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A B S T R A C T

This paper presents a real-time 3D object detector based on LiDAR based Simultaneous Localization and
Mapping (LiDAR-SLAM). The 3D point clouds acquired by mobile LiDAR systems, within the environment of
buildings, are usually highly sparse, irregularly distributed, and often contain occlusion and structural ambi-
guity. Existing 3D object detection methods based on Convolutional Neural Networks (CNNs) rely heavily on
both the stability of the 3D features and a large amount of labelling. A key challenge is efficient detection of 3D
objects in point clouds of large-scale building environments without pre-training the 3D CNN model. To project
image-based object detection results and LiDAR-SLAM results onto a 3D probability map, we combine visual and
range information into a frustum-based probabilistic framework. As such, we solve the sparse and noise problem
in LiDAR-SLAM data, in which any point cloud descriptor can hardly be applied. The 3D object detection results,
obtained using both backpack LiDAR dataset and the well-known KITTI Vision Benchmark Suite, show that our
method outperforms the state-of-the-art methods for object localization and bounding box estimation.

1. Introduction

Mobile Laser Scanning (MLS) such as Backpack Laser Scanning
(BLS) systems are increasingly being used for Autonomous Vehicles
(AVs) perception or indoor mapping (Broggi et al., 2013; Schreiber
et al., 2013; Seo et al.,2015). MLS or BLS which usually contain mul-
tiple sensors, including Light Detection and Ranging (LiDAR) or laser
scanners, optical cameras, an integrated GNSS (Global Navigation Sa-
tellite Systems), and IMU (Inertial Measurement Unit) positioning and
orientation system (POS), rapidly collect almost accurate 3D point
clouds and images over large areas. Effective processing and analyzing
this huge amount of point clouds is a very challenging task and has been
considered as an active research area. A large number of algorithms for
point cloud processing have been proposed in recent years, such as for
registration (Zai et al., 2017), segmentation (Trevor et al., 2013;
Nurunnabi et al., 2016; Wang et al., 2018), recognition (Xie et al., 2018;
Luo et al., 2019), object detection (Qi et al., 2017a) and extraction (Zai
et al., 2018; Ma et al., 2018), and semantic information processing.
Semantic information of 3D objects is not only necessary for generating

building High-Definition (HD) maps of both outdoor and indoor en-
vironments, but also an important basis for navigation of AVs and
Augmented and Virtual Reality (AR and VR) applications. Intelligently
perceiving the surrounding environment and acquiring 3D object in-
formation (object’s position, texture, pose and size) can effectively
bring further strategic guidance to smart devices (AVs, personal smart
assistants, intelligent robots, etc.). We propose a 3D object detection
method through the fusion of multi-sensor (image and point cloud) data
collected by MLS and BLS (see Fig. 2).

We identify three major challenges of 3D object detection that can
be summarized as follows.
First, presence of occlusions: MLS/BLS collects point clouds that

are usually incomplete due to occlusions generated by obstacles in
complex built environment, see Fig. 1(a). Most of the existing 3D fea-
ture-based methods assume that point clouds acquired by MLS/BLS are
consistent and complete, which is not always true and therefore do not
perform well in the presence of occlusions.
Second, existence of structural ambiguity: 3D point clouds

commonly contain structural ambiguity and are usually unorganized,
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noisy, sparse, and inconsistent. Structural ambiguity refers to different
objects having same structural features, such as pillar-like objects (e.g.,
pillars or charging posts) in an indoor environment, [see Fig. 1(b)]. This
problem of structural ambiguity often makes the existing structure-
feature-based methods ineffective.
Third, methods used in object detection: deep learning-based

methods require a large amount of manual labeling. For specific 3D
object detection, a huge training set must be prepared. In addition, to
add an object type, the deep neural networks need retrained, which
may result in decreased performance of the existing deep neural net-
works. In practical applications, the requirement for large training data
sets is a bottleneck for deep learning-based methods.

Traditional methods for object detection are generally based on
hand-crafted descriptors. Some pioneering works include: Spin Image
(SI) (Johnson and Hebert, 1999), 3D shape context (3DSC) (Frome
et al., 2004) and its improved versions (Tombari et al., 2010; Sukno

et al., 2013; Dong et al., 2017), Fast Point Feature Histograms (FPFH)
descriptor (Rusu et al., 2009), Signature of Histograms of Orientations
(SHOT) (Tombari et al., 2010), and Rotational Projection Statistics
(RoPS) (Guo et al., 2013). However, most of such hand-crafted de-
scriptors suffer from poor descriptiveness and low accuracy, because
they can catch only a partial geometric structure of a 3D object.

Very recently, machine learning has shown great progress in en-
vironmental perception tasks, such as 2/3D object detection, recogni-
tion and tracking (Ren et al., 2015; Redmon et al., 2016). With the
development of LiDAR and laser scanning systems for the acquisition of
high-density 3D point clouds, deep learning methods (e.g., CNN) have
been applied to improve 3D object detection (Chen et al., 2015; Qi
et al., 2017b; Qi et al., 2017a; Ma et al., 2019).

Most of the existing approaches for automated 3D object detection
in indoor or outdoor scene are not satisfactory. The visual perception
based online detector is a matured research topic in computer vision

Fig. 1. Main challenges of 3D object detection in point clouds: (a) incomplete 3D objects, (b) structural ambiguity between point cloud and 3D objects.

Fig. 2. Pipeline and 3D object detection results.
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and has been commonly used for robust detection of 2D objects (Liu
et al., 2016; Redmon et al., 2016; Redmon and Farhadi, 2017). But,
simply relying on a 2D image to detect a 3D object and for obtaining
high-precision depth information is considerably limited. The point
clouds generated from 2D images by the visual-SLAM methods (e.g.,
Mur-Artal et al., 2015; Engel et al., 2017; Forster et al., 2014) are re-
latively sparse and have lack of necessary 3D features. The distribution
of sparse point clouds on a small or distant object affects the accuracy of
object detection. Moreover, LiDAR derived point clouds having lack of
texture, which may cause structural ambiguity problems. Rather,
LiDAR-based SLAM algorithms (e.g., Nuchter et al., 2007; Zhang and
Singh, 2014; Hess et al., 2016) not only can accurately describe 3D
structures, but also produce accurate maps and trajectories. In this
study, we develop a multi-sensor (LiDAR and digital camera) 3D object
detector for MLS/BLS datasets. Our approach, which falls under a
probabilistic framework in a SLAM environment, takes advantage of
LiDAR-based SLAM and 2D object detection to solve the problem of
object detection in a 3D environment. Combining LiDAR-based SLAM
with the characteristics of object detection in 2D images is advanta-
geous for detecting small and distant objects. It reduces interference
from noise and errors when detecting objects in 2D images, and nar-
rows down the search space for specific 3D targets. Based on the above
idea, we propose a Simultaneous Dynamic Triangulation Mapping
(SDTM) framework. First, we use high-precision LiDAR point clouds in
LiDAR-SLAM algorithm to restore the relative relationships between
objects in 3D space and a global map. Second, we apply the SDTM
probabilistic fusion model to estimate the location and point cloud
distribution of 3D objects. Thereby, the box enclosing the specific target
is estimated using the proposed PCA (principal component analysis)
based method. Finally, in the fine-tuning step, a real-time Visual-LiDAR
SLAM and object detection framework is implemented in wide dynamic
and highly noisy SLAM environment.

The main contributions of this paper can be summarized as follows:
First, we develop a SDTM framework that combines visual and

LiDAR-based SLAM data (e.g., point clouds, and trajectories) and uses
contextual information. This framework can more effectively updates
and dynamically estimates the location and shape of 3D objects in a
highly noisy environment.
Second, we introduce a descriptor-free method (G-PO) for 3D

bounding box estimation. This method combines a PCA-based rough
oriented estimator and a generalized- Iterative Closest Point (g-ICP)
registration method for region proposal and fine-tuning.
Third, we develop an experimental verification mechanism and 3D

hybrid-SLAM-based (context sequence) object detection method ap-
plied to the point clouds acquired by our self-designed BLS system.

The rest of this paper is organized as follows: Section 2 provides a
literature review of 3D object detection. Section 3 contains details of
the proposed method. Section 4 presents experiments, results and dis-
cussion. Section 5 concludes the paper.

2. Related work

2D Object Detection: Traditionally, 2D object detection is based on
manually designed descriptor features. Viola et al. (2001) used the
Viola-Jones detector to detect sliding windows and used multi-scale
Haar features to match similarities. Dalal and Triggs (2005) used the
histogram of an oriented gradient as a detector feature, which plays a
huge role in pedestrian detection. Felzenszwalb et al. (2008) proposed
the Deformable Part-based Model (DPM), which uses hand-selected
features and divide and conquer rule to detect targets, thereby greatly
improved detection speed and accuracy. Although, in traditional works
results are acceptable, descriptiveness in the existing methods is still
not satisfactory. In deep learning, the R-CNN (Regions with Convolu-
tion Neural Networks) and Fast R-CNN (Fast Region-based Convolu-
tional Networks) target detection framework proposed by Girshick et al.
(2014). Ren et al. (2015) further improved the mean average precision

(mAP), but the framework has low computational efficiency due to the
net structure. To solve the above problems, Liu et al. (2016) proposed
the Single Shot Detector (SSD), Redmon et al. (2016) proposed the You
Only Look Once (YOLO) system, and Redmon and Farhadi (2017)
proposed an integrated deep neural network, YOLO-v3, based on R-
CNN, which improves the efficiency of the framework and accelerates
the calculation. In our work, we used YOLO-v3 to detect 2D objects.
3D Object Detection in Point Clouds: For detecting 3D objects in

point clouds, Munoz et al. (2009) proposed a functional gradient al-
gorithm to learn an Associative Markov Network (AMN) model that was
introduced by Taskar et al. (2004) for 3D point cloud semantic seg-
mentation. Based on R-CNN, Gupta et al. (2014) detected and seg-
mented 3D objects from different perspectives. Chen et al. (2015)
proposed a new method, which provides energy equations for the dif-
ferent characteristics of 3D targets and optimizes the equations to ob-
tain segmentation results. Song and Xiao (2016) proposed a Deep
Sliding Shapes method based on a 3D CNN network and presented a
multi-scale 3D Region Proposal Network (RPN) framework that uses
multiple scales to detects small targets. The above two methods have a
high detection rate in an ideal environment, but no one is good enough
in the presence of noise and occlusion. Deng and Latecki (2017) dis-
cussed this problem and extracted the appropriate expression from the
RGB-D data and, solved the problem to some extent based on the cal-
culation of the 3D box proposals and Fast R-CNN regression. Qi et al.
(2017a,b) presented the PointNet model, which defines the state-of-the-
art for 3D shape analysis.
2D and 3D Joint Estimation: Because of the characterization of a

point cloud after SLAM, the 3D feature descriptor hardly works well in
sparse, noisy, and obscured data. Identifying targets from noisy 3D data
easily leads to failure. Contrary to the methods used in 3D noisy point
cloud data, 2D object detection methods based on CNN model perform
better in 2D object detection. Because, the CNN model used in the 2D
methods, not only well-designed and pre-trained with ImageNet, but
also the image data used in these methods are denser and complete
(Song and Xiao (2016)). Therefore, combing 2D images with 3D data
has become popular to detect 3D objects. Chen et al. (2017) developed
a Multi-View 3D networks (MV3D) based frame work to handle multi-
view/sensor fusion and object detection. Ku et al. (2017) used LiDAR
point clouds and RGB images to generate features. The authors com-
bined different patterns of features to generate 3D proposals. Then
these features were applied to a RPN and a second stage target detec-
tion network. Next, they predicted the range and orientation, and fi-
nally the objects were classified in 3D space. In another study, similar to
our work, a frustum-based method (Qi et al., 2017a) was proposed. This
method first uses a frustum to obtain a relevant single-frame point
cloud in perspective field of view and then uses PointNet to segment
and extract the point cloud in the frustum search box; as a result, ef-
fectively solves the occlusion problem, greatly reduces the large-scale
search of the target point cloud and improves calculation efficiency.

3D object detection has evolved from traditional manual feature
descriptor design methods to a deep learning-based process. As far as
we know, few researchers effectively solved the problem of detecting
3D objects with sparse, noisy and obscured point cloud data, especially
in a SLAM environment with high dynamics. Inspired by the frustum-
based PointNet of Qi et al. (2017a,b), we design a 3D object position
estimation and detection algorithm based on SLAM trajectory and
mapping probability. The algorithm uses only one CNN to detect target
in 2D images, and uses probability maps to detect objects in 3D point
clouds. Also, the algorithm estimates target positions and correlations
in 3D space, which significantly increases the stability of the algorithm
and reduces computational complexity.

3. Proposed method

The new method is comprised of three main steps: (1) localize a 3D
object, (2) estimate a 3D bounding box, and (3) fine-tune. The problem
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is defined as follows:

3.1. Problem Definition

Given LiDAR point cloud and image data as input, our goal is to
localize and detect objects in 3D space. We obtain a 3D frustum from
the 2D image region through the known projection matrix. We also
estimate high-precision trajectories and establish 3D maps by using 3D
SLAM, for example, Cartographer (Hess et al., 2016), and LOAM (LiDAR
Odometry and Mapping) (Zhang and Singh, 2014). Each 3D object is
expressed by a labeled point cloud, obj x y z l( , , , )i i i and an Amodal
(Breckon and Fisher, 2005) 3D bounding box Bb x pl pu(c , cy, cz, , ),
where x y z, ,i i i is the point cloud and l is the label of each detected
object; xc , cy, cz is the center of the bounding box; pl and pu are the
lower front and upper back corners of the box, respectively.

3.2. Main framework

An architectural diagram of our proposed method is given in
Fig. 3(a). Given LiDAR and camera data, using a CNN, the framework
first generates proposed detected 2D object regions in the image. In our
work, we used YOLO-v3 to detect 2D objects. Each 2D region is then
projected onto a 3D viewing frustum, resulting in a point cloud from
LiDAR. Moreover, our method generates a 3D region probability by
SDTM, which uses SLAM trajectory results and frustum point clouds to
locate an object. From the above information, G-PO is performed for
object pose estimation and pose/position fine-tuning, and finally a 3D
bounding box is predicted.

3.3. Object localization in 3D space

The main issue for object detection is target location in wide 3D
space. Qi et al. (2017a) proposed a method, which requires only the
result of a frustum projection of a detected 2D target to carry out coarse
positioning of the target in 3D space, uses PointNet (Qi et al., 2017b) to
perform fine-grained segmentation of the point cloud inside the frustum
to detect specific target. With a known camera projection matrix, a 2D
bounding box can be lifted to a frustum that defines a 3D search space
for the object. Two advantages of this method are: (i) reducing search
space dramatically, and (ii) solving the occlusion problem well. On the
downside, there are two main shortcomings for this method: (i) this
method, based on merely a point cloud descriptor to detect an object,
can lead to detection failure when processing point clouds with noise

and ambiguity, and (ii) this method may become confused when mul-
tiple instances appear in the frustum region (Qi et al., 2017a). Con-
sidering all the above issues, we propose a novel object location
module, SDTM, which retains the above two advantages, at the same
time resolves the two disadvantages. That means, SDTM can robustly
process point clouds in the presence of noise and ambiguity. More
specifically, in a dynamic SLAM scene, SDTM projects the frustum from
different views, and to achieve robust positioning of objects in 3D space
it uses multi-frame context information and fusion of multi-sensor data.

There are three steps for implementing SDTM: (i) generating the
proposed 2D object regions in images via a 2D-CNN, (ii) obtaining a 3D
viewed frustum from the proposed 2D regions using frustum projection
and transforming this frustum region into global coordinates, and (iii)
selecting the candidate points belonging to target objects and calcu-
lating the target center based on the candidate points. In the second
step, based on the 2D detection results (denoted as P D2 ) of a 2D-CNN
and the local pose (denoted as qc) of the camera, we calculate the
frustum vertex by function :

The jth frustum vertex < >v v v v v, , , ,c p p p p1 2 3 4 of vt
j in the local co-

ordinate system for each frame Ft , t∈ time(0~ )n [the depth of frustum Dj
is estimate from prior target information and 2-D bounding box’s height
hj and fitting parameters ρ, (Eq. (1))]. Then, vt

j is transformed to Vt
j

simultaneously to the global coordinate system through the LiDAR-
Camera calibration matrix Θ and SLAM trajectory Tt (Eq. (2)). The
above expressions can be defined mathematically as,

< > =v v v v v v q p D, , , , ( , , )t
j

c p p p p c d j1 2 3 4 2

= +hD · jj (1)

= v t nV T , (0~ )t
j

t
j

t (2)

The third step is the core of SDTM. A key challenge in this step is to
extract candidate object points from foreground or background noise,
and then based on these points calculating the target center. We dy-
namically select or eliminate candidate object points following the
probabilistic iteration method from different frustum views during the
SLAM (see Fig. 4). Specifically, for each point cloud frame, p p( V)c c ,
we first transform pc to an occupied cell structure, i.e., the octomap [in
order to maximize the target positioning accuracy and the accuracy of
the detection results, we use the maximum octree resolution of the 3D
object, which is the same as the SLAM octree map (0.03m)]. Then for
the lth target object, given the sensor measurements z T1: , we apply the
following formula to calculate the updated probability zP(n| )T1: , of each
cell, n, to be occupied:

Fig. 3. (a) Diagram of the proposed framework. (b) SDTM module for object location and (c) G-PO module for 3D bounding box estimation and fine-tuning.
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Fig. 4. Illustration of SDTM, (a) Pt1 ~ Pt3 are observation points at different views on the SLAM trajectory point at different times, (b) 3D object probability model by
updating (hit or miss) each occupied cell’s probability and estimating the target center.

Fig. 5. Illustration of the fine-tuning step: red: object point cloud. blue: model point cloud. (a) Transform the model (set =v vm 0, =p pm 0) close to the object, where
pose v0 and center p0 is rough estimate by PCA and SDTM, respectively. (b) Rough transformed model, and (c) Fine-tuning the final pose v and centerp by g-ICP
registration. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. (a) Experimental environment in an underground parking lot. (b) Our self-design BLS consisting of (1) two Velodyne VLP-16 laser scanners, (2) XSENS 10-
DoF IMU and (3) a stereo camera with a global shutter sensor.
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= = +P n L n z L n z L n z( ) ( | ) ( | ) ( | )T
l

T
l

T
l

1: 1: 1 (3)

=where L n log P n
P n

( ) ( ( )
1 ( )

)

= +and L n z L n z L n z( | ) ( | ) ( | )T
l

T hit
l

T miss
l

1: , ,

Here, zT
l denotes cells that belong to the Tth frustum, V, that hits the

lth object, =T k{1, 2, , }l ; kl is the number of V’s that hit the lth object; n
denotes the nth cell; L is the log-odds value calculated by the logic
function. Note that L z(n| )T

l
1: actually consists of two parts (Eq. (3)): the

first part, L z(n| ),T hit
l
, is the positive value of cells that are hit by V. And

the second part, L n z( | ),T miss
l
, is the negative value of the occupied cells

that are not within the region of V at the current frame. By a hit/miss
operation, we iteratively increase/decrease the probability of object/
non-object points (foreground/background noise) occupying a cell.
Then, given the threshold, τ, we extract the lth candidate cells,C ,T

l of the
target as follows:

= = >( )C c P c L c V{ | ( ) | .T
l

j
l

j
l

j
l

k
l
1: t (4)

Next, we estimate the target center, Pcenter
j , through the LiDAR point

cloud, pt , inside the frustum region. To avoid the noise from non-tar-
gets, we use an iterative weighted mean value strategy to estimate the
center point. We calculate the initial candidate center, Pcenter

' , from point
cloud, pc, in the frustum region, project pc onto the octomap, and cal-
culate the occupation probability, fi. When the next frame appears, we
perform a nearest neighbor check for each incoming point to the can-
didate center point set P P P P[ , , , ]t t t

j1 2 . If no neighbor is found, then the
region is considered as a candidate center point and joins the candidate
center point queue; henceforth, this region is considered activated. If a
neighbor is found, i.e. when the distance between the new center, P ,center

t

and the candidate center, Pcenter
t 1 , is less than the threshold, ϕ, we lock

Table 1
Real world dataset acquired by our BLS system.

Data-set Dimensions No. of Scans
(15 Hz)

No. of Images
(20 Hz)

IMU (200 Hz)

PL#0 34×64×6.5 3364 4238 √
PL#1 34×64×6.5 3091 3897 √
PL#2 25×80×7.5 1601 2017 √
PL#3 30×30×7.5 1269 1599 √

Fig. 7. Visualization of the error distribution of object center points localization in our BLS data-set.

Table 2
3D object detection AP D3 on the BLS dataset in 0.5/0.7 IoU. AVOD (J. Ku et al.,
2017) and F-PointNet (Qi et al., 2017) (previous opensource state-of-the-art)
are based on 2D and 3D CNNs.

Method IoU=70% IoU=50%

APvehicle APpillar APQRcode APvehicle APpillar APQRcode

AVOD (%) 58.52 53.03 32.30 78.30 72.52 49.21
F-PointNet(%) 62.71 58.45 39.11 78.80 75.60 50.72
Ours (%) 61.15 52.33 66.06 65.03 73.48 75.40
Ours (fine-tuning) 61.97 67.52 61.55 76.82 81.31 70.04
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the target and perform target association and tracking, and iteratively
update the center point, Pcenter

t , and region probability by using a
weighted mean value strategy (Eq. (5)).

The center of the jth object is calculated as follows:

=

= +
=

=

P f p

L n v L n v p

· [( · · )· ]

[( · ·[ ( | ) ( | )])· ]

center
t

n i
n

d i c
t

n i
n

d T
l

T
l

c
t

1
0

1

1
0

1
1: 1

j i

i (5)

where

= =d P P p C C C,i center
t

center
t

i
t

t
j

t
j

t
j1

1j j

Here, we combine the occupation probability, f ,i and the distance,
d ,i between the current point cloud and the old center, Pcenter

t 1
j , as the

weight; σ is a normalization parameter. The proposed algorithm is
summarized as follows.

Algorithm 1: = SDTMP o L V q P, , ( , , ):Cj
t

j
t

j t
j

t cj
t 1 Iteratively estimate jth object oj

t ’s

center PCj
t at time t Here PCenterj

t is abbreviated as PCj
t

Input: V q P, ,t
j

t cj
t 1

Output: P o L, ,Cj
t

j
t

j

for = =j 0; j s; j! s do
q Frustum Filter V q_ ( , );j

t
t
j

t

=P q ;Cj
t

n i
s

j
t1

0
if = =t 0 then

Push centerQueue P( [ ], );Cj
t

else
for = =j 0; j s; j! s do
if <Distance centerQueue P( [ ], )Cj

t then

P Pd ;i cj
t

cj
t1

+p p p ;c
t

c
t

c
t 1

= =P f p[( ) ];Cj
t

n i
n

di i
c

t1
0

1

updateCenter centerQueue j P( [ ], );Cj
t

objectAssociation p L( , );c
t

j
else

Push centerQueue P( [ ], );Cj
t

Fig. 8. Comparison of localization errors (a to c), and AP D3 scores (d to f) generated by AVOD/F-PointNet and our method on four datasets (PL to PL0 3).
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return P o L, ,Cj
t

j
t

j

This strategy, which naturally filters the far points, assumes that the
probable highest occupation point is most likely to be calculated as the
center, thereby avoiding the central calculation error caused by

foreground/background noise. From the nearest neighbor relationship,
the context association can be determined, i.e. the LiDAR point cloud
objects in the front and rear frames within a frustum region can be
labeled and associated. Algorithm.1 gives the specifics for SDTM as
follows: using frustum, Vt

j , point cloud, qt , and last center, P ,center
t 1

j as
input, iteratively estimate the center, Pcenter

t
j , of the jth object, ot

j, at
time, t, and then association by Lj.

3.4. 3D bounding box estimation

To estimate the Orientation Bounding Box (OBB) of an object in a
scene with high noise, we propose a Generalized-ICP-based (Segal et al.,
2009) Probability Orientation (GPO) estimation method, which com-
bines Principal Components Analysis (PCA) (Jolliffe and Cadima, 2016)
for rough pose estimation and probabilistic model registration for pose-
position fine-tuning. Here the size of the bounding box is set by a priori
number.

Fig. 9. (a) 2D detection results. (b) and (c) Examples of SLAM and detection results of our method on BLS dataset.

Table 3
3D object detection AP D3 , APBEV on KITTI dataset in 0.5/0.7 IoU. AVOD (J. Ku
et al., 2017) and F-PointNet (Qi et al., 2017) algorithms that are based on 2D
and 3D CNNs.

Method Data_0009 Data_0022

AP 0.7D3 AP 0.5D3 APBEV AP 0.7D3 AP 0.5D3 APBEV

AVOD (%) 65.05 73.53 78.82 58.39 71.52 78.21
F-PointNet (%) 67.75 76.45 80.11 57.22 69.60 74.72
Ours (%) 66.15 72.33 76.06 55.56 67.48 77.40
Ours (fine-tuning) 68.97 75.52 81.55 61.12 71.31 80.04
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(a) Object association: Because we use frustums to associate and track
objects in 3D space, we can merge and label the point cloud in-
formation from each frame of a frustum. Assuming qt

j is the
jthfrustum point cloud of each frame, t, according to information in
previous section, we obtain the frustum tracking results to associate
each point cloud, q ,t

j with 3D object, Fj, using label Lj. Therefore,
using the SLAM trajectory T, t , we merge these associated point
clouds into the global coordinate system to obtain the complete
target point cloud, Fj, and the corresponding label, Lj, as follows:

= < > = < >F q L T q L, ( · ), .j
j

j

t

t t
j

j
(6)

(b) Rough oriented estimate:

Given the central point, Pj
c, and complete point cloud information,

Fj, of an object, we apply the classical PCA to roughly estimate the
orientation of the 3D box. PCA is a technique that uses an orthogonal
transformation (a rotation) to convert a set of observations of possibly
correlated variables, into a set of values of linearly uncorrelated vari-
ables called principal components. In doing so, PCA accomplishes three
things: (i) isolates noise, (ii) eliminates effects of rotation, and (iii)
separates out the redundant degrees of freedom. In statistics, the cov-
ariance between the two variables measures the degree of the linear
relationship between the two variables. Small values indicate that the
variables are independent. Eq. (7) describes the rough OBB estimation:

= =F x y z Q Q~ diag( , , )j j i i i j
1

=v v imax{ }; (1~3)obj i (7)

Given the covariance matrix, j, of the target point cloud, Fj, the
large diagonal elements correspond to strong signals; the off-diagonal
elements indicate the covariances between the variables. Large off-di-
agonal elements correspond to distortions in the data. In order to
minimize distortion, the covariance matrix should be changed, such
that the off-diagonal elements are close to zero. Hence, we diagonalize
the covariance matrix j.

Let Vjdenote the jthcolumn of eigenvector matrix, Q. After diag-
onalizing j, the maximum eigenvectors vobjof the covariance matrix
compose the rough orientation of our OBB.

(c) Fine-tuning: Because of foreground and background noise and
data-deficiency problems appear in a SLAM scene, poor geometric
features easily affect the stability of the above algorithm. To achieve

a more accurate and robust estimation, inspired by the g-ICP (Segal
et al., 2009) algorithm, we introduce a probabilistic framework (Eq.
(9)) to the point cloud and model alignment by using the local point
cloud surface variance as the weight of registration, which modifies
the PCA estimated error caused by the lack of features in the sparse
point clouds.

Specifically, first we transform our object model, m ,k into the
neighbor of Fj by the center position, P ,cj

t of Fj and rough pose, vobj. After
registering the nearest neighbor models, mk and Fj, we fine-tune the
estimated error to further improve the estimated attitude results of the
bounding box (Fig. 5). The algorithm is described in detail as follows:

According to the probabilistic model of the g-ICP, we consider the
noise of mk and Fj, which are then generated according to mk~ N (mk,
C )k

mk and Fj~ N (Fj, C )j
Fj . In this case, Ck

mkand Cj
Fjare covariance matrices

associated with measured point clouds, mkand Fj. Here, considering a
small transform, ΔTi , between model, m ,k and target point cloud, Fj, and
the distribution from which dj

T is drawn, we define d asfollows:j
T

=d m FTj
T

k j; mkand Fj are assumed to be drawn from independent
gaussians; thus, we have the following:

N +( )d m T F C T C T~ ( ) , ( ) ( )j
T

k j j
F

k
m Tj k

N= C T C T(0, ( ) ( ) ).j
F

k
m Ti k (8)

Now MLE is used to iteratively compute ΔT as follows:

= +
=

T d C T C T darg min ( )i
T j

n

j
T

k
m

i j
F

i
T

j
T

1

( ) 1 ( )

i

i T k j i

(9)

This defines the key step of the fine-tuning. The nearest twenty
points are used as the local neighborhood to calculate the variance of
every point.

4. Experiments and discussion

To compare our method with current state-of-the-art methods, ex-
periments were conducted with two different types of datasets: (i) our
own datasets were captured by our backpack system in underground
parking lots, which contain three target objects, (vehicles, pillars and
QRCodes), (ii) KITTI (Geiger et al., 2012) benchmark datasets, which
have only vehicles. To do the experiments, the algorithms were run on a
computer with 3.1 GHz quad cores and 6 GiB memory, with Linux
Ubuntu 16.04 distribution and ROS Kinetics (Quigley et al., 2009). Our

Fig. 10. Example of SLAM and 3D detection results of our method on KITTI benchmark in (a) 2011-09-26-drive-0009 dataset and (b) 2011-09-26-drive-0022 dataset.
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quantitative results demonstrate the accuracy of our method for loca-
lization, and analysis the AP/mAP of 3D IoU on above 50% and 70%,
respectively.

(a) BLS dataset: The first experiment was performed with the dataset
collected by our own laser scanning systems: a self-designed BLS
consisting of a camera, dual VLP-16 LiDAR, a stereo camera and an
IMU (Fig. 6). The system uses two Velodyne VLP-16 laser scanners,
each composed of 16 laser-detector pairs individually aimed in 2°
increments over the 30° (−15° to −15°) field of view of the sensor.
One laser scanner is placed horizontally and the other is mounted at
45° below it. A stereo camera with two global shutter sensors is
mounted on the middle of the backpack (For algorithm validation
and reduced complexity, we installed only one stereo camera on the
right side of the backpack).

Using the data described in Table 1, experiments were conducted in
four different underground parking lots. The target-free automatic ca-
libration algorithm (Gong et al., 2018) was used to calibrate VLP-16;
the target-based semi-automatic method (Dhall et al., 2017) was used to
calibrate the camera and VLP-16. We synchronized the dataset by using
the timestamp before we process. The entire coordinate system of the
sensors was calibrated to the horizontal LiDAR. LOAM (Zhang and
Singh, 2014) and YOLOv3 (Redmon and Farhadi, 2017), two rapid and
robust algorithms were used for mapping and detecting 2D objects,
respectively. The average point density of the underground garage data
is about 1,800 points/m2, and the precision of the data is 3–5 cm. Si-
milar with KITTI, we manually labeled the objects in the form of 3D
bounding boxes as ground truth. The ground truth data were saved as
binary matrices.

The results of the experiments of four underground parking lot
datasets (see Fig. 7) indicate the accuracy of center point estimation.
For each group, SDTM and fine-tuning results are compared with
ground truth. As expected, the iterative weighted mean method (SDTM)
locates targets well and better approaches the actual center point after
fine tuning. Table 2 details the numerical analysis for each dataset. For
the BLS dataset, the average positioning accuracy of our algorithm is
33.1 cm, which compared with F-PointNet is an improvement.
Fig. 8(a)–(f) shows the results of the proposed algorithm in real-time
simultaneous mapping and target location/detection for the BLS da-
taset.

IoU is defined as

=IoU DetectionResult GroundTruth
DetectionResult GroundTruth

. (10)

In Table 2, the object detection average accuracy (AP D3 ) of the state-
of-art algorithms are compared with our methods at 50% and 70% IoU
thresholds, respectively. IoU was used as the evaluation criteria and
calculated according to Eq. (10). Benefitting from a comprehensive
estimation of multi-frame data for different measurement views, our
algorithm attains an AP of 81.31% in APpillar ; the overall APQRCode is also
over 75.40%. Current state-of-art algorithms focus mainly on un-
manned scenes, which use single frame information for object detec-
tion. Whereas, our algorithm uses a multi-frame estimation in the SLAM
scenario. Thus, because of the different scenarios and algorithm struc-
tures, results from our experiments cannot be compared with the uni-
fied standard. For F-PointNet, the detection results of each frame are
used to calculate IoU and then calculate the average IoU as the final
result for the entire multi-frame scene; in our algorithm, IoU is calcu-
lated after SLAM. Fig. 9(a), (b) show the vehicle detection results of our
method on BLS dataset. Our method without 3D CNNs outperforms the
existing methods.

(b) KITTI benchmark for vehicle detection: This benchmark has
different kinds of datasets for different tasks (2/3D object detection,
odometry, object tracking, etc.). Many researchers used this dataset

as a benchmark. However, this dataset is a discrete random static
scene, which is unsuitable for our continuous scene fusion and es-
timation problems. Thus, two scenes (2011-09-26-drive-0009 and
2011–09-26-drive-0022) from the raw dataset were used for com-
parison, which contains 2/3D bounding box labels (tracklets) in
images and point clouds. The dataset properties are given on Geiger
et al. (2012). Here, the standard test method (Geiger et al., 2012)
was used for AVOD and F-PointNet tests. In our method, the ground
truth was transformed by tf (GPS data) to the global coordinate
system. To verify the AP/mAP, IoU was calculated for each object
after SLAM.

Table 3 compares the vehicle detection AP D3 and APBEV (BEV: Bird’s
Eye View) with different methods. Since the objects were detected by a
moving observer, occlusion did not exist. The detection results were not
obtained at three different levels (easy, moderate, hard). Rather, mAP
was verified after completing the SLAM operation. Our object detection
AP D3 /APBEV has achieved 75.52% and 81.55% accuracy, respectively.
Fig. 10(a) and (b) show the vehicle detection results using the KITTI
dataset. Results show that without 3D CNNs, the proposed algorithm
significantly better performs than the existing methods.

5. Conclusion

We dealt the problems associated with multi-sensor-based 3D object
detection algorithms in a SLAM environment. Since point clouds ac-
quired by MLS/BLS systems are usually sparse, and incomplete due to
limited scanning position and routes, and occluded by obstacles, such
problems often lead to nonrobust results. In addition, structural ambi-
guity and the requirement for massive labeled data limit the application
of 3D-feature-based methods for efficient object detection.

Point cloud features are often ambiguous and unreliable. Manual
labeling of objects in huge amount of point clouds is expensive, la-
borious and sometimes even impossible. We investigated the above
problems of point cloud data, and explored the possibility of detecting
3D objects based on a probabilistic framework, and finally propose a
three-stage approach to automate locating, bounding, and fine-tuning
of 3D objects in noisy, unstructured, sparse 3D MLS/BLS point clouds.

At the locating stage, we develop a frustum-based probabilistic
framework (SDTM) to locate 3D objects. Results of the experiments
demonstrate that by using only 2D object detection results, our method
automatically locates 3D objects in large scenes with the localization
error of 33.1 cm. In particular, based on 3D feature descriptors the new
algorithm is superior to current methods for detecting small and sparse
objects (such as pillars and QRCodes).

Later, we develop a PCA-based rough estimate algorithm and G-PO
fine-tuning to estimate 3D bounding boxes. Results show that, without
using the feature method, performance of the proposed algorithm is
close to and even better than that of state-of-the-art methods. Our
method, achieving 75.52% AP D3 and 81.55% APBEV for 3D car detection
under 50% IoU in KITTI benchmark, which does not require a large
amount of training data, is universally strong and can be applied di-
rectly to detect various targets.

The proposed method has a few limitations: (i) the PCA rough
match used here is sometimes not robust because of noise in the
frustum, which often leads to a lower IoU score, (ii) the developed
framework is suitable only for detecting static objects, rather than
moving objects. To resolve the above limitations and to improve the
performance of 3D object detection, future work will focus on com-
bining appropriate model evaluation methods with unsupervised
learning.

Acknowledgements

This work was supported by the National Natural Science
Foundation of China under Grants No. 41871380, 41471379, and

Z. Gong, et al. ISPRS Journal of Photogrammetry and Remote Sensing 159 (2020) 90–100

99



61771413. The first author acknowledges the China Scholarships
Council for providing doctoral scholarship (No. 201806310155).

References

Breckon, T.P., Fisher, R.B., 2005. Amodal volume completion:3D visual completion.
Comput. Vis. Image Underst. 99 (3), 499–526.

Broggi, A., Buzzoni, M., Debattisti, S., Grisleri, P., Laghi, M.C., Medici, P., Versari, P.,
2013. Extensive tests of autonomous driving technologies. IEEE Trans. Intell. Transp.
Syst. 14 (13), 1403–1415.

Chen, X., Kundu, K., Zhu, Y., Berneshawi, A.G., Ma, H., Fidler, S., Urtasun, R., 2015. 3D
object proposals for accurate object class detection. In: Advances in Neural
Information Processing Systems. pp. 424-432.

Chen, X., Ma, H., Wan, J., Li, B., Xia, T., 2017. Multi-view 3D object detection network for
autonomous driving. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition. pp. 1907-1915.

Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection. In:
2005 IEEE Conference on Computer Vision and Pattern Recognition, pp. 886-893.

Deng, Z., Latecki, L. J., 2017. Amodal detection of 3D objects: Inferring 3D bounding
boxes from 2D ones in RGB-depth images. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition. pp. 2.

Dhall, A., Chelani, K., Radhakrishnan, V., Krishna, K. M., 2017. LiDAR-camera calibration
using 3D-3D point correspondences. arXiv preprint: 1705.09785.pp.

Dong, Z., Yang, B., Liu, Y., Liang, F., Li, B., Zang, Y., 2017. A novel binary shape context
for 3D local surface description. ISPRS J. Photogramm. Remote Sens. 130, 431–452.

Engel, J., Koltun, V., Cremers, D., 2017. Direct sparse odometry. IEEE Trans. Pattern Anal.
Mach. Intell. 40 (3), 611–625.

Felzenszwalb, P., McAllester, D., Ramanan, D., 2008. A discriminatively trained, multi-
scale, deformable part model. In: 2008 IEEE Conference on Computer Vision and
Pattern Recognition. pp. 1-8.

Forster, C., Pizzoli, M., Scaramuzza, D., 2014. SVO: Fast semi-direct monocular visual
odometry. In: IEEE International Conference on Robotics and Automation, pp. 15-22.

Frome, A., Huber, D., Kolluri, R., Bulow, T., Malik, J., 2004. Recognizing objects in range
data using regional point descriptors. In: 2004 European Conference on Computer
Vision. Springer, pp. 224-237.

Geiger, A., Lenz, P., Urtasun, R., 2012. Are we ready for autonomous driving? The KITTI
vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3354-3361.

Girsshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In: 2014 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 580-587.

Gong, Z., Wen, C., Wang, C., Li, J., 2018. A target-free automatic self-calibration approach
for multibeam laser scanners. IEEE Trans. Instrum. Meas. 67 (1), 238–240.

Guo, Y., Sohel, F., Bennamoun, M., Lu, M., Wan, J., 2013. Rotational projection statistics
for 3D local surface description and object recognition. Int. J. Comput. Vision 105 (1),
63–86.

Gupta, S., Grishick, R., Arbelae, P., Malik, J., 2014. Learning rich features from RGB-D
images for object detection and segmentation. In: 2014 European Conference on
Computer Vision. Springer, pp. 345-360.

Hess, W., Kohler, D., Rapp, H., Andor, D., 2016. Real-time loop closure in 2D LiDAR
SLAM. In: 2016 IEEE International Conference on Robotics and Automation, pp.
1271-1278.

Johnson, A.E., Hebert, M., 1999. Using spin images for efficient object recognition in
cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21 (5), 433–449.

Jolliffe, I.T., Cadima, J., 2016. Principal component analysis: A review and recent de-
velopments. Philos. Trans. Roy. Soc. A: Math., Phys. Eng. Sci. 374 (2065).

Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S., 2017. Joint 3D proposal gen-
eration and object detection from view aggregation. In: 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1-8.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C-Y., Berg, A.C., 2016. SSD:
Single shot multibox detector. In: 2016 European Conference on Computer Vision.
pp. 21-37.

Luo, Z., Li, J., Xiao, Z., Mou, G.Z., Cai, X., Wang, C., 2019. Learning high-level features by
fusing multi-view representation of MLS point clouds for 3D object recognition in
road environments. ISPRS J. Photogramm. Remote Sens. 150, 44–58.

Ma, L., Li, J., Li, Y., Zhong, Z., Chapman, M., 2019. Generation of horizontally curved
driving lines in HD maps using mobile laser scanning point clouds. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. https://doi.org/10.1109/JSTARS.2019.2904514.

Ma, L., Li, Y., Li, J., Wang, C., Wang, R., Chapman, M.A., 2018. Mobile laser scanned
point-clouds for road object detection and extraction: A review. Remote Sens. 10
(10), 1531.

Munoz, D., Bagnell, J.A., Vandapel, N., Hebert, M., 2009. Contextual classification with
functional max-margin Markov networks. In: 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 975-982.

Mur-Artal, R., Montiel, J.M.M., Tardos, J.D., 2015. ORB-SLAM: a versatile and accurate
monocular slam system. IEEE Trans. Rob. 31 (5), 1147–1163.

Nuchter, A., Lingemann, K., Hertzberg, J., Surmann, H., 2007. 6D SLAM 3D mapping
outdoor environments. J. Field Rob. 24 (8–9), 699–722.

Nurunnabi A., Belton, D., West, G., 2016. Robust segmentation for large volumes of laser
scanning 3D point cloud data. IEEE Trans. Geosci. Remote Sens. 54(8), pp.
4790–4805.

Qi, C.R., Su, H., Mo, K., Guibas, L. J., 2017a. Frustum PointNets for 3D object detection
from RGB-D data. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 918-927.

Qi. C.R., Su, H., Mo, K., Guibas, L.J., 2017b. PointNet: Deep learning on point sets for 3D
classification and segmentation. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 652-660.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A. Y.,
2009. Ros: An open-source robot operating system. In: ICRA Workshop on Open
Source Software. Vol. 3. Kobe, Japan, pp. 5.

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, real-
time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition. pp. 779-788.

Redmon, J., Farhadi, A., 2017. YOLO 9000: Better, faster, stronger. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition. pp. 7263-7271.

Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster R-CNN: Towards real-time object de-
tection with region proposal networks. In: Advances in Neural Information Processing
System. pp. 91-99.

Rusu, R. B., Blodow, N., Beetz, M., 2009. Fast point feature histograms (FPFH) for 3D
registration. In: 2009 IEEE International Conference on Robotics and Automation. pp.
3212-3217.

Schreiber, M., Knoppel, C., Franke, U., 2013. LaneLoc: Lane marking based localization
using highly accurate, maps. In: 2013 IEEE Intelligent Vehicles Symposium, pp. 449-
454.

Segal, A., Haehnel, D., Thrun, S., 2009.Generalized-icp. In: Robotics: Science and
Systems. Vol. 2. pp. 435.

Seo, Y.W., Lee, J., Zhang, W., Werrergreen, D., 2015. Recognition of highway work zones
for reliable autonomous driving. IEEE Trans. Intell. Transport. Syst. 16 (2), 708–718.

Song, S., Xiao, J., 2016. Deep sliding shapes for Amodal 3D object detection in RGB-D
images. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition. pp.
808-816.

Sukno, F.M., Waddington, J.L., Whelan, P.F., 2013. Rotationally invariant 3D shape
contexts using asymmetry patterns. Proc. GRAPP. 2, 335.

Taskar, B., Guestrin, C., Koller, D., 2004. Max-margin Markov networks. In: Advances in
Neural Information Processing System. pp. 25-32.

Tombari, F., Salti, S., Di Stefano, L., 2010. Unique shape context for 3D data description.
In: ACM Workshop on 3D Object Retrieval, pp. 57-62.

Trevor, A. J., Gedikli, S., Rusu, R. B., Christensen, H. I., 2013. Efficient organized point
cloud segmentation with connected components. In: Semantic Perception Mapping
and Exploration. pp.1-6.

Viola, P., Jones, M., 2001. Rapid object detection using a boosted cascade of simple
features. In: 2001 IEEE Conference on Computer Vision and Pattern Recognition. pp.
21-27.

Wang, C., Wen, C., Hou, S., Gong, Z., Li, Q., Sun, X., Li, J., 2018. Semantic line frame-
work-based indoor building modeling using backpacked laser scanning point clouds.
ISPRS J. Photogramm. Remote Sens. 143, 150–166.

Xie, S., Liu, S., Chen, Z., Tu, Z., 2018. Attentional shape context net for point cloud
recognition. In: IEEE Conference on Computer Vision and Pattern Recognition. pp.
4606-4615.

Zai, D., Li, J., Guo, Y., Cheng, M., Huang, P., Cao, X., Wang, C., 2017. Pairwise regis-
tration of TLS point clouds using covariance descriptors and a non-cooperative game.
ISPRS J. Photogramm. Remote Sens. 134, 15–29.

Zai, D., Li, J., Guo, Y., Cheng, M., Lin, Y., Luo, H., Wang, C., 2018. 3D road boundary
extraction from mobile laser scanning data via super voxels and graph cuts. IEEE
Trans. Intell. Transport. Syst. 19 (3), 802–813.

Zhang, J., Singh, S., 2014. LOAM: Lidar odometry and mapping in real-time. In: Robotic:
Science and System. pp. 9.

Z. Gong, et al. ISPRS Journal of Photogrammetry and Remote Sensing 159 (2020) 90–100

100

http://refhub.elsevier.com/S0924-2716(19)30253-9/h0005
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0005
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0010
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0010
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0010
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0040
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0040
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0045
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0045
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0075
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0075
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0080
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0080
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0080
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0095
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0095
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0100
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0100
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0115
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0115
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0115
https://doi.org/10.1109/JSTARS.2019.2904514
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0125
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0125
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0125
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0135
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0135
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0140
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0140
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0195
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0195
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0205
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0205
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0230
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0230
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0230
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0240
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0240
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0240
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0245
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0245
http://refhub.elsevier.com/S0924-2716(19)30253-9/h0245

	A Frustum-based probabilistic framework for 3D object detection by fusion of LiDAR and camera data
	Introduction
	Related work
	Proposed method
	Problem Definition
	Main framework
	Object localization in 3D space
	3D bounding box estimation

	Experiments and discussion
	Conclusion
	Acknowledgements
	References




