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Abstract
Embryo implantation is one of the pivotal steps during mammalian pregnancy, since the quality of embryo implantation deter-
mines the outcome of ongoing pregnancy and fetal development. A large number of factors, including transcription factors, 
signalling transduction components, and lipids, have been shown to be indispensable for embryo implantation. Increasing 
evidence also suggests the important roles of epigenetic factors in this critical event. This review focuses on recent findings 
about the involvement of epigenetic regulators during embryo implantation.
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Introduction

Embryo implantation, the process during which blastocyst 
embed into the maternal uterine wall, is a critical step dur-
ing mammalian pregnancy, and any disturbance to implan-
tation will lead to pregnancy-related complications, such as 
infertility and recurrent pregnancy loss. Implantation only 
occurs within a limited time duration, which is defined as 
the window of implantation. During this window, the uterus 
is in the receptive state, and the blastocyst, must acquire 
implantation competency, a state of embryo differentia-
tion that can initiate crosstalk with uterine cells to implant-
ing into the uterus for further in vivo development of the 
embryo. This concept of uterine receptivity was first raised 
and established by studies employing the embryo transfer 
technique in the 1960s [1]. Based on the previous findings, 
uterine sensitivity to implantation-competent blastocysts is 
classically divided into three stages: pre-receptive, receptive, 

and refractory. During the pre-receptive stage, the uterus 
is favourable for embryo development, but not suitable for 
implantation. The uterus at the receptive stage can initiate 
implantation when there are competent blastocysts. During 
the refractory stage, however, implantation-competent blas-
tocysts cannot implant in the uterus and the uterus is even 
adverse to the survival and development of blastocysts [2]. 
The uterus is mainly composed of three different cell types, 
the epithelium, stroma, and myometrium. The coordination 
of these different endometrial cell types makes the uterus to 
be receptive mainly underling the regulation of progester-
one (P4) and estrogen (E2) [3]. Before implanting into the 
uterus, the embryo must develop to form a blastocyst, which 
comprises of the outer trophectoderm (TE), and the inner 
cell mass (ICM), which further differentiate into the primi-
tive endoderm and epiblast (Fig. 1). The reciprocal embryo 
transfer experiments using the delayed implantation model 
also indicated that blastocyst state of activation is also a crit-
ical determinant for implantation in the receptive uterus [4].

During peri-implantation, different uterine cell types 
respond to changing E2 and P4 levels specifically. On day 
1 (day 1 = see vaginal plug) of pregnancy in mice, the uter-
ine epithelium undergoes extensive proliferation under the 
influence of a preovulatory E2 surge. From day 3 onward, 
P4 secreted by the newly formed corpus luteum inhibits epi-
thelium proliferation, and initiates stroma cell proliferation. 
On day 4, a pre-implantation ovarian E2 surge superimposes 
on P4 signalling to induce the establishment of uterine 
receptivity and the acquisition of implantation competency 
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of blastocysts. Ovariectomy on day 4 morning, before this 
pre-implantation E2 surge, induces delayed implantation and 
embryonic diapause, a state that can be maintained by daily 
P4 injection from day 5 and terminated by the re-supplement 
of E2 [3, 5]. Similar fluctuation of P4 and E2 hormones 
is also observed in humans, with high levels of E2 in the 
proliferation stage and increased P4 levels in the secretory 
phase, of which the window in human is usually regarded as 
5–7 days post P4 stimulation [6]. It is still unclear whether 
embryonic diapause also occurs in humans.

The process of implantation is divided into three stages: 
apposition, attachment (adhesion), and penetration. During 
the apposition stage, blastocysts are distributed evenly along 
the whole uterine horn in rodents, and the trophoblast layer 
of the embryo becomes closely apposed to the uterine lumi-
nal epithelium. At the attachment stage, the association of 
the trophoblast and luminal epithelium is strong enough to 
resist dislodging of the blastocyst when the uterine lumen 
is flushed. The first sign of the attachment reaction, which 
occurs at day 4 night in mice, coincides with a localized 
increase in stromal vascular permeability at the site of blas-
tocyst attachment and can be visualized by tail vein injection 
of blue dye before sacrifice. Penetration is the process by 
which the embryo invades into the uterine stroma through 
the luminal epithelium and basal lamina to establish a vas-
cular relationship with the uterus. After embryo implanta-
tion, the uterus undergoes significant changes to support the 
further development of the embryo until the establishment 
of a functional placenta; specifically, the uterine stromal 
cells proliferate and differentiate to form the decidual cells, 
a process termed stromal–decidual transformation (also 
called decidualization) [5, 7]. While embryo implantation 

is a dynamic process controlled strictly by molecules such 
as transcription factors and signalling pathway components, 
it is also regulated by epigenetic factors.

Aspects of epigenetic regulation

Unlike genetic regulation which functions by altering the 
DNA sequence, epigenetic regulation is defined as stably 
heritable changes in a chromosome without changing the 
DNA sequence [8]. Epigenetic processes mainly include 
DNA methylation, histone modification, and non-coding 
RNAs, which can influence the expression of target genes 
[9].

DNA methylation

DNA methylation, the best-characterized epigenetic modi-
fication, is achieved by adding a methyl group (–CH3) to 
the fifth carbon of the cytosine ring to form methyl cyto-
sine, during which S-adenosylmethionine acts as the methyl 
donor [10]. DNA methylation is catalysed by the enzymes 
DNA methyltransferases (DNMTs): DNMT1, DNMT3A, 
DNMT3B, and DNMT3L. DNMT1 is a methylation-main-
taining enzyme responsible for restoring the hemi-methyl-
ated sites to full methylation after DNA replication, whereas 
DNMT3A and DNMT3B are mainly involved in methylat-
ing new sites, called de novo methylation [11]. DNMT3L, 
without DNA methyltransferase activity in itself, is reported 
to regulate DNA methylation [12, 13]. In humans and other 
mammals, DNA methylation occurs predominantly on the 
cytosine base of a cytosine guanine (CG) dinucleotide in the 

Fig. 1  Diagram of embryo 
implantation in mice. For 
successful implantation, the 
embryo at blastocyst stage must 
acquire implantation compe-
tency through a process defined 
as blastocyst activation, and 
the uterus, mainly involved the 
epithelium and stroma, must 
differentiate into a unique state-
uterine receptivity to be condu-
cive for embryo implantation. 
The synchronization between 
the blastocyst activation and 
uterine receptivity determined 
the window of implantation. TE 
trophectoderm, EPI epiblast, PE 
primitive endoderm, LE luminal 
epithelium, GE gland epithe-
lium, S stroma
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DNA sequence [14]. These CG dinucleotides are often clus-
tered in small stretches of DNA, called CpG islands, which 
are often associated with promoter regions and at the 5′ end 
of the gene [15]. In general, CpG islands in gene promoters 
are unmethylated, which allows active gene transcription, 
and methylated CpG islands associated with gene promoter 
regions would silence gene expression. However, most CpG 
sites outside of CpG islands are methylated, suggesting its 
role during the global maintenance of the genome [14, 16]. 
All of epigenetic modifications should be reversed biochemi-
cally, and many years after the finding of DNMT, the TET 
family proteins have been shown to be responsible for DNA 
demethylation [17]. TET proteins are capable of catalysing 
the conversion of 5mC into 5hmC, and then 5hmC serves 
as an intermediate product for DNA demethylation in an 
indirect demethylation manner through passive or active 
pathways [17].

Histone modification

Chromatin is mainly composed of genomic DNA and the 
nucleosome. The nucleosome is a histone octamer consist-
ing of two copies of each of the four core histones (H2A, 
H2B, H3, and H4), around which approximately 146 bp of 
the DNA is wrapped. These nucleosomes are linked by loops 
of DNA and the linker histone H1 to form chromatin. The N 
terminal tails of the histones protrude from the chromatin to 
be subjected to post-translational modification. It has been 
shown that nucleosomal histones are subject to numerous 
covalent modifications, including methylation, acetylation, 
phosphorylation, sumoylation, glycosylation, and ubiquit-
ination, at specific tails of selected amino acids. A variety 
of enzymes are involved in the modification of histone tails, 
including histone methyltransferases (HMTs), acetyltrans-
ferases (HATs), kinases, and ubiquitin ligase functioning 
as the “writer”, as well as the eraser such as histone dem-
ethylases, deacetylases (HDACs), and phosphatases, which 
are able to remove the modification marks from the histone 
tails [18]. These modifications impose either transcription-
ally repressive or transcriptionally permissive chromatin 
structures [19, 20]. For instance, histone acetylation usu-
ally renders active genes as does the di- or trimethylation of 
lysine residue four in histone H3 (H3K4me2, H3K4me3), 
while H3K9me2/3 and H3K27me3 modifications repress 
gene expression [21, 22]. Moreover, proteins, known as 
epigenetic “readers”, can directly bind to these specific 
modifications and exert repressive or stimulating effects on 
gene activity [23]. In general, different from DNA methyla-
tion which is believed to be a more stable and long-term 
silencing mechanism, various histone modifications seem 
to exert short-term, flexible regulation that is important for 
the plasticity of development [24–26].

Non‑coding RNAs

Non-coding RNAs are transcribed from the genome, but 
generally are not translated into proteins. They can be classi-
fied into two subgroups according to their length: long non-
coding RNAs (lncRNAs) containing more than 200 nucleo-
tides and short ncRNAs (< 200 nucleotides), which include 
microRNAs (miRNAs), short interfering RNAs (siRNAs), 
piwi-interacting RNAs (piRNAs), and so on [27–29]. Alter-
natively, non-coding RNAs could also be classified based on 
their function: housekeeping ncRNAs, including ribosomal 
RNA (rRNA), transfer RNA (tRNA), small nuclear RNA 
(snRNA), and small nucleolar RNA (snoRNA), which are 
expressed in all cell types and carry out essential functions 
in the cells and regulatory ncRNAs, including several classes 
of small and long molecules, are involved in the regulation 
of gene expression [30]. When ncRNAs act in cis, they are 
able to regulate the expression of one or more genes nearby 
in the same chromosome. However, when ncRNAs act in 
trans, they are able to regulate the expression of one or more 
genes in different chromosomes or regulate mature RNAs 
in the cytoplasm [31]. Examples of the well-studied mam-
malian lncRNAs are Xist (inactive X-specific transcript) and 
Tsix (X-specific transcript), which are involved in X chromo-
some inactivation in female mammals [9, 32]. Recent find-
ings demonstrate that non-coding RNAs (ncRNAs) are often 
accompanied by epigenetic events that are important for the 
regulation of gene transcription, protein translation, genomic 
stability, and chromatin modifications [33–37].

miRNAs, which are approximately 22 nucleotides in 
length, are a class of small non-coding RNAs that function 
as post-transcriptional regulators of gene expression. They 
usually bind to the 3′ untranslated regions (UTRs) of their 
target messenger RNAs (mRNAs) through complementary 
base pairing, and regulate target gene expression by either 
degrading or translationally repressing target mRNAs [38, 
39]. It has been shown that a single miRNA is potentially 
responsible for repressing hundreds of mRNA targets, since 
the recognition of a target mRNA mainly depends on a small 
seed region within the mature miRNA. However, the targets 
of miRNAs responsible for different phenotypes have been 
proposed to be tissue or cell specific [40]. In recent years, it 
has been shown that small non-coding miRNAs are impor-
tant components of epigenetic post-transcriptional regulators 
[41–45]. lncRNAs, transcripts longer than 200 nucleotides, 
are the most heterogeneous class of non-coding RNAs. They 
can regulate gene expression at different levels, including 
chromatin modification, alternative splicing, protein locali-
zation and activity, and increasing mRNA stability by pro-
tecting the 3′ UTR of mRNAs from miRNA binding [46]. 
Increasing evidence has shown that lncRNAs are involved 
in many different biological processes, such as prolifera-
tion, differentiation, pluripotency, and cell death [47, 48]. 
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circRNAs, covalently closed continuous loop RNA lacking 
both a 5′ cap and a 3′ tail, are a special class of endogenous 
non-coding RNAs (ncRNAs) with higher stability and are 
expressed in a tissue-specific manner [49]. It has been sug-
gested that circRNAs function in five putative manners: (1) 
promoting transcription of their parental genes; (2) com-
petitively influencing the biogenesis and processing of the 
mRNA transcribed from their parental genes; (3) acting as 
miRNA sponges to competitively bind with miRNAs by 
their conserved binding sites for these miRNAs to block 
the binding between miRNAs and their target mRNAs; (4) 
functioning as RNA binding protein (RBP) sponges to regu-
late the function of RBPs; and (5) encoding proteins due to 
some circRNAs containing internal ribosome entry sites that 
allow the binding of ribosomes for protein translation [50].

Epigenetic regulation of the embryo–uterine 
crosstalk during peri‑implantation

Epigenetic control of the embryo preparation 
for implantation

The embryo is at the blastocyst stage when it can implant 
into the uterus, and the blastocyst needs to acquire implanta-
tion competency. During the pre-implantation embryo devel-
opment process, the terminally differentiated gametes, the 
egg and sperm, fuse to form a zygote, which then undergoes 
several rounds of mitosis. During this process, the embryo 
acquires totipotency, as the single embryonic cell can con-
tribute to both the embryonic and extra-embryonic lineage. 
Increasing evidence has demonstrated that many different 
types of epigenetic regulation, including histone modifica-
tions, DNA methylation, chromatin accessibility, and 3D 
chromatin organization, are all involved in this short and 
highly effective epigenome transforming event.

For the DNA methylation dynamics in the early embryo, 
the highly methylated paternal genome is actively demethyl-
ated mainly through the TET-mediated hydroxylation [51]. 
Passive demethylation is also thought to play a role due to 
the inactivation of DNA methyltransferase and rapid cell 
proliferation in early embryos. Both the paternal and mater-
nal genomes lose their DNA methylation until the blastocyst 
stage. This highly DNA demethylation process contributes 
to the activation of the early embryo transcriptional network 
and pre-implantation embryo development. For the histone 
modification, the immunofluorescence staining of differ-
ent histone modifications in different species has suggested 
dynamic changes of histone modifications in the parental 
pronuclei after fertilization and during pre-implantation 
development [52, 53]. Recently, the highly developed low-
input genome-wide analysis technologies have drastically 
stimulated the development of this field in both mice and 

humans. For example, it was found that both the distribu-
tion pattern and regulation for binding genes of H3K4me3 
are not similar to the other cells. In the full-grown oocytes 
and metaphase II (MII) oocytes with the genome transitions 
to a silenced state, it was defined as a noncanonical pattern 
of H3K4me3 (ncH3K4me3), since it was wide spread [54]. 
The oocyte-specific pattern of the histone epigenome will 
undergo rapid erasure and re-establishment during fertili-
zation and pre-implantation development. Other dynamic 
changes for epigenetic regulation, such as H3K27me3 his-
tone modification and chromatin accessibility, have also 
been extensively explored during pre-implantation embryos 
[55, 56]. For more detailed information about the epigenome 
in early embryo development, please refer to other special 
reviews which address these progresses thoroughly [57, 58]. 
Based on these valuable data, the following challenges will 
be the functional dissection of different epigenetic regula-
tions during totipotent acquirement and pre-implantation 
embryo development to form the blastocyst.

In normal pregnancy, when the embryo develops into the 
blastocyst stage and enters into the uterine cavity, it initi-
ates the crosstalk with the endometrium, and the attachment 
reaction can usually be observed in mice on day 4 night. 
However, this sequence is interrupted in delayed implanta-
tion, which can be induced experimentally in mice and rats 
by ovariectomy before the pre-implantation ovarian E2 surge 
and maintained by injection of P4. In the delayed implanta-
tion, the blastocyst is metabolically dormant and incompe-
tent to initiate attachment in the uterus. This phenomenon 
can also naturally occur in some species and in lactating 
rodents [59]. In the dormant blastocyst, beyond metabolism, 
the transcriptional activity generally shut down, which is 
consistent with the observation that the chromatin structure 
was well compacted with more heterochromatin in the dor-
mant blastocyst [60]. The latest reports of manipulating the 
c-Myc and mTOR pathway can mimic the dormant state in 
delayed implantation [61, 62], further confirming the low 
metabolism and transcription activity for cells entering the 
dormant state. During the blastocyst acquiring the implanta-
tion competence, the microRNA Let-7a was downregulated, 
associated with upregulated miRNA processing enzyme 
Dicer. In addition, both forced expression of Let-7a and 
Dicer knockdown can compromise implantation competency 
of the blastocyst [63, 64]. In humans, the embryo can secrete 
miRNAs into the culture medium in IVF practice, and these 
miRNAs can be explored for human embryo reproductive 
competence assessment [65]. The acquisition of implanta-
tion competency for blastocysts involved the expression of 
molecules related to embryo–uterus crosstalk, such as the 
inflammatory molecule, to induce the attachment reaction. A 
recent report has demonstrated that the expression of inflam-
matory response genes in the human blastocyst stage is asso-
ciated with open chromatin accessibility in their regulatory 
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regions [66]. How epigenetic regulation, such as chroma-
tin accessibility and 3D chromatin organization, functions 
precisely during blastocyst dormancy and reactivation for 
implantation needs further exploration.

Epigenetic regulation of uterine preparation 
for uterine receptivity and attachment reaction

One of the most fascinating tissues in mammals is the uterus, 
whose major function is to accept implantation-competent 
blastocysts when the uteri were in a receptive state. In mice, 
the uterus on day 4 of pregnancy is in a state of receptivity, 
while 7–10 days after ovulation (the mid-secretory phase of 
the menstrual cycle) is defined as the uterine receptive stage 
in humans [2]. Increasing evidence has demonstrated that 
the acquisition of uterine receptivity is under the control of 
both transcription factors and epigenetic regulators, which 
might be responsible for the spatial–temporal dynamic 
changes of tissue morphology and gene expression in dif-
ferent endometrial cell types during the establishment of 
uterine receptivity [67].

DNA methylation and uterine receptivity

P4 and E2 are primary regulators of the cyclic changes of 
the uterus during the estrus cycles of animals and menstrual 
cycles of humans. Pregnancy is also a hormone-dominant 
process. The hormones during these physiological events are 
mainly ovarian E2 and P4, which function via their nuclear 
receptors E2 receptors (ER) and P4 receptors (PR), respec-
tively. The expression of both ER and PR is accurately regu-
lated in response to the fluctuation of their ligands. Aberrant 
DNA methylation of the CpG island in the promoter region 

in ER [68, 69] and PRB [70] has been reported in endome-
trial carcinoma, suggesting that the expression of ER and 
PR could be regulated by DNA methylation. It has also been 
demonstrated that DNA methylation is correlated with PR 
expression in normal endometrium [71], and in mouse uterus 
with constitutive Notch1 activation, PR expression was shut 
down as DNA methylation was significantly induced at the 
promoter region of Pgr (Fig. 2a) [72]. In addition, endocrine 
disruptor endosulfan or folate deficiency affected the meth-
ylation states of promoters or regulatory regions in ERα [73, 
74], leading to altered expression of uterine ERα.

HOXA10, another critical transcription factor for implan-
tation, is spatio-temporally expressed in the endometrium 
with expression peaks during the window of implantation 
both in mouse and human [75, 76]. Female mice with a tar-
geted disruption of Hoxa10 are unable to support embryo 
implantation [77, 78], suggesting that HOXA10 is critical 
for uterine receptivity. It has been reported that HOXA10 
expression is controlled by DNA methylation [79] and 
aberrant DNA methylation led to decreased expression of 
HOXA10 in the eutopic endometrium of patients with endo-
metriosis, which caused infertility or subfertility in women 
(Fig. 2a) [80].

It has been reported that the loss of ER signalling trig-
gered silencing of downstream targets by DNA methylation 
[81] and E2 can induce frequent methylation/demethylation 
on promoter CpG sites to regulate cyclic transcriptional 
activation of target genes [82] in breast cancer cells. This 
mechanism was also demonstrated to exist in endometrial 
cells, which are under the control of steroid hormones [83]. 
MUC1 is expressed in the endometrial epithelium and its 
important functions in endometrial receptivity and embryo 
attachment have been extensively studied [84, 85]. The CpG 

Fig. 2  Epigenetic regulation of critical molecule expression dur-
ing implantation. a DNA methylation 5mC in the gene promoter or 
other regulatory region can negatively regulate the transcription tar-
get genes, such as Pgr, Hoxa10, and Hand2. b Nonclassical post-
translational modification of critical molecules, such as HoxA10 
and PR by epigenetic regulator can modulate the function or activ-

ity of these transcription factors, K Lysine residues, Ac acetylation, 
Ub ubiquitylation. c At post-transcriptional level, mRNAs of Pgr or 
Ptgs2 (which encode the Cox2) is targeted by the miRNAs. d During 
decidualization, active chromatin modifications (such as H3K4me3 
and H3K27Ac) in the gene regulatory region contribute to the highly 
expression of decidual marker gene IGFBP1 and PRL 
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island of MUC1 was reported to be less methylated in the 
mid-secretory phase compared to the proliferative phase, 
which is strongly correlated with its increased gene expres-
sion in the mid-secretory phase [83].

Besides the regulation of specific gene by DNA meth-
ylation, DNA global methylation significantly decreases 
from the proliferative phase towards the secretory phase in 
glandular epithelial cells, but increases in the stromal cells 
of the endometrium by immunostaining [71]. Consistently, 
inhibition of DNA methylation by 5′-aza-2′-deoxycytidine 
(AZA) increased E-cadherin expression in uterine epithelial 
cells, in favour of establishing uterine receptivity in vitro 
[86]. Consistently, combined treatment with E2 and P4 sig-
nificantly decreased the mRNA expression of DNMT3a and 
DNMT3b [87, 88]. However, DNMT1 mRNA expression 
was significantly higher in secretory-phase endometrium 
compared with proliferative endometrium and menstrual 
endometrium [89]. It was also reported that DNMT1 mRNA 
did not change over the menstrual cycle, while the transcrip-
tion of DNMT3a and DNMT3b was significantly decreased 
in the secretory-phase endometrium [87]. The discrepancies 
may be due to the different methods of sample collection and 
the detection timepoints for in vitro experiments.

For the genome-wide change in DNA methylation dur-
ing uterine receptivity establishment, the evidence is mainly 
from the research in human endometrium. Two research 
groups have reported that changes in DNA methylation were 
correlated with gene expression during the transition from 
the pre-receptive to the receptive phase in the endometrium 
[83, 90]. However, a recent report using the human endo-
metrial stroma in vitro decidualization model, which mim-
ics stroma cell differentiation during the establishment of 
uterine receptivity, has demonstrated stable DNA methyla-
tion status during decidualization, without a clear associa-
tion between the differentially expressed genes and DNA 
methylation changes [91]. This discrepancy may be due to 
the difference between the in vivo and in vitro models. To 
further understand the role of DNA methylation during the 
establishment of uterine receptivity, a more sensitive and 
cell-type specific analysis of genome-wide DNA methylation 
is needed. Moreover, functional study utilizing the genetic 
mouse model will also provide critical cues.

Histone modification and uterine receptivity

In the early 1970s, it was found that treatment with estra-
diol led to increased histone acetylation in the uterus of 
rat and mouse [92–94], suggesting that the ovarian ster-
oid hormones might act through chromatin alterations to 
effect gene transcription. In fact, co-treatment with E2 and 
P4 increased the levels of acetylated histone H3 and H4, 
and this increase was enhanced by co-treatment with the 
HDAC inhibitor TSA [95]. Likewise, it has been shown 

that HDAC inhibitors treatment can enhance the prolifera-
tive actions of E2 in mice [96]. Moreover, HDAC inhibitor 
was able to induce morphological and molecular changes 
comparable to treatment with E2 and P4 in human endo-
metrial cells [97]. Consistently, during E2- and P4-induced 
stroma decidualization, many epigenetic regulators have 
been reported to be dynamically expressed [98]. These 
findings suggest that epigenetic regulation is involved in 
uterine events controlled by E2 or/and P4.

During the menstrual cycle, the endometrium under-
goes morphological and functional changes, which are 
essential for the establishment of uterine receptivity and 
are also under the regulation of histone modification. Gly-
codelin, a secretory protein, is highly expressed at 10 days 
after ovulation (within the implantation window) in the 
human endometrium, and treatment with HDAC inhibi-
tor upregulated the expression of glycodelin [99]. As we 
previously mentioned, HOXA10 is a transcription factor 
critical for endometrial receptivity. It has been demon-
strated that acetylation of HOXA10 by PCAF downregu-
lated HOXA10-mediated β3-integrin (ITGB3) expression 
and diminished HOXA10-mediated embryo adhesiveness 
(Fig. 2b) [100]. These data suggest that the acetylated 
modification of receptivity-related genes is essential for 
the achievement of endometrial receptivity. Moreover, 
BMI1, a key component of the Polycomb repressive com-
plex-1 (PRC1), interacts with the PR as well as the E3 
ligase E6AP in a polycomb complex-independent manner 
and regulates the PR ubiquitination that is essential for 
normal P4 responsiveness during the acquisition of uter-
ine receptivity (Fig. 2b) [101]. In addition, uterine glands 
are essential for embryo implantation and pregnancy, as 
demonstrated by implantation or pregnancy failure in sev-
eral gene mutation mouse models [102, 103]. The histone 
H4K20me1 methyltransferase Pr-set7 has been reported to 
regulate gland development and thus female fertility [104].

A number of transcription factors have been demon-
strated to be critical for uterine receptivity establish-
ment, such as Hand2 and Msx1/2. Hand2 is specifically 
expressed in uterine stroma cells and induced by P4 signal-
ling through PR. Hand2 mediated one of the PR’s critical 
functions, inhibiting uterine ER signalling and epithelium 
proliferation, mainly through repressing the expression of 
the stroma-derived growth factors [105]. However, how 
Hand2 inhibits target gene expression in uterus is still 
unclear, and it was reported that Hand2 could repress 
target gene expression through the distal enhancer [106]. 
Msx1 and Msx2 are another example of transcription fac-
tors, whose function is reported to repress Wnt5a to regu-
late the cell polarity of luminal epithelium for blastocyst 
attachment [107]. In myoblast cells, Msx1 could interact 
with the repressive PRC2 complex to inhibit target gene 
expression by upregulating the H3K27Me3 [108], and 
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whether these histone modification regulators are involved 
in uterine cells requires further exploration.

Non‑coding RNA for uterine receptivity

Several miRNAs have been recently identified both in the 
human and mouse endometrium using next-generation 
sequencing [109–112]. A study using mid-secretory endo-
metrial samples from women with repeated implantation 
failure discovered that miRNAs with altered expression are 
likely to contribute to defective endometrial receptivity in 
humans [113]. Moreover, Altmae et al. found that the expres-
sion of miR-30b, miR-30d, and miR-494 was closely related 
to human endometrial receptivity [43]. Overexpression of 
miR-30d in human endometrial epithelial cells demonstrates 
that miR-30d participates in the maintenance of DNA meth-
ylation, supporting an epigenetic role for miR-30d [114]. 
Ponsuksili et al. further revealed that differential expression 
of miRNAs and their target mRNAs in the endometrium is 
associated with endometrial receptivity [115]. In addition, 
microRNA-31 is significantly elevated in both human endo-
metrium and serum during the window of implantation, and 
might act as a potential biomarker for optimum receptivity 
[116]. Several miRNAs, including miR-96, have been dem-
onstrated to regulate epithelial PGR expression during the 
establishment of uterine receptivity in rhesus monkeys and 
humans (Fig. 2c), but not in rodents [117]. Cox-2, an attach-
ment reaction marker encoded by prostaglandin endoperox-
ide synthase 2 (PTGS2) and expressed around the implanted 
blastocyst, was reported to be regulated by miR-101a and 
miR-199a* at the post-transcriptional level (Fig. 2c) [112]. 
Moreover, miRNAs secreted within the exosome by the 
embryo or/and uterine epithelial cells are reported to be 
involved not only in the interaction between the embryo 
and uterus during implantation [118], but also in the poten-
tial crosstalk between the ICM and TE for coordinating the 
trophoblast cell migration during implantation [119]. For 
more detailed knowledge about miRNAs during implanta-
tion, one can refer to several recent reviews [120–122].

One previous work was conducted to identify specific 
miRNAs involved in hormonal regulation of normal human 
endometrium by E2 and P4 and revealed that miRNAs 
down-regulate the expression of some cell cycle genes in 
the endometrial epithelium during the secretory phase, 
thereby suppressing cell proliferation [110]. Another find-
ing revealed that the microRNA-200a locally attenuates P4 
signalling in the cervix by downregulating the PR protein 
level and upregulating P4 inactivating enzyme (20α-HSD), 
leading to a different response to P4 between the cervix and 
uterus (Fig. 2c) [123]. These findings demonstrated that the 
functions of E2 and P4 are mediated or affiliated by epige-
netic regulators.

Several lncRNAs were reported to be actively transcribed 
in the uterus during embryo implantation, such as HOXA11-
AS [124], Scx-AS [125], FGF2-AS [126], and EMX2-OS 
[127], which are naturally occurring antisense RNAs and 
supposed to mediate transcriptional activation or transcrip-
tional silencing of their respective host genes. Moreover, the 
steroid receptor RNA activator (SRA) gene, an intergenic 
ncRNA and steroid receptor co-activator, was also detected 
in the uterus [128]. Recently, Sigurgeirsson et al. performed 
comprehensive RNA sequencing of healthy human endo-
metrium at the proliferative stage and mid-secretory stage 
(receptive phase), and found that 516 lncRNAs were sig-
nificantly differentially expressed in the endometrium [129]. 
Another group also explored RNA-Seq to compare the tran-
scriptome of the endometrium between LH + 2 (pre-recep-
tive phase) and LH + 7 (receptive phase) and identified 2372 
differentially expressed genes [130]. Using similar method, 
different expressed lncRNA transcripts were identified dur-
ing the implantation window both in the mouse and porcine 
[131, 132]. Although these findings have shown that lncR-
NAs are associated with the acquisition of uterine receptiv-
ity, the functions, and the molecular mechanism of these 
lncRNAs during uterine receptivity establishment need fur-
ther investigation. On the other hand, lncRNA H19, one of 
the first genes found to be transcribed into long non-coding 
RNAs, was decreased in repeated implantation failure [133]. 
Feng et al. reported that six lncRNAs were significantly ele-
vated in the endometrium of RIF or recurrent miscarriage 
patients [134]. These data suggest that lncRNAs may be pro-
spective biomarkers for predicting endometrial receptivity.

Moreover, circRNA-9119 was demonstrated to regulate 
the expression of prostaglandin endoperoxide synthase 2 
(PTGS2), which is involved in the regulation of some mark-
ers of endometrial receptivity, by sponging miR-26a in ovine 
endometrial epithelial cells [135], suggesting that circRNAs 
might participate in embryo implantation. Indeed, altered 
circular RNA expression has been reported to be associated 
with repeated implantation failure in humans [136].

Epigenetic control of stromal–decidual 
transformation after implantation

In mice, the embryo attachment to the uterine luminal epi-
thelium would initiate the stroma differentiation program, 
known as decidualization. Decidual cells in the endome-
trium provide nutrients to the fetus before the establishment 
of maternal–fetal circulation, inhibit trophoblast cells from 
invading too deeply inside the uterine wall, and are involved 
in the immunotolerance of the allogeneic fetus. Therefore, 
decidualization is a pivotal step for normal embryo implan-
tation, placental development, and successful completion of 
pregnancy to term. While decidualization in women occurs 
during the secretory phase of each menstrual cycle as well 
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as in pregnancy, this event only occurs during pregnancy in 
rodents [7]. Gene expression undergoes dramatic changes in 
human endometrial stromal cells (HESCs) during deciduali-
zation. These changes in gene expression are associated with 
changes in chromatin structure, which are partially regulated 
by epigenetic factors. Since the finding that histone phospho-
rylation and acetylation were increased upon decidualization 
in the mouse uterus approximately 40 years ago [92], there is 
increasing evidence that the epigenetic mechanisms regulate 
gene expression during decidualization in the endometrium.

DNA methylation and decidualization

DNA methylation is high in the proliferative phase, with a 
significant decline towards the end of the secretory phase 
(corresponding to the stage of decidualization) [71]. Con-
sistently, the methylation inhibitor 5-Aza-2′-deoxycytidine 
(AZA) induced some decidualization-like changes in endo-
metrial stromal cells possibly via the cytoskeletal reorgani-
zation pathway, even though this decidualization was differ-
ent from that induced by hormones [137]. Although it has 
also been demonstrated that no obvious changes in global 
DNA methylation are observed after decidualization is 
induced in humans [98], the DNMT inhibitor 5-AZA-Dc has 
negative effects on decidualization in mice [138, 139], sug-
gesting that gene locus-specific changes in DNA methylation 
or DNA methylation maintenance play an important role 
during decidual development. The expression of DNMT1, 
DNMT3a, and DNMT3b in the endometrium fluctuates dur-
ing the cycle and in differentiating HESCs [87–89, 98, 140]. 
Even though there is considerable discrepancy between these 
investigations due to different treatment recipes, cell sources, 
and other experimental variations, these findings further 
support the notion that active changes in DNA methylation 
are essential for the expression of decidual genes. Recently, 
using mice with different genetic backgrounds, decidual caps 
with widely and apparently randomly disturbed DNA meth-
ylation were demonstrated to be responsible for the preg-
nancy failure in the CBA/J X DBA/2 spontaneous abortion 
mouse model [141]. Combining the DNA methylation analy-
sis and RNA-Seq in decidua tissue from women with normal 
pregnancy and recurrent pregnancy loss, Yu et al. identified 
539 differentially methylated regions (DMRs) that are sig-
nificantly correlated with gene expression [142]. Moreover, 
hypermethylation at the promoter region of FOXP3, which 
is extremely important for the development and function of 
Treg cells, down-regulates FOXP3 expression, resulting in 
a broken immune balance at the maternal–fetal interface and 
pregnancy failure [143]. Hand2, another critical molecule 
for embryo implantation and decidualization, is reported to 
be silenced in endometrial cancer through DNA methylation 
at its promotor [144].

Histone modification and decidualization

Recent studies confirmed dynamic regulation of his-
tone marks during the menstrual cycle in vivo [67] and 
upon decidualization of HESCs in culture. It has been 
demonstrated that trichostatin A, an inhibitor of histone 
deacetylation, enhanced estradiol and progestin-induced 
decidualization of primary HESCs, suggesting that his-
tone acetylation is involved in uterine decidualization [95]. 
Treating HESCs with TSA was also reported to increase 
the expression of TIMP-1 and TIMP-3 by acetylating his-
tones in their promoters, and inhibit trophoblast invasion 
during implantation [145]. Retinoblastoma-binding pro-
tein 7 (Rbbp7), a core component of many histone modi-
fications and chromatin remodelling complexes, has been 
demonstrated to be a potentially functional player regulat-
ing normal histone acetylation and cyclin D3 expression 
during decidual development [146]. Moreover, it has been 
shown that C/EBPβ regulates the expression of IGFBP-1 
and PRL by altering the histone acetylation status of their 
promoters during HESC decidualization [147]. Recently, 
the increases of H3K27ac and H3K4me3 in both the proxi-
mal and distal regulatory regions have been found to be 
the main changes of histone modifications accompanying 
uterine decidualization, which are tightly associated the 
upregulated gene expression (Fig. 2d) [148]. For example, 
increased H3K27ac levels in the distal upstream region of 
IGFBP1 can significantly stimulate IGFBP1 expression 
in endometrial stromal cells during decidualization [149]. 
In addition, the down-regulation of the histone methyl-
transferase EZH2 was reported to contribute to epigenetic 
programming during the decidualization of HESCs [150].

In mouse decidual differentiation, the H3K27me3-
mediated silencing of inflammatory chemokine genes 
can limit T cell access to the fetal–maternal interface for 
the establishment of immune tolerance during pregnancy 
[151]. An additional study demonstrated the dynamic 
changes of H3K27Me3 during the whole pregnancy: tran-
scriptional silence of target genes related to parturition-
inducing signals through H3K27Me3 to ensure uterine 
quiescence during early pregnancy; then, genome-wide 
demethylation occurs to derepress these genes for labor 
[152]. A recent report uncovered that uterus-specific 
deletion of Ezh2 derail post-implantation decidualization 
[153]. Cbx4/Ring1B-containing PRC1, which is respon-
sible for the ubiquitination of histone-H2A at lysine-119, 
was found to control decidualization through the regu-
lation of extracellular matrix remodelling genes [154]. 
These findings demonstrate that different histone modifi-
cations are involved in the regulation of decidualization.
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Non‑coding RNA and decidualization

During the cAMP and medroxyP4 acetate induced in vitro 
human uterine stromal decidualization, some of the miRNAs 
were found to be significantly differentially expressed [155, 
156]. However, siRNA-mediated knockdown of Dicer dis-
played no obvious defect in decidualization marker expres-
sion, and further evidence suggested microRNA resistance 
in decidual cells due to the limited level of miRNA process-
ing enzyme Ago1/2 [156]. It has also been reported that indi-
vidual miRNAs regulate the stroma decidualization [157, 
158]. Therefore, more specific studies are needed to explore 
the function of miRNAs during decidualization.

The different manners of epigenetic modification do not 
function independently. Different epigenetic modifiers inter-
act with one another. In detail, the establishment of histone 
modifications and DNA methylation is interdependent. They 
not only interplay with each other, but also with regulatory 
proteins and non-coding RNAs [159–164]. Specifically, the 
crosstalk between DNA methylation and histone modifi-
cations is established by MBD proteins, which contain a 
methyl-CpG binding domain. MBDs specifically recognize 
and bind to methylated CpGs, and subsequently recruit his-
tone deacetylases (HDACs), which remove acetyl groups 
from the lysine of histone tails, leading to chromatin con-
densation and transcriptional inactivation [159, 160]. The 
expression of DNMT1 and MBD2 was increased signifi-
cantly by treatment with E2 in combination with P4, sug-
gesting that the interactions between different epigenetic 
modifications may also exist in the endometrium.

Epigenetic control of infertility‑related uterine 
disease

Increasing evidence demonstrates that uterine diseases, such 
as endometriosis and endometritis, are closely related to sub-
fertility or infertility [165–167]. The occurrence of these 
diseases and disease-induced infertility are associated with 
disturbed epigenetic regulation.

As mentioned above, HOXA10 has an important function 
in regulating endometrial development and in establishing 
conditions necessary for implantation. It has been reported 
that HOXA10 expression was decreased in the endometrium 
of women with endometriosis [168]. In endometriosis mod-
els established in both mouse and baboon, DNA hypermeth-
ylation of Hoxa10/HOXA10 promoters was demonstrated in 
eutopic endometrium [169, 170]. In humans, the HOXA10 
promoter was also hypermethylated in the endometrium of 
women with endometriosis [80, 171]. Moreover, the overex-
pression of DNMT1, DNMT3A, and DNMT3B was revealed 
in ectopic endometrium compared with normal controls 
[172], further suggesting that DNA methylation might be 
one of the possible mechanisms underlying endometriosis. 

A hypermethylated promoter of PRB is also observed in 
endometriosis with decreased PRB expression, which might 
account for P4 resistance in endometriosis since P4 func-
tions through its receptors PRB [173]. In addition, the posi-
tive regulators for endometriosis, such as aromatase and 
ERβ, are both with hypomethylated promotors and display 
aberrant upregulation [174, 175]. In addition to DNA meth-
ylation, histone modification is also involved in the under-
lying mechanism of endometriosis. HDAC1 and HDAC2 
are reported to be differentially expressed in endometriosis 
[176]. Hypoacetylation at H3K4, H3K9, and H4K16, and 
hypermethylation at H3K4, H3K9, and H3K27 were found 
in endometriosis tissues [177, 178], suggesting a possible 
role of histone modification in regulating gene expression 
in endometriosis.

In addition to endometriosis, several other common 
gynecologic disease, such as hydrosalpinges, polyps, and 
submucosal myomas, are associated with implantation 
defects [179]. CpG sites within the HOXA10 promotor 
were highly methylated [180], which is responsible for 
the defective HOXA10 expression [181] in these diseases. 
E-cadherin, the major cadherin molecule expressed in epi-
thelial cells, is known to act as an invasion suppressor in 
cancer cells. It has been shown that hypermethylation in 
the promoter region of E-cadherin is associated with de-
differentiation and myometrial invasion of endometrial car-
cinoma [182]. Moreover, several studies have demonstrated 
that circRNAs are involved in uterine dysfunction, such as 
in repeated implantation failure [136].

Conclusion

At present, although an increasing number of epigenetic 
factors and their expressions, as well as the regulations 
have been reported during the peri-implantation stage 
(summarized in Table 1), the systemic exploration of their 
physiological function and the underlying mechanism is 
still a major challenge in this field. Genetic mouse models, 
especially temporal induced genetic manipulation mod-
els in different uterine compartments, and other in vivo/
ex vivo approaches combined with the newly developed 
genome-wide strategy must be utilized to uncover the 
mystery of the genetic regulation network during embryo 
implantation. Moreover, some epigenetic regulators such 
as miRNA and circRNAs, which can be stably detected 
in the serum and other body fluids, might act as biomark-
ers for the diagnosis and targets for potential treatment of 
embryo implantation defects [183]. In addition, both the 
internal environment such as uterus aging [184, 185], and 
external environment, such as malnutrition and endocrine 
disruptors [74, 186–188], have been reported to influence 
embryo implantation and lead to an adverse pregnancy 
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outcome. However, the underlying mechanism, especially 
from the epigenetic aspect, must be first addressed before 
the potential management for these disturbances.
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Table 1  Represent epigenetic regulators for embryo implantation in the mouse and human

Epigenetic regulator Function References

Let-7a Regulate the blastocyst implantation potential via its action on β3-Integrin and Dicer [63, 64]
miR-30d Upregulated during the acquisition of receptivity in the endometrium [43]

Overexpression induced gene expression changes at transcriptome and proteomics changes in 
the epithelium

[114]

Involved in interaction between embryo and uterus as secreted by uteri and taken up by the 
embryo

[118]

miR-31 Elevated in both human endometrium and serum during the implantation window [116]
miR-96 Modulate PGR expression during the establishment of uterine receptivity in rhesus monkey 

and human, but not in rodents
[117]

miR-101a/miR-199a* Regulate the attachment reaction marker Cox2 expression at the post-transcriptional level [189]
miR-200a Locally attenuates progesterone signalling in the cervix through downregulating the PR pro-

tein level and upregulation of progesterone inactivating enzyme (20α-HSD)
[123]

DNMT Regulate the expression of implantation- and pregnancy maintenance- related genes, such as 
E-cadherin, Hoxa10, Muc1, FoxP3 and Hand2 were influenced through the DNA methyla-
tion

[79, 86, 143, 144]

DNA methylation changes in endometrium were correlated with gene expression during the 
transition from pre-receptive to receptive phase in human

[83, 90]

DNMT inhibitor 5-AZA-Dc inhibits decidualization in mice [138, 139]
Disturbed DNA methylation of decidual tissue in spontaneous abortion mouse model [141]
PR down-regulation through DNA methylation in Notch1 constitutive activation mouse 

uterus
[72]

Altered DNA methylation states of promotors and expressions of ERα in endocrine disruptor 
endosulfan or folate deficiency mouse uterus

[73, 74]

Hypomethylated region near CREB5 recruited transcription factors binding, such as P53 and 
SP1, and in turn upregulated CREB5 in recurrent pregnancy loss, which induced compro-
mised trophoblast cell migration and apoptosis

[142]

circRNA-9119 Regulate the expression of Cox2, by sponging miR-26a in endometrial epithelial cells [135]
Histone acetylation HDAC inhibitors upregulated the glycodelin expression, which induced LIF expression in 

glandular epithelial and enhanced implantation
[99]

Acetylation of HOXA10 diminished its transcription activity on β3-integrin promotor [100]
TSA treatment enhanced the estradiol and progestin-induced decidualization [95]
Rbbp7, a core component of histone acetylation, regulate the mouse decidualization [146]
Upregulation of decidualization marker IGFBP-1 and PRL was associated with increased 

histone acetylation status in their promoters
[147]

Increased H3K27ac and H3K4me3 levels in both the proximal and distal promoter regions of 
decidual upregulated genes

[148]

Histone methylation Down-regulation of Ezh2 during the human stroma cell decidualization [150]
H3K27me3 mediate silence of inflammatory chemokine genes in mouse decidualization [151]
Dynamic H3K27me3 fluctuation for pregnancy maintenance and labor [152]
H4K20Me1 methyltransferase Pr-set7 is indispensable for uterine gland development [104]

Histone mono- ubiquitination PR ubiquitination regulated by Bmi1 independent of PRC1 complex is essential for normal 
progesterone responsiveness in endometrium

[101]

Cbx4/Ring1B-containing PRC1 control decidualization through the regulation of extracel-
lular matrix remodelling gene

[154]
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