invariant ar-

hitecture for generating illumination invariant deep motion fea-

ures for video-based facial expression recognition. Alam et al.

46] propose a biologically inspired sparse-deep simultaneous cur-

ent network (S-DSRN) for robust facial expression recognition.

-DSRN makes use of the weight sharing technique in the hid-

en recurrent layers to reduce the number of network parameters,

here the simultaneous recurrency offers efficient control over the

epth of the model. Chen et al. [47] combine a new feature de-

criptor called histogram of oriented gradients from three orthog-

nal planes (HOG-TOP) and a new geometric feature descriptor

o respectively extract dynamic textures and facial configuration

hanges for video-based facial expression recognition. Moreover,

he audio modality is also considered for recognition. 

.3. Filter learning 

Filter learning-based methods are widely applied to many com-

uter vision tasks, such as face recognition [4 8,4 9] , visual tracking

50] , object detection [51] , due to their high generalization ability

nd robustness. For example, Yan et al. [49] propose an effective

orrelation filter bank method to extract features for face recog-

ition. Henriques et al. [50] propose to use the kernel correlation

lter method for fast visual tracking. Generally speaking, the filter

s designed to suppress noisy signals and amplify useful signals so

hat the discriminability of filtered signals can be enhanced. 

It is worthy pointing out that Gabor-wavelet [18] and LBP

16,36] can also be considered as the special forms of filter. How-

ver, these filters are manually designed without using the learn-

ng technique. In contrast, our proposed discriminative image fil-

er is learned via the objective function of LDA with maximizing

iscriminability. In addition, the recent popular CNNs-based meth-

ds [3,52] use the convolutional filters to obtain rich representa-

ions for accurate facial expression recognition and these meth-

ds have achieved superior performance. The parameters of the

onvolutional filters can be effectively learned based on the back-

ropagation technique. Nevertheless, the CNNs-based methods re-

uire the relatively HR images as the input to extract hierarchical

epresentations, which can make these methods difficult to han-

le the LR facial expression recognition problem [52] . Note that

hese CNNs-based methods usually require a large amount of train-

ng data. But current facial expression datasets typically contain a

mall number of labelled samples. Therefore, cross-corpus train-

ng [42] or transfer learning techniques [53] (which take advan-

age of the extra available training data) can be used to effec-

ively deal with facial expression recognition with limited train-

ng data. In this paper, we aim to solve the problem of lim-

ted training data from the image filtering perspective. The pro-

osed method is a good alternative for dealing with LR facial ex-

ression recognition using limited training data. Experimental re-

ults on multiple public facial expression datasets verify the excel-

ent performance of the proposed method for LR facial expression

ecognition. 
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Fig. 1. The framework of the proposed IFSL method. 
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3. Image filter based subspace learning 

The proposed image filter based subspace learning (IFSL)

method contains three steps. In the first step, we embed the pro-

cess of discriminative image filter (DIF) learning into the optimiza-

tion of two-class LDA. In the second step, we linearly combine the

filtered images generated by the learned DIFs. In the third step,

based on the combined results, we propose to use a regression

learning approach to perform feature extraction. The overall frame-

work of the proposed IFSL is shown in Fig. 1 . 

The discriminative image filter learning is introduced in

Sections 3.1 , and the details of the optimization procedure are de-

scribed in Sections 3.2 . The details of the second and the third

steps are discussed in Section 3.3 . The complete algorithm is given

in Section 3.4 . 

3.1. Discriminative image filter learning 

For the task of facial expression recognition, the significant dis-

criminative information mainly lies in the local facial regions such

as the eyes, eyebrows, nose and mouths. These local facial regions

have different influence on recognizing different expressions (e.g.,

lips rise in a happy expression face; eyebrows wrinkle in an an-

gry expression face; a mouth widely opens and eyebrows rise in

a surprise expression face). The local facial regions like eyebrows,

mouths and ajina contain more discriminative information than

the regions like cheeks to identify the angry expression. In other

words, these regions play an important role in discriminating dif-

ferent expressions. Therefore, the objective of an image filter is to

simultaneously emphasize discriminative information in the crucial

local facial regions while suppressing irrelevant information in the

other facial regions. 

A variety of filter functions can be used. For example, t 

• Element-wise product: f (λ1 , p) = λ1 � p, where � represents

the dot product operator; λ1 is the filter function in R 

d ; p

is a facial image represented as a d -dimensional column vec-

tor. Therefore, each element λ1 i decides the intensity of the i th

pixel p i in a facial image that passes through. 
• Linear transform: f (λ2 , p) = λ2 p, where λ2 ∈ R 

d×d is the trans-

formation matrix. 
• Convolution: f (λ3 , p) = λ3 ∗ p, where ∗ denotes the convolu-

d 
tion operator and λ3 ∈ R is the convolutional kernel. n  
Given a filter function λ (defined as one of the above-

entioned three functions) and an input matrix P = [ p 1 , . . . , p n ] ∈
 

d×n consisting of n facial images, we can obtain the output matrix

s, 

f (λ, P ) = [ f (λ, p 1 ) , . . . , f (λ, p n )] 

= [ x 1 , . . . , x n ] , (1)

nd we define X = [ x 1 , . . . , x n ] . Here, X ∈ R 

d×n contains n filtered

acial images, and each filtered facial image is a d -dimensional col-

mn vector. 

Generally speaking, we expect that the learned image filter has

he discriminative ability to extract the useful information for fa-

ial expression recognition. In other words, the filtered images cor-

esponding to different expressions should be more separable for

ubsequent classification. Therefore, in order to learn a discrimi-

ative image filter (DIF), we propose to take advantage of linear

iscriminant analysis (LDA) during the training process. 

LDA [22] is a popular subspace analysis method which projects

igh-dimensional samples to an optimal discriminative subspace,

here the projected samples are well-separated. It can effectively

xtract the information from samples and compress the dimen-

ionality of samples through a supervised learning strategy. LDA is

riginally proposed to handle two-class classification problems. In

act, LDA can also be extended to handle multi-class classification

roblems (where the inter-class matrix is the sum of the pairwise

catter matrix of any two different classes). However, multi-class

DA suffers from the problem of unbalanced pairwise distances

i.e., the distance of two different classes may be much smaller or

arger than that between another two different classes), which may

ignificantly degrade the performance in facial expression recogni-

ion [54,55] . Therefore, we mainly focus on two-class LDA in this

aper. 

Next we give the detailed steps of embedding the DIF learn-

ng into the optimization process of LDA. LDA attempts to seek for

n optimal linear transformation to minimize the intra-class vari-

nce (characterized by an intra-class covariance S W 

) as well as to

aximize the inter-class variance (characterized by an inter-class

ovariance S B ). In our method, we use the facial images with a

eutral expression, denoted as P 1 , and those with a non-neutral

xpression (e.g., angry, disgust, fear, happy, surprise, or sad), de-

oted as P , as the inputs for training the two-class LDA model.
2 
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he cost function of two-class LDA is defined as, 

 ( X 1 , X 2 ) = 

ω 

T S B ( X 1 , X 2 ) ω 

ω 

T S W 

( X 1 , X 2 ) ω 

, (2)

here X i = f (λ, P i ) , i = 1 , 2 . ω ∈ R 

d is the linear transformation

ector. The inter-class covariance S B is defined as: 

 B ( X 1 , X 2 ) = (m 1 − m 2 )(m 1 − m 2 ) 
T , (3)

nd the intra-class covariance S W 

is defined as: 

 W 

( X 1 , X 2 ) = ( X 1 − M 1 )( X 1 − M 1 ) 
T + ( X 2 − M 2 )( X 2 − M 2 ) 

T , (4)

here the column vector m i is the mean of X i ( i = 1 , 2 ) in R 

d . The

atrix M i includes n copies of m i . 

The optimal ω 

∗ can then be computed as [23] , 

 

∗ = argmax 
ω 

ω 

T S B ( X 1 , X 2 ) ω 

ω 

T S W 

( X 1 , X 2 ) ω 

= S W 

( X 1 , X 2 ) 
−1 (m 2 − m 1 ) . (5) 

In two-class LDA, the linear transformation vector ω has a

losed-form formulation. 

During the training process, the objective of the DIF learning

s to obtain an optimal DIF λ embedded in the cost function, and

his problem can be solved based on the gradient descent (which

ill be discussed in the following subsection). More specifically, by

ncorporating a DIF into the cost function of LDA, we can obtain

he following objective function, i.e., 

 (λ) = − ln L ( X 1 , X 2 ) + 

1 

2 

Ctr(λT λ) 

= − ln L 
(

f (λ, P 1 ) , f (λ, P 2 ) 
)

+ 

1 

2 

Ctr(λT λ) , (6) 

here tr ( λT λ) is a regularization term which enhances the gener-

lization capability and robustness of the learned filter. C ( ≥ 0) is a

calar parameter. Therefore, we aim to obtain the optimal DIF, such

hat 

∗ = argmin 

λ

O (λ) . (7) 

.2. Discriminative image filter optimization 

The minimization problem in Eq. (7) can be solved via the gra-

ient descent technique [56] , since both f and L in O ( λ) are differ-

ntiable. It is worthy pointing out that in each iteration, the calcu-

ation of ω 

∗ shown in Eq. (5) is dynamically updated for computing

 ω 

∗/ ∂ λ in L . The derivation details for optimizing O ( λ) are shown

s follows. 

The partial derivative of O ( λ) with respect to λj (or λi , j if λ is

he transformation matrix) is computed. In the following, we use

j for simplification without loss of generality. Thus, the partial

erivative can be written as: 

∂O (λ) 

∂λ j 

= −
∂ 

∂λ j 
L ( f (λ, P 1 ) , f (λ, P 2 )) 

L 
(
F (λ, P 1 ) , f (λ, P 2 ) 

) + Cλ j . (8) 

The cost function of LDA is differentiable, and we have: 

∂L 

∂λ j 

= 

∂ 
∂λ j 

( ω 

∗T S B ω 

∗) 

ω 

∗T S W 

ω 

∗ − ω 

∗T S B ˆ ω 

∗

( ω 

∗T S W 

ω 

∗) 2 
∂ 

∂λ j 

( ω 

∗T S W 

ω 

∗) , (9) 

here 

∂ 

∂λ j 

( ω 

∗T S W 

ω) = 

(
∂ ω 

∗

∂λ j 

)T 

( S W 

ω 

∗) + ω 

∗T 

(
∂ S W 

∂λ j 

ω 

∗ + S W 

∂ ω 

∗

∂λ j 

)
, 

(10) 

t  
nd the derivation of ∂ ( ω 

∗T S B ω 

∗) / ∂ λ j is similar to the right item

f Eq. (10) . 

The partial derivative of ω 

∗ with respect to λj is calculated in

ach iteration: 

∂ ω 

∗

∂λ j 

= 

∂ 

∂λ j 

(
S −1 

W 

(m 2 − m 1 ) 
)

= −S −1 
W 

(
∂ 

∂λ j 

S W 

)
S −1 

W 

(m 2 − m 1 ) + S −1 
W 

(
∂ 

∂λ j 

(m 2 − m 1 ) 

)
. 

(11) 

According to Eq. (3) and Eq. (4) , we can compute ∂ S W 

/ ∂λ j as

ollows: 

∂ S W 

∂λ j 

= 

∂ 

∂λ j 

(
( X 1 − M 1 )( X 1 − M 1 ) 

T 
)

+ 

∂ 

∂λ j 

(
( X 2 − M 2 )( X 2 − M 2 ) 

T 
)
, (12) 

nd similarly, ∂ S B / ∂λ j is computed as follows: 

∂ S B 
∂λ j 

= 

∂ 

∂λ j 

(
(m 2 − m 1 )(m 2 − m 1 ) 

T 
)
. (13) 

Finally, the partial derivative of X with respect to λj is obtained

y computing the partial derivative of each column of X with re-

pect to λj , that is, 

∂ X 

∂λ j 

= 

∂ f (λ, P ) 

∂λ j 

= 

[
∂ f (λ, p 1 ) 

∂λ j 

, . . . , 
∂ f (λ, p n ) 

∂λ j 

]
. (14) 

The partial derivative of f with respect to λj can be derived ac-

ording to different forms of filters. For example, for the element-

ise product, ∂ f / ∂λ j = s j � p, where s j is a vector where only the

alue of the j th entry is 1 and the rest are zero. For the linear

ransformation, ∂ f / ∂λi, j = E j p, where E j is a d × d matrix consist-

ng of all zeros except for the ( i , j )th entry, which is 1. 

It is worth pointing out that the optimization problem (i.e.,

q. (6) ) of the proposed method is formulated by taking advan-

age of the Fisher criteria used in the conventional LDA method.

owever, the proposed method and LDA are significantly different.

irstly, LDA obtains the projection matrix with a closed-form solu-

ion. In contrast, the proposed method obtains the filters (can take

he forms of element-wise product, linear transform or convolu-

ion) in an iterative manner. Secondly, the objective of LDA is to

btain the optimal projection matrix (i.e., w in Eq. (2) ), while that

f the proposed method tries to obtain the filters (i.e., λ in Eq. (2) ).

n other words, the proposed method is not equivalent to LDA even

f the linear transform is used. 

.3. Linear combination and regression learning 

In this paper, each DIF is designed to discriminate a specific

non-neural) facial expression from the neural expression, which is

 two-class classification problem. Suppose that there are N differ-

nt expressions, N DIFs (denoted as { λi } N i =1 
) will be trained. Given

n image p with an unknown expression, we aim to figure out the

xpression based on the outputs of DIFs. Here, we denote the DIF

corresponding to the expression label of the image p ) as λ+ 
1 

and

he other (N − 1) DIFs as { λ−
i 
} N 

i =2 
. 

To identify the expression of a test image, one simple way is

o firstly train N expression-dependent classifiers (using the one-

s-all strategy), where each classifier is trained to discriminate a

on-neural expression from the other expressions based on the

utputs of one DIF. Then, the facial expression corresponding to

he classifier giving the highest probability output is identified.
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However, such a way is not reliable since the correlation between

different expressions is not considered and the recognition re-

sults may be inaccurate when two expressions share similar ap-

pearance variations. In other words, for a test image, the outputs

of the six classifiers (corresponding to different image filters) are

not discriminative enough for selecting the correct image filter.

Besides, unbalanced data distribution may lead to the classifier

overfitting to the majority class (note that the one-vs-all strategy

is used). 

In this paper, we solve the above problem by using the strat-

egy of linear combination and regression learning. The steps are

briefly given as follows. Firstly, a set of DIFs ( { λi } N i =1 
) is applied

to the input image p so as to obtain the N filtered images, de-

fined as { s i } N 
i =1 

. Note that only one filtered image (corresponding

to the test expression) is enhanced while the other N − 1 filtered

images are suppressed. In other words, the enhanced image, gen-

erated by f (λ+ 
1 
, p) , contains useful information for classification,

while the suppressed images, generated by f (λ−
i 
, p) , i = 2 , . . . , N,

contain irrelevant information for classification. All the filtered im-

ages are linearly combined to generate the combined image. Sec-

ondly, based on the observation that the correlation between the

filtered image (i.e., f (λ+ 
1 
, p) ) and the input image p is higher than

those between the filtered images (i.e., f (λ−
i 
, p) , i = 2 , . . . , N) and

the input image p , we propose to use a regression learning tech-

nique to yield an effective representation for the combined im-

age (which generates a new image representation for the input

image p ). 

Linear Combination We first linearly combine { s i } N 
i =1 

to gener-

ate a combined filtered images s , and 

s = 

N ∑ 

i =1 

s i 

= f (λ+ 
1 , p ) + 

N ∑ 

i =2 

f (λ−
i 
, p ) , (15)

Note that the weights corresponding to different filtered im-

ages are all set to 1. Therefore, given n training images P =
[ p 1 , p 2 , . . . , p n ] ∈ R 

d×n containing different expression facial im-

ages, N × n filtered images are generated, which are linearly com-

bined as follows: 

S = 

N ∑ 

i =1 

f (λi , P ) , (16)

where S = [ s 1 , s 2 , . . . , s n ] ∈ R 

d×n contains n linearly combined fil-

tered images. Different from the DIF learning, the computation of

S is general and not class-specific. Each s i (i = 1 , . . . , n ) consists of

an enhanced filtered images (corresponding to the expression la-

bel of p i ) and (N − 1) suppressed filtered images. The information

in the suppressed filtered images can be considered as noises that

should be removed without affecting the valuable expression infor-

mation in the enhanced filtered images. 

Regression learning To extract the useful information and re-

move the irrelevant information in S , we propose to take advan-

tage of the linear ridge regression (LRR) method, where we ob-

tain a new representation for the input image. Mathematically, LRR

solves the following optimization problem, 

min 

G 
‖ P − G 

T S ‖ 

2 + β‖ G 

T I ‖ 

2 , (17)

where I is a diagonal matrix (which is usually the identity ma-

trix); ‖ G 

T I ‖ 2 is the regularization term, and β is the regularization

parameter; G is a transformation matrix, which projects the com-

bined filtered images in S onto a new space (i.e., generating new

image representations); ‖ · ‖ denotes the Frobenius norm. 
The closed-form solution of Eq. (17) can be written as: 

 

∗ = ( S S T + βI ) −1 S P 

T 
. (18)

The optimal transformation matrix G 

∗ is expression-aware,

ince it encodes expression information, which not only improves

he capability of distinguishing different expressions, but also re-

uces the influence of facial identity differences. 

Based on G 

∗
, the projected images are obtained as: 

 = G 

∗T 
S , (19)

here Y is defined as the IFSL images. Each projected image y n 
n Y contains useful information for its corresponding expression

abel in p n , which can be used for classification. y n and p n have

he same dimension. 

Note that the least squares (LS) method is also a popular re-

ression learning technique. However, compared with LRR used

n the proposed method, LS encounters the following problems.

irstly, LS is effective only if the independent variables are not

ell-correlated. However, the characteristics of facial expressions

re usually well-correlated [57] , which can greatly affect the per-

ormance of LS. Secondly, the variance estimation of LS may be

arge when the number of samples used is small. Thus, the re-

ults obtained by LS become unreliable when a limited number of

raining samples are used. Thirdly, suppose that S ∈ R 

d×n consists

f n d -dimensional feature samples obtained by the above proce-

ures. S S T becomes a singular matrix if n < d , and thus the results

btained by LS can be overfitted. In contrast, LRR [23] effectively

olves these problems by adding a regularization term to balance

he deviation [55] . Therefore, the useful information in S can be

uccessfully preserved while irrelevant information is removed by

sing LRR. 

The objective of regression learning step is to learn an

xpression-aware transformation matrix (i.e., G 

∗). Based on G 

∗
, we

re able to obtain a new subspace, where the information in the

nhanced images is preserved while that in the suppressed images

s removed. Such a way not only improves the capability of distin-

uishing different expressions, but also reduces the influence of fa-

ial identity differences. As a result, for an arbitrary image, we can

btain an image representation encoding effective expression in-

ormation by projecting the combined filtered image onto the new

ubspace. 

In summary, the advantages of combining linear combination

nd regression learning are two-fold. 1) We can effectively improve

he discriminative capability for facial expression recognition by

lleviating the influence of the distracting factors (such as facial

dentity). 2) For the test stage, we do not need to decide which

mage filter to be used. Instead, we combine the filtered outputs

nd project them onto a subspace to obtain the facial image rep-

esentation by using G 

∗. 

.4. The complete algorithm 

In the previous subsections, we have developed all ingredients

or the LR facial expression recognition method. Now we put them

ogether to describe a complete algorithm for facial expression

ecognition. 

The overall training stage of the proposed IFSL method is sum-

arized in Algorithm 1 , which returns a set of DIFs { λi } N i =1 
, an

xpression-aware transformation matrix G 

∗
, and a classification

odel �. The test stage is straightforward. Specifically, given a

est image, IFSL firstly uses a set of DIFs { λi } N i =1 
to generate N

ltered images. After linearly combining these N filtered images,

he transformation matrix G 

∗ is used to obtain the corresponding

FSL image (i.e., a new image representation for the test image).

he final classification result is performed by applying the trained

odel �. 
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Algorithm 1: The training stage of the proposed IFSL method. 

Input: A set of training images P = [ p 1 , p 2 , . . . , p n ] ∈ R 

d×n , 
with the neutral expression set P n and N non-neutral ex- 

pression set { P i } N i =1 
;the maximum number of iterations τ ; 

Output: { λi } N i =1 
, G 

∗, and �. 

for i = 1 , . . . , N do 

Randomly initialize λ(0) 
i 

; 

Select P n and P i as the inputs of Eq. (7); 

t = 0; 

while ( t < τ ) Do 

Compute ω 

∗ according to Eq. (5); 

Compute 
∂O (λ(t) 

i 
) 

∂λ(t) 
i 

following Eq. (8) to Eq. (14); 

Update λ(t) 
i 

using the conjugate gradient descent 

technique; 

t = t + 1 ; 

end while 

Obtain an optimal image filter λi corresponding to the 
i th expression; 

end for 

Combine the images filtered using the learned DIFs { λi } N i =1 
to obtain S by Eq. (16); 

Compute an expression-aware transformation matrix G 

∗ by 
Eq. (18); 

Obtain the projected images Y according to Eq. (19); 

Obtain a facial expression classifier � using Y , and the cor- 
responding labels using the training data. 

3
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.5. Discussions 

Firstly, the main advantage of the proposed IFSL method is that

rrelevant or useless expression information can be significantly re-

oved, while the useful information for LR facial expression recog-

ition can be effectively preserved. The proposed IFSL method con-

ains two key elements that contribute to the overall performance

nd effectiveness. (1) Image filtering. A discriminative image filter

DIF) is learned to distinguish a non-neural expression from the

eural expression (by optimizing the cost function of LDA). The

mage filtered by the learned DIF contains the critical information

or discriminating the non-neural expression. (2) Subspace learn-
ig. 2. Visualization of six types of facial expression images (1 st and 3 rd rows) and the c

unction is used. 
ng. An expression-aware transformation matrix is learned to en-

ode the expression information and remove the identity informa-

ion (by using the linear ridge regression technique). Fig. 2 shows

he visualization of different facial expression images and the cor-

esponding IFSL images. We can see that the similarities of the IFSL

mages obtained by the proposed method are higher than those of

he raw images for each of the six expressions. The irrelevant infor-

ation (e.g., facial identity difference) is suppressed and the valu-

ble expression information around facial keypoints is preserved

n the obtained IFSL images. Therefore, the preserved information

n the IFSL images bears high discriminability for facial expression

ecognition. 

Secondly, the reasons why the proposed IFSL method can be ap-

lied to LR facial expression recognition are two-fold: (1) The LR

acial images usually contain noises due to the variations caused by

llumination, pose and degradation in resolution [58] . The learned

IFs can effectively remove noises while preserving useful in-

ormation in LR facial images. (2) The proposed IFSL method is

 holistic recognition method, which performs subspace learning

ased on the whole facial appearances of LR images. Compared

ith the local recognition methods, the holistic recognition meth-

ds are less sensitive to the image resolution [1–3] . 

Finally, it is worth noting that there are some potential prob-

ems, when the proposed method is applied to HR facial expression

ecognition. Firstly, it is difficult for the image filter to learn the

ood parameters for recognizing HR facial images, when the num-

er of training samples is limited. This is because that the number

f parameters of image filter is relatively large for HR facial images.

econdly, the proposed image filter becomes more sensitive to the

isalignment problem for HR facial images. Thirdly, the proposed

ethod suffers from high computational complexity if the sizes of

mages are large (see Section 4.3 for more details). 

. Experimental results 

In this section, extensive experiments are conducted to evaluate

he performance of the proposed IFSL method. In Section 4.1 , we

emonstrate the discriminability of the DIF on a synthetic dataset.

n Section 4.2 , we firstly introduce several popular facial expression

atasets, and evaluate the performance of different filter functions.

oreover, we discuss the influence of different image sizes on the

erformance of IFSL. Then, we evaluate the performance of IFSL

n the facial expression datasets, and compare IFSL with several
orresponding IFSL images (2 nd and 4 th rows). Here, the element-wise product filter 
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Fig. 3. Experimental results by applying the learned DIF to a synthetic dataset. The first row presents a randomly generated synthetic dataset, showing 10 positive samples 

in the left half part and 10 negative samples in the right half part. The second to the fourth rows respectively show the unfiltered images, the corresponding filtered images 

and the trained filters. Filter I is trained when D is set to 50 while filter II is trained when D is set to 150. 

Fig. 4. Recognition results obtained by the proposed IFSL method with different filter functions on the three facial expression datasets. (a) The recognition rates obtained by 

IFSL with SVM (b) The recognition rates obtained by IFSL with k -NN. 
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state-of-the-art methods. In Section 4.3 , we analyze the limitations

of the proposed method. 

To show the influence of a classifier on the proposed method,

we use two classifiers (i.e., SVM and k -NN) for comparison: (1) The

support vector machine (SVM) classifier has been proposed as one

of the most popular classifiers to deal with the task of facial ex-

pression recognition [57] . SVM uses a kernel function to project

samples to a high-dimensional space. Popular kernels include lin-

ear, polynomial, and radial basis functions (RBF). To avoid overfit-

ting, we use the linear kernel in the following experiments. (2)

The k -nearest neighbor ( k -NN) classifier is regarded as the simplest

instance-based classifier [23] . A sample is classified by a majority

vote of its k nearest neighbors. We set the value of k to 3 in the

following experiments. 

4.1. Experiments on a synthetic dataset 

In this experiment, we validate the discriminability of the pro-

posed DIF (the element-wise product filter is employed) by using a

synthetic dataset, where we visually demonstrate that the learned

DIF can effectively extract discriminative information. We generate

a synthetic dataset consisting of one positive class and one neg-

ative class. Note that here we do not use the linear combination

step and the regression learning step (described in Section 3.3 ),

since this is a two-class classification task. 

More specifically, the synthetic dataset is comprised of D (the

value of D is set to 50 and 150, respectively) synthetic samples, in-

cluding D /2 positive samples and D /2 negative samples. The patch

size of each synthetic sample is 16 × 16 (thus d = 256 ). For each

positive sample, we generate a horizontal white line at a random

position crossing from the left side to the right side, while such a

line does not exist for the negative samples, as illustrated in Fig. 4 .
oth negative and positive samples are contaminated by randomly

enerated white noises. The DIF is then trained using all the sam-

les. Therefore, the synthetic dataset is used to evaluate whether

he learned DIF can suppress the useless information (i.e., white

oises) in the positive samples while preserving the useful infor-

ation (i.e., horizontal white lines). 

Fig. 3 also shows the experimental results obtained by using

he proposed DIF on the synthetic dataset. We can observe that

he noises in the positive samples are successfully suppressed

y the learned DIF and the white lines are well preserved. More-

ver, the filtering performance obtained by DIF (when D = 150 ) is

etter than that obtained by DIF (when D = 50 ), since the noises

n the filtered positive samples when D = 150 are much less than

hose when D = 50 . Moreover, the positive horizontal lines are ef-

ectively preserved when D = 150 . However, these lines are slightly

uppressed when D = 50 because the limited number of samples

s used. In general, the learned DIF can effectively extract useful

nformation while at the same time filtering out irrelevant infor-

ation for classification. 

.2. Experiments on facial expression recognition 

In this section, we extensively demonstrate the performance of

he proposed IFSL for facial expression recognition. 

.2.1. Facial expression datasets 

We evaluate the performance of the proposed method on both

n-the-lab facial expression datasets (including CK + , JAFFE and

MI) and in-the-wild facial expression datasets (including SFEW

62] and RAF-DB [42] ). A brief introduction of these datasets is

iven as follows. 
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Fig. 5. Recognition results obtained by the proposed IFSL method with different image sizes on the three facial expression datasets. (a) The recognition rates obtained by 

IFSL with SVM (b) The recognition rates obtained by IFSL with k -NN. 
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The extended Cohn-Kanade (CK + ) facial expression dataset 1 ,

hich is an extended version of the previous Cohn-Kanade (CK)

ataset, consists of 593 short videos from 123 subjects with dif-

erent ages under uniform illumination [59] . All videos vary in du-

ation (i.e., from 10 to 60 frames) and start from the first neutral

rame to the last frame with a peak expression. The MMI dataset 2 

ncludes more than 43 subjects, who express facial emotions non-

niformly and spontaneously. 213 video sequences in MMI have

een labeled with six basic expressions, where some subjects wear

ats, hoods, or glasses. The JAFFE dataset 3 is an expression dataset

onsisting of 219 images from 10 Japanese subjects who are fe-

ale [60] . There are three or four images for each subject with

ach expression. The Static Facial Expressions in the Wild (SFEW)

ataset 4 is collected by selecting static frames from Acted Facial

xpressions in the Wild (AFEW) [63] . The SFEW dataset contains

5 subjects with unconstrained facial expressions (such as differ-

nt poses, ages). RAF-DB 

5 is a large-scale dataset captured from

he Internet. This dataset contains about 30,0 0 0 facial images of

housands of subjects annotated with basic or compound expres-

ions by 40 trained human labelers. In our experiment, only im-

ges with basic facial expressions are used. In total, there are 1007

ifferent facial expression images selected from CK + , 606 images

elected from MMI, 219 images selected from JAFFE, 663 images

elected from SFEW, and 15,339 images selected from RAF-DB. 

In all experiments, six basic non-neutral expressions and one

eutral expression are selected from each of the three datasets.

he six basic non-neutral expressions include angry, disgust, fear,

appy, surprise, and sad expressions, which are respectively abbre-

iated as An, Di, Fe, Ha, Su, and Sa in this paper. Thus N = 6 for

he following experiments. 

Following [37] , for each image in the dataset, we firstly manu-

lly locate the eye position and crop a 110 × 150 patch covering the

acial region. Then, the manually cropped facial images are resized

o the size of 32 × 32 (i.e., d = 1024 ) and converted to the gray-

cale images. We conduct the 10-fold cross-validation on all sub-

ects to evaluate the performance of the proposed method, as done

n [30] . The training set is used to train the six DIFs correspond-

ng to the six expressions and learn the transformation matrix G 

∗

n Eq. (18) . Their corresponding IFSL images are used to train a

lassifier. The neutral expression training images are shared during

he training process of the six DIFs. For the parameter settings, we

mpirically set C = 0 . 1 in Eq. (6) . The value of the regularization

arameter β is set to 2.0. 
1 http://www.pitt.edu/ ∼emotion/ck-spread.htm 

2 http://www.mmifacedb.com 

3 http://www.kasrl.org/jaffe.html 
4 https://cs.anu.edu.au/few/emotiw2015.html 
5 http://www.whdeng.cn/RAF/model1.html 

t  

r  

t  

l  

d  

f  
We report the recognition rates obtained by the proposed IFSL

n each of the six expressions and the average recognition rates

sing either SVM or k -NN. 

.2.2. Influence of different filter functions 

As we mention previously (see Section 3.1 ), a variety of filter

unctions can be used in the optimization process of LDA. In this

ection, we evaluate the performance of IFSL with different fil-

er functions, including the element-wise product (also called dot

roduct), linear transform and convolution functions. Here, we use

he three in-the-lab facial expression datasets in this experiment

or performance evaluation. 

The performance obtained by the proposed IFSL with different

lter functions is shown in Fig. 4 , where the results obtained using

he SVM classifier are given in Fig. 4 (a) and those obtained using

he k -NN classifier are shown in Fig. 4 (b). We can observe that the

roposed IFSL with the dot product filter function achieves bet-

er performance than that with the other two filter functions on

ll the three datasets. The proposed IFSL with the linear transform

chieves the worst results among the three filter functions. This

s mainly because that the dot product filter can directly have an

nfluence on the pixel-level values in the facial image, while the

ther two filter functions operate on the whole facial image. There-

ore, the direct change of pixel-level values seems to be more ef-

ective for facial expression recognition since the number of train-

ng samples is limited. In other words, the discriminative local fa-

ial regions can be enhanced and the irrelevant local facial regions

re suppressed by using the dot product filter. Furthermore, the

ecognition rates obtained by IFSL using SVM are higher than those

btained by IFSL using k -NN. 

Therefore, in the following experiments, we will choose the dot

roduct filter as the filter function of the proposed IFSL method. 

.2.3. Influence of different image sizes 

In this section, we evaluate the performance of IFSL with dif-

erent image sizes, including 8 × 8, 16 × 16 and 32 × 32. We also

se the three in-the-lab facial expression datasets for performance

valuation. 

The performance obtained by the proposed IFSL with different

mage sizes is shown in Fig. 5 , where the results obtained using

he SVM classifier are given in Fig. 5 (a) and those obtained us-

ng the k -NN classifier are shown in Fig. 5 (b). We can observe that

he proposed IFSL with the image size of 32 × 32 achieves the best

ecognition rates, while IFSL with the image size of 8 × 8 obtains

he worst results on the three datasets. The higher the image reso-

ution is, the better the recognition performance is. This is mainly

ue to the fact that the proposed ISFL method can be beneficial

rom exploiting more information in the higher-resolution images.

http://www.pitt.edu/~emotion/ck-spread.htm
http://www.mmifacedb.com
http://www.kasrl.org/jaffe.html
https://cs.anu.edu.au/few/emotiw2015.html
http://www.whdeng.cn/RAF/model1.html
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Fig. 6. Recognition results obtained by the proposed method with two different classifiers on the three facial expression datasets. (a) The recognition rate for six different 

expressions obtained by IFSL with SVM (b) The recognition rate for six different expressions obtained by IFSL with k -NN. (c): The average recognition rates obtained by the 

proposed IFSL using either SVM or k -NN on the three datasets. 
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Furthermore, the recognition rates obtained by IFSL using SVM are

higher than those obtained by IFSL using k -NN. 

4.2.4. Performance of the proposed method 

In the following experiments, we show the performance of the

proposed IFSL method to handle the task of multi-class facial ex-

pression recognition. 

Table 1 shows the confusion matrix obtained by the proposed

IFSL using the SVM classifier on the CK + dataset. IFSL achieves

good performance on all the expressions. However, we can also

observe that some samples corresponding to the sad and disgust

expressions are misclassified as the angry expression. This is be-

cause that both the disgust and sad expressions have the wrinkled

eyebrows, and they share some similarities to the angry expres-

sion. Moreover, the subjects with the sad or disgust expressions do

not have obvious motions around the mouth area, which also leads

to the incorrect classification of these two expressions for some

samples. 

We also show the classification results for each expression ob-

tained by the proposed method using the SVM and k -NN classi-

fiers on all the datasets in a more compact way in Fig. 4 . From the

classification results for the best expressions on the three datasets

with SVM (see Fig. 4 (a)), IFSL achieves the top recognition rates on

the happy expression while it obtains the worst results on the sad

expression. These results can also be observed when using k -NN

(see Fig. 4 (b)). This is because that the happy expression has very

obvious appearance variations around the mouth area compared

with the other expressions. In contrast, the sad expression does

not have significant appearance variations around the salient facial

feature points. Actually, similar observations have been discussed

in some other works [9,37] . We also observe that the sad and fear

expressions sometimes show similar appearance for the subjects in

the three facial expression datasets. Thus, IFSL can not accurately

discriminate these two expressions for some subjects. As we can

see in Fig. 4 (c), IFSL with either SVM or k -NN achieves the best
Table 1 

The confusion matrix obtained by IFSL with SVM on the 

CK + dataset. The best results are boldfaced. 

(%) An Di Fe Ha Su Sa 

An 97.01 2.99 0 0 0 0 

Di 2.27 96.59 0 1.14 0 0 

Fe 0 0 100 0 0 0 

Ha 0 0 0 100 0 0 

Su 0 0 0 0 100 0 

Sa 2.5 0 0 0 0 97.5 

t  

t  

o  

f  

s  

c  

m  

I  

M  

L  

s  

k  
erformance on the CK + dataset. This is because CK + is the sim-

lest and the largest dataset among these three datasets. However,

FSL achieves the worst performance on the JAFFE dataset, since

he number of the training samples is limited. 

.2.5. Comparison with the state-of-the-art methods 

We compare the proposed IFSL with several state-of-the-art

ethods. These methods include PCA [38] , multi-class LDA [38] ,

-LBP [36] , Boosted-LBP [37] , PLBP [6] , CSPL [35] , HMFF [61] ,

alientPatch [9] , CS-APL [64] , MSCNN [65] , pACNN [21] , gACNN

21] , DLP-CNN [41] , and DAM-CNN [40] . The choice of these com-

eting methods is based on the following reasons: 1) PCA and

ulti-class LDA are the two widely-used subspace learning meth-

ds for facial expression recognition. We use these two methods

s the baseline. 2)The LBP-based methods (i.e., m-LBP, Boosted-LBP

nd PLBP) are regarded as the powerful feature extraction meth-

ds which achieve the state-of-the-art performance. 3) Salient-

atch, CSPL and CS-APL are proposed to address part-based im-

ge representation and they effectively extract expression infor-

ation in local facial regions, which is similar to the proposed

ethod. 4) HMFF uses a subspace analysis method based on a hier-

rchical feature extraction framework, which also aims to enhance

he discriminability of different expressions. 5) MSCNN, pACNN,

ACNN, DLP-CNN and DAM-CNN are the representative CNN-based

acial expression recognition methods. MSCNN can effectively ex-

ract spatial features under the supervision of recognition and ver-

fication signals. pACNN, gACNN adopt the attention mechanism in

NN. DLP-CNN employs the deep locality-preserving feature learn-

ng for FER. DAM-CNN designs a deep multi-path convolutional

eural network by taking advantage of salient region attention. For

ll the competing methods, we use the default parameters from

he respective papers. 

Comparison results on the CK + dataset Table 2 compares the

roposed IFSL method with the state-of-the-art methods on the

K + dataset. We can see that the proposed IFSL method achieves

he best recognition rate, and significantly outperforms the tradi-

ional feature learning methods (such as GSPL, HMFF, SalientPatch)

n the CK + dataset. The PCA and multi-class LDA achieve poor per-

ormance on the CK + dataset. This is mainly because the learned

ubspace obtained by either PCA or multi-class LDA is not dis-

riminative to distinguish different facial expressions. The perfor-

ance obtained by IFSL with SVM is better than that obtained by

FSL with k -NN in terms of the average recognition performance.

oreover, compared with some competing methods, such as m-

BP, Boost-LBP, GSPL and MSCNN, IFSL with the simple k -NN clas-

ifier achieves promising performance. As we mention previously,

 -NN makes a classification decision by using the majority vote of
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Table 2 

Comparison results obtained by all the com- 

peting methods on the CK + dataset. The 

best results are boldfaced. 

Methods Accuracy (%) 

PCA ( k -NN) 43.8 

PCA (SVM) 47.3 

multi-class LDA ( k -NN) 84.7 

multi-class LDA (SVM) 87.1 

m-LBP [36] 88.4 

Boost-LBP [37] 91.1 

PLBP [6] 95.2 

GSPL [35] 89.9 

HMFF [61] 96.1 

SalientPatch [9] 94.0 

CS-APL [64] 98.6 

MSCNN [65] 95.5 

pACNN [21] 97.0 

gACNN [21] 96.4 

DAM-CNN [40] 95.9 

IFSL (SVM) 98.7 

IFSL ( k -NN) 96.6 

Table 3 

Comparison results obtained by all the competing 

methods on the MMI dataset. The best results are 

boldfaced. 

Methods Accuracy (%) 

PCA ( k -NN) 65.6 

PCA (SVM) 67.9 

multi-class LDA( k -NN) 68.3 multi-class LDA 

(SVM) 71.0 

Boost-LBP [37] 86.9 

PLBP [6] 91.0 

GSPL [35] 73.5 

MSCNN [65] 77.1 

pACNN [21] 70.4 

gACNN [21] 69.0 

DLP-CNN [41] 78.5 

IFSL (SVM) 92.6 

IFSL ( k -NN) 88.9 
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Table 4 

Comparison results obtained by all the com- 

peting methods on the JAFFE dataset. The 

best results are boldfaced. 

Methods Accuracy (%) 

PCA ( k -NN) 52.4 

PCA (SVM) 55.6 

multi-class LDA ( k -NN) 62.7 

multi-class LDA (SVM) 64.4 

Boost-LBP [37] 82.0 

MSCNN [65] 85.1 

DAM-CAM [40] 99.3 

IFSL (SVM) 88.2 

IFSL ( k -NN) 76.4 

Table 5 

Comparison results obtained by all the com- 

peting methods on the SFEW dataset. The 

best results are boldfaced. 

Methods Accuracy (%) 

PCA ( k -NN) 23.4 

PCA (SVM) 28.1 

multi-class LDA ( k -NN) 34.9 

multi-class LDA (SVM) 39.3 

MSCNN [65] 47.9 

gACNN [21] 51.7 

pACNN [21] 49.8 

DLP-CNN [41] 51.1 

IFSL (SVM) 46.5 

IFSL ( k -NN) 43.2 
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w  
ts k nearest neighbors, which indicates that intra-class variations

re small and inter-class variations are large in the transformed

ubspace obtained by IFSL. In other words, the distributions of the

amples corresponding to different expressions are well-separated

n the subspace obtained by the proposed IFSL method. Compared

ith the CNN-based methods (such as MSCNN, pACNN, gACNN and

AM-CNN), the proposed IFSL still achieves better performance,

hen only limited training data are available. Therefore, the pro-

osed method can effectively extract the discriminative and com-

act features from the LR facial images. 

Comparison results on the MMI dataset Table 3 shows the

omparison results obtained by the proposed IFSL method and

ome state-of-the-art methods on the MMI dataset. MMI is a

ell-known challenging facial expression dataset due to non-

niformly posed expressions and various head dressing. The pro-

osed method with SVM obtains higher accuracy than PLBP [6] ,

nd it achieves much better performance than GSPL [35] . PLBP uses

he images with the size of 110 × 150 and GSPL uses the images

ith the size of 95 × 95. The image resolutions used in these two

ethods are much larger than the image resolution used in IFSL

i.e., 32 × 32). From Table 3 , we can see that PCA obtains much

orse recognition rate than multi-class LDA. This is because multi-

lass LDA effectively reduces the within-class scatter while enlarg-

ng the between-class scatter. However, multi-class LDA is not able

o discriminate the classes close to each other since large class dis-

ances are often overemphasized during training. In contrast, the
roposed IFSL method benefits from the class specific filter learn-

ng and linear ridge regression techniques, which can distinguish

 specific facial expression from the neutral expression and ex-

ract discriminative expression information from the facial image,

espectively. IFSL also achieves better performance than MSCNN,

hich shows the effectiveness of the proposed method for LR fa-

ial expression recognition. The main reason is that MSCNN suffers

rom the problem of insufficient training data. pACNN, GACNN and

AM-CNN achieves worse results than the proposed method in the

MI datasets. This is mainly because that these methods use the

NN model trained on other datasets for feature extraction with-

ut fine-tuning. 

Comparison results on the JAFFE dataset Table 4 shows the

omparison results obtained by the proposed IFSL method and

ome state-of-the-art methods on the JAFFE dataset. The perfor-

ance of only few existing methods is evaluated on JAFFE, since it

s a small dataset. IFSL achieves relatively lower accuracy on JAFFE

han that on MMI and CK + . Similarly, Boost-LBP also achieves the

orst performance on JAFFE, compared with its performance on

he other two datasets. This observation is especially obvious for

ulti-class LDA and PCA. This is mainly because JAFFE has a very

mall number of samples for training, which causes that the ob-

ained facial expression features are less effective. Note that IFSL

chieves worse performance than DAM-CAM. The main reason is

hat DAM-CAM fine-tunes the VGG model training on a large-

cale dataset. Moreover, the input image size of DAM-CAM (i.e.,

24 × 224) is much larger than that of IFSL (i.e., 32 × 32). In con-

rast, IFSL learns the parameters of DIF by only using the small

raining set. 

Comparison results on the SFEW dataset Table 5 compares the

roposed IFSL method with several state-of-the-art methods on the

FEW dataset. Among all the competing methods, gACNN and DLP-

NN respectively achieve the best and second performance (51.7%

nd 51.1%, respectively), which are better than the proposed IFSL

ith SVM by a moderate margin (5.2% and 4.6%, respectively). This
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Table 6 

Comparison results obtained by all the com- 

peting methods on the RAF-DB dataset. The 

best results are boldfaced. 

Methods Accuracy (%) 

PCA ( k -NN) 40.4 

PCA (SVM) 42.1 

multi-class LDA ( k -NN) 48.6 

multi-class LDA (SVM) 50.3 

MSCNN [65] 77.2 

gACNN [21] 85.1 

pACNN [21] 83.3 

DLP-CNN [41] 84.1 

IFSL (SVM) 76.9 

IFSL ( k -NN) 72.6 
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is mainly because gACNN and DLP-CNN make use of the additional

large-scale training sets (i.e., the AffectNet which contains 280,0 0 0

training samples and the RAF-DB which contains 15,339 training

samples). gACNN adopts the local-global attention mechanism to

capture subtle expression variations. DLP-CNN exploits the deep

locality-preserving CNN to extract effective facial features. In con-

trast, the proposed IFSL method takes advantage of filter learning

to obtain discriminative filters, which can enable the model to pay

attention to distinctive facial regions. 

Comparison results on the RAF-DB dataset Table 6 compares

the proposed IFSL method with several state-of-the-art methods on

the challenging RAF-DB dataset. Among all the competing meth-

ods, the CNN-based methods (such as gACNN, pACNN and DLP-

CNN) achieves significantly better results ( > 30% improvement in

recognition rates) than the traditional handcrafted feature-based

methods (such as PCA and LDA), which shows the excellent perfor-

mance achieved by deep learning. This is mainly because the large-

scale training data are beneficial for boosting the performance

of CNN. Although the proposed IFSL achieves worse results than

these CNN-based methods, the input sizes of pACNN, gACNN and

DLP-CNN are respectively 256 × 256, 256 × 256, 224 × 224, which

are much higher than the input image size (32 × 32) of the pro-

posed method. These CNN-based methods take advantage of high-

resolution images for feature learning. In other words, these meth-

ods can extract effective features for sufficient information in these

HR facial images. Note that RAF-DB contains a large number of

training data. The proposed IFSL still achieves the comparable per-

formance compared with a CNN-based method (MSCNN), which

demonstrates the superiority learning capability of the proposed

filter learning method. 

In summary, the above experimental results show that the pro-

posed IFSL can achieve excellent recognition performance for LR

facial expression recognition, which indicates IFSL is good at ex-

tracting useful expression information in the LR facial images. 

4.3. Limitations and future work 

Although the proposed IFSL method achieves promising results,

it also has some limitations. Firstly, the proposed method only

works on frontal or near-frontal facial image samples. Handling fa-

cial expressions with large pose variations is a more challenging

task while the proposed method does not address this challenge

at the current stage. In future, we can take advantage of the im-

age synthesis methods (such as GANs [29] ) to generate the frontal

facial images and combine the generated images with the image

filter to achieve pose-invariant expression recognition. Secondly,

when the size of sample images increases, the speed of comput-

ing the derivation of DIF and LRR decreases at the training stage.

Thus, how to improve the computational speed of the proposed

method is still an open question. For example, we can adopt some
ptimization methods (such as [66] ) to efficiently compute the gra-

ients. Note that as the training stage is usually performed of-

ine, the computational complexity of the proposed method will

ot greatly constrain its applications to real-world tasks. 

In addition, the proposed method trains an image filter for each

lass. Therefore, the proposed method is not suitable for the clas-

ification problem that involves a large number of classes (such as

ace recognition with millions of persons). However, the image fil-

er can be useful to filter out the irrelevant information for the

lassification problem. 

. Conclusion 

In this paper, we propose a novel image filter based subspace

earning (IFSL) method for effective image representations. We

how that a discriminative image filter (DIF) can be effectively

earnt by incorporating the image filter into the cost function of

DA. The learned DIF can not only filter out useless information,

ut also preserve useful information for discriminating facial ex-

ressions. Furthermore, we develop a regression learning approach

o explore the most discriminative information in the combined

ltered images (generated by DIFs) by constructing an expression-

ware transformation matrix, which successfully encodes expres-

ion information while reducing the influence of facial identity dif-

erences. Experimental results on several popular facial expression

atasets are presented to demonstrate the effectiveness of the pro-

osed IFSL on LR facial expression recognition. Compared with sev-

ral state-of-the-art methods, the proposed method achieves supe-

ior results. 
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