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a b s t r a c t 

Background: Osteogenesis imperfecta (OI) is a rare genetic bone disease associated with brittle bones and 

fractures. Among all known types, OI type I is the most common type and characterized by increased 

bone fragility, low bone mass, distinctly blue-gray sclera, and susceptibility to conductive hearing loss 

beginning in adolescence. Mutations in genes encoding type I collagen ( COL1A1 and COL1A2 ) contribute 

to the main pathogenic mechanism of OI. 

Methods: Subtle mutation of the COL1A1 gene in the proband was detected by targeted next-generation 

sequencing (NGS) and confirmed by Sanger sequencing. We then assessed the effect of the mutation on 

the splicing of the COL1A1 gene by bioinformatics prediction and hybrid minigene splicing assay (HMSA). 

Results: A novel splice site mutation c.1821 + 1 G > C was discovered in the proband by NGS and further 

confirmed by Sanger sequencing, which was also simultaneously identified from the proband’s mother 

and elder sister. Bioinformatics predicted that this mutation would result in a disappearance of the 5 ′ 
donor splice site in intron 26, thereby leading to abnormal splicing and generation of premature stop 

codon. The follow-up experimental data generated by HMSA was consistent with this prediction. 

Conclusion: Our study identified a novel splice site mutation that caused OI type I in the proband by 

abnormal splicing and demonstrated that combined applications of NGS, bioinformatics and HMSA are 

comprehensive and effective methods for diagnosis and aberrant splicing study of OI. 

© 2019 Elsevier Ltd. All rights reserved. 
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Osteogenesis imperfecta (OI), also known as brittle bone dis-

ase, is a systemic hereditary connective tissue disease. The ge-

ealogical analysis demonstrates that OI is an autosomal dominant

isorder with an incidence of approximately 1:10,0 0 0 and no sig-

ificant difference is found between genders [ 1 , 2 ]. Previous stud-

es have shown that mutations in genes encoding type I collagen

 COL1A1 and COL1A2 ) are the primary cause of OI. Besides, FK506,

RTAP, P3H1, PPIB, SERP1NH1, SERPF1 , and SP7/OS are also associ-

ted with OI progression [ 3 , 4 ]. Commonly, four different types, de-

igned mild (OI type I), lethal (OI type II), severely deforming (OI

ype III), and moderately deforming (OI type IV), are classified ba-

is on clinical features and disease severity of OI, in which OI type
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 is the most common type [ 3 , 5 ]. Clinical manifestations of OI type

 include bone fragility, distinctly blue-gray sclera, hearing loss, and

ental caries [6] . Moreover, low bone mass and multiple fractures

re main manifestations in X-ray [ 3 , 6 ]. 

Sanger sequencing is an earlier laborious and time-consuming

ool that detects COL1A1/2 subtle mutations. Nowadays, next-

eneration sequencing (NGS) provides a new, easy and quick way

o detect mutations with high throughput and sensitivity [ 7 , 8 ].

ere, we found a novel mutation in intron 26 of COL1A1 by NGS,

hich was predicted to be likely pathogenic via changing the

plice donor site. Moreover, hybrid minigene splicing assay (HMSA)

urther proved the molecular pathogenic mechanism of the novel

plicing mutation [ 9 , 10 ]. 

aterials and methods 

ubjects 

The proband was a 31-years-old woman, whose height was 1.49

. She was suspected to have OI type I based on clinical symptoms
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Fig. 1. Confirmation of the mutation by Sanger sequencing. (A) The pedigree chart of this family. (B)The proband had a heterozygous mutation of base G/C; (C) and (D) The 

proband’s mother and elder sister had the same mutation of base G/C; (E) The proband’s father had a homozygous base G;. 
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of frequent fractures, low bone mass, and dental caries. Her mother

aged 60 years was suffered from splintered fracture of right femur

once and severe osteoporosis after menostasis, while her elder sis-

ter aged 34 years only had low bone mass and no other typical

clinical symptoms about OI, their height was almost the same as

the proband ( Fig. 1 A). The protocols for this study were evaluated

and approved by the Ethics Committee of Fuzhou General Hospital.

Written informed consent was obtained from the proband. 
U  

q  

t  

t  
GS 

To find a disease-causing mutation, targeted next-generation se-

uencing was carried out from the proband’s DNA sample. Illumina

enome Analyzer Technology platform was used to test genes

elated to skeletal dysplasia ( COL1A1, COL1A2, SLC26A2, COMP,

OL9A1, FGFR1, etc.). Library preparation and sequencing were per-

ormed using SureSelect Human All Exome enrichment kit (Agilent,

SA) and Illumina HiSeq sequencer (Illumina, USA) [11] . The se-

uencing data were processed using the SAMtools 0.1.16 alignment

ool, and human genome NCBI database (build 38) was used as

he reference [12] . The identified single nucleotide variants (SNVs)
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ere compared with the data from the 10 0 0 Genomes Project and

bSNP database (build 142). 

anger sequencing 

The potential mutated base and flanking sequences of the

OL1A1 gene were amplified and sequenced by Sanger sequencing

forward primer: GAGTAAATGAGAGGCCCCAG, and reverse primer:

ACCCTGCACAGAGAGAACAC). PCR conditions were as follows:

4 °C 5 min, 35 × (94 °C 30 s, 58 °C 45 s, 72 °C 30 s), 72 °C 10 min,

nd the PCR products are 432 bp. PCR products of normal controls

100 alleles) were analyzed by direct sequencing simultaneously to

xclude the possibility of polymorphism. 

ioinformatics analysis 

Bioinformatics analysis was performed to investigate the effect

f the novel intronic mutation on the splicing of the COL1A1 gene

y using splicing prediction tool Human Splice Finder ( http://www.

md.be/HSF3 ) [13] . 

SMA 

onstruction of the minigenes 

A “minigene” spanning exon 26-intron 26-exon 27 of the

OL1A1 gene was amplified from the proband’s and a nor-

al person’s genome DNA using a forward primer (F14-H): CC-

AAGCTTGGGGAGTAAATGAGAGGCCCCAG with the restriction site 

indIII, and a reverse primer (R14-B): CGCGGATCCGCGGACCCTG- 

ACAGAGAGAACAC with the restriction site Bam HI. This minigene

as then cloned into pEGFP-C1 vector (Promega, USA). All these

ecombinant vectors were sequenced, and a mutated and a wild-

ype plasmid were chosen for further work. 

ransfection of HeLa cells 

The wild-type or mutated plasmids were transiently transfected

nto HeLa cells using Lipofectamine 20 0 0 (Invitrogen, USA) ac-

ording to the instructions. After transfecting and then culturing

or 48 h, all cells were collected to extract total RNA using Trizol

eagent (Invitrogen, USA). 

everse transcription-polymerase chain reaction (RT-PCR) analysis 

Total RNA was reverse transcribed with reverse transcriptase

Invitrogen, USA) according to the instructions. The cDNA was then

mplified with the primers F14-H and R14-B. PCR fragments were

nalyzed by agarose gel electrophoresis and individual bands were

xcised and sequenced. 

esults 

ubtle mutation detection 

The average depth for the targeted NGS region was approxi-

ately 212 ×, and the average depth for each base pair was around

18 × . On average 98.4% of base pairs with > 30 × coverage were

uccessfully detected, indicating high capability for variants identi-

cation. A novel mutation at the 5 ′ donor splice site of intron 26

c. 1821 + 1 G > C ) was detected in the COL1A1 gene of the proband

y NGS, which was confirmed by Sanger sequencing. DNA sequenc-

ng indicated that the proband’s mother was a carrier, who coin-

idently transferred the mutation to her daughters, including the

roband and the elder sister of the proband ( Fig. 1 ). 
ioinformatics prediction 

Human Splice Finder predicted that the 5 ′ donor splice site of

ntron 26 would disappear due to the mutation, which might cause

wo types of aberrant splicing including intron retention and alter-

ative donor site using ( Fig. 2 ). 

plicing study by HMSA 

The minigene vectors were constructed and the correct inser-

ions were verified by Sanger sequencing. After transient transfec-

ion of the wild-type (WT), mutated and empty plasmid into HeLa

ells for 48 h, mRNA was analyzed by RT-PCR using primers F14-H

nd R14-B. Normally, splicing after transcription in WT minigene

ontaining exon 26, intron 26 and exon 27 resulted in the removal

f intron 26, thereby producing a fragment of 289 bp with exon 26

nd exon 27. However, aberrant splicing after transcription in mu-

ated minigene harboring a novel mutation at the 5 ′ donor splice

ite of intron 26 (c. 1821 + 1 G > C ) generated a product of 432 bp

 Fig. 3 ), which was consistent with the intron 26 retention pre-

icted by Human Splice Finder ( Fig. 2 ). The DNA sequences of the

ragments were further confirmed by Sanger sequencing (data not

hown). 

iscussion 

Among all the gene mutational patterns that result in the oc-

urrence of inherited diseases, pre-mRNA splicing mutation has

ecently attracted more and more attention. Pre-mRNA splicing

s an essential step for producing the functional protein product

 14 , 15 ]. The process of U1/U2-based mRNA splicing involves a va-

iety of snRNP and correct identification of donor and acceptor

plice sites [15] . By estimation, pre-mRNA splicing occurs in over

0% of human genes [16] . Any mutations that lead to exon skip-

ing, intron inclusion, leaky splicing, or cryptic splicing, introduc-

ion of pseudo-exons into the processed mRNA will generate aber-

ant proteins that destroy biochemical pathways and/or interfere

ell growth regulations and eventually result in clinically abnormal

henotypes [17] . 

Although high-throughput DNA sequencing accelerates the pace

f discovery of splice-site mutations, there remain many challenges

n reliably illuminating the mechanisms of how these mutations

hange splicing patterns, which is important for exploiting the mu-

ation pathogenicity [ 18 , 19 ]. In some cases, RNA samples from af-

ected individuals are unavailable, which certainly impedes subse-

uent transcriptional analysis. However, HMSA provides an effec-

ive, available and relatively simple approach to study the effect of

plice-site mutations on the splicing process [ 20 , 21 ]. 

Osteogenesis imperfecta (OI) is an inherited systemic connec-

ive tissue disease with highly varied clinical consequences. Muta-

ions in genes encoding type I collagen ( COL1A1 and COL1A2 ) are

he main pathogenic mechanism, in which mutations in COL1A1

ccount for 60% −70% of OI [4] . To date, over a hundred kinds of

utations have been recorded into the osteogenesis imperfecta &

hlers-Danlos syndrome variant database of the University of Le-

cester, including 54% of glycine substitutions, 24% of frame-shift

utation, 15% of splicing mutation, 7% of polymorphism [ 3 , 4 ].

iven the highly varied clinical consequences of OI, genetic diag-

osis that examines mutations in genes associated with OI is es-

ential for asymptomatic and atypical patients. Next-generation se-

uencing (NGS) is a powerful tool to screen mutations with ultra-

igh sensitivity, fidelity, throughput, and speed. In the present

tudy, we used targeted NGS panel for skeletal dysplasia to de-

ect subtle variants of OI-related genes and identified a splicing

ariant. Subsequent RNA-based studies were performed to assess

http://www.umd.be/HSF3
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Fig. 2. Bioinformatics prediction of the effect of the mutation on the splicing of the COL1A1 gene. (A) Normal splicing; (B) Aberrant splicing with intron retention; (C) 

Aberrant splicing using the nearest alternative donor site; (D) Aberrant splicing using the strongest alternative donor site. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Electrophoretic pattern of the RT-PCR products. M: DNA marker (from up 

to bottom: 20 0 0, 10 0 0, 750, 50 0, 250 and 10 0 bp); (1) The empty plasmid; (2) The 

wild-type plasmid with a normal splicing fragment of 289 bp; (3) The mutant plas- 

mid with a splicing fragment of 432 bp. 
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whether the variant represents a disease-causing mutation or a be-

nign polymorphism and study the mechanism involved in normal

and aberrant splicing. 

In this work, we identify a novel splice donor site mutation

c. 1821 + 1 G > C in the COL1A1 gene. Three lines of evidence sup-

ported our current hypothesis that this reported variant might de-
troy the biological function of COL1A1 . Firstly, splice-site muta-

ions in the COL1A1 gene reported thus far are generally linked

o the loss of function and have implications for pathogenicity.

econdly, Human Splice Finder predicted that the mutation would

enerate new alternative splice sites, probably resulting in intron

etention or alternative donor site using. Thirdly, HMSA results

roved that the mutation contributed to the disappearance of the

 

′ donor splice site of intron 26, which led to intron 26 retention,

ntroduction of the premature stop codon, and dysfunction of pro-

ein ultimately. According to the American College of Medical Ge-

etics and Genomics (ACMG) guidelines for interpretation of se-

uence variants [22] , we consider this mutation to be pathogenic

PVS1 + PM2 + PM3 + PP1 + PP4). It was worth noting that this pedi-

ree reflected a feature of OI, while highly varied clinical conse-

uences. Three carriers of this pedigree had the same mutation site

ut difference in severity of symptoms. The possible explanations

nclude modification of transcription factors, editing of mRNA, un-

nown compensatory mechanism, interaction of other gene prod-

cts and environmental factors [ 3 , 4 , 23 ]. 

In conclusion, we identified a novel splice donor site mutation

n the proband by applying NGS. Moreover, both of bioinformat-

cs and in vitro experimentation (HMSA) results demonstrated that

he present mutation caused OI progression via aberrant splicing.

herefore, we strongly recommend that the combination of NGS,

ioinformatics and HMSA be applied to the genetic diagnosis and

bnormal splicing study of OI. Furthermore, since the proband and

er sister carried the same mutation, prenatal diagnosis or preim-

lantation genetic diagnosis can be one of the choices for their fu-

ure reproduction. 
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