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Abstract. We study Nash equilibria and the price of anarchy in the clas-
sic model of Network Creation Games introduced by Fabrikant, Luthra,
Maneva, Papadimitriou and Shenker in 2003. This is a selfish network
creation model where players correspond to nodes in a network and each
of them can create links to the other n − 1 players at a prefixed price
α > 0. The player’s goal is to minimise the sum of her cost buying edges
and her cost for using the resulting network. One of the main conjectures
for this model states that the price of anarchy, i.e. the relative cost of
the lack of coordination, is constant for all α. This conjecture has been
confirmed for α = O(n1−δ) with δ ≥ 1/ logn and for α > 4n − 13. The
best known upper bound on the price of anarchy for the remaining range

is 2O(
√

logn).
We give new insights into the structure of the Nash equilibria for α > n
and we enlarge the range of the parameter α for which the price of
anarchy is constant. Specifically, we prove that for any small ε > 0,
the price of anarchy is constant for α > n(1 + ε) by showing that any
biconnected component of any non-trivial Nash equilibrium, if it exists,
has at most a constant number of nodes.

1 Introduction

Many distinct network creation models trying to capture properties of Internet-
like networks or social networks have been extensively studied in Computer
Science, Economics, and Social Sciences. In these models, the players (also called
nodes or agents) buy some links to other players creating in this way a network
formed by their choices. Each player has a cost function that captures the need of
buying few links and, at the same time, being well-connected to all the remaining
nodes of the resulting network. The aim of each player is to minimise her cost
following her selfish interests. A stable configuration in which every player or
agent has no incentive in deviating unilaterally from her current strategy is
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called a Nash equilibrium (ne). In order to evaluate the social impact of the
resulting network, the social cost is introduced. In this setting the social cost is
defined as the sum of the individual costs of all the players. Since there is no
coordination among the different players, one can expect that stable networks
do not minimise the social cost. The price of anarchy (PoA) is a measure that
quantifies how far is the worst ne (in the sense of social cost) with respect to
any optimal configuration that minimises the social cost. Specifically, the PoA
is defined as the ratio between the maximum social cost of ne and the social
cost of the optimal configuration. If we were able to prove formally that the PoA
is constant, then we could conclude that the equilibrium configurations in the
selfish network creation games are so good in terms of social cost.

Since the introduction of the classical network creation game by Fabrikant
et al. in [13], many efforts have been done in order to analyse the quality of the
resulting equilibrium networks. The constant PoA conjecture is a well-known
conjecture that states that the PoA is constant independently of the price of
the links. In this work we provide a new understanding of the structure of the
equilibrium networks for the classical network creation game [13]. We focus on
the equilibria for high-price links and show that in the case that an equilibrium is
not a tree, then the size of any of its biconnected components is upper bounded
by a constant. This is the key ingredient to prove later that, for any small ε > 0,
the PoA is constant for α > n(1 + ε) where α is the price per link and n is the
number of nodes.

Let us first define formally the model and related concepts.

1.1 Model and definitions

The sum classic network creation game Γ is defined by a pair Γ = (V, α) where
V = {1, 2, ...., n} denotes the set of players and α > 0 a positive parameter. Each
player u ∈ V represents a node of an undirected graph and α represents the cost
of establishing a link.

A strategy of a player u of Γ is a subset su ⊆ V \ {u}, the set of nodes
for which player u pays for establishing a link. A strategy profile for Γ is a
tuple s = (s1, . . . , sn) where su is the strategy of player u, for each player
u ∈ V . Let S be the set of all strategy profiles of Γ . Every strategy profile
s has associated a communication network that is defined as the undirected
graph G[s] = (V, {uv | v ∈ su ∨ u ∈ sv}). Notice that uv denotes the undirected
edge between u and v.

Let dG(u, v) be the distance in G between u and v. The cost associated to a
player u ∈ V in a strategy profile s is defined by cu(s) = α|su|+DG[s](u) where
DG(u) =

∑
v∈V,v 6=u dG(u, v) is the sum of the distances from the player u to all

the other players in G. As usual, the social cost of a strategy profile s is defined
by C(s) =

∑
u∈V cu(s).

A Nash Equilibrium (ne) is a strategy vector s such that for every player u
and every strategy vector s′ differing from s in only the u component, su 6= s′u,
satisfies cu(s) ≤ cu(s′). In a ne s no player has incentive to deviate individually
her strategy since the cost difference cu(s′)− cu(s) ≥ 0. Finally, let us denote by



E the set of all ne strategy profiles. The price of anarchy (PoA) of Γ is defined
as PoA = maxs∈E C(s)/mins∈S C(s).

It is worth observing that in a ne s = (s1, ..., sn) it never happens that u ∈ sv
and v ∈ su, for any u, v ∈ V . Thus, if s is a ne, s can be seen as an orientation
of the edges of G[s] where an arc from u to v is placed whenever v ∈ su. It is
clear that a ne s induces a graph G[s] that we call NE graph and we mostly omit
the reference to such strategy profile s when it is clear from context. However,
notice that a graph G can have different orientations. Hence, when we say that
G is a ne graph we mean that G is the outcome of a ne strategy profile s, that
is, G = G[s].

Given a graph G we denote by X ⊆ G the subgraph of G induced by
V (X). In this way, given a graph G = G[s] = (V,E), a node v ∈ V , and
X ⊆ G, the outdegree of v in X is defined as deg+X(v) = | {u ∈ V (X) | u ∈ sv} |,
the indegree of v in X as deg−X(v) = | {u ∈ V (X) | v ∈ su} |, and, finally, the
degree of v in X as degX(v) = deg+X(v) + deg−X(v). Notice that degX(v) =
| {u ∈ V (X) | uv ∈ E} |. Furthermore, the average degree of X is defined as
deg(X) =

∑
v∈V (X) degX(v)/|V (X)|.

Furthermore, remind that in a connected graph G = (V,E) a vertex is a
cut vertex if its removal increases the number of connected components of G. A
graph is biconnected if it has no cut vertices. We say that H ⊆ G is a biconnected
component of G if H is a maximal biconnected subgraph of G. More specifically,
H is such that there is no other distinct biconnected subgraph of G containing H
as a subgraph. Given a biconnected component H of G and a node u ∈ V (H), we
define S(u) as the connected component containing u in the subgraph induced
by the vertices (V (G) \ V (H)) ∪ {u}. The weight of a node u ∈ V (H), denoted
by |S(u)| is then defined as the number of nodes of S(u). Notice that S(u)
denotes the set of all nodes v in the connected component containing u induced
by (V (G) \ V (H))∪ {u} and then, every shortest path in G from v to any node
w ∈ V (H) goes through u.

In the following sections we consider G to be a ne for α > n and H ⊆ G, if it
exists, a non-trivial biconnected component of G, that is, a biconnected compo-
nent of G of at least three distinct nodes. Then we use the abbreviations dG, dH
to refer to the diameter of G and the diameter of H, respectively, (although
dG(u, v) denotes the distance between u, v in G), and nH the size of H.

1.2 Historical overview

We now describe the progress around the central question of giving improved
upper bounds on the PoA of the network creation games introduced by Fabrikant
et al. in [13].

First of all, let us explain briefly two key results that are used to obtain
better upper bounds on the PoA. The first is that the PoA for trees is at most
5 ([13]). The second one is that the PoA of any ne graph is upper bounded by
its diameter plus one unit ([10]). Using these two results it can be shown that
the PoA is constant for almost all values of the parameter α. Demaine et al. in
[10] showed constant PoA for α = O(n1−δ) with δ ≥ 1

logn by proving that the



diameter of equilibria is constant for the same range of α. In the view that the
PoA is constant for a such a wide range of values of α, Demaine et al. in [10]
conjectured that the PoA is constant for any α. This is what we call the constant
PoA conjecture. More recently, Bilò and Lenzner in [8] demonstrated constant
PoA for α > 4n − 13 by showing that every ne is a tree for the same range of
α. For the remaining range Demaine et al. in [10] determined that the PoA is

upper bounded by 2O(
√

logn).

The other important conjecture, the tree conjecture, stated by Fabrikant et
al. in [13], still remains to be solved. The first version of the tree conjecture said
that there exists a positive constant A such that every ne is a tree for α > A.
This was later refuted by Albers et al. in [4]. The reformulated tree conjecture
that is believed to be true is for the range α > n. In [21] the authors show an
example of a non-tree ne for the range α = n− 3 and then, we can deduce that
the generalisation of the tree conjecture for α > n cannot be extended to the
range α > n(1− δ) with δ > 0 any small enough positive constant. Notice that
the constant PoA conjecture and the tree conjecture are related in the sense that
if the tree conjecture was true, then we would obtain that the PoA is constant
for the range α > n as well.

Let us describe the progress around these two big conjectures considering
first the case of large values of α and after the case of small values of α.

For large values of α it has been shown constant PoA for the intervals α >
n3/2 [18], α > 12n log n [4], α > 273n [20], α > 65n [21], α > 17n [1] and
α > 4n− 13 [8], by proving that every ne for each of these ranges is a tree, that
is, proving that the tree conjecture holds for the corresponding range of α.

The main approach to prove the result in [20, 21, 1] is to consider a bicon-
nected (or 2-edge-connected in [1]) component H from the ne network, and
then to establish non-trivial upper and lower bounds for the average degree
of H, noted as deg(H). More specifically, it is shown that deg(H) ≤ f1(n, α)
for every α ≥ c1n and deg(H) ≥ f2(n, α) for every α ≥ c2n, with c1, c2 con-
stants and f1(n, α), f2(n, α) functions of n, α. From this it can be concluded
that there cannot exist any biconnected component H for any α in the set
{α | f1(n, α) < f2(n, α) ∧ α ≥ max(c1, c2)n}, and thus every ne is a tree for this
range of α.

In [20, 21], to prove the upper bound on the term deg(H) the authors basically
consider a BFS tree T rooted at a node u minimising the sum of distances in
H and define a shopping vertex as a vertex from H that has bought at least
one edge of H but not of T . The authors show that every shopping vertex
has bought at most one extra edge and that the distance between two distinct
shopping vertices is lower bounded by a non-trivial quantity that depends on
α and n. By combining these two properties the authors can give an improved
upper bound on deg(H) which is close to 2 from above when α is large enough
in comparison to n. On the other hand, to prove a lower bound on deg(H) the
authors show that in H there cannot exist too many nodes of degree 2 close
together.



In [1], the authors use the same upper bound as the one in [21] for the term
deg(H) but give an improved lower bound better than the one from [21]. To
show this lower bound they introduce the concept of coordinates and 2-paths.
For α > 4n, the authors prove that every minimal cycle is directed and then use
this result to show that there cannot exist long 2−paths.

In contrast, Bilò and Lenzner in [8] consider a different approach. Instead
of using the technique of bounding the average degree, they introduce, for any
non-trivial biconnected component H of a graph G, the concepts of critical pair,
strong critical pair, and then, show that every minimal cycle for the correspond-
ing range of α is directed. The authors play with these concepts in a clever way
in order to reach the conclusion.

In a very preliminary draft [2], we take another perspective and conclude
that given ε > 0 any positive constant, the PoA is constant for α > n(1 + ε).
Specifically, in [2], we prove that if the diameter of a ne graph is larger than a
given positive constant, then the graph must be a tree. Such proposal represents
an interesting approach to the same problem but the calculations and the proofs
are very involved and hard to follow. In this work we present in a clear and
elegant way the stronger result that, for the same range of α, the size of any
biconnected component of any non-tree ne is upper bounded by a constant.

For small values of α, among the most relevant results, it has been proven
that the PoA is constant for the intervals α = O(1) [13], α = O(

√
n) [4, 18] and

α = O(n1−δ) with δ ≥ 1/ log n [10].
The most powerful technique used in these papers is the one from Demaine

et al. in [10]. They show that the PoA is constant for α = O(n1−δ) with δ >
1/ log n, by studying a specific setting where some disjoint balls of fixed radius
are included inside a ball of bigger radius. Considering the deviation that consists
in buying the links to the centers of the smaller balls, the player performing such
deviation gets closer to a majority of the nodes by using these extra bought edges
(if these balls are chosen adequately). With this approach it can be shown that
the size of the balls grows in a very specific way, from which then it can be
derived the upper bounds for the diameter of equilibria and thus for the PoA.

1.3 Our contribution

Let us consider a weaker version of the tree conjecture that considers the exis-
tence of biconnected components in a ne having some specific properties regard-
ing their size.

Conjecture 1 (The biconnected component conjecture). For α > n, any bicon-
nected component of a non-tree ne graph has size at most a prefixed constant.

Let ε > 0 be any positive constant. We show that the restricted version of
this conjecture where α > n(1 + ε) is true (Section 5, Theorem 3). This result
jointly with dG ≤ dH + 250 (Theorem 1, Section 4) for α > n, whenever H
exists, imply that dG is upper bounded by a prefixed constant, too. Recall that,
the diameter of any graph plus one unit is an upper bound on the PoA and the



price of anarchy for trees is constant. Hence, we can conclude that the PoA is
constant for α > n(1 + ε).

In order to show these results, we introduce a new kind of sets, the A sets,
satisfying some interesting properties and we adapt some well-known techniques
and then, combine them together in a very original way. Let us describe the
main ideas of our approach:

– Inspired by the technique considered in [10] which is used to relate the di-
ameter of G with the size of G, we obtain an analogous relation between
the diameter of H and the size of H (Section 3, Proposition 4), that can be

expressed as dH = 2O(
√

lognH).
– We improve the best upper bound known on deg(H) (Section 5, Theorem

2). We show this crucial result by using a different approach than the one
used in the literature. We consider a node u ∈ V (H) minimising the sum of
distances and, instead of lower bounding the distance between two shopping
vertices, we introduce and study a natural kind of subsets, the A sets (Section
2). Each A set corresponds to a node v ∈ V (H) and a pair of edges e1, e2
where v ∈ V (H) and e1, e2 ∈ E(H) are two links bought by v. The A sets
play an important role when upper bounding the cost difference of player v
associated to the deviation of the same player that consists in selling e1, e2
and buying a link to u (Section 2, Proposition 1 and Proposition 2). By
counting the cardinality of these A sets we show that the term deg(H) can
be upper bounded by an expression in which the terms n, α, nH , and dH

appear (Section 2, Proposition 3). By using the relation dH = 2O(
√

lognH)

we can refine the upper bound for the deg(H) even more. Subsequently, we
consider the technique used in [20, 21, 1], in which lower and upper bounds
on the average degree of H are combined to reach a contradiction whenever
H exists, i.e. whenever G is a non-tree ne graph.

Due to space constraints we refer to [3] for all omitted details.

2 An upper bound for deg(H) in terms of the size and
the diameter of H

Remind that in all the sections we consider that G is a ne of a network creation
game Γ = (V, α) where α > n. If G is not a tree then we denote by H a maximal
biconnected component of G.

In this section we give an intermediate upper bound for the term deg(H)
that will be useful later to derive the main conclusion of this paper.

Let u ∈ V (H) be a prefixed node and suppose that we are given v ∈ V (H)
and e1 = (v, v1), e2 = (v, v2) two links bought by v. The A set of v, e1 =
(v, v1), e2 = (v, v2), noted as Ae1,e2(v), is the subset of nodes z ∈ V (G) such
that every shortest path (in G) starting from z and reaching u goes through v
and the predecessor of v in any such path is either v1 or v2.

Therefore, notice that v 6∈ Ae1,e2(v) and the following remark always holds:



Remark 1. Let e1, e2, e
′
1, e
′
2 be four distinct edges such that e1, e2 are bought by

v and e′1, e
′
2 are bought by v′. If dG(u, v) = dG(u, v′) then the A set of v, e1, e2

and the A set of v′, e′1, e
′
2 are disjoint even if v = v′.

Notice that the definition of the A sets depends on u ∈ V (H), a prefixed
node. For the sake of simplicity we do not include u in the notation of the A
sets. Proposition 1 and Proposition 2 are stated for any general u ∈ V (H) but
in Corollary 1 we impose that u minimises the function DG(·) in H.

For any i = 1, 2, we define the Ai set of v, e1 = (v, v1), e2 = (v, v2), noted as
Aie1,e2(v), the subset of nodes z from Ae1,e2(v) for which there exists a shortest
path (in G) starting from z and reaching u such that goes through v and the
predecessor of v in such path is vi.

With these definitions, Ae1,e2(v) = A1
e1,e2(v) ∪ A2

e1,e2(v) and Aie1,e2(v) = ∅
iff dG(u, vi) = dG(u, v) − 1 or dG(u, vi) = dG(u, v). Furthermore, the subgraph
induced by Aie1,e2(v) is connected whenever Aie1,e2(v) 6= ∅.

Now, suppose that e1, e2 ∈ E(H) and think about the deviation of v that
consists in deleting ei for i = 1, 2 and buying a link to u. Let ∆C be the
corresponding cost difference and define crossings(X,Y ) for subsets of nodes
X,Y ⊆ V (G) to be the set of edges xy with x ∈ X, y ∈ Y . Then we derive
formulae to upper bound ∆C in the two only possible complementary cases: (i)
crossings(A1

e1,e2(v), A2
e1,e2(v)) 6= ∅ and (ii) crossings(A1

e1,e2(v), A2
e1,e2(v)) = ∅.

In case (i),A1
e1,e2(v), A2

e1,e2(v) 6= ∅ so that the subgraphs induced byA1
e1,e2(v),

A2
e1,e2(v) are both connected. This trivially implies that the graph induced by

Ae1,e2(v) = A1
e1,e2(v)∪A2

e1,e2(v) is connected as well. Therefore, since H is bicon-
nected and e1, e2 ∈ E(H) by hypothesis, there must exist at least one connection
distinct from e1, e2 joining Ae1,e2(v) with its complement. Taking this fact into
the account we obtain the following result:

Proposition 1. Let us assume that crossings(A1
e1,e2(v), A2

e1,e2(v)) 6= ∅ and xy
is any connection distinct from e1, e2 between Ae1,e2(v) and its complement, with
x ∈ Ae1,e2(v). Furthermore, let l be the distance between v1, v2 in the subgraph
induced by Ae1,e2(v). Then ∆C, the cost difference for player v associated to
the deviation that consists in deleting e1, e2 and buying a link to u, satisfies the
following inequality:

∆C ≤ −α+ n+DG(u)−DG(v) + (2dG(v, x) + l)|Ae1,e2(v)|

Proof. The term −α is clear because we are deleting the two edges e1, e2 and
buying a link to u. Now let us analyse the difference of the sum of distances in
the deviated graph G′ vs the original graph. For this purpose, suppose wlog that
x ∈ A1

e1,e2(v) and let z be any node from G. We distinguish two cases:
(A) If z 6∈ Ae1,e2(v) then:
(1) Starting at v, follow the connection vu.
(2) Follow a shortest path from u to z in the original graph.
In this case we have that dG′(v, z) ≤ 1 + dG(u, z).
(B) If z ∈ Ae1,e2(v) then there exists some i such that z ∈ Aie1,e2(v). Consider

the following path (see the figure below for clarifications):
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Fig. 1. The new path from z to v in the deviated graph G′

(1) Starting at v, follow the connection vu, which corresponds to one unit
distance.

(2) Follow a path from u to y contained in the complementary of Ae1,e2(v).
Since y 6∈ Ae1,e2(v) we have that dG(u, y) ≤ dG(u, v) + dG(v, x) + 1. Therefore,
in this case we count at most dG(u, v) + dG(v, x) + 1 unit distances.

(3) Cross the connection yx, which corresponds to one unit distance.
(4) Go from x to v1 inside Ae1,e2(v) giving exactly dG(x, v)−1 unit distances.
(5) Go from v1 to vi inside Ae1,e2(v) giving at most l unit distances.
(6) Go from vi to z inside Ae1,e2(v) giving exactly dG(v, z)−1 unit distances.
In this case we have that:

dG′(v, z) ≤
(1)︸︸
1 +

(2)︷ ︸︸ ︷
dG(u, v) + dG(v, x) + 1 +

(3)︸︸
1 +

(4)︷ ︸︸ ︷
dG(x, v)− 1 +

(5)︸︸
l +

(6)︷ ︸︸ ︷
dG(v, z)− 1

= 1 + dG(u, z) + (2dG(v, x) + l)
Combining the two inequalities we reach the conclusion:

∆C ≤ −α+ n+DG(u)−DG(v) + (2dG(v, x) + l)|Ae1,e2(v)|

In case (ii), we assume that crossings(A1
e1,e2(v), A2

e1,e2(v)) = ∅. Since H is

biconnected and e1, e2 ∈ E(H) by hypothesis, for each i such that Aie1,e2(v) 6= ∅
there must exist at least one connection distinct from ei joining Aie1,e2(v) with
its complement. Taking this fact into the account we obtain the following result:

Proposition 2. Let us assume that crossings(A1
e1,e2(v), A2

e1,e2(v)) = ∅ and let

I ⊆ {1, 2} be the subset of indices i for which Aie1,e2(v) 6= ∅. Furthermore,
suppose that for each i ∈ I, xiyi is any connection distinct from ei between
Aie1,e2(v) and its complement, with xi ∈ Aie1,e2(v). Then ∆C, the cost difference
of player v associated to the deviation that consists in deleting e1, e2 and buying
a link to u, satisfies the following inequality:

∆C ≤ −α+ n+DG(u)−DG(v) + max(0, 2 max
i∈I

dG(v, xi))|Ae1,e2(v)|

Now, notice the following simple fact:



Remark 2. If z1, z2 ∈ V (H) then any shortest path from z1 to z2 is contained in
H. This is because otherwise, using the definition of cut vertex, any such path
would visit two times the same cut vertex thus contradicting the definition of
shortest path. Therefore, if z1, z2 ∈ V (H) then dG(z1, z2) = dH(z1, z2) ≤ dH .

Combining the formulae from Proposition 1 and Proposition 2 together with
this last remark, we can obtain a lower bound for the cardinality of any A set of
v, e1, e2 when u satisfies a very specific constraint:

Corollary 1. If u ∈ V (H) is such that DG(u) = minz∈V (H) {DG(z)}, then
|Ae1,e2(v)| ≥ α−n

4dH

Now we use this last formula to give an upper bound for the average degree
of H. Recall that we are working in the range α > n:

Proposition 3.

deg(H) ≤ 2 +
16dH(dH + 1)n

nH(α− n)

Proof. For any node v ∈ V (H) let Z(v) be any maximal set of distinct and
mutually disjoint pairs of edges from H bought by v. Let X be defined as the
set of tuples ({e1, e2} , v) with v ∈ V (H) and {e1, e2} a pair of edges from Z(v).
Now define S =

∑
({e1,e2},v)∈X |Ae1,e2(v)|. On the one hand, using Corollary 1

we deduce that S ≥ α−n
4dH
|X|.

On the other hand, for each distance index i, let Si be the sum of the car-
dinalities of the A sets for all the tuples ({e1, e2} , v) ∈ X with dG(u, v) = i. By
Remark 1, Si ≤ n. Therefore:

|X|α− n
4dH

≤ S = S0 + ...+ SdH ≤ n(dH + 1)

Next, notice that there are exactly bdeg
+
H
(v)

2 c pairs in Z(v) for each v consid-

ered. Furthermore, bdeg
+
H
(v)

2 c = deg+H(v)/2 if deg+H(v) is even and bdeg
+
H
(v)

2 c =

(deg+H(v)− 1)/2 otherwise. Hence:

|X| ≥
∑

v∈V (H)

deg+H(v)− 1

2
=
|E(H)| − |V (H)|

2

Finally:

deg(H) =
2|E(H)|
|V (H)|

≤ 2 +
4|X|
|V (H)|

≤ 2 +
16(dH + 1)ndH
nH(α− n)

3 The diameter of H vs the number of nodes of H

In this section we establish a relationship between the diameter and the number
of the vertices of H which allows us to refine the upper bound for the term
deg(H) using the main result of the previous subsection.



We start extending the technique introduced by Demaine et al in [10]. Instead
of reasoning in a general G, we focus our attention to the nodes from H reaching
an analogous result. Since for α > 4n − 13 every ne is a tree it is enough if we
study the case α < 4n.

For any integer k and u ∈ V (H), let Nk,H(u) = {v ∈ V (H) | dG(u, v) ≤ k}
be the set of nodes from V (H) at distance at most k from u. With this definition
in mind then Sk(u) = ∪v∈Nk,H(u)S(v) is the set of all nodes inside S(v) for all
v ∈ V (H) at distance at most k from u. In other words, Sk(u) is the set of all
nodes z such that the first cut vertex that one finds when following any shortest
path from z to u is at distance at most k from u.

Furthermore, for any integer k we define mk = minu∈V (H) |Nk,H(u)|. That
is, mk is the minimum cardinality that any k-neighbourhood in H can have.

Lemma 1. For any integer k ≥ 0, either there exists a node u ∈ V (H) such
that |S4k+1(u)| > n/2 or, otherwise, m5k+1 ≥ mkk/4.

Proof. If there is a vertex u ∈ V (H) with |S4k+1(u)| > n/2, then the claim
is obvious. Otherwise, for every vertex u ∈ V (H), |S4k+1(u)| ≤ n/2. Let u be
any node from V (H) minimising the cardinality of the balls of radius 5k + 1
intersected with V (H). That is, u is any node from V (H) with |N5k+1,H(u)| =
m5k+1. Let Z = {v1, ..., vl} be any maximal set of nodes from V (H) at distance
4k+ 1 from u (in H) with the property that every two distinct nodes vi, vj ∈ Z,
we have that dG(vi, vj) ≥ 2k + 1.

Now, consider the deviation of u that consists in buying the links to every
node from Z and let G′ be the new graph resulting from such deviation. Let
z ∈ S(w) with w ∈ V (H) and dG(w, u) ≥ 4k + 1 and consider any shortest
path (in H) from w to u. Let wπ be the node from any such shortest path at
distance 4k + 1 from u. By the maximality of Z there exists at least one node
vw ∈ Z for which dG(vw, wπ) ≤ 2k. The original distance between z and u is
dG(z, u) = dG(z, w) + dG(w, u). In contrast, the distance between z and u in G′

satisfies the following inequality:

dG′(z, u) ≤ 1 + dG(vw, wπ) + dG(wπ, w) + dG(w, z)

≤ 1 + 2k + (dG(u,w)− (4k + 1)) + dG(w, z) = −2k + dG(u,w) + dG(w, z)

Therefore, dG(z, u)−dG′(z, u) ≥ 2k. Since we are assuming that |S4k+1(u)| ≤
n/2 then this means that

∑
{v∈V (H)|dG(v,u)>4k+1} |S(v)| ≥ n/2, that is, the sum

of the weights of the nodes from H at distance strictly greater than 4k+ 1 from
u is greater than or equal n/2. Then ∆C, the cost difference for u associated to
such deviation, satisfies:

∆C ≤ lα− 2k
(n

2

)
≤ 4nl − kn

Since G is a ne then from this we conclude that l ≥ k/4.
Finally, notice that the distance between two nodes in Z is at least 2k + 1

implying that the set of all the balls of radius k with centers at the nodes from
Z are mutually disjoint. Therefore, m5k+1 = |N5k+1,H(u)| ≥ lmk ≥ mkk/4.



Lemma 2. If r < dH/4− 4 then |Sr(u)| ≤ n/2 for every node u ∈ V (H).

Combining these results we are able to give an extension of the result from
Demaine et al in [10]:

Proposition 4. dH < 5
√

2 log5 nH+5.

4 The diameter of G vs the diameter of H.

In this section we establish a relationship between the diameter of G and the
diameter of H when α > n. Since for α > 4n− 13 every ne is a tree it is enough
if we study the case n < α < 4n.

We show that in this case, the distance between any pair w, z ∈ V (G) where
z ∈ S(w), is upper bounded by 125 from where we can conclude that dG <
dH + 250. To obtain these results we basically exploit the fact that G is a ne
graph together with key topological properties of biconnected components:

Proposition 5. Let w ∈ V (H) and z ∈ S(w) maximising the distance to w.
Then dG(z, w) < 125.

Proof. Let Z be the subgraph of G induced by S(w) and W the subgraph of
G induced by w together with the set of nodes V (G) \ S(w). Then, define r =
dG(z, w) = maxt∈V (Z) dG(w, t), s = maxt∈V (W ) dG(w, t). With these definitions
it is enough to show that r < 125. Notice that, for instance, if S(w) = {w} then
the result trivially holds.

First, let us see that min(r, s) ≤ 8.
Let v any node maximising the distance to w in W and ∆C1 and ∆C2

the corresponding cost differences of players z and v, respectively, associated
to the deviations of the same players that consist in buying a link to w. Then
∆C1 ≤ α − |V (W )|(r − 1) and ∆C2 ≤ α − |V (Z)|(s − 1). Adding up the two
inequalities and using that α < 4n:

∆C1 +∆C2 ≤ 2α− (min(r, s)− 1)(|V (Z)|+ |V (W )|) < 8n− (min(r, s)− 1)n

Since G is a ne graph then ∆C1 + ∆C2 ≥ 0 and from here we deduce that
min(r, s) ≤ 8, as we wanted to see.

If r ≤ 8 then we are done. Therefore we must address the case s ≤ 8.
Next, since H is a non-trivial biconnected component, there exist nodes t, t′ ∈

V (H) such that they are adjacent in H, t has bought the link e = (t, t′) and one
of the two following cases happen: either (i) t is at distance 1 from w, t′ is at
distance 1 or 2 from w or (ii) t′ is at distance 1 from w and t at distance 2 from
w.

In case (i) we deduce that |S(w)| = |V (Z)| ≤ n 4s−2
4s−1 ≤ n 30

31 . This is because
of the following reasoning. Let ∆Cdelete be the corresponding cost difference of
player t associated to the deviation of the same player that consists in deleting



the edge e. Since H is biconnected then there exists a loop going through e and
contained in H of length at most 4s + 1. Notice that when deleting e, t only
increases the distances maybe to the nodes from V (W ) \ {w} but not to the
nodes from V (Z) by at most 4s− 1 distance units. Therefore:

∆Cdelete ≤ −α+ (4s− 1)(n− |V (Z)|) < −n+ (4s− 1)(n− |V (Z)|)

Since G is a ne graph then ∆Cdelete ≥ 0 and from here, using the hypothesis
s ≤ 8, we deduce the conclusion:

|V (Z)| < −n+ n(4s− 1)

4s− 1
= n

4s− 2

4s− 1
≤ 30

31
n

In case (ii) we deduce that |S(w)| = |V (Z)| ≤ n/2. This is because of the
following reasoning. Let ∆Cswap be the corresponding cost difference of player t
associated to the deviation of the same player that consists in swapping the edge
e for the link (t, w). Notice that when performing such swap, t only increases the
distances maybe to the nodes from V (W ) \ {w} but strictly decreases for sure,
one unit distance to all the nodes from V (Z). Therefore:

∆Cswap ≤ −|V (Z)|+ (n− |V (Z)|) ≤ n− 2|V (Z)|

Since G is a ne graph then ∆Cswap ≥ 0 and from here we deduce the con-
clusion |V (Z)| ≤ n/2.

Hence, we have obtained that either |S(w)| ≤ 30
31n, in case (i), or |S(w)| ≤ n

2 ,
in case (ii).

Finally, consider the deviation of z that consists in buying the link to w.
Then the corresponding cost difference ∆Cbuy satisfies the following inequality:

∆Cbuy ≤ α− (r − 1)(n− |S(w)|) < 4n− (r − 1)(n− |S(w)|)

Since G is a ne graph, then ∆Cbuy ≥ 0 so that we conclude that r <
4n

n−|S(w)| + 1. Using this property we conclude that r < 125 in case (i) and

r ≤ 8 in case (ii), so we are done.

As a consequence:

Theorem 1. dG < dH + 250.

5 Combining the results

Finally, in this section we combine the distinct results obtained so far to prove
the main conclusion.

On the one hand, combining Proposition 3 with Proposition 4 we reach the
following result for the average degree of H:



Theorem 2.

deg(H) < 2 +
16n

α− n
52
√

2 log5 nH+10

nH

On the other hand, recall that from Lemma 4 and Lemma 2 from [20] and
[21], respectively, the general lower bound deg(H) ≥ 2 + 1

16 that works for any
α can be obtained.

With these results in mind we are now ready to prove the following strong
result:

Theorem 3. Let ε > 0 be any positive constant and α > n(1 + ε). There exists
a constant Kε such that every biconnected component H from any non-tree Nash
equilibrium G has size at most Kε.

Proof. Let G be any non-tree ne graph. Then there exists at least one bi-
connected component H. By Theorem 2 when α > n(1 + ε) we have that

deg(H) < 2 + 16
ε

52
√

2 log5 nH+10

nH
. On the other hand, we know that for any α,

deg(H) ≥ 2 + 1
16 . Then this implies that there exists a constant Kε upper

bounding the size of H, otherwise we would obtain a contradiction comparing
the asymptotic behaviour of the upper and lower bounds obtained for deg(H)
in terms of nH .

In other words, the restricted version of the biconnected component conjec-
ture where α > n(1 + ε) holds.

Furthermore, recall that it is well-known that the diameter of any graph
plus one unit is an upper bound for the PoA and the PoA for trees is constant.
Therefore, we conclude that:

Theorem 4. Let ε > 0 be any positive constant. The price of anarchy is constant
for α > n(1 + ε).

Proof. Let G be a ne. If G is a tree we are done, because the PoA for trees is at
most 5. Therefore to prove the result consider that G is a non-tree configuration.
Then, G has at least one non-trivial biconnected component H. On the one hand,
by Theorem 3, there exists a constant Kε that upper bounds the size of H. This
implies that dH ≤ nH ≤ Kε. On the other hand, by Theorem 1, dG ≤ dH + 250.
In this way, dG ≤ Kε+250 and since Kε+250 is a constant, then the conclusion
follows because the PoA is upper bounded by the diameter plus one unit.

6 The conclusions

The most relevant contribution we have made in this article is to show that the
price of anarchy is constant for α > n(1 + ε). The technique we have used relies
mostly on the improved upper bound on the term deg(H) for α > n. However,
as in [20, 21], our refined upper bound still depends on the term n/(α−n), that
tends to infinity when α approaches n from above. This makes us think that
either our technique can be improved even more to obtain the conclusion that
the tree conjecture claims or it might be that there exist some non-tree equilibria
when α approaches n from above.
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