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Abstract

We extend the concept of the Alon—Tarsi number for unsigned graph to signed one.
Moreover, we introduce the modulo Alon—Tarsi number for a prime number p. We
show that both the Alon—Tarsi number and modulo Alon-Tarsi number of a signed
planar graph (G, o) are at most 5, where the former result generalizes Zhu’s result for
unsigned case and the latter one implies that (G, o) is Zs-colorable.

Keywords Signed graph - Group coloring - Z,-coloring - Planar graph - List
coloring - Combinatorial Nullstellensatz - Alon—Tarsi number
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1 Introduction

In this paper, we only deal with finite and simple graphs. Let G be a simple graph with
vertex set V(G) and edge set E(G). Moreover, let ‘<’ be an arbitrary fixed ordering
of the vertices of G. The graph polynomial of G is defined as

Pox)= [] Gu—x),

u~v,u<v
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where u ~ v means that # and v are adjacent, and x = (xy)yev () isavectorof |V (G)]
variables indexed by the vertices of G. Itis easy to see that amapping ¢ : V(G) — Nis
aproper coloring of G if and only if P (¢) # 0, where ¢ = (c(v)), .y, (G- Therefore, to
find a proper coloring of G is equivalent to find an assignment of x so that Pg(x) # 0.
The following theorem, which was implicit in [2] and appeared in [1], gives sufficient
conditions for the existence of such assignments as above.

Lemma 1 [1] (Combinatorial Nullstellensatz) Let F be an arbitrary field and let
f = f(x1,x2,...,xn) be apolynomial in Flx1, x2, ..., X,]. Suppose that the degree
deg(f) of f is Y_i_, t; where each t; is a nonnegative integer, and suppose that
the coefficient of ]/, xit" of f is nonzero. Then if S1, S2, ..., S, are subsets of
F with |S;| > t; + 1, then there are s; € Si,52 € $2,...,8, € S, so that

Fs1,82, ..., 80) #0.

In particular, a graph polynomial Pg(x) is a homogeneous polynomial and
deg(Pg(x)) is equal to | E(G)|. Therefore, if there exists a monomial ¢ HUeV(G) X,
in the expansion of Pg so that ¢ # 0 and #, < k for each v € V(G), then G is
k-choosable. The definition of choosability will be described in Sect. 2. Jensen and
Toft [6] defined Alon—Tarsi number of graph G as follows.

Definition 1 The Alon—Tarsi number of G, denoted by AT (G), is the minimum k for
which there exists a monomial ¢ ]_[v eV (G) x,t}’ in the expansion of Pg(x) such that
c#0andt, <kforallve V(G).

Let x (G) be the chromatic number of G and y;(G) be the list chromatic number
of G. By Lemma 1, we have

AT(G) =z x1(G) = x(G).

Alon and Tarsi [2] found a useful combinatorial interpretation of the coefficient for
each monomial in the graph polynomial Pg(x) in terms of orientations and Eulerian
subgraphs. For an orientation D of G, a subdigraph H of D is called Eulerian if
V(H) = V(D) and the indegree of every vertex equals its outdegree. We note that
an Eulerian subdigraph H defined here is not necessarily connected. In particular, a
vertex is called isolated in H if it has indegree O (and therefore, has outdegree 0) in
H.Let EE(D) (resp. O E(D)) denote the set of all spanning Eulerian subdigraphs of
D with the number of edges even (resp. odd).

Proposition 1 [2] Let G be a graph, let Pg(x) be the graph polynomial and let D be
an orientation of G with outdegree sequence d = (dy)ycv (). Then the coefficient of

I—[vev(G) xﬂl” in the expansion of Pg(x) is equal to £(|EE(D)| — |O E(D)]).

By defining hypergraph polynomial and hypergraph orientation, Ramamurthi and
West [12] generalized the result of Alon and Tarsi to k-uniform hypergraph for prime
k.

Now, let us focus on planar graphs. Thomassen [14] showed that every planar graph
is 5-choosable. Moreover, Zhu [15] has recently generalized Thomassen’s result as
follows.

@ Springer



Graphs and Combinatorics (2019) 35:1051-1064 1053

Theorem 1 [15] If G is a planar graph, then AT (G) < 5.

The notion of the Alon—Tarsi number is ordinary defined for unsigned graph. In this
paper, we extend the Alon—Tarsi number of unsigned graph to singed one. Moreover,
we extend the Z ,-coloring of unsigned graph to signed one and consider its analogical
Alon-Tarsi number when p is a prime, which we call modulo-p Alon—Tarsi number.
The main aims of this paper are to extend Theorem 1 to signed graphs (Theorem 2)
and to obtain analogical one for modulo- p Alon—Tarsi number (Theorem 4). We show
that Theorem 4 is indeed a strengthening of Theorem 2. We organize this paper as
follows. In Sect. 2, we introduce signed graphs and define the Alon—Tarsi number for
signed graphs. In Sect. 3, we define the Z ,-coloring of signed graphs and consider its
Alon-Tarsi number. In Sect. 4, we prove Theorem 4.

2 Alon-Tarsi Number for Signed Coloring
2.1 Introduction of Signed Graphs

Let G be a simple graph with vertex set V (G) and edge set E(G). A signed graph with
underling graph G is a pair (G, o), where ¢ is a mapping from E(G) to {+1, —1}.
An edge e is positive (resp. negative) if o (e) = +1 (resp. o (¢) = —1). In particular,
we denote by (G, +) (resp. (G, —)) the signed graph (G, o) if every edge is positive
(resp. negative). We often identify (G, +) with the (unsigned) underling graph G.

Recently, based on the work of Zaslavsky [16], Macajova et al. [11] generalized
the concept of chromatic number of an unsigned graph to a signed graph. For a signed
graph (G, o) and a color set C C Z, a proper coloring [16] with color set C is a
mapping ¢: V(G) — C such that

¢ u) # o (uv)g(v) ey

for each edge uv € E(G). Fork > 1, set My = {£1,£2, ..., £k/2}if k is even and
My ={0,£1,£2..., £(k—1)/2}if kis odd. A (proper) k-coloring of a signed graph
(G, o) is a proper coloring with color set My. A signed graph (G, o) is k-colorable if
it admits a k-coloring. The chromatic number of (G, o), denoted by x (G, o), is the
minimum k for which (G, o) is k-colorable.

Jin et al. [7] and Schweser et al. [13] further considered the list coloring of signed
graphs. For a positive integer k, a k-list assignment of (G, o) is a mapping L which
assigns to each vertex v aset L(v) C Z of k permissible colors. For a k-list assignment
L of (G, 0), an L-coloring is a proper coloring ¢: V(G) — UUGV(G) L(v) such that
¢ (v) € L(v) for every vertex v € V(G). We say that (G, o) is L-colorable if G has
an L-coloring. A signed graph (G, o) is called k-choosable if G is L-colorable for any
k-list assignment L. The list chromatic number (or choice number) x;(G, o) is the
minimum k for which G is k-choosable. Clearly, x;(G, o) > x (G, o). We note that
when we restrict the signed graphs (G, o) to (G, +), both the chromatic number and
list chromatic number agree with the ordinary chromatic number and list chromatic
number of its underlying graph G. This explains why we can identify (G, +) with G.
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Let ‘<’ be an arbitrary fixed ordering of the vertices of (G, o). In view of (1), we
define the graph polynomial of (G, o) as

Poox)= [] (-0,

u~v,u<v

where u ~ v means that # and v are adjacent, and x = (xy)yev(G) isavectorof |V (G)]
variables indexed by the vertices of G. It is easy to see that a mapping ¢: V(G) — Z
is a proper coloring of (G, o) if and only if Pg o ((¢(v))vev(c)) # 0.

Note that Pg »(x) is also a homogeneous polynomial. It follows from Lemma 1
that if there exists a monomial ¢ ]_[Uev(G) xf]’ in the expansion of Pg 4 (x) such that
c #0andt, <k forall v € V(G), then (G, o) is k-choosable. Thus, the notion of
Alon-Tarsi number of unsigned graphs can be naturally extended to signed graphs.

Definition 2 The Alon—Tarsi number of (G, 0),denotedby AT (G, o), is the minimum
k for which there exists a monomial ¢ ]_[UGV(G) X% in the expansion of Pg (x) such
thatc #Oand t, < k forall v € V(G).

Parallel to the unsigned case, we have
AT(G,0) = xi(G,0) = x(G, o).

For a subgraph H of G, we use (H, o) to denote the signed subgraph of (G, o)
restricted on H,i.e., (H,o0) = (H, o|gn)). Note that Py , (x) is a factor of Pg »(x).
From Definition 2, it is clear that AT (H,o0) < AT(G, o).

For a vertex v in a signed graph (G, o), a switching at v means changing the sign
of each edge incident to v. For X € V(G), a switching at X means switching at every
vertex in X one by one. Equivalently, a switching at X means changing the sign of
every edge with exactly one end in X. We denote the switched graph by (G, o¥).
In particular, when X = {v} we use (G, o) to denote (G, 0{”}). Two signed graphs
(G, o) and (G, 0') are switching equivalent if o' = oX for some X € V(G).

It is easy to show that two switching equivalent signed graphs have the same chro-
matic number [11] as well as the same list chromatic number [7,13]. For the Alon—Tarsi
numbers, we have the following similar result.

Proposition 2 If two signed graphs (G, o) and (G, o) are switching equivalent then
AT (G,0) = AT (G, d).

Proof 1t clearly suffices to consider the case that 0’ = oV, where v € V(G). For
any edge incident with v, say uv, we have o’ (uv) = —o (uv). We use T (x,, x,) and
T?(xy, x,) to denote the factors corresponding to this edge in Pg o (x) and Pg v (X),
respectively. If u < v then T (x,, xy) = x,, — 0 (Uv)xy, TV (xy, Xy) = X — 0V (uv)xy
and hence T (x,, xy) = TV (x,, —xy). If v < u then T (x,, x) = xy — o (uv)x, and
TV(xy,, xy) = xy — o¥(uv)x, and hence T (x,, x,) = —T"(x,, —xyp). In either case
we have T (x,, x,) = £T"(x,, —x,). Letting x" be obtained from x by changing x, to
—Xy, We have Pg 5 (x) = £Pg ov(x"). Therefore, for each monomial ]_[vev(G) X,
the coefficients of this monomial in Pg »(x) and Pg v (x") and hence in Pg ov(x)
have the same absolute value. This implies that AT (G, o) = AT(G, o").
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Recently, a few classical results on colorability [4] and choosability [7] of planar
graphs were generalized to signed planar graphs. In particular, Jin et al. [7] showed
that every signed planar graph is 5-choosable, generalizing the well-known result
of Thomassen [14] which states that every (unsigned) planar graph is 5-choosable.
Another generalization of Thomassen’s result was given by Zhu [15], who showed
that AT (G) < 5 for any planar graph G, which solved an open problem proposed by
Hefetz [3]. Considering the above results of Jin et al. [7] and Zhu [15], it is natural
to ask whether the Alon—Tarsi number of each signed planar graph is at most 5. We
answer this question affirmatively.

Theorem 2 If (G, o) is a signed planar graph, then AT (G, o) < 5.

In [2], Alon and Tarsi showed that every bipartite planar graph is 3-choosable. The
result is sharp as K 4 is a bipartite planar graph and x;(K24) = 3. The following
result is a natural extension of this result for signed planar graphs.

Theorem 3 For any signed planar graph (G, o), if (G,o0) is 2-colorable then
AT (G, o) < 4. Moreover, there is a signed planar graph which is 2-colorable but not
3-choosable.

2.2 Orientation and Alon-Tarsi Number for Signed Graphs

In this section, we consider the signed graphs. Instead of using orientations of signed
graphs, we use orientations of the underlying graphs and find that the result of Alon
and Tarsi has a natural extension for signed graphs.

Let (G, o) be a signed graph and ‘<’ be an arbitrary fixed ordering of V(G).
For an orientation D of the underling graph G, we denote by (v, #) the oriented
edge of D with direction from v to #. We call an oriented edge (v, u) o-decreasing
if v > u and o(uv) = +1, that is, (v, ) is positive and oriented from the larger
vertex to the smaller vertex. We note that a negative edge will never be o-decreasing,
no matter how it is oriented. An orientation D of G is called o-even if it has an
even number of o-decreasing edges and called o-odd otherwise. For a nonnegative
sequence d = (dy)yev(G), let c EO(d) and 0 O O(d) denote the sets of all o-even
and o-odd orientations of G having outdegree sequence d, respectively.

Lemma2 P, (x) = Y.(I0EO@]| — l000@) [Tyey g ' where d =
(dv)vev(c) and the summation is taken over all d such that d, > 0 for every ver-
tex v in G and ZUGV(G) dy = |E(G)|.

Proof Let D be an arbitrary orientation of G. For each oriented edge ¢ = (v, u),
define

© —Xy, if e is o-decreasing
w(e) = )
Xy, otherwise,

@)
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and w(D) = ]_[eeE(D) w(e). Let d,, be the outdegree of v in D for each v € V(G)
and let 7 be the number of o -decreasing edges in D. It is easy to see that

wD) = (" [] x5 A3)

veV(G)

Recall that

Poox)= [] (u—o@vx).

U~V U<V

By selecting x,, or —o (1v)x, from each factor (x, — o (uv)x,), we expand Pg o (x)
and obtain 2/£(&! monomials, each of which has coefficient 4-1. For each monomial,
we orient the edge uv of G with direction from « to v if, in the factor (x, —o (uv)xy), x,
is selected; or from v to u if —o (uv)x, is selected. This is clearly a bijection between
the 21£@! monomials and the 2/E£(@! orientations of G. Therefore,

PGo(x) =Y w(D), @

where D ranges over all orientations of G.

Letd = (dy)vev(G) be the sequence of outdegrees of some orientation D. Clearly,
dy > 0 and Zvev(c) d, = |E(G)|. Note that there are exactly |0 EO(d)| (resp.
lc OO0 (d)]) o-even (resp. o-odd) orientations of G. It follows from (3) and (4) that
the coefficient of HUGV(G) xff” in the expansion of Pg 4 (x)is |0 EO(d)|—|o O O (d)].
This proves the lemma.

Let D be an orientation of G. An Eulerian subdigraph H of D is called o-even
(resp. o-odd) if H has an even (resp. odd) number of positive edges. Let o E E (D)
(resp. 0 O E(D)) denote the set of all o-even (resp. o-odd) Eulerian subdigraphs of
D.

Lemma3 Let (G, o) be a signed graph and D be an orientation of G with outdegree
sequence d = (dy)vev(G). Then the coefficient of l_[veV(G) xg” in the expansion of
PG o (x) is equal to =(|oc EE(D)| — |o O E(D)]).

Proof For any orientation D’ € 6 EO(d) Uo O O(d), let D & D’ denote the set of all
oriented edges of D whose orientation in D’ is in the opposite direction. Since D and
D’ have the same outdegree sequence, D @ D’ is Eulerian. Let (u, v) be an oriented
edge in D @ D’. If uv is positive then exactly one of (u, v) and (v, u) is o-decreasing.
If uv is negative then neither («, v) nor (v, u) is o-decreasing. Thus, D @ D’ contains
an even number of positive edges if and only if D and D’ are both o-even or both
o-odd.

Now, themap t: D’ — D@ D’ is clearly abijection between o E O (d)Uc O O(d)
and c EE(D) Uo OE(D). If D is o-even, then T maps 0 EO(d) to o EE(D) and
maps 0 00(d) to c OE(D). In thiscase [c EO(d)| = [c EE(D)| and [c0O0(d)| =
lc OE(D)|. Thus, |[c EO(d)| — [0 OO (D)| = |c EE(D)| — |0 OE(D)]|. 1t follows
from Lemma 2 that the coefficient of ]_[Uev(G) xff” in the expansion of Pg (x) is
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equal to |0 EE(D)| — |0 OE(D)|. Similarly, if D is o-odd, then the coefficient of
]_[va(G) xf” in the expansion of Pg 4 (x) is equal to |0 O E(D)| — |oc EE(D)|. This
proves the lemma.

By Definition 2 and Lemma 3, we have the following characterization of the Alon—
Tarsi number AT (G, o).

Corollary 1 For any signed graph (G, o), AT (G, o) equals the minimum k for which
there exists an orientation D of G such that |c EE(D)| — |o O E(D)| # 0 and every
vertex has outdegree less than k.

2.3 Proof of Theorem 3

For a graph G, the maximum average degree of G, denoted by mad(G), is the maximum
of 2|E(H)|/|V(H)|, where H ranges over all subgraphs of G. The following useful
criterion on the existence of an orientation with bounded outdegree appeared in [2].

Lemma4 A graph G has an orientation D such that every vertex has outdegree at
most p if and only if mad(G) < 2p.

Corollary 2 For any graph G,

)

AT(G. —) = V’“‘;(Gﬂ Y

Proof Let p = f%]. Then mad(G) < 2p and hence, by Lemma 4, G has an
orientation D in which every outdegree is at most p. As eachedge in (G, —) is negative,
each Eulerian subdigraph of D contains no positive edge and hence is o-even. Thus
l[c OE(D)| = 0. Since the empty subdigraph is a o-even Eulerian subdigraph, we
have |0 EE(D)| > 1 and hence |0 EE(D)| # |0 OE(D)|. Thus by Corollary 1,
AT(G,—-) <p+ 1.

On the other hand, by Corollary 1, G has an orientation D such that each outdegree
is at most AT (G, —) — 1. Thus, by Lemma 4, mad(G) < 2(AT(G,—) — 1), i.e.,
AT(G,—) = ™9 4 1. Therefore, AT (G, —) > p + 1 since AT(G, —) is an
integer. This proves the corollary.

Proof of Theorem 3 For a signed graph (G, o), Schweser and Stiebitz [13] showed
that x (G, o) < 2 if and only if (G, o) is switching equivalent to (G, —). Thus, by
Proposition 2, it suffices to consider the case when (G, o) = (G, —),i.e.,,0(uv) = —1
for each uv € E(G). Let H be any subgraph of a planar graph G. Then by Euler’s
formula for planar graph we have 2|E(H)|/|V(H)| < 6, i.e.,, mad(G) < 6. By
Corollary 2, AT (G, —) < 4. This proves the first part of Theorem 3.

Let (G, —) be the negative planar graph as shown in Fig. 1. We show that (G, —)
is not 3-choosable.

Define a 3-list assignment L as follows:

e L(a)=L(d)={0,—-1,-2}.
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Fig. 1 A non-3-choosable negative planar graph (G, —)

e L(b) =L ={0,-1,2}.
o L(c)=L(c)={0,1,-2}.
e L(d)=L(d)={0,1,2}.

It suffices to show that (G, —) is not L-colorable. Suppose to the contrary that ¢ is an
L-coloring of (G, —). LetV = {a, b, c, d}.

Claim 1 There exists some x € V such that ¢ (x) = 0.

Suppose to the contrary that ¢(x) 7% 0 for each x € V. Then ¢(a) € {—1, =2},
¢(b) € {—1,2},9(c) € {1, -2} and ¢ (d) € {1, 2}. Note that (G[V], —) is a negative
complete graph. Thus ¢ (x) # —¢(y) for two distinct x, y in V. If ¢(a) = —1
then ¢ (c) = —2 and ¢(d) = 2. Now, ¢(c) = —¢(d), a contradiction. Similarly, if
¢(a) = —2then ¢ (b) = —1 and ¢(d) = 1 and hence ¢ (b) = —¢(d). This is also a
contradiction. Thus, Claim 1 follows.

Claim2 Letx € V. If ¢(x) = 0then ¢ (N(x')) = —L(x").

We only prove the case that x = a and the other three cases can be settled in the
same way. Since ¢ (a) = 0, we have ¢ (b) € {—1,2}, ¢(c) € {1, -2} and ¢p(d) €
{1,2}. If ¢(b) = —1 then ¢(c) = —2 and ¢(d) = 2. Thus, ¢(c) = —¢(d), a
contradiction. Therefore, ¢ (b) = 2. As ¢(c) # —¢(b), we have ¢(c) # —2 and
hence ¢(c) = 1. Finally, as N(a’) = {a, b, c} and L(a") = {0, —1, —2}, we have
¢ (N (@) = {p(a), p(b), p(c)} = {0,2, 1} = —L(a’). This proves Claim 2.

Now, by Claim 1, let x € V satisfy ¢(x) = 0. Then, ¢ (N (x")) = —L(x) by Claim
2. As ¢p(x’) € L(x") we have —¢(x") € ¢p(N(x')), that is, —¢ (x’) = ¢ (y) for some
y € N(x'). Thus, ¢ is not proper since x’y is a negative edge. This is a contradiction
and hence completes the proof of Theorem 3.

3 Alon-Tarsi Number of Signed Graphs for Z,-Coloring

In this section, we extend the Z ,-coloring of unsigned graph to signed one and consider
analogical Alon—Tarsi number.

At first, we introduce the Z,-coloring of unsigned graph. Z,-coloring is a special
case of the group coloring, which was introduced in [5]. Let p be a positive integer
and let G be a simple connected graph whose vertices are totally ordered by ‘<’. Let
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W, be amap from E(G) to Z,,, where Z, denotes the cyclic group of order p. We say
that G is modulo p-colorable on W, if G has a vertex assignment ¢ : V(G) — Z,
such that c¢(v) # c(u) + W, (uv) (mod p) for every edge uv € E(G) with v < u.
Moreover, we say that G is Z,-colorable if G is modulo p-colorable on any map W,,.
The modulo chromatic number of G, denoted by x,04(G), is the minimum positive
integer p such that G is Z,-colorable.

Next, we extend the Z,-colorings of unsigned graph to signed one. Let (G, o) be a
signed graph whose vertices are totally ordered by ‘<’. Moreover, let W, : E(G) —
Zp. A modulo p-coloring of (G,o) on W) is a mapping ¢ from V(G) to Z, such
that

c(x) #a(e)e(y) + Wy(e) (mod p) (6)

for any edge e = xy withx < y.

We say that (G, o) is modulo p-colorable on W, if (G, o, W)) has a modulo p-
coloring on W,. Moreover, we say that (G, o) is Z,-colorable if (G, o) is modulo
p-colorable for any map W,

If we assume o (e¢) = +1 for every edge e, then the modulo p-coloring of (G, +)
on W, coincides with the modulo p-coloring of G on W),. On the other hand, if we
assume W), (e) = 0 for every edge e, then this mapping is proper coloring with color
set Z, a notion introduced by Kang and Steffen [8].

Now, we define a modulo-p graph polynomial for a signed graph on a mapping
Wy : E(G) — Z,. We assign each vertex v to the variable x, € Z, and define the
modulo-p graph polynomial of (G, o) on W), as

Poow,x) =[] (= o@v)x,—W,v)(mod p),

U~V U<V

where u ~ v means that u and v are adjacent, and x = (xy)yev(G) is a vector of
|[V(G)| variables indexed by the vertices of G. Note that deg(Pg,o,w,(x)) always
equals |E(G)|, independent of the choice of W,. Moreover, it is not difficult to see
that the coefficient of each monomial with degree |E(G)| does not depend on the
choice of W),

In the following, we always assume that p is a prime number and hence Z, is a
field. Itis easy to see thatamapping c: V(G) — Z, is amodulo p-coloring of (G, o)
on W, if and only if PG 5w, (c) # 0(mod p), where ¢ = (c(v))veV(G).

Note that Z), is a field. It follows from Lemma 1 that if there exists a monomial
c ]_[Uev(G) xf}’, with degree |E(G)/, in the expansion of Pg 4, W, (x) (or equivalently,
of PG s(x)) such that ¢ # 0 (mod p) and t, < p forall v € V(G), then (G, o) is
modulo p-colorable on W,,. Note that the condition ‘t, < p forall v € V(G)’ is
necessary since Z, has only p elements.

Definition 3 Let p be a prime. The modulo-p Alon—Tarsi number of (G, o), denoted
by AT, (G, o), is the minimum k for which there exists a monomial ¢ HveV(G) X1 in
the expansion of Pg s (x) such that ¢ # O(mod p), and ¢, < k forall v € V(G).

By Definition 3 and above discussions, the following holds.
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Proposition 3 Let p be a prime and let (G, o) be a signed graph. If AT,(G,0) < p,
then (G, o) is Zp-colorable, and in particular, (G, o) has a proper coloring with
color set Z.

Comparing Definition 3 with Definition 2, one easily finds that AT,(G,0) >
AT (G, o) for any signed graph (G, o) and prime p. For a subgraph H of G, since
Ph o,w, (x) is a factor of Pg o, w,(x), we have AT),(H, o) < AT, (G, o). Moreover,
using Lemma 3, we obtain a similar characterization of modulo-p Alon—Tarsi number
as in Corollary 1.

Corollary 3 Forany signed graph (G, o) and prime p, AT, (G, o) equals the minimum
k for which there exists an orientation D of G such that |c EE(D)| — |c OE(D)| #
0(mod p) and every vertex has outdegree less than k.

Lai et al. [10] showed that every K5-minor free graph is Zs-colorable. This implies
that every planar graph is Zs-colorable. Moreover, Kral’ et al. [9] showed that there
exists a plane graph which is not Z4-colorable. We show that every signed planar graph
is Zs-colorable. Indeed, we prove a stronger result.

Theorem 4 If (G, o) is a signed planar graph and p is a prime, then AT,(G,0) < 5.
In particular, ATs(G, o) <5 and hence (G, o) is Zs-colorable.

As AT,(G,0) > AT(G, o), Theorem 2 follows from Theorem 4. The next section
is devoted to the proof of Theorem 4.

4 Proof of Theorem 4

Let p be a fixed prime.

Definition 4 Let (G, o) be a signed graph where G is a near triangulation with outer
facial cycle viv; ... vk and let e = vjvy. An orientation D of G — e is p-nice for G —e
if both of the followings hold.

e |[0EE(D)| — |0 OE(D)| # 0(mod p), and
e dpt(v)) =dpT(v2) =0,dpt(v;) <2foreachi € {3,...,k}anddp™ () < 4
for each interior vertex u € V(G).

Theorem 5 Let (G, o) be a signed graph where G is a near triangulation with outer
facial cycle C = vivy ... vg and let e = vivy. Then G — e has a p-nice orientation.

Proof We prove the theorem by induction on |V (G)|. If |V(G)| = 3, then G — e is a
path vov3v;. Let D be the orientation of G — e such that E(D) = {(v3, v2), (v3, v1)}.
Since [0 EE(D)| = land |c OE(D)| = 0, D is a p-nice orientation. Thus we assume
that |V (G)| > 3.

First we consider the case that C has a chord ¢’ = vy vj where 2 < j <k —2(see
Fig. 2a). In this case C1 = vjvp - - vjvg and Cp = vxv;vj41 - - - Vg1 are two cycles
of G. Fori € {1, 2}, let G; be the subgraph of G formed by C; and its interior part.
By the induction hypothesis, G| — e has a p-nice orientation D, and G, — ¢’ has a

@ Springer



Graphs and Combinatorics (2019) 35:1051-1064 1061

Fig.2 Proof of Theorem 5

p-nice orientation D;. We notice that D and D; are edge disjoint. Let D = DU D».
It is clear that D is an orientation of G — e. We will show that D is p-nice for G — e.
It can be easily checked that D satisfies the outdegree condition in Definition 4. Thus
we will show that |c EE(D)| — |[c OE(D)| # 0 (mod p). Note that both v; and
v; have outdegree O in D>. This implies that no edge in D incident with v or v;
is contained in any Eulerian subdigraph of D. Therefore, any Eulerian subdigraph
H of D has an edge-disjoint decomposition H = H; U H,, where H| and H; are
Eulerian subdigraphs in D1 and D», respectively. Thus, the map t: H +— (Hp, H>)
is a bijection satisfying that

e (0 EE(D)) = (0 EE(D1) X cEE(D7)) U(c OE(D1) x c OE(D3)) and

e T1(cOE(D))=(0EE(D1) Xx cOE(D>2))U(cOE(D1) x c EE(D»)).

Thus, we have

lo EE(D)| — |0 OE(D)|
= (loEE(Dy)| x |0 EE(D2)| + |0 OE(D1)| x |0 OE(D2))
—(loEE(Dy)| x |0 OE(D2)| + |0 OE(Dy)| x |0 EE(D2)])
= (0 EE(D)| -0 OE(DD)) - (lo EE(D2)| — |0 OE(D2)])
# 0 (mod p),
where the last inequality holds since Dy and D> are p-nice and since Z, does not have
any zero divisors. This proves that D is a p-nice orientation of G — e.

Secondly, we assume that C has no chord of the form vyv; where 2 < j <
k — 2. Let vg_1,u1,...,us,v; be the neighbors of vy and be ordered so that
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VkUk—1U1, . .., Uglsv] are inner facial cycles of G. Let G’ = G — vy. It is clear that
G’ is a near triangulation with outer facial cycle vivy ... vi_juj ... us. Therefore, by
the induction hypothesis, G’ — e has a p-nice orientation D’.

If k = 3 (i.e., C is a triangle), then let D be the orientation of G — e obtained
from D’ by adding the vertex v3 and oriented edges (v3, v1), (v3, v2) and (u;, v3) for
i €{l,2,...,s},asshown in Fig. 2b. It is easy to verify that D satisfies the outdegree
condition in Definition 4. In particular, both v; and v, have outdegree 0. Thus, v and
vy are both isolated in any Eulerian subdigraph of D and therefore, by the definition of
D, v3 is also isolated in any Eulerian subdigraph of D. This means that each Eulerian
subdigraph of D is an Eulerian subdigraph of D’ by ignoring the isolated vertex vs.
Thus, [0 EE(D)| = |0 EE(D")| and [c OE(D)| = |0 OE(D’)|. Since D’ is a p-
nice orientation, we have |0 EE(D)| — [0 OE(D)| = |[c EE(D’)| — |c OE(D")| #
0 (mod p). This proves that D is a p-nice orientation of G — e.

Next, we assume k > 4. We call an orientation D of G’ — e special if both of the
followings hold:

e v and v, have outdegree 0, vi_1 has outdegree at most 1, each of v3, v4, ..., Vk—2
has outdegree at most 2, and each of u1, u», ..., ug has outdegree at most 3.
e Every interior vertex has outdegree at most 4.

To show that G — e has a p-nice orientation, we consider two cases:
Case 1. G’ — e has a special orientation D” with |0 EE(D")| — |c OE(D")| #

0 (mod p).
Let D be the orientation of G — e obtained from D" by adding the vertex vy and s 42
oriented edges (v, v1),(vk—1, vk) and (u;, vx) fori € {1,2, ..., s}, see Fig. 2c. Then

D satisfies the outdegree condition of a p-nice orientation. Since v; has outdegree 0
in D, by a similar discussion as above, vy is isolated in any Eulerian subdigraph of D.
Therefore, each Eulerian subdigraph of D is an Eulerian subdigraph of D" by ignoring
the isolated vertex vy, i.e., |0 EE(D)| = |[c EE(D")| and |[c OE(D)| = |c OE(D")].
This yields that |[c EE(D)| — |0 O E(D)| # 0(mod p) by the condition of this case.
Thus, D is a p-nice orientation of G — e, as desired.

Case 2. For any special orientation D" (if exists), |[c EE(D")| — |c OE(D")| =
0 (mod p).

Recall that D’ is a p-nice orientation of G’ — e. Let D be the orientation of G — e
obtained from D’ by adding the vertex vy and s + 2 oriented edges (vk, v1), (Vk, ve—1)
and (u;, vx) fori € {1, 2, ..., s},asshowninFig. 2d. Clearly, D satisfies the outdegree
condition of a p-nice orientation. To show that D is p-nice for G — e, it remains to
show that [0 EE(D)| — |c O E(D)| # 0 (mod p).

Notice that vy has outdegree 0 in D and therefore, is isolated in any Eulerian
subdigraph of D. Thus, if H is an Eulerian subdigraph of D and vy is non-isolated
in H then H contains the oriented edge (v, vx—1) and exactly one of the s oriented
edges (u1, vg), (u2, vk), ..., (ug, vr). Fori € {1,2,..., s}, let

ocEE;(D)={H €e cEE(D): (u;,v) € E(H)},
cOE;{(D)={H € cOE(D): (uj,v) € E(H)}.
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For an Eulerian subdigraph of D’, we regard it as an Eulerian subdigraph of D by
adding v as an isolated vertex. Then we have

0EE(D) = cEE(D') U UaEEi(D),

i=1

0 0OE(D) =0c0E(D)U UO’OEI‘(D).

i=1

Since D' is p-nice, [ EE(D’)| — |c OE(D")| # 0(mod p). Therefore, in order to
complete the proof in this case, it suffices to show the following claim.
Claim [c EE;(D)| — |0 OE;(D)| =0 (mod p) foranyi € {1, ..., s}.

Let i be any integer in {1,2,...,s}. If cEE;(D) U cOE;(D) = { then
|cEE;(D)| = |c OE;(D)| = 0, as desired. Thus, we may assume that c EE; (D) U
o OE;(D) # (. Therefore, D has an Eulerian subdigraph and hence a directed cycle
containing (u;, vg). Let C; = u;vgvg_jwiwsz - - - w) be such a directed cycle and let
D! be the orientation of G’ — e obtained from D’ by reversing the direction of edges in
the path vr_jwjw; - - - wpu;. The reversing operation decreases the outdegree of vi_1
by 1, increases the outdegree of u; by 1, and leaves the outdegrees of other vertices in
G’ — e unchanged. Since D’ is p-nice for G’ — e, the outdegree condition of D" implies
that D/ is special. Hence, |0 EE(D])| — |0 OE(D})| = 0 (mod p) by the condition
of this case.

Let Ci_1 be the reverse of C;, i.e., Cl._1 = WpWp_1 - WIVk—1VklU;. For each
Eulerian subdigraph H € o EE;(D) Uc OE;(D), let H A Cfl be the symmetric
difference of the edge sets of H and C;” ! , that is, the set obtained from the edge union
HUC; Yof Hand C . ! by deleting the directed 2-cycles. One may verify that H AC;” !
is an Eulerian subdigraph of D] andthemapt: H — HAC; Visa bijection between
0EE;(D)UoOE;(D)ando EE(D;)Uo O E(Dj).Foraset S of some oriented edges
in an orientation of (G, o), we use N (S) to denote the number of positive edges in S.
It is easy to see that N(H A C;~') = N(H) + N(C;~!) — 2N (H N C;). Therefore,
if N(C;~1) is even, then N(H A C;~1) and N(H) are the same parity and hence t
maps o EE; (D) to 0 EE(D}) and 0 OE;(D) to o O E(D;). Similarly, if N(C;i™ V) is
odd, then it maps o EE; (D) to 0 O E(D;) and o O E; (D) to o E E(D)). In either case,
we have

llo EEi(D)| — |0 OE;(D)|| = |lc EE(D'})| — |0 OE(D'})|| = 0 (mod p),

and hence complete the proof.

Proof of Theorem 4 Since AT,(H,0) < AT,(G, o) for any subgraph H of G, it
suffices to consider the case when G is a near triangulation. Let vjv; - - - vx be the
outer facial cycle of G and e = vjv,. By Theorem 5, G — e has a p-nice orientation
D. Let D’ be obtained from D by adding the oriented edge (v, v2). Clearly, each
vertex has outdegree at most 4 in D’. Moreover, as v, has outdegree 0 in D’, the
orientated edge (vi, vy) will never appear in any Eulerian subgraph of D’. Thus,
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|cEE(D")| = |cEE(D)| and |0 OE(D")| = |0 OE(D)|. As D is p-nice, we have
|cEE(D")| — |c OE(D")| = |c EE(D)| — |0 OE(D)| # 0(mod p). Therefore, by
Corollary 3, we have AT,(G,0) < 5.
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