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a b s t r a c t 

Text detection is a prerequisite of text recognition, and multi-oriented text detection is a hot topic re- 

cently. The existing multi-oriented text detection methods fall short when facing two issues: 1) text 

scales change in a wide range, and 2) there exists the foreground-background class imbalance. In this 

paper, we propose a scale-robust deep multi-oriented text-detection model, which not only has the ef- 

ficiency of the one-stage deep detection model, but also has the comparable accuracy of the two-stage 

deep text-detection model. We design the feature refining block to fuse multi-scale context features for 

the purpose of keeping text detection in a higher-resolution feature map. Moreover, in order to miti- 

gate the foreground-background class imbalance, Focal Loss is adopted to up weight the hard-classified 

samples. Our method is implemented on four benchmark text datasets: ICDAR2013, ICDAR2015, COCO- 

Text and MSRA-TD500. The experimental results demonstrate that our method is superior to the existing 

one-stage deep text-detection models and comparable to the state-of-the-art text detection methods. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Because text conveys high-level semantic information, extract-

ng text information from natural scene images is increasingly de-

anded in numerous applications such as automatic driving, scene

nderstanding, machine reading, and so on. Text detection is the

rerequisite of text recognition and recently multi-oriented text

etection becomes an active topic in the field of computer vision. 

With the rising of deep learning [1] , a breakthrough has been

ade in natural scene text detection. Most existing text detec-

ion methods based on deep learning have achieved prominent re-

ults which are much better than traditional text detection meth-

ds with a large margin [2,3] . According to Lyu et al. [4] , they are

ivided into three categories: two-stage deep text detection, one-

tage deep text detection, and deep text segmentation. Two-stage

eep text detection methods evolve from Faster-RCNN [5] which

rstly generate the proposal regions by Region Proposal Network

RPN) in the first stage and then classify the proposal regions us-

ng a convolutional neural network. One-stage deep text detection

ethods directly select proposal regions in feature maps rather

han using RPN, which leads to high computational efficiency
∗ Corresponding author. 
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6] . The representative methods are EAST [7] and TextBoxes++

8] evolving from one-stage object detection methods such as SSD

9] and YOLO [10] . The third class of text detection methods im-

lement deep semantic segmentation model for text detection,

uch as SegLink [11] and PixelLink [12] . It is recognized that the

egmentation problem is more complex than the object detection

roblem. In Fig. 1 , we give the comparison results of the three cat-

gories of text detection methods in terms of F-score and Frame

er Second (FPS). It is obvious that one-stage text-detection meth-

ds generally have an advantage in speed but have trailed the de-

ection accuracy of two-stage text-detection methods. And deep

ext-segmentation methods are usually time-consuming with bet-

er text-detection accuracy. 

Nevertheless, most existing text-detection methods are not ro-

ust when facing the two situations: 1) the text scales change

n a large range. Few deep models can solve the scale-robustness

n a single model. 2) The distribution of foreground-background

lasses is imbalanced, which lets down the detection accuracy of

eep text-detection models. Furthermore, the one-stage deep text-

etection methods have room to improve the text detection accu-

acy, though they have the potential to be fast and simple. 

In this paper, we propose the Scale Robust Deep oriented-Text

etection network (SR-Deeptext) which is robust to the change

f text scales and mitigate the class imbalance. SR-Deeptext is

 one-stage deep text-detection model. Due to the potential of

AST to be fast and superior in text detection performance,

e choose EAST as our baseline. However, the downsampling
bust deep oriented-text detection network, Pattern Recognition, 
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Fig. 1. Comparison of different methods on ICDAR2015. Yellow circles: 

segmentation-based methods; Green triangles: two-stage methods; Blue squares: 

one-stage methods; Red square: Our method. The one-stage methods are faster 

than most of two-stage methods and segmentation-based methods, but less accu- 

rate. Our method strikes a tradeoff between speed and accuracy. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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operation in EAST makes the feature maps smaller and the recep-

tive field bigger, which causes that the feature maps of small size

in the deeper layers go against the small object detection. Thus,

we improve the feature fusion strategy to keep text detection in

a high-resolution feature map. We choose the ResNet50 [13] as

the backbone of our model. As it is observed that high resolu-

tion favors recognition in [12] , we embed up-sampling layers in

the network rather than multi-scale input, which avoids high com-

putational complexity compared with multi-scale deep models. We

design the refining block which includes the Residual Convolution

Unit (RCU) and Chained Residual Pooling (CRP) to improve the pre-

diction by using long-range residual connection. Moreover, in or-

der to solve the foreground-background class imbalance problem,

we use the Focal Loss [14] which focuses on the hard samples by

down-weighting the well-classified proposal regions. As shown in

Fig. 1 , our method improves the detection accuracy compared with

state-of-the-art one-stage text detection methods and achieves

the better comprehensive criterion in detection accuracy and

speed. 

The contributions of our method are three-fold. 1) We pro-

pose the scale robust deep model for multi-oriented text detection,

which not only has the potential of one-stage deep text-detection

model to be fast but also has comparable accuracy to two-stage

deep text-detection models. 2) The Focal Loss, which focuses on

the hard samples by up-weighting the hard-classified samples,

is employed in training the proposed deep model to avoid the

foreground-background class imbalance. Our method avoids the

foreground-background class imbalance. 3) Unlike the mainstream

text-detection methods which use multi-scale input to deal with

multi-scale problems, we design the feature refining block includ-

ing the up-sampling layers, RCU and CRP to fuse multi-scale con-

text features for keeping the text detection in the higher-resolution

feature map, which leads to better detection accuracy. 

The rest of this paper is organized in the following. In Section 2 ,

related works on text detection are briefly reviewed. In Section 3 ,

the proposed deep model is detailed. Experimental results are

given and limitations are discussed in Section 4 and Section 5 . Fi-

nally, we conclude this paper in Section 6 . 
Please cite this article as: Y. Zheng, Y. Xie and Y. Qu et al., Scale ro
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. Related work 

In recent years, natural scene text detection has made great

rogress with the rapid development of deep learning. The re-

earch of text detection becomes deeper, and the study of text

etection evolves from the horizontal text detection to the multi-

riented text detection [12,13] and further to the arbitrary-shape

ext detection [15,16] . As mentioned in Section 1 , the existing deep

ext-detection methods can be divided into three categories: two-

tage deep models, one-stage deep models and the deep segmenta-

ion models. In the following, we firstly make a brief introduction

o the popular deep object-detection models and then introduce

he three categories of text detection methods. 

The existing deep object-detection deep models include two-

tage deep models and one-stage deep models. Faster-RCNN [5] is

 typical two-stage deep object-detection model, and in the first

tage it obtains the candidate region of the target through RPN

nd then use a convolutional neural network to classify the can-

idate regions and make the position prediction. SSD [9] and

OLO [10] are famous one-stage deep frameworks for general

bject detection. They generate the proposal regions directly in

eature maps rather than using RPN. One-stage object detection

ethods usually have high computational efficiency [6] . Most

ext detection methods evolve from the general object detection

ramework. 

Two-stage text detection methods are draw from two-stage

eep object-detection models which are charactered by RPN. In-

epText [17] is proposed to use deformable PSROI for multi-

riented text detection, which makes the sampling field flexible

nd adaptable. Including the frequently-used loss functions: the

lassification loss and the position loss, it introduces the segmenta-

ion loss. However, the network speed is not satisfactory due to the

ntroduction of deformable convolution. Fast oriented text spotting

odel (FOTs) [18] is a unified trainable deep model which simul-

aneously detects and recognizes the text and uses the traditional

lassification loss and regression loss. Fused text segmentation net-

orks (FTSN) [19] is proposed to detect multi-oriented text, which

ses a two-stage object detection module followed by a text in-

tance segmentation module. The loss function is the summation

f the RPN loss function, the classification loss function and the

egression loss function. In addition, sliding line point regression

SLPR) [20] is a deep model for regressing the coordinates of the

oints on the edge of the text line, which is even effective at cap-

uring text in arbitrary shapes. A new regression loss function is

esigned which is added to the traditional loss functions for text

etection. IncepText and FOTs use multi-scale models to solve the

roblem of scale robustness. Moreover, all the mentioned methods

se the multi-task learning to improve the accuracy of text detec-

ion. 

Similarly, the one-stage text-detection deep models evolves

rom one-stage deep object-text models. EAST [7] merges the con-

ext information from multi-scale feature maps for dense per-pixel

rediction and uses two schemes for the location prediction: ro-

ated box (RBOX) and quadrangle (QUAD). RBOX can predict the

ext angle and distance from the pixel to the four boundaries of

he minimum enclosing bounding box, while QUAD can directly

redict the four corners of the text region. EAST becomes the base-

ine of many text detection methods. TextBoxes++ [8] also pre-

icts two kinds of location information, but it inherits the idea

f anchors in SSD to make the performance even much better.

oreover, TextBoxes++ improves the text detection by combining

ext recognition. RRD [21] extracts rotation-sensitive features and

otation-invariant features for position prediction and category de-

ermination, respectively. All the mentioned one-stage deep mod-

ls use multi-scale-input for scale robustness and they neglect to

iscuss the foreground-background class imbalance. 
bust deep oriented-text detection network, Pattern Recognition, 
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Fig. 2. The structure of our method. An image is fed into FFB to generate four feature maps ( f 1 , f 2 , f 3 , f 4 ). Then refined feature map is obtained by feature refining block 

with f 1 , f 2 , f 3 and f 4 . The refined feature map is used to predict the confidence map, rotation angle map and geometry map. Finally, the location information of the text is 

obtained through locality-aware NMS. 
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Some methods regard the problem of text detection as the se-

antic segmentation of text regions. Seglink [11] gets the text box

nformation by predicting text segmentation and the links between

hese segmentation. PixelLink [12] integrates multi-layer deep fea-

ures to improve detection results. For the regular edge of text,

yu et al. [4] proposed to predict the corner information of text

hile predicting the position-sensitive text segmentation. Recently,

he arbitrary-shape text detection is newly raised and attracts

ore and more attention. MaskText [22] is a two-stage text de-

ection method which unifies text mask segmentation. TextSnake

22] detects arbitrary shape text by predicting text centerlines and

ext regions. Similarly, PSENet [23] can achieve satisfactory results

n detecting arbitrary shape text by fusing multi-level segmenta-

ion. TextField [24] learns the direction field for each text pixel

hich encodes the binary text mask and the direction informa-

ion. TextField is actually a segmentation based method for arbi-

rary shape text detection. 

To sum up, most of the two-stage and one-stage deep mod-

ls for text detection deal with scale robustness by using multi-

cale models, which leads to high computational cost. Moreover,

he mentioned deep models for text-detection hardly discuss the

oreground-background class imbalance. Thus, in this paper, we fo-

us on solving the two problems. 

. Method 

Though deep object-detection models have achieved prominent

esults, they cannot keep well detection performance if being im-

lemented directly on natural scene text detection because text

sually is a class of small objects which occupy not more than

0 percent of an image in area and change largely in appearance

ith diversity of fonts, rotations, scales and aspect ratios. It is rec-

gnized that the deep object-detection models are not adequately

obust to scale variation [25] . Draw lessons from the designing

ethodology of EAST [7] which fuses the multi-scale context cues,

e design a scale robust deep model for multi-oriented text detec-
Please cite this article as: Y. Zheng, Y. Xie and Y. Qu et al., Scale ro
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ion. The architecture of SR-Deeptext is illustrated in Fig. 2 which

ontains three parts: the feature extraction block (FEB), the feature

efining block (FRB), and the prediction block (PB). A query image

s firstly fed into FEB, and then features are refined in FRB. Finally,

he class score and the bounding box are output in PB. In the fol-

owing, we introduce the implementation details of the three parts

nd the test scheme. 

.1. Feature extraction block 

We employ ResNet50 [13] as the backbone which is proved

xperimentally to effectively improve the detection performance.

he feature extraction block contains five convolutional blocks

f ResNet50, i.e., conv1, conv2, conv3, conv4 and conv5. We re-

ove the last average pooling layer and its following modules in

esNet50. Note that the features of small objects are lost with the

ncrease of convolution layers due to downsampling. In order to

etrieve the features of small objects, we fuse the context features

n multiple convolutional blocks. The first retrieved feature map is

otten from the output of the pooling layers following conv1 , and

hen the other multi-scale features for further fusion are obtained

rom the outputs of the last convolution layer in the first, second

nd fourth residual blocks, i.e., conv2_3 , conv3_4 and conv5_3 . Thus,

he four levels of feature maps are denoted as f 4 , f 3 , f 2 , f 1 with the

ize of 1/4, 1/8, 1/16, 1/32 of the input image, respectively. 

.2. Feature refining block 

The sequential downsampling in ResNet50 has two effects: 1)

t widens the receptive field of the convolutions with the increase

f the convolutional layers and captures more global and context

nformation for better class prediction. 2) the downsampling oper-

tion makes the feature maps small and keeps the training fast and

ractable. However, for the purpose of object detection, the feature

aps of small size in the deeper layers go against the small ob-

ect detection. In order to predict text proposal regions in a higher
bust deep oriented-text detection network, Pattern Recognition, 
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Fig. 3. The structure of Feature Refining Block. Two smaller feature maps ( f 1 , f 2 ) are preliminarily refined through the RCU. Then feature maps are fused from top to bottom. 

Finally, the fused features are refined again with CRP at high resolution. 
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resolution while keeping the large receptive field, we design the

FRB to fuse the multi-scale features with a long-range connection

between FEB and FRB. During the forward pass, the long-range

connection passes the low-level features to encode the detail fea-

tures, while in the training stage, the long-range connection is use-

ful for the end-to-end training which allows direct gradient prop-

agation. 

Draw lessons from PixelLink [12] , the high resolution images

are beneficial to the detection. In other words, larger scale images

usually achieve a better detection performance for one-stage scene

text detection due to the larger size of the output [22] . We embed

two special units in FRB: Residual Conv Unit (RCU) and Chained

Residual Pooling (CRP) [26] . RCU is a simplified convolution unit

from ResNet [13] , which contains two Rectified Linear Units (Re-

LUs) and two convolutional layers without Batch Normalization

(BN) layer. It fine-tunes the weights of the pre-trained ResNet50

for text detection in order to enhance the features by repeating

activation and convolution operations, which is shown in Fig. 3 . 

CRP uses multi-scale windows to pool features, which is help-

ful to capture the background context. Fig. 3 gives the architecture

of CRP which contains two units, each of which contains a max-

pooing layer and a convolutional layer. The feature maps firstly

pass through a ReLU layer, and then the following chain pooling

is repeated two times, that is, the output is fed into two branches:

the pooling layer followed by the convolution layer and the sum-

mation layer. CRP can make the proposed method reuse the infor-

mation from the previous pooling operation. 

The process of fusion in the Fusion Unit (FU) is formulated as,

h i = 

{
f i i = 1 

con v 3 ×3 (con v 1 ×1 ([ unsample (h i −1 ) ; f i ])) otherwise 
(1)

where [ · ; · ] represents the fusion operation which concatenates

the feature maps along the third dimension of channel from small-

scale feature maps to large-scale feature maps. All FUs have two

input branches except the first stage. For the first feature block f 1 ,

there is only the upsampling operation without the fusion opera-

tion. The extracted feature maps are passed through RCU and then

up-sampled by 2 × factor. The output h 1 is fed into the second

FU and is fused with the fine-tuned result of the second feature

block f 2 by RCU. In the sequent two stages, only the fusion oper-

ation is done without the fine-tune operation by RCU. Finally, the

fused feature block h is up-sampled and pooled in CRP. 
4 
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.3. Prediction module 

The prediction module is shown in Fig. 2 . Actually, it contains

everal convolutional layers with 1 × 1 filter. The output feature

aps of prediction block are projected into a single-channel score

ap F s , a single-channel rotation angle map F r and a multi-channel

eometry map F g . The rotation angle represents the orientation of

he text bounding box. The geometry is represented by 4 chan-

els of Axis-Aligned Bounding Box (AABB) [7] which denotes 4 dis-

ances ( d 1 , d 2 , d 3 , d 4 ) from the pixel location to the top, bottom,

eft, right boundaries of the minimum enclosing rectangle respec-

ively. In the score map F s , each pixel represents the confidence

core s . In the rotation angle map F r , each pixel represents the ro-

ation angle θ of the box. During testing, a candidate pixel in the

eature map whose score is larger than the threshold can generate

 prediction box which depends on the corresponding coordinates

 and y of the candidate pixel in the input image, and the predic-

ors s, d 1 , d 2 , d 3 , d 4 and θ in the output feature maps. 

.4. Loss functions 

In this paper, we consider three losses: the loss for prediction

core, the loss for rotation angle and the loss for geometry. The

rst loss measures the class prediction and the last two losses

easures the regression of the text bounding box in the rotation

ngle and the four coordinates, and their corresponding loss func-

ions are denoted by L f , L θ , and L AABB , respectively. 

It is recognized that the class imbalance will decrease the class-

rediction performance of deep object-detection models. As for ob-

ect detection with one-stage deep models, such as SSD [9] , the

oreground-background class imbalance greatly lowers the detec-

ion accuracy. Due to the large amount of candidate locations per

mage, which contains usually more than 10K candidates, train-

ng is not efficient. The negative candidate locations consume large

omputational resource. Moreover, the deep model is trained by

he overwhelming easy negative samples favors to separate the

asy negative samples from text samples while not distinguish-

ng the hard-negative samples. Hard samples are frequently used

o mitigate the class imbalance, which leads to a non-differential

tage and more parameter-tuning. 

Here, we employ Focal Loss for score map [14] . The well-

lassified samples are down weighted and the hard-classified sam-

les are up weighted. Thus, Focal Loss will focus on training on a
bust deep oriented-text detection network, Pattern Recognition, 

https://doi.org/10.1016/j.patcog.2019.107180
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Fig. 4. The locality-aware NMS process. (a) The dense text boxes with different rows. (b) The dense text boxes are merged row by row. (c) The boxes are got through 

locality-aware NMS. 
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parse set of hard samples and L f is formulated as, 

 f = −(1 − s t ) 
γ log (s t ) (2)

 t = 

{
s ˆ s = 1 

1 − s otherwise 
(3) 

here s is the text confidence score of the pixel, γ is set to 2,

nd ˆ s is the corresponding ground truth. In our experiments, we

efine the central area of a text ground truth region whose width

nd length are 70% of the minimum enclosing rectangle. The cen-

ral area of the text ground truth is treated as the positive region

nd the remaining surrounding area without the positive region is

reated as the negative region. 

The loss for geometry L AABB is introduced in [7] and is formu-

ated as, 

 AABB = − log 
R ∩ 

ˆ R 

R ∪ 

ˆ R 

(4) 

here R represents the predicted region and 

ˆ R is its corresponding

round truth. R is defined as, 

 = (d 1 + d 3 ) ∗ (d 2 + d 4 ) 

ˆ 
 = ( ̂  d 1 + 

ˆ d 3 ) ∗ ( ̂  d 2 + 

ˆ d 4 ) 

 ∩ 

ˆ R = ( min (d 1 , ˆ d 1 ) + min (d 3 , ˆ d 3 )) ∗ ( min (d 2 , ˆ d 2 ) + min (d 4 , ˆ d 4 )

 ∪ 

ˆ R = R + 

ˆ R − R ∩ 

ˆ R 

here d 1 , d 2 , d 3 and d 4 represent distances from the pixel location

o the top, bottom, left, right boundaries of the minimum enclosing

ectangle respectively. And 

ˆ d 1 , ˆ d 2 , ˆ d 3 and 

ˆ d 4 are their correspond-

ng ground truth. The orientation loss is introduced in [7] and cal-

ulated as, 

 θ = 1 − cos (θ − ˆ θ ) (5) 

here θ is the prediction to the angle and 

ˆ θ is its corresponding

round truth. The total loss function is formulated as, 

 = L f + L AABB + λθ L θ . (6)

uring training, λθ is set to 10. 

.5. Locality-aware NMS 

During testing, dense text boxes are got from prediction mod-

le. And only correct text boxes are preserved via locality-aware

MS rather than the naive NMS. The latter is time-consuming with
Please cite this article as: Y. Zheng, Y. Xie and Y. Qu et al., Scale ro
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he computational complexity of O ( n 2 ), while the former runs only

n O ( n ). The process of locality-aware NMS contains three steps:

) Traverse all boxes from adjacent pixels preferentially row by

ow under the assumption that the current box is highly correlated

ith its neighbor boxes. 2) Merge the adjacent boxes. Two adjacent

oxes b and p need to be merged if the ratio of Intersection over

nion (IoU) between b and p is greater than the threshold (the

hreshold of IoU is set to 0.1 in our experiments). The combination

peration of b and p , which is formulated as, 

 = s b + s p (7) 

 = 

(x b ∗ s b + x p ∗ s p ) 

s 
(8) 

here x b , x p and x represent coordinates of the boxes b, p and

erging box, respectively. s b , s p and s represent the confidence

core of the boxes b, p and the merging box. In Eq. (8) , the co-

rdinates of the merging box are the weight combination of the

orresponding coordinates of the boxes b and p , and their con-

dence values of the boxes b and p are treated as their weight.

n Eq. (7) , the confidence score of the merging box is the sum

f the two confidence scores corresponding to the two boxes. 3)

mplement the naive NMS on the merged boxes. After the dense

oxes are eliminated, the naive NMS is implemented to preserve

he correct boxes. Fig. 4 shows the process of locality-aware NMS.

n Fig. 4 (a), the image contains the abundance of prediction boxes.

f we use the naive NMS, the computational complexity is high.

ig. 4 (b) shows the results of Step 2 after merging the adjacent

oxes. Fig. 4 (c) shows the final text boxes of Step 3 after imple-

enting the naive NMS. 

. Experimental results 

In order to evaluate the performance of our method, we

mplement SR-Deeptext on four public benchmark datasets: IC-

AR2015 [27] , MSRA-TD500 [28] , ICDAR2013 [29] and COCO-Text

30] . We compare SR-Deeptext with the state-of-the-art text de-

ection methods and then conduct ablation study to investigate the

ffects of RCU, CRP, and the Focal Loss function. 

.1. Benchmark datasets and measure 

ICDAR2015 [27] is the dataset proposed on the Challenge 4 of

CDAR2015 Robust Reading Competition. The images are collected

rom photos of natural scenes in which the text foregrounds are
bust deep oriented-text detection network, Pattern Recognition, 
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Table 1 

Comparison results on ICDAR2015. “Det”, “Seg”, “Reg” refer to “Detection”, “Segmentation ” and “Recogni- 

tion” respectively. They indicate whether the method uses these tasks to train. “P”, “R”, “F” represent “Preci- 

sion”, “Recall” and “F-score” respectively. Method with “∗” means multi-scale testing. The best, second-best 

F-score are highlighted in red and blue, respectively. 

Category Method Det Seg Reg R(%) P(%) F(%) FPS 

Segmentation PixelLink [12] � 82.0 85.5 83.7 3 

TextSnake [22] � 80.4 84.9 82.6 1.1 

PSENet [23] � 88.7 85.5 87.1 2.3 

TextField [24] � 80.5 84.3 82.4 5.2 

Corner [4] � 94.1 70.7 80.7 3.6 

Corner [4] ∗ � 89.5 79.7 84.3 1 

Tow-stage Mask Textspotter [33] � � 81.2 85.8 83.4 4.8 

FOTS [18] � � 85.1 91.0 87.7 7.8 

FOTS RT [18] � � 79.8 85.9 82.7 24 

IncepText [17] � � 80.6 90.5 85.3 3.7 

SLPR [20] � 83.6 85.5 84.5 - 

FSTN [19] � � 80.0 88.6 84.1 2.5 

One-stage EAST [7] � 73.4 83.5 78.2 13 

EAST ∗ [7] � 78.3 83.2 80.7 6.5 

TextBoxes + [8] � 76.7 87.2 81.7 11.6 

TextBoxes + 

∗ [8] � 78.5 87.8 82.9 - 

RRD [21] � 79.0 85.6 82.2 6.5 

RRD 

∗ [21] � 80.0 88.0 83.8 - 

SR-Deeptext � 78.1 88.9 83.1 10.9 

Table 2 

Results on MSRA-TD500. “Det”, “Seg”, “Reg” refer to “Detection”, “Segmentation ”, “Recognition” respec- 

tively. “P”, “R”, “F” represent “Precision”, “Recall”, “F-score” respectively. The best, second-best F-score are 

highlighted in red and blue, respectively. 

Category Method Det Seg Reg R(%) P(%) F(%) FPS 

Two-stage IncepText [17] � � 79.0 87.5 83.0 - 

FSTN [19] � � 77.1 87.6 82.0 - 

Segmentation Corner [4] � 76.2 87.6 81.5 5.7 

PixelLink [12] � 73.2 83.0 77.8 - 

SegLink [11] � 70.0 86.0 77.0 9 

TextField [24] � 75.9.3 87.4 81.3 - 

One-stage EAST [7] � 67.3 87.2 76.0 13.2 

SR-Deeptext � 74.4 84.6 79.2 8.6 
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multi-oriented, different types and cluttered backgrounds. It con-

tains 1500 samples with 10 0 0 training samples and 500 testing

samples. A text region is annotated by the bounding box with the

coordinates of the four corners. A sample is also labeled as an easy

sample or a difficult sample. During testing, the score of the diffi-

cult sample can be excluded. 

MSRA-TD500 [28] contains 500 images, including 300 training

images and 200 testing images. The annotation information of a

text region includes the coordinates of four positions and an ori-

entation angle. And it also explains whether a sample is a diffi-

cult sample. Similar to EAST [7] , we select 400 images of HUST-

R400 [31] to expand the training data due to the small number of

dataset samples. 

ICDAR2013 [29] contains 229 images for training, and 233 for

testing. Different from ICDAR2015 and MSRA-TD500, the text in-

stance is almost horizontal. The annotation information of text in-

stance is given top-left coordinates, width, and height. 

COCO-Text [30] is a large dataset which contains 43,686 images

for training, 10,0 0 0 for validation and 10,0 0 0 for testing. Similar to

ICDAR2013, it provides horizontal annotation information. 

The benchmark measure for text detection relies on accounting

to Precision (P), Recall (R), and F-score (F). They are given by: 

P = 

T P 

T P + F P 
(9)

R = 

T P 

T P + F N 

(10)
i  

Please cite this article as: Y. Zheng, Y. Xie and Y. Qu et al., Scale ro
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F = 2 × P × R 

P + R 

(11)

here TP, FP and FN are the number of correct detection boxes,

rong detection boxes and missed detection boxes, respectively. A

etected box b will be defined as the correct detection if the IoU

s greater than 0.5 between b and the ground truth box. The per-

ormance of a text detection algorithm is generally measured by

-score and Frames Per Second (FPS). 

.2. Implementation details 

SR-Deeptext is trained in an end-to-end way by using ADAM

32] . We randomly sample 512 × 512 crops from images and the

atch size. The learning rate of ADAM is 0.0 0 01, and the attenu-

tion rate is 0.94 per 10,0 0 0 iterations. Training stops when the

umber of iterations reaches 150,0 0 0. During the test, the thresh-

ld of the text confidence score is set to 0.8. For ICDAR2015,

e choose the pre-trained ResNet50 on ImageNet as the ini-

ial model. For other benchmark, we choose the pre-trained SR-

eeptext model in ICDAR2015 as the initial model. In the testing

tage, we shrink the input image 0.5,0.8,0.8 time on MSRA-TD500,

CDAR2013 and COCO-Text, respectively. Our method is run on Ten-

orflow with GPU Geforce GTX 2080 Ti in Ubuntu 16.04 system. 

.3. Comparison with state-of-the-art methods 

We compare our method with 19 text-detection methods

ncluding 13 state-of-the-art text-detection methods: EAST [7] ,
bust deep oriented-text detection network, Pattern Recognition, 
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Table 3 

Comparison results on ICDAR2013 and COCO-Text. “P”, “R”, “F” repre- 

sent “Precision”, “Recall”, “F-score” respectively. The best, second-best 

F-score are highlighted in red and blue, respectively. 

Method ICDAR2013 COCO-Text 

R(%) P(%) F(%) R(%) P(%) F(%) 

PixelLink [12] 83.6 86.4 84.5 - - - 

SegLink [11] 83.0 87.7 85.3 - - - 

Corner [4] 79.4 93.3 85.8 26.2 69.9 38.1 

TextBoxes + [8] 74.0 86.0 80.0 56.0 55.8 55.9 

EAST [7] - - - 32.4 50.4 39.4 

SR-Deeptext 81.9 90.2 85.9 47.8 59.3 52.9 

Table 4 

Ablation study on different settings on ICDAR2015. 

Method Recall(%) Precision(%) F-score(%) 

EAST [7] 73.5 83.6 78.2 

+ ResNet50 74.8 84.0 79.2 

+ Focal Loss 77.7 86.1 81.7 

+ RCU+CRP 76.2 88.5 81.9 

SR-Deeptext 78.1 88.9 83.1 

Fig. 5. The comparison of the amounts of text instances for training, testing and 

detecting in ResNet50 on ICDAR2015. The dataset consists mainly of small texts 

and medium texts, with only a small amount of large texts. Because of the class 

imbalance, the detection performance of the large texts is poor. 

Table 5 

Comparison of different loss functions with ResNet50 on ICDAR2015. 

Method Recall(%) Precision(%) F-score(%) 

+ ResNet50 (Original Loss) 74.8 84.0 79.2 

OHEM [36] 76.3 84.4 80.2 

Dice Loss [37] 77.3 84.6 80.8 

Focal Loss 77.7 86.1 81.7 
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Fig. 6. The comparison of the amounts of detected text instances between 

+ResNet50 and +Focal Loss on ICDAR2015. The number of medium text and large 

text instances are increased. Training with Focal Loss can mitigate the sample im- 

balance problem. 

Fig. 7. The comparison of the amounts of detected text instances between 

+RCU+CRP and SR-Deeptext on ICDAR2015. Detection at the high resolution can be 

improved especially for small texts. 
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ixelLink [12] , SegLink [11] , TextBoxes++ [8] , RRD [21] , PSENet [23] .

OTS [18] , Mask Textspotter [33] , IncepText [17] , SLPR [20] , FSTN

19] , TextField [24] and Corner [4] , and together with their vari-

nts. 

Table 1 shows the comparison results on ICDAR2015. All the

esults are the original published results. Because some compet-

ng methods use text recognition to improve the detection perfor-

ance, for the fairness of comparison, we only compare the results

n the detection part without regard of text recognition. In Table 1 ,

e consider four important factors which greatly influence the de-

ection performance: 1) does it use text segmentation? 2) does it

enefit from text recognition? 3) what category is the method? 4)

s it a multi-scale method? 

Many text detection methods employ text segmentation scheme

o improve the text detection performance, such as MaskText, Pix-

lLink, TextSnake, PSENet, InceptText, FSTN, Corner, and its multi-

cale scaling Corner ∗. Among them, PSENet achieves the best de-
Please cite this article as: Y. Zheng, Y. Xie and Y. Qu et al., Scale ro
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ection performance with the F-score of 87.1%. Recognition scheme

s very helpful to text detection. FOTS achieves the highest text-

etection F-score, which is 87.7%. As we mentioned in Section 1 ,

ost two-stage text detection methods are better than one-stage

ext detection methods in F-score but inferior to one-stage text

etection methods in speed. Regarding the factor of scale, multi-

cale text-detection methods achieve better detection performance

han single-scale text-detection methods. The detection gain is

ver 1%, and the biggest gain is 3.6% which is obtained by Corner ∗

ompared with Corner. However, the multi-scale text-detection

ethods are time consuming compared with their corresponding

ingle-scale text-detection methods, and their speeds are less than

alf of that of single-scale methods. EAST achieves the highest

peed with 13 FPS. 

Among the one-stage text methods such as EAST, TextBoxes++,

RD, our method achieves the highest F-score of 83.1% without re-

ard of multi-scale methods. The speed of our method is 10.9 FPS.

ur method ranks the third place in terms of the speed. Among

able 1 , our method ranks the eighth place in F-score and ranks

he fourth in speed. FOTS RT achieves the highest speed, which

s a real-time variant of FOTS. FOTS RT is the variant of FOTS

hich is a two-stage method and is faster than the given one-

tage methods, because FOTS RT uses ResNet34 as its backbone,

hile other two-stage methods given in Fig. 1 use ResNet50 as the

ackbone (FOTS, IncepText, MaskText), or ResNet101 as the back-

one (FSTN). The real-time speed of FOTS RT attributes to the small

ackbone model. It can be seen that our method achieves the best
bust deep oriented-text detection network, Pattern Recognition, 
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Fig. 8. The comparison of feature maps between +ResNet50 and +RCU+CRP. For (a) and (b), Blue bounding boxes: correct detections; Yellow boxes: false detections; Red 

boxes: missed ground truths. The refined features become more differentiated between text regions and background. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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comprehensive performance in the competing state-of-the-art

methods in ICDAR2015. 

We also conduct experiments on MSRA-TD500 which is a

harder dataset than ICDAR2015. The comparison results are shown

in Table 2 . Among the one-stage text detection methods, ours gains

3.2% in F-score compared with EAST. For the existing text detec-

tion methods on MSRA-TD500, IncepText achieves the best F-score

and EAST achieves the highest speed. Our method ranks the fifth

place in F-score and the third place in speed. Due to the large scale

of text target and complicated text in MSRA-TD500, the existing

text-detection methods obtain worse results on MSRA-TD500 than

on ICDAR2015. Similar conclusion is made in MSRA-TD500, that is,

the one-stage text-detection methods are superior in speed but not
Please cite this article as: Y. Zheng, Y. Xie and Y. Qu et al., Scale ro
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etter in detection accuracy compared with the other two classes

f text detection methods. Our method has gained 3.2% in F-score

ompare with EAST. 

We have also evaluated our method on ICDAR2013 and COCO-

ext which are popular horizontal text datasets. On ICDAR2013, our

ethod achieves the best F-score of 85.9%. As shown in Table 3 ,

ur method ranks the second place in F-score on COCO-Text. It is

orth noting that our method has gained 13.5% in F-score compare

ith EAST. 

Fig. 9 and 10 show some examples of our method on IC-

AR2015 and MSRA-TD500. In Fig. 9 , we compare our method with

AST and TextBoxes++. It shows our method does not confuse the

egular structures while the latter two methods wrongly regard the
bust deep oriented-text detection network, Pattern Recognition, 
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Fig. 9. Some comparisons of text detection results on ICDAR2015. Green bounding regions: correct detections; Red regions: false detections; Purple regions: missed ground 

truths. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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achieves the lowest F-score. 
egular structure in the left image as the text region. TextBoxes++

lso wrongly treats the books in the bookshelf in the middle image

s the text region. In the right image, both EAST and TextBoxes++

iss a small text region. In Fig. 10 , we show some example results

f our method in ICDAR2015 and MSRA-TD500. Our method not

nly detects the English text but also the Chinese text with dif-

erent fonts. Thus, our method is robust to the fonts and regular

tructure. 

.4. Ablation study 

We conduct ablation study on ICDAR2015 to investigate the ef-

ect of five factors for multi-oriented text detection: the backbone

etwork, FRB, the Focal Loss function and the scale. We construct

hree variants of our method: 1) +ResNet50: only ResNet50 is used

nd without regard of the feature fusion block and Focal Loss. 2)

AST: only the backbone of EAST is used with the common loss

unctions. 3) +Focal Loss: ResNet50 is used as the backbone with

he Focal Loss function. 4) +RCU+CRP: it is combined with FRB but

ithout magnifying the feature map with 2 × factor. The results

f ablation study are shown in Table 4 and discuss the ablation

tudy in the following. 

We firstly show the imbalance of the text samples in scale.

e make statistics about the text size to get the distribution of

mall-scale texts, medium-scale texts and large-scale texts accord-

ng to the rule [34] . We empirically classify text instances into

hree groups according to their shorter side length: 1) small texts

hose shorter side length are between 4 pixels and 24 pixels, 2)

edium texts whose shorter side length are between 24 pixels and
Please cite this article as: Y. Zheng, Y. Xie and Y. Qu et al., Scale ro

https://doi.org/10.1016/j.patcog.2019.107180 
8 pixels, and 3) large texts whose shorter side length are larger

han 48 pixels. As shown in Fig. 5 , most text targets are small texts

nd medium texts, while the large-scale text samples are relatively

ess which are only 9% of the total amount. Due to the text scale

istribution imbalance, the variant +ResNet50 obtains higher de-

ection performance in small and medium text targets with the

etection recall of 74% and 77% while getting lower detection per-

ormance with the detection accuracy of 66% in large text targets. 

The proportion of detection results of large text will be rela-

ively little from the original method even the +ResNet50 is se-

ected as the backbone network, due to the lesser number of large

ext from training samples. 

The effect of backbone network . We compare two backbone

etworks: EAST and ResNet50. As shown in Table 4 , ResNet50 is a

ittle better than EAST in detection accuracy and recall. The gain of

-score is about 1%. It shows that the backbone network is impor-

ant in feature extraction. ResNet50 extracts more distinctive fea-

ures than EAST whose backbone is VGG16 [35] . 

The effect of Focal Loss . We compare the two variants:

ResNet50 and +Focal Loss. As shown in Fig. 6 , +Focal Loss cor-

ectly detects 17 more samples than +ResNet50 in medium text

arget and 8 more samples than +ResNet50 in large text targets.

rom Table 4 , the gains of +Focal Loss are over 2% in the detec-

ion precision and F-score, respectively. We also compare four loss

unctions: the original loss of ResNet50, OHEM[32], Dice Loss [33],

nd Focal Loss. As shown in Table 5 , our method with Focal Loss

chieves the best F-score, and Dice Loss ranks the second, 0.9%

ower than Focal Loss. OHEM ranks the third, and the original loss
bust deep oriented-text detection network, Pattern Recognition, 
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Fig. 10. Some examples of our method on ICDAR2015 and MSRA-TD500. Blue boxes: correct detections. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 11. Failure cases on ICDAR2015 and MSRA-TD500. Blue boxes: correct detections; Yellow boxes: false detections; Red boxes: missed ground truths. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 
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The effect of RCU & CRP . We investigate the effect of RCU and

CRP. +RCU+CRP is compared with the variant +Focal Loss. With the

help of RCU and CRP, the detection accuracy of +RCU+CRP is sig-

nificantly increased by 2.5% in Table 4 , but the amount of recalled

text targets slightly decreases. 

We also compare the feature maps generated by +ResNet50 and

+RCU+CRP in the Fig. 8 . Fig. 8 (a) and (b) show the detection results.

The missed detection region is marked in red box, the error detec-

tion region is marked in the yellow box, and the correct detection

is marked in the light blue box. +ResNet50 only correctly detects
Please cite this article as: Y. Zheng, Y. Xie and Y. Qu et al., Scale ro
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 text region while +RCU+CRP correctly detects almost all the text

egions. Moreover, in Fig. 8 (c)–(h), we give the visualization of the

eature maps f 1 , f 2 , and h 4 of +ResNet50 and +RCU+CRP. It is ob-

erved that in the feature maps generated by ResNet50 the fore-

round colors are confused with those in the background. On the

ontrary, the colors in the feature map of +RCU+CRP are obviously

ifferent between the text area and background. Thus, +RCU+CRP

nhances the discrimination between text from background. 

The effect of upsampling . The difference between SR-Deeptext

nd +RCU+CRP is that the former contains the upsampling
bust deep oriented-text detection network, Pattern Recognition, 

https://doi.org/10.1016/j.patcog.2019.107180


Y. Zheng, Y. Xie and Y. Qu et al. / Pattern Recognition xxx (xxxx) xxx 11 

ARTICLE IN PRESS 

JID: PR [m5G; January 2, 2020;15:57 ] 

o  

m  

d  

o

5

 

o  

1  

o  

p  

h  

a

6

 

t  

n  

f  

b  

o  

d  

D  

R  

t  

fi  

c  

t  

f  

c  

t  

t  

w  

m  

b  

m

A

 

d  

U

F  

R  

h

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

[  

 

[  

 

[  

 

[  

 

[  

 

 

 

[  

 

[  

 

[  

 

 

[  

[  

 

[  

 

[  

 

[  

 

 

 

 

peration. As shown as Fig. 7 , SR-Deeptext detects 50, 7 and 1

ore text regions than +RCU+CRP in small, medium and large text

etection, respectively. It demonstrates the effect of upsampling

peration. 

. Limitations 

The failure examples are shown in Fig. 11 . It is observed that

ur method fails in short text containing only a few letters, e.g.

–4. In addition, our method achieves poor detection performance

n vertical text, because very small amount of vertical text sam-

les exists in the training set. Furthermore, our approach cannot

andle well the close-spaced texts, which may be caused by the

mbiguous annotation. 

. Conclusions 

Multi-oriented text detection in the wild is still a challenging

ask. Many deep models for text detection have achieved promi-

ent results. One-stage text detection methods have the virtues of

ast speed, but they are sensitive to text scale and the foreground-

ackground class imbalance lets down the detection accuracy. In

rder to mitigate the two problems, we propose a scale robust

eep model for multi-oriented text detection (SR-Deeptext). SR-

eeptext contains three parts: Feature Extraction Block, Feature

efining Block, and Prediction Block. ResNet50 is treated as Fea-

ure Extraction Block. RCU and CRP are embedded in Feature Re-

ning Block together with upsampling operation. The long-range

onnection contained in FRB improves the discrimination between

he foreground and the background. The Focal Loss is employed

or training instead of the class-balanced cross entropy loss. We

onduct extensive experiments to show our method is superior

o the state-of-the-art methods in comprehensive performance of

ext detection. And among the one-stage text detection methods

ith a single scale, our method achieves the best detection perfor-

ance. Moreover, the ablation study is conducted to show that the

ackbone network, FRB and the Focal Loss are all beneficial to the

ulti-oriented text detection. 
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