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a b s t r a c t

Compressed sensing based Magnetic Resonance imaging (MRI) via sparse representation (or transform)
has recently attracted broad interest. The tight frame (TF)-based sparse representation is a promising
approach in compressed sensing MRI. However, the conventional TF-based sparse representation is
difficult to utilize the sparsity of the whole image. Since the whole image usually has different structure
textures and a kind of tight frame can only represent a particular kind of ground object, how to
reconstruct high-quality of magnetic resonance (MR) image is a challenge. In this work, we propose
a new sparse representation framework, which fuses the double tight frame (DTF) into the mixed-
norm regularization for MR image reconstruction from undersampled k-space data. In this framework,
MR image is decomposed into smooth and nonsmooth regions. For the smooth regions, the wavelet
TF-based weighted L1-norm regularization is developed to reconstruct piecewise-smooth information
of image. For nonsmooth regions, we introduce the curvelet TF-based robust L1,a-norm regularization
with the parameter to preserve the edge structural details and texture. To estimate the reasonable
parameter, an adaptive parameter selection scheme is designed in robust L1,a-norm regularization.
Experimental results demonstrate that the proposed method can achieve the best image reconstruction
results when compared with other existing methods in terms of quantitative metrics and visual effect.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Magnetic resonance imaging (MRI) has been widely used in
clinical diagnosis, since it enables superior visualization of
anatomical structure with noninvasive and nonionizing radiation
nature [1]. However, the speed of scanning samples in MRI is fun-
damentally limited by physical and physiological constraints [2].
The recent theory of Compressed Sensing (CS) has been widely
utilized to reconstruct Magnetic Resonance (MR) image from a
few of undersampled k-space data, if the image is sparse under a
given sparse transform [3,4].

Mathematically, The k-space data acquisition model for MR
image reconstruction can be modeled as follows:

y = Φx + e (1)

where y ∈ CM denotes the undersampled k-space data, Φ ∈

CM×N (M < N) is an undersampled Fourier encoding matrix,
x ∈ CN is the desired image and e ∈ CM is the noise.
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It is well known that the above problem (1) is an ill-posed
inverse problem due to under-sampling. To make it well-posed,
regularization techniques based on prior information are often
explored, such as sparsity [2,5]. The sparsity-based image prior
assumes that the image is sparse (or compressible) in sparse
transform domain. Thus, the reconstruction process can be mod-
eled by minimizing the regularization function that promotes the
sparse solution. It is confirmed that a sparser representation usu-
ally leads to lower reconstruction error [6]. To this end, various
sparse transforms have been designed, ranging from wavelets,
framelets to adaptive transforms [7]. Recently, Tight Frame (TF) is
exploited for sparse representation (SR) that leads to an efficient
reconstruction result [8], including wavelets [7], shift-invariant
wavelets [9], curvelet [10] etc.

In general, each kind of TF-based sparse transform only repre-
sents a particular kind of ground object or texture in the sparsity
of the whole image, which is inflexible in practical application.
For example, the wavelet transform has been well known for
sparse representation in image processing community, such as
image compression [11], image denoising [12], and image re-
construction [13]. However, the wavelet is usually suitable for
dealing with the smooth regions, and are not suitable for discon-
tinuity along a general curve with bounded curvature. MR images
often contain curves and edges, wavelet transform may fail in
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reconstruction some of edge structural details and texture infor-
mation [10]. In [10,14], curvelet transform is developed to offer
a more optimal performance than wavelets when representing
edges of ground objects. Although the data-driven tight frame is
proposed and achieving better performance, it is complicated to
implement and the high computational overhead [15,16].

Obviously, the existing approaches have limitation in practical
application, since the structure of the whole image at different
regions are diversification. To enhance the sparse representa-
tion, in this paper, a Double Tight Frame (DTF) is developed to
construct the sparse representation framework, which is more
likely to give a high quality of the reconstructed MR image. In
reconstruction processing, MR image is decomposed into two
meaningful regions, namely the smooth and the nonsmooth re-
gions. The specific method is to make the sparse representation of
wavelet TF in the smooth regions and the sparse representation
of curvelet TF in nonsmooth regions, separately.

Once the sparsity is improved by the DTF, another impor-
tant issue is how to regularize the sparsity in sparse transform
domain. The L0-norm is the most ideal regularization term. How-
ever, the L0-norm minimization is non-convex and NP-hard prob-
lem. Although greedy algorithm aims at solving L0-norm mini-
mization, it often leads to a sub-optimal solution [17]. To tackle
this problem, one of the commonly used regularization methods
is Tikhonov regularization based on L2-norm minimization [18].
A common criticism of such regularization method is known to
over-smooth edges in the reconstructed result and sensitive to
outliers such that it can introduce residual artifacts into recon-
structed results [19,20]. In [21], authors used a smoothed L1-norm
regularization to overcome over-smooth edges in a certain sense.
Another technique is to use the L1-norm as a convex relax-
ation of the L0-norm [22]. However, the L1-norm regularization
model ignores the structure information of the image [23]. It
points out in [24] that the result of the L1-norm minimization
is not sparse enough and reconstructed result generally deviates
from the solution we desired. In [25], a non-convex Lp-norm
regularization is employed to reconstruct the MR image, which
approximates the L0-norm better than the L1-norm. However, the
Lp-norm (0 < p < 1) minimization problem is more difficult to
solve than the L1-norm minimization problem, since it is non-
convex and non-smooth. In addition, Zheng et al. [26] pointed
out that p = 1 outperforms the p(0 < p < 1) value, when
the measurement noise is very large or very small. To avoid the
difficulty in solving non-convex problem, some weighted L1-norm
(wL1) regularization are introduced to improve the reconstruction
performance [27,28].

More recently, some mixed-norm regularization models have
been proposed to overcome above defects [29–31]. In addition,
other various techniques have been proposed to improve the
reconstruction quality, such as smoothed L0-norm regulariza-
tion [32], StructAE [33], low rank matrix approximation [34], L2,1-
L1 norm regularization [35] and TV-L1 norm regularization [36].
Compared with all of the above methods, the mixed-norm reg-
ularization method often leads to more accurate reconstruction
though at the cost of higher computational complexity. Therefore,
a new mixed-norm regularization will be exploited in this paper.

1.1. Contribution

Based upon the above works, we propose a new method for
MR image reconstruction, using the DTF-based sparse representa-
tion framework with mixed-norm regularization. The DTF-based
sparse representation offers a powerful mechanism of combining
wavelet sparsity with curvelet sparsity simultaneously. Unlike the
previous sparse representation on the whole image, we assume
that the image consists of smooth and nonsmooth regions. The

wavelet TF and the curvelet TF are applied to the smooth and
nonsmooth regions, separately. To improve the reconstruction
quality, the mixed-norm regularization model is proposed. For
the smooth regions, the weighted L1-norm with the wavelet TF
is employed to reconstruct the piecewise-smooth information of
the image. The robust L1,a-norm with curvelet TF is used to pre-
serve the edge structural details in the nonsmooth regions. The
alternating iterative algorithm is then utilized to solve the pro-
posed optimization problem. Furthermore, an adaptive strategy is
introduced to obtain the reasonable parameter in each iteration.
Extensive experiments on the MR data demonstrate that the pro-
posed approach attains a significant performance improvement
over the existing methods in terms of both quantitative metrics
and visual quality.

The rest of the paper is organized as follows: In Section 2, we
introduce some basics of CS-based MRI (CS-MRI) and the DTF-
based sparse representation that will be used in later sections.
In Section 3, the mixed-norm regularization model and its as-
sociated algorithm are proposed for MR image reconstruction.
Experiment results are shown in Section 4. The conclusion is
conducted at the end of the section.

2. Preliminaries

2.1. Conventional CS-MRI

Let x be a
√
N ×

√
N MR image in a vector form and it can be

represented sparsely in the sparse transform Ψ ∈ CL×N . Under
this transform, the sparse coefficient θ ∈ CL can be expressed as
θ = Ψx. A typical CS-MRI problem is to reconstruct an unknown
original MR image x from the undersampled k-space data y ∈ CM

that is modeled as

min
x

1
2
∥y − Φx∥2

2 + λg(Ψx), (2)

where λ > 0 is the regularization parameter and g(Ψx) is a
regularization term.

As analysis above, one of the key problems for CS-MRI is the
choice of sparsity regularization g(Ψx), which can make the un-
derlying image has a perfectly sparse approximation. To improve
the reconstruction quality, many works are dedicated to exploit-
ing the sparsity regularization by the sparse prior. Particularly,
the TF-based sparse prior is proposed to enhance the performance
of image reconstruction.

2.2. Sparse representation with double tight frame

The TF is a kind of sparse transform,1 and can be employed
for the sparse representation of an image. It is confirmed that the
design of TF can provide a better sparse approximation to recon-
struct MR image [8]. However, conventional TF is to exploit the
sparsity of the whole image, so it is not possible to have it both
ways, smooth regions and nonsmooth regions. To reconstruct
more edge structural details (nonsmooth regions) and offer the
piecewise-smooth information (smooth regions) simultaneously,
we assume that the reconstructed image x consists of two parts:
the smooth regions xs and the nonsmooth regions xn.

For the smooth regions, the weighted L1-norm regularization
with the wavelet TF-based transform Ψs is employed to char-
acterize the piecewise-smooth information. By the TF property,
ΨH

s Ψs = I , the sparse coefficient θs can expressed as θs = Ψsxs,
the weighted L1-norm regularization model can be rewritten
as [38]

g s(θs) =

L∑
i=1

w(i)|θs(i)|, (3)

1 Tight frame ΨHΨ = I , but ΨΨH
̸= I [37].
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where θs(i) is ith element of θs, the weight w(i) =
1

|θs(i)|+ϵ
and ϵ >

0 is a small constant, whose role is to prevent the denominator
from reaching zero.

For the nonsmooth regions, we find that the nonsmooth re-
gions of the image often contain edges structural details and
textures. Using the weighted L1-norm model to reconstruct non-
smooth regions will result in over smooth in outline information
of the image. To seek the solution, a robust L1,a-norm is exploited
to preserve the edges structural details and textures. The idea is
inspired by the adaptive Lp-norm regularization for different val-
ues p. It has been proven that edge regions prefer a lower value p
to preserve the detailed information, and smooth regions require
a larger value p to avoid artifacts such as staircase effects [39].
Since the Lp-norm model is non-convex, it is difficult to solve it
and the value p is difficult to adjust. Taking this into account, we
use the curvelet TF-based robust L1,a-norm regularization with
the parameter a to replace with the adaptive Lp-norm, which can
be given as follows

gn(θn) =
1
a

L∑
i=1

log
(
cosh(aθn(i))

)
, (4)

where θn = Ψnxn is the sparse coefficient of xn under the curvelet
TF-based transform Ψn, θn(i) is ith element of θn and a > 0 is a
parameter.

The function gn(θn) is convex and twice continuously differen-
tiable so that the optimum value can be obtained by the convex
optimization algorithm. The corresponding function gn(θn) and its
derivative are shown in Fig. 1. As shown in Fig. 1, for a relatively
larger parameter a, the gn(θn) may close to Lp(p = 1)-norm
minimization, whereas a smaller parameter a, gn(θn) may close
to Lp(p = 2)-norm minimization. Therefore, the robust L1,a-norm
regularization model has the advantage of the adaptive Lp-norm
regularization by adjusting the parameter a. However, how to
choose the parameter is a challenge. To overcome this problem,
an adaptive strategy will be introduced to obtain the value of
parameter in each iteration.

3. The proposed MRI reconstruction framework

In this section, we introduce the proposed sparse represen-
tation framework for MR image reconstruction in details. We
assume that the image is decomposed into smooth regions and
non-smooth regions. The decomposition is automatically realized
that we use weighted L1-norm to reconstruct the smooth regions
from the undersampled k-space data. And the residuals are the
non-smooth regions that are reconstructed by the robust L1,a-
norm regularization model. An alternating iteration method is
employed to solve the corresponding optimization problem. Fur-
thermore, the parameter a is updated with a closed form in each
iteration.

As shown in Fig. 2, we assume x = xs + xn, where xs and
xn denote the smooth and nonsmooth regions, separately. Here,
the smooth regions are the piecewise-smooth of image without
textures and structural details. The residuals are the nonsmooth
regions, which mainly consists of edge structural details and
textures. Thus, the reconstructed framework of CS-MRI can be
formulated as follows

min
x,θs,θn

1
2
∥y − Φx∥2

2 + λsg s(θs) + λngn(θn), (5)

where λs, λn > 0 are the regularization parameters, the xs is
expressed as xs = ΨH

s θs with respect to Ψs and xn = ΨH
n θn with

respect to Ψn.

Let y =

[
ys
yn

]
, x =

[
ΨH

s θs
ΨH

n θn

]
, the above optimization problem

(5) can be rewritten as:

min
θs,θn

1
2

∥ ys−ΦΨH
s θs ∥

2
2 +λsg s(θs)

+
1
2
∥yn + ΦΨH

n θn∥
2
2 + λngn(θn),

(6)

The optimization problem (6) can be solved by following al-
ternative optimizations between θs and θn, iteratively.

1. smooth regions: The θs is obtained from the subproblem
for the fixed θn

min
θs

1
2
∥ys − ΦΨH

s θs∥
2
2 + λs

L∑
i=1

w(i)|θs(i)|, (7)

where ys = y − ΦΨH
n θn.

Let As = ΦΨH
s , its solution can be given by iterative shrinkage-

thresholding algorithm [40]

θ(k+1)
s = T λsw

(
θ(k)
s − ηsAH

s (Asθ
(k)
s − y(k)

s )
)
, (8)

where ηs is step-size and the T λsw(θs) is defined as

T λsw(θs)i ≜ sign(θs(i))max
{
|θs(i)| − λsw(i), 0

}
and i = 1, 2, 3, . . . , L.

2. nonsmooth regions: Given the fixed θs, update the θn via
solving the minimization

min
θn

1
2
∥yn − ΦΨH

n θn∥
2
2 + λn

1
a

L∑
i=1

log
(
cosh(aθn(i))

)
, (9)

where yn = y − ΦΨH
s θs.

Let h(θn) = log(cosh(aθn)), then h(θn) can be approximated by
first-order Taylor expansion

h (θn) = h
(
θ(k)
n

)
+

⟨
∇h(θ(k)

n ), θn − θ(k)
n

⟩
, (10)

where θ(k)
n is the solution obtained at the kth iteration.

After ignoring constant terms in Eq. (10), the minimization
problem (9) can be solved by iteratively

min
θn

1
2
∥yn − ΦΨH

n θn∥
2
2 + λn

⟨
tanh(aθ(k)

n ), θn
⟩
, (11)

Using the Karush-Kuhn-Tucher (KKT ) condition, the derivative
of the minimization subproblem (11) can be solved as

θ(k+1)
n =

(
AH
n An

)−1 (
AH
n y

(k)
n + λn tanh(aθ(k)

n )
)
, (12)

where An = ΦΨH
n and (AH

n An)−1 can be calculated ahead, making
above computation more effective.

3.1. Choice of the parameter a

Note that the parameter a in (9) might not be the best choice
for MR image reconstruction problem. To make our method more
competitive, we propose an adaptive strategy to obtain the pa-
rameter value, which can successfully preserve the detailed in-
formation and avoid artifacts. For expression convenience, we
rewrite

∑L
i=1 log(cosh(aθn(i))) as log(cosh(aθn)). Accordingly, the

minimization problem (9) can be rewritten as

min
θn

1
2
∥yn − Anθn∥

2
2 + λn

1
a
log

(
cosh(aθn)

)
, (13)

Thus, we set the derivative of (13) with respect to θ(k)
n equal

to zero. That is

a(k)θ(k)
n = arctanh

( 1
λn

AH
n (Anθ

(k)
n − y(k)

n )
)

(14)
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Fig. 1. Left: illustrations of the regularization function gn(θn(i)) =
1
a log(cosh(aθn(i))). Right: the derived function g ′

n(θn(i)) = tanh(aθn(i)) with different value a.

Fig. 2. Structure decomposition of MR image. (a) smooth regions; (b) nonsmooth regions.

Taking the L2-norm of both sides of (14) gives rise to

a(k)
θ(k)

n

2 =
arctanh( 1

λn
AH
n (Anθ

(k)
n − y(k)

n ))

2 (15)

Thus the estimated regularization parameter a(k) is given by

a(k) =

arctanh( 1
λn
AH
n (Anθ

(k)
n − y(k)

n ))
2θ(k)

n

2 + ϵ
(16)

where ϵ > 0 is a small constant, whose role is to prevent the
denominator from reaching zero. It is clear that the parameter
a(k) can be updated adaptively during the iterations.

The proposed algorithm is listed as follows.

Algorithm 1 The DTF-based sparse representation for CS-MRI
(DTF-MRI)
1: Initialization: Set y, wavelet tight frame Ψn, curvelet tight

frame Ψs, λn, λs, a(0); undersampled matrix Φ; θ(0)
n = ΨnΦ

Hy,
2: While: the stopping criterion is not met do
3: For smooth regions:
4: Estimate ys: y

(k)
s = y − Anθ

(k)
n ;

5: Update θ(k+1)
s by computing Eq. (8);

6: For nonsmooth regions:
7: Estimate yn: y

(k)
n = y − Asθ

(k+1)
s ;

8: Update θ(k+1)
n by computing Eq. (12);

9: Update the parameter a(k) by computing Eq. (16);
10: end while
11: x(k+1)

= ΨH
s θ(k+1)

s + ΨH
n θ(k+1)

n ;
12: Output x̂

4. Numerical experiments

To validate the effectiveness of the proposed method, we
conduct a set of MR data for reconstruction applications. The
first presents the implementation details and some quantitative
indices are provided to measure the quality of image reconstruc-
tion. We test the proposed method over MR images with differ-
ent features including the reconstruction errors, sampling pat-
terns/ratios and noise levels. The proposed method will be shown
to have better performance in comparison with some existing
methods, such as NNM-MRI [41], pFISTA [8] and FTVNNR [42].
The implementation of above methods are obtained from their
authors’ website. To be fair, the counterparts used in the com-
parisons are obtained with the best performances via careful ad-
justment of their parameters in the algorithms. The regularization
parameters λs and λn are set as 0.001 and 0.3. The experiments
are performed on MATLAB on PC with Intel Core i3 processor, 8G
RAM and Microsoft Windows 7 operation system.

For quantitative comparison of the reconstructed results, the
relative L2 norm error (RLNE) is used to depict the difference
between the reconstructed image and the original image. Gen-
erally speaking, the smaller the RLNE value, the better the image
reconstruction quality. It is defined as

RLNE ≜
∥x̂ − x∥2

∥x∥2
(17)

where x is the original image, while x̂ is the reconstructed image.
We also use the Structure Similarity Index Measure (SSIM),

which is good at measuring quality of the reconstructed image
in terms of image structure [43]. More formally, SSIM is given by

SSIM(a, b) ≜
(2µaµb + C1)(2σab + C2)

(µ2
a + µ2

b + C1)(σ 2
a + σ 2

b + C2)
, (18)
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Fig. 3. Gold standard images used in the experiment. (a)–(f) MRI1, MRI2, MRI3, MRI4, MRI5 and MRI6. (g)–(j) sampling pattern: radial, Circle, random and Cartesian
sampling.

Fig. 4. Reconstructed MR image (MRI5) under the noiseless case. (I) is the original image and (II) is the radial sampling pattern. (III)-(VI) are the reconstructed results
using NNM-MRI, pFISTA, FTVNNR and the proposed method, respectively.

Fig. 5. Reconstructed MR image (MRI4) under the noiseless case. (I) Above is the original image and below is the radial sampling pattern. (II)–(V) Above are the
reconstructed results using NNM-MRI, pFISTA, FTVNNR and the proposed method, respectively; below are the corresponding reconstruction errors.

where µa is the mean intensity of a; µb is the mean intensity of
b; σ 2

a is the variance of a; and σ 2
b is the variance of b. Constants

C1 and C2 are used to avoid instabilities when the denominator is
very close to zero. A large value of SSIM indicates that the two im-
ages are highly similar in the structure. It means that the details
of the original image are preserved. In addition, Signal-to-Noise
Ratio (SNR) is used for result evaluation:

SNR ≜ 10 log10

(
BVar

AMean

)
, (19)

where AMean is the mean square error between the original image
x and the reconstructed image x̂, BVar denotes the variance of the
original image x. The test images used in our experiments are
shown in Fig. 3.

4.0.1. Comparison on visual quality
In order to demonstrate the superiority of proposed method,

the reconstruction qualities are evaluated from visual inspec-
tion. Figs. 5–6 exhibit reconstructed results of the MR image
and corresponding reconstructed errors. For a visual comparison,
we magnify the same detail region of reconstructed results. As
shown in Figs. 4 and 7, the visible artifacts can be observed
on the reconstructed image by NNM-MRI. The quality of the
reconstructed images by using pFISTA, FTVNNR are better than
that of NNM-MRI, but they still loses some subtle information
that degrade clearness of edge contour structure. All of these
methods deal with the image as a whole, which is difficult to seek
a tradeoff between the preservation of edge structural details
in the nonsmooth regions and the avoidance of staircase effects
in the smooth regions. We utilize the DTF-based regularization
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Fig. 6. Reconstructed MR image (MRI6) under the noiseless case. (I) Above is the original image and below is the Cartesian sampling pattern. (II)–(V) Above are the
reconstructed results using NNM-MRI, pFISTA, FTVNNR and the proposed method, respectively; below are the corresponding reconstruction errors.

Fig. 7. Reconstructed MR image (MRI1) after the ablation surgery under the noiseless case. (a): (I) is the original image and (II) is the Cartesian sampling pattern.
(III)–(VI) are the reconstructed results using NNM-MRI, pFISTA, FTVNNR and the proposed method, respectively. (b): Left is the result of smooth regions, middle is
the result of nonsmooth regions and right is the final result.

terms to deal with the smooth and nonsmooth regions separately,
in which some of subtle edges texture are better preserved, and
the image sharpness is improved significantly.

To show the effects of the DTF-based regularization terms,
the smooth and nonsmooth regions obtained by our method are
shown in Fig. 7(b). The results show that the most of structure
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Fig. 8. Left: The RLNEs versus noise level σ 2 . Right: SNRs versus noise level σ 2 .

Fig. 9. Reconstructed T2 brain image under the noise case (σ 2
= 0.02). (I) Above is the original image; middle is the partial enlargement of the original image and

below is the Circle sampling pattern. (II)–(V) Above are the reconstructed images using NNM-MRI, pFISTA, FTVNNR and the proposed method, respectively; middle
are the corresponding partial enlargement of the reconstructed results and below are the corresponding reconstruction errors.

Fig. 10. Left: RLNEs versus the parameters λs (fixed λn = 0.3). Right: RLNEs versus the parameters λn (fixed λs = 10−3).

in image can be reconstructed by the weighted L1-norm regular-
ization method, but there are loss of edge structural details and
textures. Therefore the robust L1,a-norm regularization is helpful
to improve the reconstructed results. In Fig. 7, we further address
the MR image reconstruction after the ablation surgery, which
are associated with nucleus accumbens lesion. As can be seen in
Fig. 7, the peripheral edema after the operation can be discerned
by the proposed method, while the other methods are difficult to
obtain clear identification.

In order to further illustrate the superiority of the proposed
method, we show quantitative comparisons of the different meth-
ods. The RLNE, SSIM and SNR of the reconstructed MR images
with 18% sampling ratio are given in Table 1. MRI3, MRI4 and
MRI6 are test images used in Fig. 3. Clearly, the proposed method
achieves the lowest RLNE index and the highest SSIM and SNR.
This comparisons show the superior reconstruction ability of the
proposed method. It further confirms the effectiveness of the
proposed method, which is beneficial in clinical diagnosis.
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Fig. 11. RLNEs versus sampling patterns with the 15% sampling ratios. (a)–(d) Sampling patterns: Cartesian, Circle, random and radial sampling.

Table 1
Comparison of MR image reconstruction with different methods for test images
in Fig. 3.
Methods MRI3 MRI4 MRI6

RLNE SSIM SNR RLNE SSIM SNR RLNE SSIM SNR

NNM-MRI 0.264 0.9920 12.56 0.220 0.9799 12.12 0.222 0.9211 11.27
pFISTA 0.254 0.9901 12.82 0.205 0.9831 12.85 0.211 0.9306 11.72
FTVNNR 0.255 0.9902 12.92 0.195 0.9856 13.12 0.208 0.9354 12.25
Proposed 0.242 0.9961 14.64 0.183 0.9946 15.02 0.192 0.9433 14.58

4.0.2. Comparison on the noise case
For practical consideration, we conduct experiments on sam-

pled data polluted by different noise levels to evaluate the per-
formance of the proposed method. In the experiments, Gaussian
noise is added to the real and imaginary parts of sampled data.
The noise variance is set from 0.01 to 0.05 respectively. In Fig. 8,
the performance reduces when noise level increases, while the
proposed DTF-MRI still achieves best results than all competing
methods.

To reflect the qualitative nature of reconstruction in noise case,
the reconstructed results together with the corresponding errors
are shown in Fig. 9. It is easy to see that the results obtained with
other methods are both noisy and blurry. The result obtained with
our method is relatively clear. Compared with the reconstruction
errors, we can conclude that the proposed method is still superior
to that of the competing methods in the noise case.

4.0.3. Discussions of the regularization parameters
In this subsection, we discuss how to select the best regu-

larization parameters, λs, λn, for the performance of the pro-
posed DTF-MRI method. For these two parameters, FTVNNR set
λs = 0.01 and λn = 1 empirically. However, if λs and λn are
determined in an appropriate manner, this may yield a better
reconstruction effect. To investigate the sensitivity of our method
against λs, λn, two experiments are conducted with respect to
different λs, λn in Fig. 10.

The first experiment verifies that the reconstructed perfor-
mance is influenced by different values λs and the fixed pa-
rameter λn = 0.3. As shown in Fig. 10(left), it is found that
the performance of the proposed method is less affected, if the
parameter λs is smaller than 0.001. Therefore, in this work λs is

empirically set to be λs = 0.001. We also conduct the experi-
ments with the fixed parameter λs = 0.001 under variable λn in
Fig. 10(right). We can see that the RLNE varies slightly if λn is in
the range of 0.3 to 1. To this end, the regularization parameters
λs and λn are set as 0.001 and 0.3 for MRI reconstruction.

4.0.4. Reconstruction with different sampling patterns
In this subsection, the different sampling patterns are consid-

ered to demonstrate the performance of the proposed method.
The RLNE index of all methods under different sampling patterns
can be found in Fig. 11. As a result, we see that our method consis-
tently outperforms all other approaches for all sampling patterns
in terms of RLNE index, which implies that the advantages of the
proposed method are not change under the different sampling
patterns.

4.0.5. Convergence of the proposed algorithm
To demonstrate the effectiveness and applicability of our

method, the convergence of the proposed method is empirically
conducted in Fig. 12. All of test images are given in Fig. 3. Fig. 12
illustrates the convergent performance of the proposed DTF-
MRI in the noiseless and noise cases, respectively. It is observed
that with the increasing of iteration number, all of the RLNE
curves decrease gradually and ultimately become flat and stable.
It implies that the proposed method has a good astringency.

4.0.6. Reconstruction with sampling ratios
In this subsection, we evaluate the performance of the pro-

posed method using the different undersampling ratios. Fig. 13
depicts the RLNE/SNR curves as a function of sampling ratios for
the different methods. It is obvious that the proposed method
outperforms all competing methods under the different sampling
ratios on both RLNE and SNR index.

From the left of Fig. 13, it is seen that the reconstructed
quality obtained by the proposed method with 30% sampling,
while FTVNNR requires 44% sampling and the others need more
sampling. It is also observed that the RLNE index of proposed
method is gradually close to that of FTVNNR, with the sampling
ratios increasing. It implies that the proposed method is more
effective for MR image reconstruction in the low sampling ratios
case.
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Fig. 12. The convergence of the proposed algorithm. Progression of the RLNE results achieved by proposed method for test images with respect to the iteration
number, under the noiseless (left) and noise (right) case (noise variance σ 2

= 0.02).

Fig. 13. Left: The RLNEs versus sampling ratios. Right: SNRs versus sampling ratios.

5. Conclusion

This paper presented a new sparse representation framework
for the application of CS-MRI. The proposed method employed
two kinds of TF-based transform to establish a mixed-norm reg-
ularization model, which can exploit the advantage of the wavelet
TF-based transform and curvelet TF-based transform domain, si-
multaneously. The solution of the proposed method was given by
the alternating iterative algorithm. The key point is to combine
DTF-based sparse representation with a newmixed regularization
model together, which preserve the edge structural details in
nonsmooth regions and piecewise-smooth information of im-
age in smooth regions, separately. Various experimental results
demonstrate that the proposed DTF-MRI can achieve the superior
performance in detail clarity and noise suppression from the
objective and subjective visual evaluation.
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