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a b s t r a c t 

Accurate automated quantitative Cobb angle estimation that quantitatively evaluates scoliosis plays an 

important role in scoliosis diagnosis and treatment. It solves the problem of the traditional manual 

method, which is the current clinical standard for scoliosis assessment, but time-consuming and unre- 

liable. However, it is very challenging to achieve highly accurate automated Cobb angle estimation be- 

cause it is difficult to utilize the information of Anterior-posterior (AP) and Lateral (LAT) view X-rays 

efficiently. We therefore propose a Multi-View Extrapolation Net (MVE-Net) that provides accurate au- 

tomated scoliosis estimation in multi-view (both AP and LAT) X-rays. The MVE-Net consists of three 

parts: Joint-view net learning AP and LAT angles jointly based on landmarks learned from joint repre- 

sentation; Independent-view net learning AP and LAT angles independently based on landmarks learned 

from unique independent feature of AP or LAT angles; Inter-error correction net learning a combination 

function adaptively to offset the first two nets’ errors for accurate angle estimation. Experimental results 

on 526 X-rays show 7.81 and 6.26 Circular Mean Absolute Error in AP and LAT angle estimation, which 

shows the MVE-Net provides an accurate Cobb angle estimation in multi-view X-rays. Our method there- 

fore provides effective framework for automated, accurate, and reliable scoliosis estimation. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Cobb angles ( Cobb, 1948 ) are widely used for scoliosis diagno-

is and treatment decisions. It is the most common and convenient

tandard for scoliosis measurement. Scoliosis is a structural, lat-

ral, rotated curvature of the spine, which especially arises in chil-

ren at or around puberty and leads to disability ( Weinstein et al.,

008 ). Large studies have shown that the prevalence rate of scol-

osis in children can be as high as 5.2%. This disease can also lead

o complications from injury to the heart and lungs ( Asher and

urton, 2006 ). Clinicians currently assess the Cobb angles to make

reatment decisions. Therefore, it is essential to have a reliable way

o measure Cobb angles. 

However, existing manual scoliosis assessment in clinical prac-

ice is time-consuming and unreliable ( Vrtovec et al., 2009 ; Pruijs

t al., 1994 ). As shown in Fig. 1 , the current standard for assessing

coliosis is to measure Cobb angles manually based on anterior-

osterior (AP) and lateral (LAT) X-ray images. Clinicians manually
∗ Corresponding authors at: Digital Image Group, London, ON, Canada. 
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easure the landmarks and choose the pivotal vertebrae using piv-

tal landmarks. This leads to the accuracy of the measurement

nreliable since the results are affected by the selection of piv-

tal vertebrae and the bias of different observers. It is difficult to

hoose these vertebrae manually. 

Existing segmentation-based methods and direct estimation 

ethods for Cobb angles measurement still have limitations to

chieve high accuracy. 

Segmentation-based methods suffer from multiple error trans-

ission since these methods firstly segment the required anatom-

cal structures and then measure scoliosis based on the segmen-

ation. Previous segmentation-based methods for scoliosis assess-

ent such as filtering ( Anitha et al., 2014 ; Zhang et al., 2010 ;

hang et al., 2009 ), active contouring ( Anitha and Prabhu, 2012 ),

nd physics models ( Sardjono et al., 2013 ) locate the required ver-

ebrae and calculate the Cobb angles. These methods are limited

y some measurement disadvantages such as the selection of ver-

ebrae and the bias of different users. 

Direct estimation methods ( Sun et al., 2017; Wu et al., 2017;

ue et al., 2017a; 2017b; Zhen et al., 2015; Wu et al., 2018 ) aim

o obtain the relationship between medical images and clinical

https://core.ac.uk/display/343508785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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Fig. 1. Traditional methods use landmark (yellow points in (a) and (d), the pivotal landmarks have been magnified) to measure Cobb angles. It is challenging to measure 

Cobb angles due to high ambiguity and variability in scoliosis AP (a–c) and LAT (d–f) X-rays from different subjects since it is difficult to identify the most tilted vertebral 

endplates (red lines) on the X-ray images. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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measurements directly without the results based on segmentation.

These methods have achieved great success recently in many clini-

cal measurement fields such as cardiac volume measurement ( Xue

et al., 2017a; 2017b; Zhen et al., 2015 ) and scoliosis measurement

in single view ( Sun et al., 2017; Wu et al., 2017 ) and multi-view

( Wu et al., 2018 ) images. Applied to scoliosis measurement, sev-

eral initial attempts have been put forward in conference. S 2 VR

( Sun et al., 2017 ) achieved to build up the relationship between

spinal landmarks and Cobb angles to improve the accuracy and ro-

bustness of the Cobb angle estimation. BoostNet ( Wu et al., 2017 )

encoded and decoded the spinal features to remove deleterious

outlier features, which achieved robust and accurate spinal land-

marks. Despite their great effectiveness in single view estimations,

these methods still cannot effectively handle multi-view X-ray im-

ages since the 3D spatial joint features between the AP and LAT

views are not learned. The MVC-Net ( Wu et al., 2018 ) takes into

account the underlying relationship between AP and LAT X-rays,

but it didn’t consider the unique independent features the AP and

LAT X-rays have, thus losing a certain precision. 

High-precision calculation ( Quarteroni et al., 20 0 0 ) is a cat-

alog of very popular methods in numerical mathematics for de-

creasing error. It can be used to achieve complex calculation with

high accuracy. It can also be used to calculate complex expression

numerically without plenty of formula derivation. For example,

Laporta (20 0 0) used a high-precision approximation to calculate a

complex integration. High-precision calculation achieves this calcu-

lation. Stefano (2017) used high-precision calculation by calculating

a physical constant for fast convergence and achieved great suc-

cess. This technology has been proved to effectively improve the

accuracy of the calculation. The extrapolation ( Quarteroni et al.,

20 0 0 ) is one of the most useful methods in the high-precision cal-

culation. It can be used to improve much popular numeric calcu-

lation methods such as trapezoidal method and Simpson method

( Quarteroni et al., 20 0 0 ). Mathematically, the extrapolation pro-

vides a combination function of the functional value at measured

data to speculate the functional value, which makes the estimated

value much more close to the ground truth. To achieve higher

accuracy, the combination function depends on a series of rough

measured data ( Criminisi, et al., 2011 ). However, it is very time

consuming to calculate the parameters of the combination func-

tion. Deep learning structure can effectively solve this problem by

automatically and adaptively learning these parameters since it is

much less time consuming using numeral approximation instead of

complex precise calculation ( Hinton et al., 2012 ; He et al., 2015 ). 

In this paper, we propose a Multi-View Extrapolation Net

(MVE-Net) to accurately estimate the Cobb angles from AP and
AT X-rays. Firstly, the MVE-Net directly estimate landmarks from

wo different ways: One uses a cross structure (joint-view net) to

earn the relationship between both AP and LAT X-rays (joint fea-

ures, the synchronous pivotal landmarks between AP and LAT im-

ges). The other uses a parallel structure (independent-view net)

o learn the information of AP or LAT X-rays (unique independent

eatures, the independent pivotal landmarks in AP and LAT images)

o ignore the noise from the other. then both of the two ways use

he landmarks to calculate Cobb angles. Secondly, since the extrap-

lation can leverage the two kinds of different pivotal landmarks,

ased on the two estimations through different ways, our MVE-

et applies extrapolation to adaptively offset the error of the two

obb angles estimations by each other, then obtain an enhanced

stimation. Incorporating a deep learning structure, the MVE-Net

earns the combination of the two Cobb angles estimations adap-

ively (inter-error correction net), which further improves the accu-

acy and effectiveness of the calculation. The MVE-Net learns joint

nd independent features successfully and obtains a more accurate

stimation. 

Contribution In summary, our work contributes in the follow-

ng aspects: 

• The newly proposed MVE-Net achieves high accuracy in clin-

ical Cobb angle measurement from AP and LAT X-rays. 
• For the first time, the high-precision calculation

( Quarteroni et al., 20 0 0 ) is combined with deep learn-

ing, which leverages the first two networks, and provides an

accurate estimation 

• For the first time, a newly designed error controlled loss

function is proposed, which achieves not only fast conver-

gence but also high accuracy since the joint and indepen-

dent features are combined effectively. 

. Proposed MVE-Net architecture 

As shown in Fig. 2 , the newly proposed MVE-Net consists of

hree parts: (1) A cross-learning joint-view net ( Section 2.1 ) for

earning joint features between AP and LAT angle, which simul-

aneously learns the features in AP and LAT images and gets the

ynchronous pivotal landmarks ( Fig. 1 ) between AP and LAT im-

ges. (2) A parallel-learning independent-view net ( Section 2.2 ) for

earning unique independent features, which gets the independent

ivotal landmarks in AP and LAT images separately as the base-

ent of rough Cobb angle calculation. (3) An inter-error correction

et ( Section 2.3 ) to leverage the previous two calculations, offset

he error through a combination function using extrapolation to
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Fig. 2. Architecture of the MVE-Net for Cobb angle estimation. It contains (1) A joint-view net for learning joint features between AP and LAT angle, (2) An independent-view 

net for learning unique independent features, (3) An inter-error correction net to take advantage of the two former nets and increase the accuracy. 

Fig. 3. The joint-view net uses a series of X-modules for learning joint features. It estimates landmarks form joint features and estimates Cobb angles using the landmarks. 
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ombine the error complementarity between the two estimations,

hich increases the final estimation’s accuracy. In our method, we

se joint-view net and independent-view net to obtain two initial

ngles, then use an inter-error correction net based on extrapola-

ion to improve the accuracy of the final estimation. 

.1. Joint-view net for synchronous pivotal landmarks 

The joint-view net is designed to leverage the correlation be-

ween AP and LAT views in order to acquire robust spinal land-

arks, and use those landmarks to calculate the Cobb angles. It

onsists of two convolution net parts: (1) Joint feature learning:

 spinal landmark estimator network using a series of X-modules

 Wu et al., 2018 ) to automatically learn common features be-

ween AP and LAT X-rays, and (2) Multi-task learning: a dedicated

andmark estimator network that uses these joint AP/LAT X-ray

eatures to regress landmarks for Cobb angles calculation. The

-module connections ( McCloskey et al., 1989 ) are specifically de-

igned to capture the underlying physical correlation of a structure

sing multi-view images, which are detailedly defined in the pa-

er ( Wu et al., 2018 ). The joint features can simultaneously learn

he features in the AP and LAT images effectively, which improves

he accuracy of landmark learning. The joint-view net architecture,

llustrated in Fig. 3 , captures the full extent of the spinal structure

or robust Cobb angle estimation using the X-modules. 

The loss function of the joint-view net ( Eq. (4) ) not only min-

mizes the error but also conforms to the spinal of our ground

ruth, it consists of two parts: a robust regression loss ( Eq. (1) ) and

a correction loss. ( Eq. (4) ) 

The robust regression loss uses the log of hyperbolic cosine as

he objective function: 

 

′ 
reg (X 

χ , Y χ , θ ′ ) = MEAN(log ch (M lm 

(X 

χ ; θ ′ ) − Y χ )) (1)
ere χ represents for AP or LAT, X is the input image, M lm 

is the

stimated landmark, Y is the ground truth, θ ′ is the parameters of

he joint-view net. 

The correction loss uses the Pearson loss. 

′ = 

MEAN(M lm 

(X 

χ ; θ ′ ) Y χ ) 

ST D (M lm 

(X 

χ ; θ ′ )) ST D (Y χ ) 

− MEAN(M lm 

(X 

χ ; θ ′ ) MEAN(Y χ )) 

ST D (M lm 

(X 

χ ; θ ′ )) ST D (Y χ ) 
(2) 

ere MEAN is the element-wise arithmetic mean, and STD is the

tandard deviation of the predicted and ground truth landmark co-

rdinates. 

Since the output of Pearson coefficient r ranges from -1 (nega-

ive correlation) to 1 (perfect correlation), we rearranged it as fol-

ows in order to force the output to be between 0 (perfect correla-

ion) and 1 (negative correlation): 

 

′ 
cor (X 

χ , Y χ , θ ′ ) = 

1 

2 

(1 − ρ ′ ) (3)

The overall loss function of the joint-view net is thus defined

s: 

 jv (X 

χ , Y χ , θ ′ ) = L ′ cor (X 

χ , Y χ , θ ′ ) + φ′ L ′ reg (X 

χ , Y χ , θ ′ ) (4)

here φ′ is a scaling factor controlling the relative importance of

he regression loss term, and φ′ = 5 in our experiments. 

.2. Independent-view net for independent pivotal landmarks 

The independent-view net is designed to focus on the individ-

al features of AP and LAT views in order to acquire individual

pinal landmarks, and use those landmarks to estimate the Cobb

ngles. It consists of two convolution net parts: (1) Independent
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Fig. 4. The independent-view net learns independent features from AP and LAT X-rays in parallel. It estimates landmarks from independent features and estimates Cobb 

angles using the landmarks. 

Fig. 5. The inter-error correction net (a) and the optimization of the loss function (b). The inter-error error correction net iteratively optimizes the corrected angle and the 

estimated angle alternatively to learn the optimization direction and step length, which can obtain a more accurate estimation. Theorem 1 proves the estimated angle has 

higher order accuracy. 
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feature learning: a spinal landmark estimator network using a se-

ries of convolution layers in parallel to automatically learn individ-

ual features of AP and LAT X-rays, and (2) Multi-task learning: a

dedicated landmark estimator network that uses these individual

AP/LAT X-ray features to regress landmarks for Cobb angles calcu-

lation. The independent features are the foundation of the land-

mark detecting. The independent-view net architecture, illustrated

in Fig. 4 , captures the single view of the spinal structure for accu-

rate Cobb angle estimation using parallel learning. 

Similarly, to minimize the error and conform to the spinal of

our ground truth, the loss function of the independent-view net

can be written as: 

L i v (X 

χ , Y χ , θ ′′ ) = L ′′ cor (X 

χ , Y χ , θ ′′ ) + φ′′ L ′′ reg (X 

χ , Y χ , θ ′′ ) (5)

where 

L ′′ reg (X 

χ , Y χ , θ ′′ ) = MEAN(log ch (M lm 

(X 

χ ; θ ′′ ) − Y χ )) (6)

L ′′ cor (X 

χ , Y χ , θ ′′ ) = 

1 

2 

(1 − ρ ′′ ) (7)

ρ ′′ = 

MEAN(M lm 

(X 

χ ; θ ′′ ) Y χ ) 

ST D (M lm 

(X 

χ ; θ ′′ )) ST D (Y χ ) 

− MEAN(M lm 

(X 

χ ; θ ′′ )) MEAN(Y χ ) 

ST D (M (X 

χ ; θ ′′ )) ST D (Y χ ) 
(8)
lm 
θ ′′ is the parameters of the independent-view net. φ′′ is a scal-

ng factor controlling the relative importance of the regression loss

ermand, and φ′′ = 5 in our experiments. 

.3. Inter-error correction net using extrapolation 

The inter-error correction net is designed for further improv-

ng the accuracy of the output of the joint-view net ( angle ′ ) and

ndependent-view net ( angle ′′ ). As shown in Fig. 5 , the inter-error

orrection net uses a series of fully connected layers, alternat-

ng optimization ( Section 2.3 (a), Fig. 5 (b)) and designed error con-

rolled loss function ( Section 2.3 (b), Eq. (9) ) to fit the extrapolation.

(a) In the alternative optimization, the inter-error correction net

learns two extrapolated angles ( angle opt and angle est ) for

faster convergence by iteration: Stage 1: Optimized angle

regression ( angle opt Section 2.3.1 ) based the normalization

of the error leverages the data’s error, which provides a

potential better correction as reference. The normalization

makes sure our method is effective to calculate the Cobb an-

gles on different scoliosis level (for example, low scoliosis

level: less than 30 ◦, and high scoliosis level: more than 45 ◦)

simultaneously; Stage 2: Estimated angle learning ( angle est 

Section 2.3.2 ) based on the results of a combination function

( Eq. (14) ) using high-precision calculation improves the ac-
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curacy of the final estimation. A two-stage alternating opti-

mization scheme was used to train the optimized angle and

the estimated angle of the inter-error correction net itera-

tively to ensure a synergistic effect when optimizing the two

related tasks. 

(b) To leverage the two extrapolated angles, CMEAN is defined

in Eq. (10) , the error controlled loss function of inter-error

correction net is defined as follows: 

oss = CMEAN(angle est − angle 0 ) ︸ ︷︷ ︸ 
estimated angle 

+ λCMEAN(angle opt − angle 0 ) ︸ ︷︷ ︸ 
optimized angle 

(9) 

Here angle 0 is the ground truth. 

The optimization of loss function consists of two parts, the op-

imized angle optimization and the estimated angle optimization.

he optimized angle optimization obtains a potential better esti-

ation, which effectively reduces the average error. The estimated

ngle optimization offsets the main error parts of the two estima-

ions each other, which further improves the accuracy. The loss

unction leverages the optimized angle and the estimated angle,

hich improves the accuracy of the final estimation. 

While the regression loss works well for Euclidean distance in

eneral real space, it is not robust in dealing with compact space

ike circular quantities in argument angle space due to the phase-

rapping property of angles. For instance, the Euclidean distance

f the principal argument angle between 5 ◦ and 355 ◦ is 350 ◦ in

eal space, but the actual difference is only 10 ◦ in circular space.

e will therefore have to modify the loss function for circular

uantities to alleviate this. To do so, we can consider performing

rithmetics in polar coordinate space and then converting the re-

ult back to angular space using trigonometry. 

The angle α can be decomposed as polar coordinates on the

nit circle: 

→ (x, y ) , x = cos (α) , y = sin (α) 

Given PT, MT and TL angles angle = (αPT , αMT , αT L ) , we can

hen use their circular mean as: 

MEAN(αPT , αMT , αT L ) = arctan 

(
ȳ 

x̄ 

)
(10)

here 

x̄ = 

1 

3 

(cos (αPT ) + cos (αMT ) + cos (αT L )) 

¯
 = 

1 

3 

(sin (αPT ) + sin (αMT ) + sin (αT L )) 

.3.1. Optimized angle 

The optimized angle based on the normalization ( angle norm 

) of

he error is used to quantify the relationship between the angle

nd its error. In this paper, we use angle norm 

to normalize the lo-

al error, which leverages the scoliosis level discrepancy and shows

he local characteristic of the loss function to learn the descending

irection. 

The normalization of the local error has a good correlation with

he angle error, and it reflects the function information in a small

eighborhood effectively. In order to achieve these characteristics,

e formulate the angle norm 

as: 

ngle norm 

= 

angle 0 − angle (i ) ∫ 
| x −angle (i ) |≤r f angle (i ) (| x − angle 0 | ) dx + ε

(11) 

Here, r = 5 ◦ is the radius of the neighborhood, and ε is a small

onstant avoiding zero denominators. 
Based on the angle norm 

, we can construct a function of angle as:

orm 

(i ) = 

angle − angle (i ) ∫ 
| x −angle (i ) |≤r f angle (i ) (| x − angle | ) dx + ε

(12) 

nd then calculate the optimized angle as: 

ngle opt = argmin (λopt norm 

′ + (1 − λopt ) norm 

′′ ) (13)

Here λopt = 

| angle ′ | 
| angle ′ + angle ′′ | . 

The optimization of angle opt corrects the descent direction,

hich accelerates the convergence. 

.3.2. Estimated angle 

The estimated angle is based on the results of the combination

unction using high-precision calculation. The angle norm 

is used to

alculate the parameter of the combination function so that the

ain error parts of angle ′ and angle ′′ can be offset by each other. 

Following the extrapolation format, The estimated angle can be

ritten as follows: 

ngle est = 

K 2 ∗ angle ′ − K 1 ∗ angle ′′ 
K 2 − K 1 

− K 2 ∗ K 1 ∗ (angle ′′ − angle ′ ) 
K 2 − K 1 

(14) 

Here, K i = f ′ 
i 
(0) /η(angle (i ) ) , i = 1 , 2 is related to angle norm 

,

here 

(angle (i ) ) = 

∫ 
| x −angle (i ) |≤r 

t (i ) (| x − angle 0 | ) dx + ε (15)

 

( i ) is the tolerate function, which indicates the net’s acceptance of

he error. In this paper, we use complex heaviside step function. f i 
s function of angle norm 

− angle plot. 

The general outline of the iterative 2-stage training scheme is

ummarized in Algorithm 1 . 

lgorithm 1 Iterative Angle Training. 

 : Set initial of angle sequence angle = (angl e ′ , angl e ′′ ) 
 : repeat 

 : calculate angle norm 

using Eq. 11 

 : update angle opt using Eq. 13 

 : calculate angle est using Eq. 14 

 : update angle using angl e (i ) = angl e opt , i = 1 or 2 

 : until Convergence 

As Fig. 6 shown, the optimized angle and the estimated angle

re alternatively updated and gradually tends to the ground truth,

hich shows the convergence of the inter-error correction net. 

.4. Theorem proof of the improved accuracy of our MVC-Net 

The following Theorem 1 explains how we eliminate the low

rder error to achieve higher accuracy: 

heorem 1 (Our proposed estimation ( angle est ) has higher order

ccuracy than the initial estimations ( angle ′ and angle ′′ )) . Suppose

he net Net for subscript 1 and 2, the calculated angle angle ′ , angle ′′ ,
he norm-angle error angle ′ norm 

, angle ′′ norm 

. When angle ′ and angle ′′ 
re greater than or less than angle 0 at the same time, the angle est 

efined in Eq. (14) is an approximation of angle 0 (ground truth). And

t has | k ( angle ( i ) , Net ) ∗angle norm 

( angle ( i ) )| improvement for i = 1 , 2 . 

roof. For the definition as above, we have 

ngle 0 = angle (i ) + k (angle (i ) ) ∗ angle norm 

(angle (i ) ) 
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Fig. 6. The scheme of iteration in inter-error correction net. Using high-precision 

calculation, the optimization iteratively updates the norm-angle (red arrows) and 

angle itself (green arrows) to approach the ground truth, which shows the conver- 

gence of our method. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Mean error of the joint-view net, independent-view net, average (of the 

joint-view net and the independent-view net) and MVE-Net. Most of 

the time, the lowest error of our MVE-Net based on the improvement 

on the previous Nets indicates MVE-Net has higher accuracy. 

Method AP 

CMAE( ◦) SMAPE(%) 

joint-view net 10.24 34.70 

independent-view net 8.76 28.33 

average 9.38 42.50 

MVE-Net 7.81 24.94 

Method LAT 

CMAE( ◦) SMAPE(%) 

joint-view net 16.00 40.17 

independent-view net 13.15 29.98 

average 14.56 45.75 

MVE-Net 6.26 11.90 
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By definition of angle norm 

, 

angle norm 

(angle (i ) ) = λ| angle 0 − angle (i ) | + ε(i ) 

Consider ε( i ) as 0, we can get 

angle 0 = 

K 2 ∗ angle ′ − K 1 ∗ angle ′′ 
K 2 − K 1 

− K 2 ∗ K 1 ∗ (angle ′′ − angle ′ ) 
K 2 − K 1 

for angle ′ and angle ′′ are greater than or less than angle 0 at the

same time. 

And we have 

| angle 0 − angle (i ) | = | k (angle (i ) ) ∗ angle norm 

(angle (i ) ) | 
for i = 1 , 2 . 

We have the similar conclusion for angle 0 is between angle ′ and

angle ′′ . 
Our inter-error correction net calculates the approximation di-

rectly while learning the K i parameters since the approximation is

a quasi-linear combination of angle ′ and angle ′′ . Therefore, we im-

prove the accuracy of the estimation since we eliminate the low

order error. �

3. Results and analysis 

The MVE-Net has been validated on the spinal X-ray dataset

with signs of scoliosis of varying extents. Extensive experiments

show that our method with significant effectiveness, which can be

practically used in clinical scoliosis analysis. 

3.1. Data 

Dataset Our dataset consists of 526 spinal X-ray images equally

divided between AP and LAT views. These images were provided

by local clinicians and all of them show signs of scoliosis to varying

extent. Our dataset has covered different scoliosis levels, the range

of the Cobb angle is distributed from 0 to 96.33 ◦. The average res-

olution of the images is 0.26 mm/pixel. Our landmark ground truth

consists of 60 landmarks per spinal images, which is the four cor-

ners of 15 thoracic and lumbar vertebrae. Each vertebrae was se-

lected by an expert. We didn’t select the Cervical vertebrae (ver-

tebrae of the neck) since the cervical vertebrae are seldom in-

volved in spinal deformity ( Group, 2008 ). The ground truth of piv-

otal landmarks were determined by the ground truth of the land-

marks. The Cobb angle ground truth was calculated by the ground

truth of the pivotal landmarks. 
Data augmentation We use dynamic data augmentation to in-

rease the robustness of our model during training. Our model has

et better clinical applications since the common actual error such

s Gaussian noise, rotation and shift have been resolved. In order

o achieve this, we therefore augmented the data with: 

(1) Randomly adding Gaussian noise directly to our images to

simulate inherent noise. 

(2) Randomly rotating the images up to 5 ◦ to allow for flexibil-

ity in rotation. 

(3) Randomly shifting the images by 1% to encourage shift in-

variance. 

mplementation details All networks are implemented in Keras

sing the Tensorflow backend. Training is implemented on four

VIDIA Tesla GPUs with a version of CUDA 8.0. 

Performance metric For Cobb angle estimation, we used circu-

ar MAE (CMAE) and Symmetric Mean Absolute Error (SMAPE) to

epresent the relative error. 

The circular MAE is defined as: 

 MAE = 

1 

N 

N ∑ 

i =1 

C MEAN(M ang (X 

χ ; θ ′ ) − L χ ) 

The SMAPE metric is defined as: 

MAP E = 

1 

N 

N ∑ 

i =1 

SUM(M ang (X 

χ ; θ ′ ) − L χ ) 

S UM(M ang (X 

χ ; θ ′ ) + L χ ) 

Here M ang is our estimated Cobb angle and L is the ground

ruth. 

.2. Performance 

As shown in Table 1 , our model achieved a reputable CMAE of

.81 ◦ in AP angle and 6.26 ◦ in LAT angle estimation and achieved

 reputable SMAPE of 24.94% in AP angle and 11.90% in LAT angle

stimation which proves our method is a useful clinical tool. Com-

ared with only using joint-view net or independent-view net, our

VE-Net achieves higher accurate estimations. As Fig. 6 shown,

his is contributed to our MVE-Net has successfully applied extrap-

lation and effectively offset the error of the joint-view net and

he independent-view net each other. The joint-view net focuses

n the joint feature between AP and LAT images. The independent-

iew net focuses on the pivotal landmarks. Out MVE-Net achieves

o leverage the joint-view net and the independent-view net, and

ives full play to their respective strengths, successfully improves

he accuracy of the estimation. Fig. 7 shows the Cobb angle esti-

ation has a high accuracy compared with the ground truth. 



L. Wang, Q. Xu and S. Leung et al. / Medical Image Analysis 58 (2019) 101542 7 

Fig. 7. The results of Cobb Angles estimation. The green lines are ground truth, and the red lines are our test performance. Our method overcomes huge variations and high 

ambiguities and achieves high accuracy in Cobb angles detection. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 

Table 2 

The comparison of the SMAPE in several methods. The manual-min 

method chooses the smaller average error value between joint-view net 

and independent-view net manually as a final result. Our MVE-Net has 

the lowest relative error indicates MVE-Net has the best performance. 

Method SMAPE(%) 

S 2 VR ( Sun et al., 2017 ) 37.08 

BoostNet ( Wu et al., 2017 ) 41.35 

MVC-Net ( Wu et al., 2018 ) 35.85 

manual-min 41.24 

joint-view net 37.43 

independent-view net 29.16 

average 44.12 

MVE-Net (ours) 18.95 
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Fig. 8. Curves of estimation loss during the training and test procedures with (red 

lines) and without (blue lines) extrapolation calculated optimized angle. Extrapo- 

lation helps the network train faster and achieve lower estimation error for both 

training and test procedures. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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Compared with other methods, our model has achieved the

ost accurate result. We compare with three other methods on the

ame dataset, i.e. S 2 VR ( Sun et al., 2017 ), BoostNet ( Wu et al., 2017 )

nd the MVC-Net ( Wu et al., 2018 ) about the SMAPE, which shows

he effectiveness of our method. The previous method didn’t work

ell since it is a difficult problem to accurately calculate Cobb an-

les simultaneously on different scoliosis level. Our dataset has

overed different scoliosis level (0–96.33 ◦) comprehensively. Our

VE-Net has successfully handled this problem and effectively de-

reased the error. The extrapolation method leverages the differ-

nce among different scoliosis level, which constructs a more reli-

ble network for Cobb angle estimation. Table 2 shows the results.

Fig. 8 shows the benefit of extrapolation. The extrapolation

elps the inter-error correction net converge faster and achieves

ower error since the extrapolation indicates the optimization di-

ection and the step length. The leverage of the optimized angle

nd the estimated angle to a large extent correct the optimiza-

ion direction, which speeds up the convergence. At the same time,

t provides a more reliable reference value, which has determined

ore precise step length. 

.3. Analysis 

The MVE-Net achieved the lowest CMAE of 7.81 ◦ in AP angle

nd 6.26 ◦ in LAT angle estimation on the unseen test set. This

s due to the contributions of (1) the previous methods (joint-

iew net and independent-view net), which successfully learned

oint and independent feature embeddings as is evident in the

igher accuracy in images with noticeable variability and (2) the

pplication of extrapolation, which faithfully increases the angles

ccuracy of joint-view net and independent-view net. The suc-

ess of our method is further demonstrated by the more than
 degrees on average of the circular mean absolute error, as

ell as the more rapid convergence compared to the conven-

ional joint-view net and independent-view net DL model. Further-

ore, our results demonstrate that the high performance can only

e achieved by leveraging joint-view net and independent-view

et using extrapolation iteratively, which indicates that reciprocal

ulti-task learning of both joint features and unique independent

eatures is essential for achieving higher accuracy. 

It is a difficult problem to accurately calculate Cobb angles si-

ultaneously on different scoliosis level. In the proposed method,

oint-view focuses on learning the common features (high-level

eatures, lack of details) of two views, while each independent

iew alone contains only tiny unique information (low-level fea-

ures, lack of semantic information) for each view. Therefore, we

ave an ”inter-error correction net” for information fusion and bet-

er features in the final step of the proposed method. As a conse-

uence, the combination of joint-view and independent-view nets

an produce more accurate estimation than either net alone. It is

he first time that the proposed MVE-Net has been used to solve

his problem on such a wide distribution and get a more accurate

stimation. 
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4. Conclusion 

We proposed a automated Cobb angle estimation method for

the scoliosis assessment using MVE-Net. The MVE-Net successfully

leverages the joint features and independent features in multi-view

X-ray images. Our MVE-Net achieved a high precision estimation

of Cobb angles in both AP and LAT X-ray images in a large dataset

of 526 X-ray images with different scoliosis level. Compared with

other automated methods, extensive experiments show the high

accuracy of our MVE-Net. Our accurate calculation method also has

effective extensibility in other clinical applications for high preci-

sion estimations. 

Declaration of Competing Interest 

None. 

Appendix A. Generalization to n-input situation 

Our method can be generalized to not only two inputs ( angle ′ 
and angle ′′ ) but also n-inputs situation. If we have more inputs

( angle (i ) , i = 1 , 2 , . . . ), the inter-error correction net still can lever-

age these input information to get more accurate results. We for-

malize a more accurate approximation of angle 0 (ground truth) as

follow: 

angle 0 = angle (i ) + k (angle (i ) ) ∗ angle norm 

(angle (i ) ) 

+ μ(angle (i ) ) ∗ angl e 2 norm 

(angl e (i ) ) + ε(i ) 

as we approximate the ε( i ) accurately. 

Without loss of generality, we use three inputs ( angle ′ , angle ′′ 
and angle ′′′ ) as example, we have the following corollary: 

Corollary 1 (Inter-error correction net for n-inputs estimation (n = 3

as example)) . Suppose we have the net Net for subscript 1, 2 and 3,

the calculated angle angle ′ , angle ′′ and angle ′′′ , the norm-angle error

angle ′ norm 

, angle ′′ norm 

and angle ′′′ norm 

, and the parameter k defined the

same as above. Assimilating the scale factor λ and μ to k, we define

K = k ∗ λ and M = k 2 ∗ μ. We can find an approximation of angle 0 by

the following equations 

angle 0 = angle ′ + k 1 (angle ′ ) ∗ angle ′ norm 

(angle ′ ) 
+ μ1 (angle ′ ) ∗ angl e ′ 2 norm 

(angl e ′ ) 

angle 0 = angle ′′ + k 2 (angle ′ ) ∗ angle ′′ norm 

(angle ′ ) 
+ μ2 (angle ′ ) ∗ angl e ′′ 2 norm 

(angl e ′ ) 

angle 0 = angle ′′′ + k 3 (angle ′ ) ∗ angle ′′′ norm 

(angle ′ ) 
+ μ3 (angle ′ ) ∗ angl e ′′′ 2 norm 

(angl e ′ ) 
the root angle opt is an approximation of angle 0 
This equation is quadratic, but we can always eliminate the

quadratic terms from two adjacent formulas to get a linear equa-

tion. Therefore the angle opt is still the linear combination of angle ′ ,
angle ′′ and angle ′′′ . We can learn the linear coefficient with our

method. 

Due to the drawer principle, at least two of α are greater than

or less than angle 0 at the same time. We may assume they are

angle ′′ and angle ′′′ . We can rewrite the equation as 

0 = angle ′′ − angle ′ 

+ k 2 (angle (i ) ) ∗ angl e ′′ norm 

(angl e (i ) ) 

− k 1 (angle (i ) ) ∗ angl e ′ norm 

(angl e (i ) ) 

+ μ2 (angle (i ) ) ∗ angl e ′′ 2 norm 

(angl e (i ) ) 

−μ1 (angle (i ) ) ∗ angl e ′ 2 norm 

(angl e (i ) ) 
 = angle ′′′ − angle ′ 

+ k 3 (angle (i ) ) ∗ angl e ′′′ norm 

(angl e (i ) ) 

− k 1 (angle (i ) ) ∗ angl e ′ norm 

(angl e (i ) ) 

+ μ3 (angle (i ) ) ∗ angl e ′′′ 2 norm 

(angl e (i ) ) 

−μ1 (angle (i ) ) ∗ angl e ′ 2 norm 

(angl e (i ) ) 

e have 

 = angle ′′ − angle ′ 

+ K 2 (angle (i ) ) ∗ | angle ′′ − angle 0 | 
− K 1 (angle (i ) ) ∗ | angle ′ − angle 0 | 
+ M 2 (angle (i ) ) ∗ | angle ′′ − angle 0 | 2 
− M 1 (angle (i ) ) ∗ | angle ′ − angle 0 | 2 

 = angle ′′′ − angle ′ 

+ K 3 (angle (i ) ) ∗ | angle ′′′ − angle 0 | 
− K 1 (angle (i ) ) ∗ | angle ′ − angle 0 | 
+ M 3 (angle (i ) ) ∗ | angle ′′′ − angle 0 | 2 
− M 1 (angle (i ) ) ∗ | angle ′ − angle 0 | 2 

When these angle ( i ) are sufficiently close to angle 0 , we have 

 = angle ′′ − angle ′ 

+ K ∗ | angle ′′ − angle ′ | 
+ M ∗ | angle ′′ − angle ′ | 
∗ | angle ′′ + angle ′ − 2 ∗ angle 0 | 

 = angle ′′′ − angle ′ 

+ K ∗ | angle ′′′ − angle ′ | 
+ M ∗ | angle ′′′ − angle ′ | 
∗ | angle ′′′ + angle ′ − 2 ∗ angle 0 | 

r 

 = angle ′′ − angle ′ 

+ K ∗ | angle ′′ + angle ′ − 2 ∗ angle 0 | 
+ M ∗ | angle ′′ − angle ′ | 
∗ | angle ′′ + angle ′ − 2 ∗ angle 0 | 

 = angle ′′′ − angle ′ 

+ K ∗ | angle ′′′ + angle ′ − 2 ∗ angle 0 | 
+ M ∗ | angle ′′′ − angle ′ | 
∗ | angle ′′′ + angle ′ − 2 ∗ angle 0 | 

ere 

K = K 1 (angle (i ) ) = K 2 (angle (i ) ) = K 3 (angle (i ) ) 

 = M 1 (angle (i ) ) = M 2 (angle (i ) ) = M 3 (angle (i ) ) 

Since 

ngle 0 = angle (i ) + K| angle (i ) − angle 0 | 
+ M| angle (i ) − angle 0 | 2 

he expression of angle 0 will be simple. 

Compared with the method in the theorem, the corollary

ethod has higher accuracy. Since we use 

ngle 0 = angle (i ) + k (angle (i ) ) ∗ angle norm 

(angle (i ) ) 

+ μ(angle (i ) ) ∗ angl e 2 norm 

(angl e (i ) ) 

nstead of 

ngle 0 = angle (i ) + k (angle (i ) ) ∗ angle norm 

(angle (i ) ) 

ith higher accuracy of angle 
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Besides using parabola, we can also use arc or some more com-

licated curves like higher degree polynomials curve or transcen-

ental curves like 

ngle 0 = angle (i ) + k (angle (i ) ) ∗ angle norm 

(angle (i ) ) 

+ μ(angle (i ) ) ∗ angl e 2 norm 

(angl e (i ) ) 

+ ν(angle (i ) ) ∗ angl e 3 norm 

(angl e (i ) ) 

r 

ngle 0 = angle (i ) + k (angle (i ) ) ∗ angle norm 

(angle (i ) ) 

+ μ(angle (i ) ) ∗ angl e 2 norm 

(angl e (i ) ) 

+ ν(angle (i ) ) ∗
√ 

angl e norm 

(angl e (i ) ) 

However, in practice, it is enough to use linear or quadratic

unctions. This is because as the power of the function increases,

ur method only adds to the precision of the remainder. At the

ame time, there is a systematic error in the measurement of

obb’s angle itself, and it does not make sense to pursue a sin-

le precision boost when our accuracy improvement has been less

han this systematic error. 

Therefore, our alternative error correction Net calculates the ac-

urate approximation directly while learning the K ( angle ( i ) ) param-

ters since the approximation is a linear combination of angle ′ and

ngle ′′ . 
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