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a b s t r a c t 

Implicit discourse relation recognition is the performance bottleneck of discourse structure analysis. To 

alleviate the shortage of training data, previous methods usually use explicit discourse data, which are 

naturally labeled by connectives, as additional training data. However, it is often difficult for them to 

integrate large amounts of explicit discourse data because of the noise problem. In this paper, we pro- 

pose a simple and effective method to leverage massive explicit discourse data. Specifically, we learn 

connective-based word embeddings ( CBWE ) by performing connective classification on explicit discourse 

data. The learned CBWE is capable of capturing discourse relationships between words, and can be used 

as pre-trained word embeddings for implicit discourse relation recognition. On both the English PDTB 

and Chinese CDTB data sets, using CBWE achieves significant improvements over baselines with general 

word embeddings, and better performance than baselines integrating explicit discourse data. By combin- 

ing CBWE with a strong baseline, we achieve the state-of-the-art performance. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Recognizing discourse relations (e.g., Comparison ) between two

ext spans is a crucial subtask of discourse structure analysis.

hese relations can benefit many downstream natural language

rocessing tasks, including question answering, machine transla-

ion and so on. A discourse relation instance is usually defined

s a discourse connective (e.g., but, and ) taking two arguments

e.g., clause, sentence ). Example (a) is an explicit discourse instance

ignaled by the connective but , while Example (b) is an implicit

iscourse instance with the Comparison relation, and the connec-

ive is absent. For explicit discourse relation recognition, using only

onnectives as features achieves more than 93% in accuracy [28] .

owever, due to the absence of connectives, implicit discourse re-

ation recognition needs to inference discourse relations based on

wo arguments, and is still challenging. Earlier researchers usually

evelop surface features and use supervised learning method to

erform the task [6,16,20,27,31] . Among these features, word pairs

ccurring in argument pairs are considered as important features,

ince they can partially catch discourse relationships between

wo arguments. For example, word pairs with antonymic relation,
∗ Corresponding author. 
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ike (crude, advance) in Example (b), may mean a Comparison

elation, while synonym word pairs like (good, great) may indicate

 Conjunction relation. However, previous classifiers based on these

eatures do not work well because of the data sparsity problem. 

(a) [The computers were crude by today’s standards,] Arg 1 

but , [Apple II was a major advance from Apple I.] Arg 2 

(b) [We have seen a big advance of the project.] Arg 1 

[The others are still very crude.] Arg 2 

To address this problem, some researchers attempt to take ad-

antage of unlabeled data, especially explicit discourse data, to

nrich the training data. For example, explicit instances signaled

y the connective but can be potentially used as additional train-

ng data for the Comparison relation in implicit discourse rela-

ion recognition. They remove connectives from explicit discourse

nstances, and automatically labeled them by mapping connec-

ives into corresponding discourse relations (e.g., but – Compar-

son ). However, according to Sporleder and Lascarides [33] , di-

ectly using these data as additional training data would degrade

he performance due to the following two drawbacks: (1) The

eaning shift problem. Considering the explicit instance: ‘I am ea-

er to go home for the vacation. Nonetheless, I will book a flight

o Beijing.’ , one would infer the Contingency relation rather than

he Comparison relation if nonetheless is dropped. (2) The domain

https://core.ac.uk/display/343508828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.neucom.2019.08.081
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Fig. 1. The average model for learning CBWE . 
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1 Our learned CBWE is publicly available at here, and we will make the source 

code available after review. 
problem. There are different word distributions and different rela-

tion distributions between explicit and implicit discourse data. For

example, in the PDTB data set, the four top-level discourse rela-

tions include: explicit instances (18.9% Temporal , 28.8% Compari-

son , 18.7% Contingency and 33.6% Expansion ) and implicit instances

(5.7% Temporal , 16.9% Comparison , 24.9% Contingency and 52.5% Ex-

pansion ). In other words, Implicit and explicit discourse data can

be considered as data from different domains. Accordingly, for im-

plicit discourse relation recognition, explicit discourse instances

can be potentially used as additional labeled data, but with some

noise. 

Recent researchers seek to leverage explicit discourse data via

domain adaptation [5] , data selection [32] or multi-task learning

[12,13,19,38] . While showing better results, they all directly use

explicit data to train classifiers. As a result, a small amount of

explicit data is just used because of the noise problem. Intu-

itively, incorporating massive explicit discourse data would further

improve the performance. Recently, some researchers use word

embeddings instead of words as input features, and design various

neural networks to capture discourse relationships between argu-

ments [8,9,11,14,18,30,42] . While achieving promising results, they

are all based on general word embeddings which ignore discourse

information (e.g., good, great, and bad are often mapped into close

vectors). In general, using task-specific word embeddings would

further boost the performance. 

Based on the above analysis, we propose to learn connective-

based word embeddings ( CBWE ) from massive explicit data for

implicit discourse relation recognition. Explicit data can be consid-

ered to be automatically labeled by connectives. While they cannot

be directly used as training data for implicit discourse relation

recognition and contain some noise, they are effective enough to

provide weakly supervised signals to train the connective-based

word embeddings. Our method is inspired by the observation

that synonym (antonym) word pairs tend to appear around the

discourse connective and (but) . Other connectives can also provide

some discourse clues. We expect to mine these discourse clues

from explicit data, and encode them into distributed represen-

tations of words. These representations can used as features for

implicit discourse relation recognition and other discourse-related

tasks, and boost their performance potentially. Compared with

previous work, our method provides two benefits: (1) Discourse

relevant word pair information is encoded into connective-based

word embeddings, such information is helpful for implicit dis-

course relation recognition. As shown in the explicit Example (a),

word pair ( crude, advance ) is related with the connective but . Our

method can encode the semantic relation signaled by but into

the embeddings of words crude and advance , which are obviously

helpful for distinguish the Comparison relation of the implicit

Example (b). (2) Our method is a two-stage method which first

learns CBWE and then uses it as features. In this way, our method

leverages massive explicit data indirectly and thus can reduce the

influence of noise. On the other hand, both data selection and

multi-task methods use explicit data to train their recognition

models directly, which makes them more susceptible to noise and

harder to incorporate massive explicit data. 

Specifically, we use two simple and effective neural networks

to learn CBWE by performing connective classification on mas-

sive explicit data: an average model capturing discourse relation-

ships between words implicitly, and an interaction model captur-

ing these relationships explicitly. We apply CBWE as pre-trained

word embeddings for a neural implicit discourse relations recog-

nition model. On both the English PDTB [29] and Chinese CDTB

[15] data sets, using CBWE yields significantly better performance

than using general word embeddings, and recent methods incor-

porating explicit discourse data. The interaction model shows bet-

ter results than the average model. More importantly, the learned
BWE can be easily transferred to strong implicit discourse relation

odels like [3,9] , to boost their performance further. 

The major contributions of this paper include: (1) We intro-

uce a simple and effective method to leverage explicit discourse

ata. (2) The learned CBWE 1 can be easily combined with other

echniques, to potentially boost the performance of implicit dis-

ourse relation recognition further. (3) We achieve the state-of-

he-art performance, to the best of our knowledge. The contents of

his paper are organized as follows. We detail models for learning

BWE in Section 2 and the used implicit discourse relation recog-

ition model in Section 3 . We conduct experiments to validate the

ffectiveness of CBWE in Section 4 . Finally, we review the related

ork in Section 5 and draw conclusions in Section 6 . 

. Connective-based word embeddings 

We induce CBWE based on explicit discourse data by perform-

ng connective classification. The connective classification task pre-

icts which connective is suitable for combining two given argu-

ents. In this section, we first introduce two simple and effective

eural network models for learning CBWE , and then the way of

ollecting explicit discourse data for training. 

.1. The average model 

We adapt the model in [38] to learn CBWE by performing con-

ective classification, and call it the average model. As illustrated

n Fig. 1 , it uses an average layer to represent two arguments, and

hen a multi-layer perception (MLP) for classification. The aver-

ge model is simple enough to enable us to train on massive data

fficiently. 

Formally, let ( Arg 1 , Arg 2 , conn ) denotes an explicit discourse in-

tance, where Arg 1 and Arg 2 are arguments, conn is the connec-

ive. Let x i ∈ R d and y j ∈ R d denote the embeddings of i th word of

rg 1 and j th word of Arg 2 , m and n denote the lengths of Arg 1 and

rg 2 , respectively. All word’s embeddings can be denoted as a ma-

rix L ∈ R v × d , where v is the size of vocabulary and d the dimension

f word embeddings. The average model first represents an argu-

ent as the average of words, x for Arg 1 and y for Arg 2 . And then

t concatenates x and y as h 0 , a single representation of both Arg 1 
nd Arg 2 : 

 = 

1 

m 

m ∑ 

i =1 

x i , y = 

1 

n 

n ∑ 

j=1 

y j , h 0 = [ x, y ] (1)

inally, h 0 ∈ R 2 d is fed into a MLP for classification. Specially, l non-

inear hidden layers are stacked to get a more abstractive represen-

ation h l , and then a softmax layer to get probabilities of different
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Fig. 2. The interaction model for learning CBWE . 
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(

lasses o : 

 i = f (W i h i −1 + b i ) , i ∈ [1 , l] 

 = sof tmax (W c h l + b c ) 
(2) 

here f is the nonlinear activation function for all hidden layers,

 i , b i , W c , b c are parameters. We combine the cross-entropy error

nd regularization error as the objective function: 

(θ ) = −
q ∑ 

k =1 

g k × log (o k ) + 

λ

2 

‖ θ ′ ‖ 

2 , (3)

here g is the ground-truth label vector for an training instance,

 the number of classes, λ the regularization coefficient and θ =
(L, W i , b i , W c , b c ) the set of parameters. Note that b i , b c and L are

ot included in θ ′ . During training, L is first randomly initialized,

nd then tuned to minimize the objective function. The finally ob-

ained L is our CBWE . 

.2. The interaction model 

Recently, neural network models which incorporate word pair

nformation directly achieve superior performance on nature lan-

uage inference [24] and implicit discourse relation recognition

14] . Therefore, we propose to use a simplified version of these

odels to learn CBWE , and call it the interaction model. As illus-

rated in Fig. 2 , the interaction model first uses an interaction layer

o capture the cross-argument word pair information, then an ag-

regate layer to represent arguments, and finally a MLP layer for

lassification. The interaction model captures discourse relation-

hips between words explicitly, while the average model does this

mplicitly. 

Formally, we first calculate the word interaction score matrix

 ∈ R m × n , computing e ij for each possible i th word ( x i ) in Arg 1 and

 th word ( y j ) in Arg 2 , and normalize them as follows: 

 i j = x i y 
T 
j , αi j = 

exp(e i j ) ∑ n 
k =1 exp(e ik ) 

, β ji = 

exp(e i j ) ∑ m 

k =1 exp(e k j ) 
. (4)

 high interaction score e ij means the corresponding word pair

s well correlated with a particular discourse relation. αi 1 , . . . , αin 

ndicate the normalized interaction scores between the i th word

n Arg 1 and each word in Arg 2 . Similarly, β j1 , . . . , β jm 

indicate the

ormalized interaction scores between the j th word in Arg 2 and

ach word in Arg 1 . As described in Eq. (5) , based on these nor-

alized scores, we augment the representation of i th word in Arg 1 
s [ x i , x 

′ 
i 
] , where x ′ 

i 
can be considered as its related parts in Arg 2 .

imilarly, the j th word in Arg 2 is represented as [ y j , y 
′ 
j 
] . Finally, an
rgument is represented as the average of augmented representa-

ions of words in it, x for Arg 1 and y for Arg 2 . And the concate-

ation [ x, y ] is fed into a multi-layer perception for classification.

 

′ 
i 
= 

n ∑ 

j=1 

αi j y j , x = 

1 
m 

m ∑ 

i =1 

[ x i , x 
′ 
i 
] , 

 

′ 
j 
= 

m ∑ 

i =1 

β ji x i , y = 

1 
n 

n ∑ 

j=1 

[ y j , y 
′ 
j 
] . 

(5) 

Essentially, the task of connective classification is similar to

mplicit discourse relation recognition, just with different output

abels. Therefore, any effective neural network model for implicit

elation recognition can be easily adapted for connective classi-

cation. The reasons why we choose simple models instead of

omplicated models for learning CBWE are two-folds: (1) training

imple models on massive explicit data is time-efficient, and (2)

imple models usually contain fewer other parameters, which

akes as much as possible information be encoded into the word

mbeddings. For example, both the average model and the inter-

ction model only have two sets of parameters: word embeddings

nd parameters of the MLP. In our experiments, if we compute

 i j = F (x i ) F (y j ) 
T as that in [24] , where F is a feed-forward neural

etwork, or e i j = x i A y j 
T + B [ x i , y j ] + c i j as that in [14] , where A, B,

 ij are parameters to model and encode word pair semantics, the

esulted CBWE is not as good as that learned by the average model

r the interaction model. The reason behind is that some useful

nformation is encoded into the parameters of F or A, B, c ij . 

Word order information is not used in both the average model

nd the interaction model, which makes our models are very sim-

le and can be trained on large amounts of explicit discourse data

fficiently. Intuitively, considering the word order information can

oost the performance of connective classification. For example,

e can enhance the representation of a word by concatenating its

ord embedding and position embedding as [10] , or use recur-

ent neural networks (e.g., LSTM) instead of the average operator

n Eq. (1) or Eq. (5) . We conduct experiments (results not listed)

o verify the above two methods and find that: (1) Both methods

o not result in better CBWE . Especially when LSTM is used, the

esulting CBWE is not as good as that learned by the interaction

ethod. The reason is that some useful information is encoded

nto the parameters of LSTM. (2) Transferring the learned position

mbeddings is not helpful. The reasoning behind is that word or-

er information can be learned from any sentences, not just lim-

ted to the explicit discourse data. (3) Using LSTM is very time-

onsuming because it cannot be parallelized. Our primary purpose

n this paper is to learn better CBWE . The learned CBWE can be

asily transferred to not only the IDRR model ( Section 3 ), but also

uture models for this task or discourse-related tasks, to potentially

oost their performance. Based on the above analysis, we do not

onsider the order information in our models for CBWE . 

Compared with the attention mechanisms in sequence-to-

equence models [2] and multi-head self-attention models [35] ,

ur interaction model is bidirectional and usually used in scenarios

ith two sentences. Compared with the bi-attention models used

n [14,24] , our interaction model is a simplified version. Specifi-

ally, we adapt commonly used bi-attention models to catch word-

air information explicitly and encode these information into word

mbeddings. We simplify them by retaining only two sets of pa-

ameters that are necessary, word embeddings and parameters of

he MLP layer. Therefore, as much as possible information is en-

oded into the word embeddings as expected. Experimental re-

ults in Table 6 also show that our interaction model is more suit-

ble for learning CBWE than the commonly used bi-attention mod-

ls. Accordingly, to some extent, our interaction model is proposed

or a new application, learning connective-based word embeddings

 CBWE ) from massive explicit discourse data. 
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Table 1 

Statistics of data sets on the PDTB. 

Relation Training Validation Test 

Temp 582 48 55 

Comp 1855 189 145 

Cont 3235 281 273 

Expa 6673 638 538 

Table 2 

Top 10 most frequent connectives in the collected explicit discourse data. 

Connective Frequency Connective Frequency 

and 1,040,207 when 224,116 

but 770,705 after 209,224 

also 665,039 if 202,497 

while 238,364 however 155,811 

as 227,702 because 150,589 
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2.3. Collecting explicit discourse data 

Collecting explicit discourse data includes two steps: (1) distin-

guish whether a connective occurring reflects a discourse relation.

For example, the connective and can either function as a discourse

connective to join two Conjunction arguments, or be just used to

link two nouns in a phrase. (2) identify the positions of two argu-

ments. According to Prasad et al. [29] , Arg 2 is defined as the argu-

ment following a connective, however, Arg 1 can be located within

the same sentence as the connective, in some previous or follow-

ing sentence. Lin et al. [17] show that the accuracy of distinguish-

ing English connectives is more than 97%, while identifying argu-

ments is below than 80%. Therefore, we use the existing toolkit 2 

to find English discourse connectives, and just collect explicit in-

stances using patterns like [ Arg 1 conn Arg 2 ], where two arguments

are in the same sentence, to decrease noise. 

The restriction of the same sentence seems to have two poten-

tially detrimental effects on the collected corpus. First, it would

skew the distribution of discourse relations towards those that are

typically expressed within the same sentence. Second, it would

actually exclude explicit discourse instances consisting of two

separate sentences, which are more similar to implicit discourse

instances. To explore this problem, we compare two collected En-

glish explicit discourse corpora: (1) one collected by our method,

and (2) the other collected from the results of the pdtb-style parser

[17] , where all identified explicit instances are included. We find

that: (1) there is no obvious difference in the distribution of con-

nectives between the two corpora, and (2) connective based word

embeddings trained on two corpora achieve similar performance

on implicit discourse relation recognition. Therefore, our way of

collecting explicit data is feasible when using a very large corpus.

It can also be easily generalized to other languages, one just need

to train a classifier to find discourse connectives following [17] . 

3. Model for implicit discourse relation recognition 

To evaluate the effectiveness of our learned CBWE , we use it as

the pre-trained word embeddings for a popular implicit discourse

relation recognition model ( IDRR model, hereafter), to see if it im-

proves the performance. In fact, our CBWE can be easily used for

any neural implicit discourse relation recognition model. In the fol-

lowing, we briefly introduce the used IDRR model 3 [24] for this pa-

per to be self contained. Let us recall that the interaction model for

CBWE ( Section 2.2 ) is essentially a simplified version of the IDRR

model. They both use an interaction layer to capture the cross-

argument word pair information, then an aggregate layer to rep-

resent arguments, and finally a MLP layer for classification. The

only differences between them are the IDRR model uses Eq. (6) in-

stead of Eq. (4) for word interaction scores, and Eq. (7) instead of

Eq. (5) for argument representations. Specifically, F in Eq. (6) and G

in Eq. (7) are multi-layer feed-forward neural networks and added

for learning more abstract feature representations. 

e i j = F (x i ) F (y j ) 
T , αi j = 

exp(e i j ) ∑ n 
k =1 exp(e ik ) 

, β ji = 

exp(e i j ) ∑ m 

k =1 exp(e k j ) 
(6)

x ′ 
i 
= 

n ∑ 

j=1 

αi j y j , x = 

1 
m 

m ∑ 

i =1 

G ([ x i , x 
′ 
i 
]) 

y ′ 
j 
= 

m ∑ 

β ji x i , y = 

1 
n 

n ∑ 

G ([ y j , y 
′ 
j 
]) 

(7)
i =1 j=1 

2 https://github.com/linziheng/pdtb-parser . 
3 Though the model described in [24] is used for nature language inference, we 

find it is also effective for implicit discourse relation recognition, and achieves 

slightly better results than the model in [14] in our experiments. 
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E  
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a  
. Experiments 

In this section, we evaluate the effectiveness of our proposed

ethod on both the English PDTB and Chinese CDTB data sets. We

ocus on testing whether our method is more helpful than previous

ethods which use explicit discourse data as additional training

ata, and whether our learned CBWE can be combined with other

echniques to boost the performance further. 

.1. Data and settings 

Implicit discourse relation recognition is usually considered as

 multi-way classification task. Following [19] , we perform a 4-way

lassification on the four top-level relations in the PDTB, including

emporal ( Temp ), Comparison ( Comp ), Contingency ( Cont ) and Expan-

ion ( Expa ). We adopt the standard settings and split the PDTB cor-

us into the training set (Sections 2–20), validation set (Sections

–1) and test set (Sections 21–22). Table 1 lists the statistics of

hese data sets. 

We collect explicit data from the Xin and Ltw parts of the En-

lish Gigaword Corpus (3rd edition), and get about 4.92M explicit

nstances. There are 100 discourse connectives in the PDTB, we ig-

ore four parallel connectives (e.g., if... then ) for simplicity. Due to

he space limitation, we only list the top 10 most frequent English

onnectives in the collected corpus in Table 2 . We randomly sam-

le 20,0 0 0 instances as the validation set, 20,0 0 0 instances as the

est set and the others as the training set for CBWE . After discard-

ng words occurring less than 5 times, the size of the vocabulary

s 185,048. For connective classification with the interaction model,

e obtain an accuracy of about 58.3% on the test set when all 96

onnectives are considered, and about 58.9%, 60.8%, 62.8%, 69.9%

ith the top 60, 30, 20, 10 most frequent connectives, respectively.

ccuracies of the average model are about 4–5% lower than those

f the interaction model. These results indicate that: (1) our simple

odels for connective classification are effective, and (2) the inter-

ction model is more powerful than the average model by captur-

ng discourse relationships between words explicitly. 

Hyper-parameters for CBWE and IDRR are selected based on

heir corresponding validation sets, and listed in Table 3 . The same

yper-parameters are used for the average model and the inter-

ction model for CBWE. d means the dimension of word embed-

ings, bsize the batch size of training data, lr the learning rate,

ropout the dropout rate [34] in hidden layers, λ the regulariza-

ion coefficient in Eq. (3) , update the parameter update strategy.

he nonlinear function f is used in Eq. (2) , hidden layers of F in

q. (6) and G in Eq. (7) . The learning rate for CBWE is decayed by

 factor of 0.8 per epoch. In addition, hsizesMLP, hsizesF and hsizesG

re the sizes of hidden layers in the MLP, F in Eq. (6) and G in

https://github.com/linziheng/pdtb-parser
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Table 3 

Hyper-parameters for training CBWE and IDRR . 

Hyper-parameter CBWE IDRR 

d 300 300 

bsize 64 32 

lr 1.0 0.1 

dropout – 0.2 

λ 0.0001 0.0001 

update SGD AdaDelta 

f ReLU ReLU 

hsizesMLP [200] [200, 50] 

hsizesF – [100, 100] 

hsizesG – [100, 100] 
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Table 4 

Results of using different word embeddings. We also list the Precision ( P ), Recall ( R ) 

and F 1 score for each relation. 

IDRR + GloVe + word2vec +CBWE avg +CBWE int 

Temp P 42.11 51.72 50.00 44.90 

R 29.09 27.27 34.55 40.00 

F 1 34.41 35.71 40.86 42.31 

Comp P 39.29 40.54 40.00 47.44 

R 22.76 20.69 24.83 25.52 

F 1 28.82 27.40 30.64 33.18 

Cont P 49.00 46.69 49.64 49.26 

R 45.05 49.08 49.82 48.72 

F 1 46.95 47.86 49.73 48.99 

Expa P 62.23 62.48 64.70 64.82 

R 73.79 72.12 73.23 73.98 

F 1 67.52 66.95 68.70 69.10 

Accuracy 56.28 56.08 57.86 58.36 

Macro - F 1 44.42 44.48 47.48 48.39 

 

o  

i  

t  

c  

t  

c  

t  

l  

v  

t  

r  

m

4

 

w

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  
q. (7) , respectively. Note that [200, 50] means that two hidden

ayers with the sizes of 200 and 50 are used, and parameters in

ll hidden layers are initialized with the default xavier_initializer

unction in Tensorflow [1] . We also find that, AdaDelta is more sta-

le than other parameter update strategies for IDRR , and a relative

arge learning rate can effectively speed up the training process of

BWE . The learned CBWE is used as the pre-trained word embed-

ings for IDRR , and fixed during training. Validation sets are used

o early stop the training process. Different from the conference

ersion [39] of this paper, no any surface features are used here

or a fair comparison with other work. 

Due to the small and uneven test data set, we use both the

ccuracy and Macro - averaged F 1 ( Macro - F 1 ) to evaluate the whole

ystem. We run our method 10 times with different random seeds

therefore different initial parameters), and report the results (of a

un) which are closest to the average results. 

.2. Comparison with general word embeddings 

We first compare the learned connective-based word embed-

ings ( CBWE ) with two publicly available word embeddings 4 : 

• GloVe 5 : trained on 840B words from internet (common crawl)

using the count based model in [25] , with a vocabulary of 2.2M

and a dimensionality of 300. 

• word2vec 6 : trained on 100B words from Google News using the

CBOW model in [22] , with a vocabulary of 3M and a dimen-

sionality of 300. 

• CBWE avg : our connective-based word embeddings learned with

the average model. 

• CBWE int : our connective-based word embeddings learned with

the interaction model. 

Results in Table 4 show that IDRR using CBWE gains significant

mprovements (one-tailed t -test with p < 0.05) over using GloVe or

ord2vec , on both Accuracy and Macro - F 1 . More importantly, us-

ng CBWE achieves substantial improvements across all relations

n the F 1 score, which indicates that our proposed method can

ot only help minority relations ( Temp, Comp ), but also major re-

ations ( Cont, Expa ). In addition, IDRR using CBWE int achieves bet-

er performance over using CBWE avg , which suggests that model-

ng interaction between words explicitly is really helpful. Overall,

ur CBWE can effectively incorporate discourse information in ex-

licit discourse data, and thus benefits implicit discourse relation

ecognition. 
4 The reasons for using these word embeddings are: (1) They are both trained on 

assive data. (2) It will be convenient for other people to reproduce our experi- 

ents. (3) Using GloVe or word2vec word embeddings trained on the same corpus 

s CBWE achieves worse performance than the public embeddings. 
5 http://nlp.stanford.edu/data/glove.840B.300d.zip . 
6 https://code.google.com/archive/p/word2vec/GoogleNews-vectors-negative300. 

in.gz . 

m  

m  

t  

m  

p  
In the first line of Table 4 , there is a drop from 50.00% to 44.90%

n Precision of Temp ( +CBWE avg vs. +CBWE int ). The possible reason

s that the number of test instances ( Temp ) is very small, only 55 in

he test set (as listed in Table 1 ). In this case, the Precision and Re-

all scores on Temp (class-wise) are relatively sensitive. Note that,

he same phenomenon can also be found in [19] , where the Pre-

ision on Temp drops from 60.00% to 42.42% when more auxiliary

asks are used. 7 It is worthy to note that, for the other three re-

ations, the performance is more stable. In addition, the test set is

ery uneven, for example, the Expa instances account for 53.2% of

otal instances. Therefore, like most previous work, both the Accu-

acy and Macro - F 1 on the whole test set are used to evaluate our

ethod. 

.3. Comparison with recent methods 

In this section, we compare our method with recent methods

hich also use explicit discourse data to boost the performance: 

• [32] : a data selection method which directly enlarges the train-

ing data with the chosen explicit discourse data. 

• [7] : a count-based method to learn connective-based word rep-

resentations from explicit discourse data, which are then used

as features in a logistic regression model. 

• [19] : a multi-task neural network model to incorporate several

discourse-related data, including explicit discourse data and the

RST-DT corpus [37] . 

• [38] : a bilingually-constrained method to synthesize additional

training data and a multi-task neural network to incorporate

these synthetic data. 

• [12] : an attention-based mechanism to learn representations

through interaction between arguments, and a multi-task neu-

ral network to leverage knowledge from explicit discourse data.

• [9] : a paragraph-level neural network to model inter-

dependencies between discourse units, and a CRF layer to

predict a sequence of explicit and implicit relations in a para-

graph. Both the labeled implicit and explicit instances in the

PDTB are used. 

Results in Table 5 show the superiority of our proposed method,

ith the highest Accuracy and a comparable Macro - F 1 among these

ethods. The main reason for these improvements is that our

ethod can effectively utilize massive explicit discourse data, up

o about 4.88M instances. Both the data selection method [32] and

ulti-task methods [12,19,38] directly use explicit data to estimate

arameters of implicit discourse relation classifiers. As a result, it
7 Please refer to Table 7 in [19] for more details. 

http://nlp.stanford.edu/data/glove.840B.300d.zip
https://code.google.com/archive/p/word2vec/GoogleNews-vectors-negative300.bin.gz
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Table 5 

Comparison with recent methods. 

Method Accuracy Macro - F 1 

[32] 57.10 40.50 

[7] 52.81 42.27 

[19] 57.27 44.98 

[38] 58.06 45.19 

[12] 57.39 47.80 

[9] 57.44 48.82 

IDRR+CBWE avg 57.86 47.48 

IDRR+CBWE int 58.36 48.39 

Table 6 

The transfer of CBWE. CBWE IDRR means learning the CBWE with the IDRR model. ∗

means that we run their code and report results. + CBWE ∗ means using the learned 

CBWE ∗ instead of general word embeddings. 

Method Accuracy Macro - F 1 

IDRR+CBWE int 58.36 48.39 

IDRR+CBWE IDRR 57.17 46.63 

IDRR+CBWE IDRR +Feature layer transfer 58.46 48.00 

[9] 57.44 48.82 

[3] ∗ 60.14 50.69 

[9] + CBWE int 58.85 49.21 

[3] + CBWE int 60.93 51.32 
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8 https://github.com/ZeyuDai/paragraph-level _ implicit _ discourse _ relation _ 

classification . 
9 https://github.com/hxbai/Deep _ Enhanced _ Repr _ for _ IDRR . 
is hard for them to incorporate massive explicit data because of

the noise problem. For example, only 20,0 0 0 and 40,0 0 0 explicit

discourse instances are used in [32] and [19] , respectively. While

Braud and Denis [7] uses massive explicit discourse data, it is lim-

ited by the fact that the maximum dimension of word represen-

tations is restricted by the number of connectives, for example 96

in their work. By comparison, we learn CBWE by predicting con-

nectives conditioning on arguments, which has no such dimen-

sion limitation and yields better performance. Overall, our method

can conveniently and effectively leverage massive explicit discourse

data, and thus is more powerful than recent baselines. 

Dai and Huang [9] performs slightly better on Macro - F 1 . In ad-

dition to using explicit discourse data, it also boosts the perfor-

mance by using both argument-level and paragraph-level context

to encode argument, casting the relation recognition task as a se-

quence labeling task, and augmenting input word representations

with Part-of-Speech tags and named entity tags. In comparison,

our IDRR model is relatively weak. More importantly, as the next

section shows, our learned CBWE can be easily used to boost the

performance of Dai and Huang [9] . 

4.4. Transfer of CBWE 

From the perspective of transfer learning [23] , our method only

transfers word embeddings between two related tasks. Let us re-

call that the task of connective classification (for learning CBWE ) is

similar to implicit discourse relation recognition, just with differ-

ent output labels. If two similar models (just with different MLP

layers) are separately used for the two tasks, we can transfer not

only word embeddings but also parameters of feature layers. We

conduct some experiments to explore this problem. Specifically, we

construct two models by using different MLP layers in the IDRR

model ( Section 3 ). One model for learning CBWE , the other for re-

lation recognition. The learned CBWE is referred as CBWE IDRR . In

the upper part of Table 6 , IDRR+CBWE IDRR means transferring only

the CBWE IDRR for relation recognition, IDRR+CBWE IDRR +Feature layer

transfer means transferring both the CBWE IDRR and parameters in

feature layers (the interaction and aggregate layers). From these

results, we can find that: (1) IDRR+CBWE IDRR gets a significantly

lower performance than our IDRR+CBWE int (Line 2 vs. Line 1), and

(2) IDRR+CBWE +Feature layer transfer achieves comparable per-
IDRR 
ormance with ours (Line 3 vs. Line 1). These results indicate that

he learned CBWE IDRR is not as good as our CBWE int and some use-

ul information is encoded into the parameters of feature layers. In

ddition, it is hard to transfer parameters of feature layers to other

eural network models. Therefore, the simple interaction model is

ore suitable for learning CBWE than relatively complicated mod-

ls, in terms of efficiency and effectiveness. In this case, as much

s possible information is encoded into CBWE , which can also be

asily transferred to other implicit discourse relation recognition

odels. 

In the bottom part of Table 6 , using our learned CBWE int in-

tead of the pre-trained word2vec embeddings, both Dai and Huang

9] + CBWE int and Bai and Zhao [3] + CBWE int achieve better perfor-

ance (Line 6 vs. Line 4 and Line 7 vs. Line 5). In addition, Bai and

hao [3] + CBWE int obtains the state-of-the-art performance, to the

est of our knowledge. Note that [9] is a strong baseline by mod-

ling both the argument-level and paragraph-level context, 8 and

ai and Zhao [3] achieves the SOTA performance via a deeper neu-

al model augmented by different grained text representations. 9 

e use the source codes provided by the authors. These results

ndicate that our CBWE can be easily combined with other ad-

ance techniques to boost the performance further, for exam-

le, the powerful contextualized word embedding ELMo [26] used

n [3] . Overall, we recommend to use CBWE instead of general

ord2vec or GloVe word embeddings for implicit discourse relation

ecognition. 

.5. Effect of noise 

The main advantage of our method is that it can leverage mas-

ive explicit discourse data, while previous methods are usually

roubled by noise. In this section, we conduct experiments to show

o what extent the noise in explicit data affects these methods.

pecifically, we compare our method with the following two meth-

ds: 

• IDRR+word2vec+Direct : directly extending the training data with

explicit discourse data. We first map connectives to correspond-

ing discourse relations. In order to alleviate the noise problem,

we discard explicit instances with ambiguous connectives (eg.

while ), and randomly sample a subset of explicit data, with the

same distribution of implicit data. 

• IDRR+word2vec+MT : leveraging explicit discourse data in a

multi-task framework. Following Liu et al. [19] , a connective

classification task is defined on explicit discourse data, and

used as the auxiliary task to boost the relation recognition task.

The two tasks share the same input and feature layers, and use

separate MLP layers for classification. A relatively small learn-

ing rate is used for connective classification when training the

two task simultaneously, to conflict with noise. 

As illustrated in Fig. 3 , we conduct experiments with 10, 100,

0 0, 10 0 0 and 4880 thousands explicit instances, respectively.

ote that 10 thousands instances are about the same amount of

abeled implicit data, 100 thousands instances are usually used in

revious multi-task methods, and the others can be considered as

assive data. We can find that: (1) Directly using explicit data as

dditional training data is harmful, with significant drops in both

ccuracy and Macro - F 1 . The more explicit instances are used, the

ore the performance is affected by noise. The observation is con-

istent with the finding in [33] . (2) The multi-task method achieves

mprovements when 10 or 100 thousands explicit instances are

sed, but degrades the performance when more explicit instances

https://github.com/ZeyuDai/paragraph-level_implicit_discourse_relation_classification
https://github.com/hxbai/Deep_Enhanced_Repr_for_IDRR
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Fig. 3. The effect of noise. Direct means using explicit discourse data directly. MT means incorporating explicit discourse data in multi-task learning. CBWE int means using 

our learned word embeddings instead of word2vec . 

Table 7 

Top 15 closest words of not and good in both word2vec and CBWE . 

not good 

word2vec CBWE avg CBWE int word2vec CBWE avg CBWE int 

do no n’t great great happy 

did n’t no bad lot interesting 

anymore never neither terrific very positive 

necessarily nothing nothing decent better pleased 

anything neither never nice success great 

anyway none none excellent well helpful 

does difficult nowhere fantastic happy definitely 

never nor unaware better certainly glad 

want refused unable solid respect deserve 

neither impossible nobody lousy fine deserves 

if limited unknown wonderful import better 

know declined refused terrible positive fine 

anybody nobody seldom Good help lot 

yet little hardly tough useful reasonable 

either denied impossible best welcome ok 
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n  
re used. In some extent, the multi-task method also uses explicit

nstances directly, because it updates parameters of the IDRR

odel according to the loss on explicit data. (3) Our proposed

ethod gets better performance when massive explicit data are

sed, and is almost not affected by noise. The reason behind is that

ur method uses these additional data indirectly, learning CBWE

rst and then using it as the input for implicit discourse relation

ecognition. These results show that, when large amounts of dis-

ourse data are used, our methods can effectively control the noise

roblems. 

.6. Quality of CBWE 

To give an intuition of what information is encoded into the

earned CBWE , we list in Table 7 the top 15 closest words of not

nd good , according to the cosine similarity. We can find that, in

BWE , words similar to not to some extent have negative mean-

ngs. And since refused, declined are similar to not , a classifier

ay easily identify implicit instance [A network spokesman would

ot comment. ABC Sports officials declined to be interviewed.] as the

xpansion.Conjunction relation. For good in CBWE , the similar words

o longer include words like bad and terrific . Furthermore, the sim-

lar score between good and great in CBWE is 0.48 while the
int 
core between good and bad is just 0.30, which may make a classi-

er easier to distinguish word pairs (good, great) from (good, bad) ,

nd thus is helpful for predicting the Expansion.Conjunction rela-

ion. This qualitative analysis demonstrates the ability of our CBWE

o capture discourse relationships between words. 

.7. Case study 

Two examples shown in Figs. 4 and 5 give us some evidence

hat the learned CBWE is superior than the word2vec word embed-

ings when used for implicit discourse relation recognition. These

gures show the attention scores ( e ij in Eq. (6) ) calculated by the

DRR model. Word pairs assigned with high attention scores are

ighlighted, the higher the score and the darker the color. From

hese figures, we can take a deep look into which word pairs are

mportant when making prediction. Specifically, we show the inter-

ction matrices of the IDRR+word2vec model and the IDRR+CBWE int 

odel on two test instances, to demonstrate how they behave

ifferently. 

We can find that: (1) For the Expansion instance in Fig. 4 ,

he IDRR+CBWE int model succeeds in detecting cross-argument

ord pairs that indicate the corresponding relations, e.g., injuries-

ollapsed . While the IDRR+word2vec model focuses on word pairs

ike injuries-lines . (2) For the Comparison instance in Fig. 5 , the

DRR+word2vec model gives the wrong prediction Expansion . The

eason is that it focuses more attention on word pairs like options-

tock . On the other hand, the IDRR+CBWE int model makes the cor-

ect prediction by giving more attention on word pairs stopped-

emained, stopped-open . (3) After examining all test instances,

e notice that IDRR+CBWE int usually focuses on less words than

DRR+word2vec , and general words like and, were, in are given lit-

le attention. All these suggest that, the CBWE int can catch differ-

nt information from those in the word2vec . It catches word pair

nformation (from explicit discourse data) that is relevant to the

iscourse relation recognition task. With the help of our leaned

BWE int , the IDRR model can really focus on relation-relevant word

airs, and thus boost the recognition performance. 

.8. Number of connectives 

We conduct experiments to investigate the impact of con-

ectives used in training CBWE on the performance of IDRR .
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Fig. 4. An Expansion instance in the test set. 

Fig. 5. A Comparison instance in the test set. 

Fig. 6. Impact of connectives used in training CBWE int . 
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Specifically, we use explicit discourse instances with top 10, 20,

30, 60 most frequent or all connectives to learn CBWE int , account-

ing for 78.9%, 91.9%, 95.8%, 99.4% or 100% of total instances, re-

spectively. The top 10 most frequent connectives are: and, but, also,

while, as, when, after, if, however and because . According to connec-

tives and their related relations in the PDTB, in most cases, and and

also indicate the Expansion relation, if and because the Contingency

relation, after the Temporal relation, but and however the Compari-
on relation. Connectives as, when and while are ambiguous. Over-

ll, these connectives have covered all four top-level relations de-

ned in the PDTB. As illustrated in Fig. 6 , with only the top 10

onnectives, the learned CBWE int achieves better performance than

he word2vec word embeddings (red dotted lines). We observe sig-

ificant improvements when using top 20 connectives, almost the

est performance with top 30 connectives, and no further substan-

ial improvements with more connectives. These results indicate
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Table 8 

Statistics of data sets on the CDTB. 

Relation Training Validation Test 

Tran 33 1 5 

Caus 682 88 95 

Expl 1143 147 126 

Coor 2300 529 347 

Table 9 

Results on the CDTB. ∗ means that we run their codes on the CDTB. + CBWE ∗ means 

using the learned CBWE ∗ instead of general word embeddings. 

Method Accuracy Macro - F 1 

IDRR + GloVe 70.30 58.04 

IDRR + word2vec 69.44 57.12 

IDRR+CBWE avg 73.42 63.16 

IDRR+CBWE int 73.59 64.56 

[38] 74.30 62.57 

[9] ∗ 73.77 64.24 

[3] ∗ 74.82 65.95 

[9] + CBWE int 74.12 64.75 

[3] + CBWE int 75.70 66.27 
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hat we can use only top n most frequent connectives to collect ex-

licit discourse data for CBWE , which is very convenient for most

anguages. 

.9. Results on the CDTB 

Four top-level relations are defined in the CDTB (an Chinese

iscourse corpus), including Transition ( Tran ), Causality ( Caus ), Ex-

lanation ( Expl ) and Coordination ( Coor ). We use instances in the

rst 50 documents as the test set, second 50 documents as the

alidation set and remaining 400 documents as the training set.

able 8 lists the statistics of these data sets. We conduct a 3-way

lassification because of only 39 instances for Tran . About 6.5M ex-

licit discourse instances collected from the Chinese Gigaword Cor-

us (3rd edition), with 88 connectives, are used for CBWE . Note

hat connectives occurring less than 10,0 0 0 times are discarded.

e find that hyper-parameters selected on the PDTB (see Table 3 )

lso work well on the CDTB, except that the learning rate is set

o 0.08 and batch size to 16 for training IDRR . For the mode in [3] ,

e use the pre-trained Chinese ELMo embeddings 10 and ignore the

ub-word information in the input layer. 

Results in Table 9 show that the performance of our method on

he CDTB has the similar trend as that on the PDTB. Specifically,

DRR+CBWE achieves significant improvements over IDRR+GloVe or

DRR+word2vec (the upper part of Table 9 ), and using CBWE int for

trong baselines achieves substantial improvements (the bottom

art of Table 9 ). Bai and Zhao [3] + CBWE int obtains the state-of-the-

rt performance on the CDTB, to the best of our knowledge. These

esults indicate that our proposed method is also effective on the

hinese implicit discourse relation recognition, and the learned

BWE can be easily combined with other techniques to boost the

erformance further. 

. Related work 

Implicit discourse relation recognition attracts more attention

ince the release of PDTB [29] , the first large discourse corpus dis-

inguishing implicit instances from explicit ones. Most previous re-

earch focuses on designing surface features manually, including

exical and polarity features [27] , word pairs and parse informa-

ion [16] , entity features [20] , word cluster pairs [31] , and so on.
10 https://github.com/HIT-SCIR/ELMoForManyLangs . 

 

s  

l  
ecently, researchers resort to neural networks to learn distributed

eatures automatically, for example, a shallow convolutional net-

ork [42] , entity-augmented recursive networks [11] , a convolu-

ional neural network with dynamic pooling [19] , gated relevance

etworks [8] , repeated reading neural networks with multi-level

ttention [18] , a simple word interaction model [14] , and a deeper

nhanced model with different grained text representations [3] .

owever, due to the limited training data, methods based on sur-

ace features (high dimensions) or distributed features (compli-

ated models with many parameters) usually face the data sparsity

roblem. 

Therefore, the second line of research tries to take advantage

f unlabeled data, especially explicit discourse data (weakly la-

eled by connectives), to enrich the training data. For the first

ime, Marcu and Echihabi [21] propose to use explicit discourse

nstances as additional training data by removing connectives and

apping them to corresponding relations. However, Sporleder and

ascarides [33] suggest that using these artificial implicit data

ndiscriminately degrades the performance, because of the domain

roblem and meaning shift problem. Subsequently, to effectively

se explicit data, some researchers use multi-task learning meth-

ds [12,13,19,38] . Specifically, they leverage auxiliary tasks (e.g.,

onnective classification on explicit data) to promote the perfor-

ance of main task (implicit discourse relation recognition), by

haring common information between them. Some researchers

se data selection methods [32,36,40,41] . They select explicit

nstances (similar to implicit ones) according to some criteria,

nd use them to enlarge the training corpus directly. Both the

ulti-task learning and date selection methods show promising

esults. However, they use explicit data to train classifiers directly,

hich makes them hard to incorporate massive explicit data

ecause of the noise problem. Different from the above work, we

earn connective-based word embeddings from explicit data, and

se them as inputting features. Our method leverages massive

xplicit data indirectly, and thus can reduce the influence of

oise. 

Some aspects of this work are similar to [4,7] . Based on mas-

ive explicit instances, they first build a word-connective (or word

air-connective) co-occurrence frequency matrix, and then weight

hese raw frequencies as word (word pair) representations. In this

ay, they represent words (word pairs) in the space of connectives

o directly encode their discourse function. The major limitation of

heir approach is that the dimension of word representations must

e less than or equal to the number of connectives. By compar-

son, we learn word embeddings by predicting connectives condi-

ioning on arguments, which has no such dimension limitation. Es-

entially, they use count-based methods to learn word representa-

ions, while we adopt a prediction-based method and achieve bet-

er performance. 

. Conclusion 

In this paper, we propose to learn connective-based word em-

eddings from massive explicit data for implicit discourse relation

ecognition. Experiments on both the PDTB and CDTB data sets

how that using our learned word embeddings as features can sig-

ificantly boost the performance. We also show that our method

an use massive explicit data more effectively than previous work.

ince most of neural network models for implicit discourse relation

ecognition and discourse-related tasks use pre-trained word em-

eddings as inputs, we hope our learned word embeddings would

enefit them. 

In the future, we would like to explore how to learn task-

pecific sentence representations based on abundance of weakly-

abeled explicit discourse data. We are also interested in verifying

https://github.com/HIT-SCIR/ELMoForManyLangs
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the effectiveness of our resulting word embeddings on tasks like

sentiment classification, since they seem useful even beyond dis-

course related tasks. 
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