
Zheng et al. Boundary Value Problems        (2019) 2019:185 
https://doi.org/10.1186/s13661-019-01296-1

R E S E A R C H Open Access

Existence of positive ground state solutions
of Schrödinger–Poisson system involving
negative nonlocal term and critical exponent
on bounded domain
Wenxuan Zheng1,2, Wenbin Gan2* and Shibo Liu2

*Correspondence:
ganwbxm@163.com
2School of Mathematical Sciences,
Xiamen University, Xiamen, China
Full list of author information is
available at the end of the article

Abstract
In this paper, we prove the existence of positive ground state solutions of the
Schrödinger–Poisson system involving a negative nonlocal term and critical exponent
on a bounded domain. The main tools are the mountain pass theorem and the
concentration compactness principle.
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1 Introduction
In this paper, we consider the following Schrödinger–Poisson system:

⎧
⎪⎪⎨

⎪⎪⎩

–�u – φu = λuq–1 + u5 in Ω ,

–�φ = u2 in Ω ,

u = φ = 0 on ∂Ω ,

(1.1)

where λ > 0 is a parameter, 2 < q < 6, and Ω is a smooth bounded domain in R
3.

System (1.1) is related to the stationary analogue of the nonlinear parabolic
Schrödinger–Poisson system

⎧
⎪⎪⎨

⎪⎪⎩

–i ∂ψ

∂t = –�ψ + φ(x)ψ – |ψ |p–2ψ in Ω ,

–�φ = |ψ |2 in Ω ,

ψ = φ = 0 on ∂Ω .

(1.2)

The first equation in (1.2) is called the Schrödinger–Poisson equation, which describes
quantum particles interacting with the electromagnetic field generated by a motion. Sim-
ilar problems have been widely investigated, and it is well known that they have a strong
physical meaning because they appear in quantum mechanics models (see e.g. [3]) and in
semiconductor theory [10, 12]. Variational methods and critical point theory are always
powerful tools in studying nonlinear differential equations. For more details as regards

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Xiamen University Institutional Repository

https://core.ac.uk/display/343508794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1186/s13661-019-01296-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-019-01296-1&domain=pdf
mailto:ganwbxm@163.com


Zheng et al. Boundary Value Problems        (2019) 2019:185 Page 2 of 10

the physical relevance of the Schrödinger–Poisson system, we refer to [1, 13] and some
related results [14, 16–18, 20].

The Schrödinger–Poisson system on whole space R
N has attracted a lot of atten-

tion. Few works concern the existence of solutions for the Schrödinger–Poisson sys-
tem on a bounded domain, particularly, critical nonlinearity except [2, 7, 8]. Up to now,
Schrödinger–Poisson system (1.1) has never been studied by variational methods. Lei and
Suo [8] studied the following Schrödinger–Poisson system:

⎧
⎪⎪⎨

⎪⎪⎩

–�u + κφu = κ|u|p–2u + |u|4u in Ω ,

–�φ = u2 in Ω ,

φ = u = 0 on ∂Ω ,

(1.3)

where Ω is a smooth bounded domain in R
3, κ > 0 is a real parameter, and 1 < p < 2.

There exists κ∗ > 0 such that there at least two positive solutions, and one of them is a
positive ground state solution for κ ∈ (0,κ∗). Zhang [19] considered the negative nonlocal
Schrödinger–Poisson system on a bounded domain and obtained thtat there are at least
two solutions involving a singularity term by using the Nehari method. Li and Tang [9]
obtained at least two positive solutions (u,φu) ∈ D1,2(R3) × D1,2(R3) involving a negative
nonlocal term in R

3.
Our paper is motivated by all the results mentioned [2, 7–9, 19]. Up to now, there was no

information about system (1.1) on a bounded domain Ω ; this is what we are interested in.
To deal with our system (1.1), we should estimate the critical value as regards the difficulty
caused by the critical exponent.

Now our main results can be stated as follows.

Theorem 1.1 Let 2 < q ≤ 4. Then there exists λ∗ > 0 such that system (1.1) has at least one
positive ground state solution for all λ > λ∗.

Theorem 1.2 Let 4 < q < 6. Then system (1.1) has at least one positive ground state solution
for all λ > 0.

2 Preliminaries
Let X be the usual Sobolev space H1

0 (Ω) with the inner product (u, v) =
∫

Ω
∇u∇v dx and

norm ‖u‖ =
√

(u, u); |u|s denotes the norm of the space Ls(Ω), 2 ≤ s ≤ 6. For any r > 0
and x ∈ Ω , Br(x) denotes the ball of radius r centered at x. C and Ci (i = 1, 2, 3, . . . ) denote
various positive constants, which may vary from line to line.

It is well known that system (1.1) can be reduced to a nonlinear Schrödinger equation
with nonlocal term. Indeed, the Lax–Milgram theorem implies that for all u ∈ X, there
exists a unique φu ∈ X such that

–�φu = u2.

It is standard to see that system (1.1) is variational and its solutions are the critical points
of the functional defined in X by

I(u) =
1
2
‖u‖2 –

1
4

∫

Ω

φuu2 dx –
λ

q

∫

Ω

|u|q dx –
1
6

∫

Ω

|u|6 dx.
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For simplicity, in many cases, we just say that u ∈ X, instead of (u,φu) ∈ X × X, is a weak
solution of system (1.1). It is easy to see that I ∈ C1(X,R) (see [8, 9]) and

〈
I ′(u),ϕ

〉
=

∫

Ω

∇u∇ϕ dx –
∫

Ω

φuuϕ dx – λ

∫

Ω

|u|q–2uϕ dx –
∫

Ω

u5ϕ dx, ∀u,ϕ ∈ X.

Let S be the best Sobolev constant, namely

S := inf
u∈H1

0 (Ω)\{0}

∫

Ω
|∇u|2 dx

(
∫

Ω
|u|6 dx) 1

3
. (2.1)

As it is well known, the function

U(x) =
(3ε2) 1

4

(ε2 + |x|2) 1
2

, x ∈R
3, (2.2)

is an extremal function for the minimum problem (2.1), that is, it is a positive solution of
the equation

–�u = u5, ∀x ∈ x ∈ R
3, (2.3)

and

‖U‖2 = |U|66 = S
3
2 ; (2.4)

see [11].
Before proving our Theorem 1.1, we need the following lemma.

Lemma 2.1 (see [6]) For every u ∈ H1
0 (Ω), there exists a unique solution φu ∈ H1

0 (Ω) of

⎧
⎨

⎩

–�φ = u2 in Ω ,

φ = 0 on ∂Ω ,

and
(1) φu ≥ 0;moreover, φu > 0 when u �= 0;
(2) for each t �= 0, φtu = t2φu;
(3)

∫

Ω
φuu2 dx =

∫

Ω
|∇φu|2 dx ≤ S–1|u|412

5
≤ C‖u‖4;

(4) if F(u) =
∫

Ω
φuu2 dx, then F : H1

0 (Ω) → H1
0 (Ω) is C1, and

〈
F ′(u), v

〉
= 4

∫

Ω

φuuv dx, ∀v ∈ H1
0 (Ω).

3 The Palais–Smale condition
First, we prove the following mountain-pass geometry of the functional I .

Lemma 3.1 Let 2 < q < 6 and λ > 0. Then the functional I satisfies the following
conditions:
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(i) There exist two constants α,ρ > 0 such that

I(u) ≥ α > 0 with ‖u‖ = ρ.

(ii) There exists e ∈ X with ‖e‖ > ρ such that I(e) < 0.

Proof (i). We have

I(u) =
1
2
‖u‖2 –

1
4

∫

Ω

φuu2 dx –
λ

q

∫

Ω

|u|q dx –
1
6

∫

Ω

|u|6 dx

≥ 1
2
‖u‖2 –

1
4

C‖u‖4 – C1‖u‖q –
1

6S3 ‖u‖6.

Therefore, since q > 2, there exist α,ρ > 0 such that I(u) ≥ α > 0 with ‖u‖ = ρ .
(ii). For u ∈ X \ {0}, we have

I(tu) ≤ 1
2

t2‖u‖2 –
1
6

t6
∫

Ω

|u|6 dx → –∞

as t → +∞. Then we can find e ∈ X such that ‖e‖ > ρ and I(e) < 0. This completes the
proof. �

Therefore by using the mountain pass theorem without (PS)c condition (see [15]) it fol-
lows that there exists a (PS)c sequence {un} ⊂ X such that

I(un) → c = inf
γ∈Γ

max
t∈[0,1]

I
(
γ (t)

)
and I ′(un) → 0,

where

Γ =
{
γ ∈ C

(
[0, 1], X

)
: γ (0) = 0,γ (1) = e

}
.

Lemma 3.2 Let 2 < q < 6 and λ > 0. Let {un} ⊂ X be a (PS)c sequence of I with 0 < c < 1
3 S 3

2 .
Then there exists u ∈ X such that un → u in X.

Proof Let {un} ⊂ X be a (PS)c for I , that is,

I(un) → c and I ′(un) → 0 as n → ∞. (3.1)

We claim that {un} is bounded in X. In the case 2 < q ≤ 4, we deduce that

1 + c + o
(‖un‖

) ≥ I(un) –
1
q
〈
I ′(un), un

〉

=
(

1
2

–
1
q

)

‖un‖2 +
(

1
q

–
1
4

)∫

Ω

φun un
2 dx +

(
1
q

–
1
6

)∫

Ω

|un|6 dx

≥
(

1
2

–
1
q

)

‖un‖2;
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in the case 4 < q < 6, we have

1 + c + o
(‖un‖

) ≥ I(un) –
1
4
〈
I ′(un), un

〉

=
1
4
‖un‖2 +

(
1
4

–
1
q

)

λ

∫

Ω

|un|q dx +
1

12

∫

Ω

|un|6 dx

≥ 1
4
‖un‖2,

which implies that {un} is bounded in X. Going if necessary to a subsequence, still denoted
by {un}, we can assume that for n large enough,

⎧
⎪⎪⎨

⎪⎪⎩

un ⇀ u in X;

un → u in Lp(Ω), p ∈ [1, 6);

un → u for a.e. x ∈ Ω .

(3.2)

By the concentration compactness principle (see [5, 11]) there exists at most countable set
J , points {xj}j∈J ⊂ Ω , and values {vj}j∈J , {μj}j∈J ⊂ R+ such that

|∇un|2 ⇀ μ ≥ |∇u|2 +
∑

j∈J

μjδxj , (3.3)

|un|6 ⇀ ν = |u|6 +
∑

j∈J

νjδxj , (3.4)

where δxj is the Dirac mass at xj. Moreover, we have

μj,νj ≥ 0, μj ≥ Sν
1
3

j . (3.5)

We claim that J = ∅. Suppose, on the contrary, that J �= ∅, that is, there exists j0 ∈ J such
that μj0 �= 0.

On the one hand, for any ε > 0 small, assume that ψε,j(x) ∈ C∞
0 (R3) is such that ψε,j(x) ∈

[0, 1],

ψε,j(x) = 1, in B
(

xj,
ε

2

)

; ψε,j(x) = 0, in X \ B(xj, ε);
∣
∣∇ψε,j(x)

∣
∣ ≤ 4

ε
.

Since {un} ⊂ X is bounded and {ψε,jun} is also bounded, we have

o(1) =
〈
I ′(un),ψε,jun

〉

=
(∫

Ω

un∇un∇ψε,j dx +
∫

Ω

|∇un|2ψε,j dx
)

–
∫

Ω

φun u2
nψε,j dx – λ

∫

Ω

|un|qψε,j dx –
∫

Ω

u6
nψε,j dx, (3.6)
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and by the Hölder inequality we get

lim
ε→0

lim sup
n→∞

∣
∣
∣
∣

∫

Ω

un∇un∇ψε,j dx
∣
∣
∣
∣

≤ lim
ε→0

lim sup
n→∞

(∫

Bε (xj)
|∇un|2 dx

) 1
2
(∫

Bε(xj)
|∇ψε,j|2|un|2 dx

) 1
2

≤ lim
ε→0

C2

(∫

Bε (xj)
|∇ψε,j|2|u|2 dx

) 1
2

≤ lim
ε→0

C2

(∫

Bε (xj)
|∇ψε,j|3 dx

) 1
3
(∫

Bε (xj)
|u|6 dx

) 1
6

≤ lim
ε→0

C3

(∫

Bε (xj)
|u|6 dx

) 1
6

= 0. (3.7)

From (3.2)–(3.4) we have

lim
ε→0

lim sup
n→∞

∫

Ω

|un|6ψε,j dx

= lim
ε→0

∫

Ω

|u|6ψε,j dx + νj

= νj, (3.8)

and by Lemma 2.1 and (3.2) we obtain

lim
ε→0

lim sup
n→∞

∫

Ω

φun u2
nψε,j dx = 0, (3.9)

lim
ε→0

lim sup
n→∞

∫

Ω

|un|qψε,j dx = 0, (3.10)

and

lim
ε→0

lim sup
n→∞

∫

Ω

|∇un|2ψε,j dx ≥ lim
ε→0

∫

Ω

|∇u|2ψε,j dx + μj = μj. (3.11)

By (3.6)–(3.11) we obtain

νj ≥ μj,

which, combined with μj0 �= 0 and (3.5), gives

νj0 ≥ S
3
2 . (3.12)

From (3.3)–(3.5) and (3.12) in the case 2 < q ≤ 4, we have

c = lim
n→∞

{

I(un) –
1
q
〈
I ′(un), un

〉
}

= lim
n→∞

{(
1
2

–
1
q

)

‖un‖2 +
(

1
q

–
1
4

)∫

Ω

φun un
2 dx +

(
1
q

–
1
6

)∫

Ω

|un|6 dx
}
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≥
(

1
2

–
1
q

)(

‖u‖2 +
∑

j∈J

μj

)

+
(

1
q

–
1
6

)(∫

Ω

|u|6 dx +
∑

j∈J

νj

)

≥
(

1
2

–
1
q

)

μj0 +
(

1
q

–
1
6

)

νj0 ≥ 1
3

S
3
2 ,

and in the case 4 < q < 6, we have

c = lim
n→∞

{

I(un) –
1
4
〈
I ′(un), un

〉
}

= lim
n→∞

{
1
4
‖un‖2 +

(
1
4

–
1
q

)

λ

∫

Ω

|un|q dx +
1

12

∫

Ω

|un|6 dx
}

≥ 1
4

(

‖u‖2 +
∑

j∈J

μj

)

+
1

12

(∫

Ω

|u|6 dx +
∑

j∈J

νj

)

≥ 1
4
μj0 +

1
12

νj0 ≥ 1
3

S
3
2 ,

where we use νj ≥ μj and νj ≥ S 3
2 . Therefore by c < 1

3 S 3
2 it is a contradiction. This implies

that J is empty, which means that
∫

Ω
|un|6 dx → ∫

Ω
|u|6 dx. We can also get un → u in X

(see Lemma 2.2 in [8]). So Lemma 3.2 holds. �

Lemma 3.3 If 2 < q ≤ 4, then there exist λ∗ > 0 and v0 ∈ H1
0 (Ω) such that

sup
s≥0

I(sv0) <
1
3

S
3
2 for all λ > λ∗.

If 4 < q < 6, then there exists v1 ∈ H1
0 (Ω) such that

sup
s≥0

I(sv1) <
1
3

S
3
2 for all λ > 0.

Proof We choose a function η ∈ C∞
0 (Ω) such that 0 ≤ η(x) ≤ 1, |∇η| ≤ C in Ω . η(x) = 1

for |x| < 2r0, and η(x) = 0 for |x| > 3r0. Define

uε(x) = η(x)U(x).

It is known (see [15]) that

|uε |66 = S
3
2 + O

(
ε3),

‖uε‖2 = S
3
2 + O(ε),

‖uε‖4 ≤ S3 + O(ε),

C4ε
p
2 ≤

∫

Ω

up
ε dx ≤ C5ε

p
2 , 1 ≤ p < 3,

C6ε
p
2 | ln ε| ≤

∫

Ω

up
ε dx ≤ C7ε

p
2 | ln ε|, p = 3,

C8ε
6–p

2 ≤
∫

Ω

up
ε dx ≤ C9ε

6–p
2 , 3 < p < 6.

(3.13)
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Set

h(suε) =
s2

2
‖uε‖2 –

sqλ

q

∫

Ω

|uε |q dx –
s6

6

∫

Ω

|uε |6 dx.

We can also prove that maxs≥0 h(suε) is attained at s0 for 0 < s1 < s0 < s2, that is,

max
s≥0

h(suε) = h(s0uε). (3.14)

Combining (3.13) with (3.14), 4 < q < 6, we deduce

sup
t≥0

I(suε) =
s2

2
‖uε‖2 –

s4

4

∫

Ω

φuε uε
2 dx –

sqλ

q

∫

Ω

|uε |q dx –
s6

6

∫

Ω

|uε |6 dx

≤ s2

2
‖uε‖2 –

sqλ

q

∫

Ω

|uε |q dx –
s6

6

∫

Ω

|uε |6 dx

≤ s2
0
2

‖uε‖2 –
sq

0λ

q

∫

Ω

|uε |q dx –
s6

0
6

∫

Ω

|uε |6 dx

≤ 1
2

s2
0
(
S

3
2 + O(ε)

)
– C10ε

6–q
2 –

s6
0
6

(
S

3
2 + O

(
ε3))

=
1
2

s2
0S

3
2 –

s6
0
6

S
3
2 + O(ε) – O

(
ε3) – C10ε

6–q
2

≤ sup
k≥0

{
k2

2
S

3
2 –

k6

6
S

3
2

}

+ O(ε) – C10ε
6–q

2 <
1
3

S
3
2 as ε → 0+. (3.15)

Similarly, in the case 2 < q ≤ 4, by (3.13) and (3.15) we have

sup
t≥0

I(suε) ≤ s2
0
2

‖uε‖2 –
sq

0λ

q

∫

Ω

|uε |q dx –
s6

0
6

∫

Ω

|uε |6 dx

≤ 1
2

s2
0
(
S

3
2 + O(ε)

)
– C11λε

6–q
2 –

s6
0
6

(
S

3
2 + O

(
ε3))

≤ 1
3

S
3
2 + O(ε) – C11λε

6–q
2 <

1
3

S
3
2 as ε → 0+, (3.16)

provided that λ is large enough. Thus there exists λ∗ > 0 such that I(suε) < 1
3 S 3

2 for all
λ > λ∗. This completes the proof. �

4 Proof of theorems

Proof of Theorems 1.1 and 1.2 Due to Lemma 3.1, I(u) satisfies the mountain pass geom-
etry. From Lemmas 3.2 and 3.3 we obtain the (PS)c condition with 0 < c < 1

3 S 3
2 . Therefore

system (1.1) has a nontrivial solution u0, and I(u0) = c > 0, which is a mountain pass so-
lution. Since I(|u|) = I(u), by a result due to Brézis and Nirenberg (Theorem 10 in [4]) we
conclude that u0 ≥ 0. By the strong maximum principle we have u0 > 0 in Ω . Therefore u0

is a positive solution of system (1.1) with I(u0) > 0.
Next, we show that system (1.1) has a positive ground state solution in X when 2 < p ≤ 4

or 4 < p < 6.
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Define

m := inf
v∈M

I(v),M =
{

v ∈ X \ {0} | I ′(v) = 0
}

.

There exists {un} ⊂ X such that un �= 0. Since u0 is a solution of system (1.1), by the defi-
nition of m we have

I(un) → m, m <
1
3

S
3
2 , I ′(un) → 0 as n → ∞. (4.1)

Obviously, from Lemma 3.2 we can easily deduce that {un} is bounded in X. Then there
exist a nonnegative subsequence of {un} (still denoted by {un}) and u1 ∈ X such that un ⇀

u1 in X. We can obtain that un → u1 in X and I(u1) = m with u1 > 0 by the last section
in [8], that is, u1 is a positive ground state solution to system (1.1). This completes the
proof. �
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