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Abstract. The development of a multidisciplinary design optimization (MDO) architecture for 
high-fidelity fluid-structure interaction (FSI) problems is presented with preliminary 
application to a NACA 0009 3D hydrofoil in metal and carbon-fiber reinforced plastic 
materials. The MDO methodology and FSI benchmark solution are presented and discussed. 
The computational cost of the MDO is reduced by performing a design space dimensionality 
reduction beforehand and integrating into the architecture a variable level of coupling between 
disciplines, a surrogate model, and an adaptive sampling technique. The optimization is 
performed using a heuristic global derivative-free algorithm. The MDO method is demonstrated 
by application to an analytical test problem. Current stage of research includes preliminary test 
problem optimization, validation of the hydrofoil FSI against experimental data, and design 
space assessment and dimensionality reduction for the hydrofoil model.  

 
1 INTRODUCTION 

The design of water-borne vehicles and components relies on high-fidelity simulations, 
organized to provide the performance of alternative designs in a variety of operating and 
environmental conditions. The simulation-based design (SBD) approach generally includes a 
hydrodynamic and/or structural solver, a design modification tool, and optimization algorithms 
and has been successfully applied to deterministic and stochastic optimization of a variety of 
ships. Lately, [2] successfully applied SBD methods based on RANS to the deterministic 
optimization of a fast catamaran in calm water. Extensions to stochastic SBD for ships in 
realistic ocean conditions were presented in [3] and applied to the same catamaran model. Both 
deterministic and stochastic optimization methods relied solely on a high-fidelity hydrodynamic 
solver and did not account for the elastic structural response of the ship. 

Fluid-structure interaction (FSI) may be of paramount significance in specific phenomena, 
such as slamming, springing, and whipping of ships, as well as hydro-elastic effects of rudders, 
propellers, and appendages in general. To predict accurately the effects of FSI on the hydro-
structural performance in SBD, high-fidelity FSI solvers are required along with their validation 
in complex realistic conditions. Recent research by the authors showed the full-scale validation 
of a partitioned FSI solver based on one- and two-way URANS/FE coupling for a high-speed 
craft with composite panels, slamming in waves [16]. The effects of FSI were found significant, 

119



Silvia Volpi, Matteo Diez and Frederick Stern 

 2 

motivating further FSI methodology development and the integration of FSI into the SBD via 
multidisciplinary design optimization (MDO). 

MDO refers to optimization procedures where the design performance depends on several 
interconnected disciplines. MDO architectures define the coupling between disciplines (such as 
strong or weak) and the sequence of tasks required to achieve both the multidisciplinary 
consistency and the solution of the design optimization problem. In the context of FSI, the 
availability of experimental data is essential to validate the multidisciplinary consistency 
achieved by the process. Lately, FSI data [17] of a NACA 0009 3D hydrofoil have been used 
as a benchmark for numerical hydrodynamic [8], FSI and MDO studies, investigating the effects 
of multiple materials (metals and composite). 

High-fidelity MDO of complex engineering problems represents a technological challenge. 
Complexity of the multidisciplinary analysis and an often-large number of design variables are 
critical factors affecting the computational cost. Design space dimensionality reduction 
techniques and surrogate models can be used to alleviate the computational resource 
consumption. Design space dimensionality reduction is generally performed by sensitivity 
analysis, requiring fully-coupled multidisciplinary analyses and not addressing the 
interdependence of design variables. To overcome these limitations, an offline design space 
dimensionality reduction method for shape optimization has been recently presented [4],[5] 
based on the Karhunen-Loève expansion (KLE) of the shape modification vector. The technique 
adopts a purely geometrical perspective and precedes any analysis/optimization process. 
Surrogate models have been extensively used in several engineering fields. Examples of 
multidisciplinary applications are given in [13] and [14]. The combination of surrogate models 
and adaptive sampling techniques has been investigated in earlier research [18],[15] showing 
promising improvements in accuracy and efficiency. 

The objective of the current research is the development of an MDO architecture for high-
fidelity optimization of complex FSI problems, with application to a NACA 0009 3D hydrofoil 
in carbon fiber-reinforced plastic (CFRP). The MDO methodology and FSI benchmark solution 
are presented and discussed.   

Specifically, the design space dimensionality reduction is performed beforehand by 
extension of the combined distributed/concentrated parameters KLE presented in [6] to purely 
geometrical quantities. The identification of the optimal design is achieved by sequential 
surrogate-based global derivative-free optimization using dynamic radial basis functions 
(DRBF) [15] and deterministic particle swarm optimization (DPSO) [1]. The multi-criterion 
adaptive sampling (MCAS) [7] is extended to multi-disciplinary optimization allowing for a 
variable level of coupling between fluid and structural dynamics. As the analysis advances, the 
design space is explored and the multidisciplinary consistency refined. A steady two-way 
coupled FSI is solved using Gauss-Seidl iterations. Current status of the research includes: (a) 
a preliminary analytical test problem optimization (including comparison of the current 
architecture to a standard multidisciplinary feasible, MDF [10], approach), (b) the validation of 
FSI analysis against experimental data for the hydrofoil in stainless steel, aluminum, and CFRP, 
and (c) design space assessment and dimensionality reduction. 

2 PROBLEM STATEMENT AND NUMERICAL METHODS 

2.1 Multidisciplinary design optimization: statement of the problem and architecture 
The multidisciplinary design optimization problem for FSI is formulated as follows 

 min
𝐮𝐮

𝑓𝑓 𝐮𝐮, 𝐲𝐲(𝐮𝐮, 𝐲𝐲)  (1) 
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 subject to         		𝐜𝐜, 𝐮𝐮, 𝐲𝐲(𝐮𝐮, 𝐲𝐲) ≤ 0  
  		𝐜𝐜/ 𝐮𝐮,, 𝐮𝐮/, 𝐲𝐲/(𝐮𝐮,, 𝐮𝐮/, 𝐲𝐲0) ≤ 0  
  		𝐜𝐜0 𝐮𝐮,, 𝐮𝐮0, 𝐲𝐲0(𝐮𝐮,, 𝐮𝐮0, 𝐲𝐲/) ≤ 0  

where 𝑓𝑓	is the objective function, 𝐜𝐜 is the set of constraint functions, 𝐮𝐮 is the set of design 
variables, and 𝐲𝐲 is the set of coupling variables from fluid and structural analyses. Design 
variable bounds are handled directly by the optimizer. The subscript (∙)/ indicates the fluid 
analysis, (∙)0 refers to the structural analysis, and	(∙), indicates that the variable/function is 
shared by both disciplines. The inequality constraints 𝐜𝐜 are handled by a linear penalty function. 
This allows for recasting the formulation in Eq. 1 into the following unconstrained optimization 

 min
𝐮𝐮

𝑓𝑓2 𝐮𝐮, 𝐲𝐲(𝐮𝐮, 𝐲𝐲)  (2) 

where 𝑓𝑓2 is the penalized objective function defined as 

 𝑓𝑓2 = 𝑓𝑓 + 𝛾𝛾 max	 𝐜𝐜,, 0
89:

;<=

+ 𝛾𝛾 max	 𝐜𝐜/, 0 + 𝛾𝛾 max	 𝐜𝐜0, 0
89>

;<=

89?

;<=

 (3) 

and 𝛾𝛾 is a penalty coefficient. 
The optimization is solved using sequential surrogate models trained by objective function 

values provided by the FSI analysis. The density of the training points is improved by infill of 
new samples at each iteration. The FSI coupling is initially loose and gets tighter as the 
optimization advances. The procedure is shown in the block diagram of Figure 1. 

 
Figure 1: MDO solution procedure and FSI loop 

The DRBF surrogate model provides the prediction of the function 𝑓𝑓 𝐮𝐮  as the expected 
value of a sample of standard RBF predictions over a stochastic distribution of a tuning 
parameter associated with the RBF kernel. The sampling uncertainty 𝑈𝑈A(𝐮𝐮) is the 95% 
confidence interval of the stochastic sample. Details of the method can be found in [15]. The 
FSI loop is driven by Gauss-Seidl iterations between the fluid and the structural solvers. A 
coupling uncertainty 𝑈𝑈B  is defined based on the convergence of the Gauss-Seidl loop and 
quantified by the difference between two consecutive iterations. 

The adaptive sampling technique MCAS identifies groups of new samples for training the 
DRBF model aiming at balancing the surrogate model accuracy and the search for the global 
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minimizer. In case of single-discipline optimization, this is performed by solving the multi-
objective optimization problem  

 min
𝐮𝐮

𝑓𝑓2(𝐮𝐮) and max
𝐮𝐮

𝑈𝑈(𝐮𝐮) (4) 

where 𝑈𝑈 is the uncertainty of the surrogate model 𝑈𝑈A, depicted in Figure 2a. The resulting Pareto 
front is down-sampled to identify 𝐼𝐼 equally spaced points along the curve as shown in Figure 
2b. Details of the method are provided in [7]. 

 
(a) (b) (c) (d) 

Figure 2: Single-discipline (a, b) and multidisciplinary (c, d) MCAS 

In case of multidisciplinary optimization, MCAS accounts for both 𝑈𝑈A(𝐮𝐮) and	𝑈𝑈D(𝐮𝐮). As 
shown in Figure 2c, 𝑈𝑈A is continuous and goes to zero at the training points; 𝑈𝑈D is instead 
discrete and defined only at the training points. Two independent Pareto sets, ℘A and	℘D, are 
built using 𝑈𝑈 = 𝑈𝑈A and	𝑈𝑈 = 𝑈𝑈D in Eq. 4 and are depicted in Figure 2d. A new set ℘ is defined 
taking the non-dominated solutions of	℘A ∪ ℘D, with the additional constraints, 𝑈𝑈 > 𝑈𝑈H;I (in 
order to avoid overshooting in training the surrogate model) and 𝑓𝑓 − 𝑓𝑓∗ > 𝑈𝑈LML where 𝑈𝑈LML =
𝑈𝑈N + 𝑈𝑈∗N (* indicates current optimum values). ℘ is down-sampled as in the standard MCAS. 

If a sample is determined that was originally in ℘D the corresponding function value in the 
training set is updated by refining the FSI analysis. If a sample is determined that was originally 
in ℘A a new point is added to the training set. The method is referred to as MCAS with 
concurrent uncertainties (MCAS-CU). The multi-objective version [11] of the DPSO algorithm 
is applied to solve Eq. 4 and extract the Pareto sets.  

2.2 Fluid-structure interaction 

The fluid is modeled by the continuity and RANS equations for incompressible Newtonian 
viscous flow. The CFD finite difference code CFDShip-Iowa V4.5 [9] is used to solve 
continuity and momentum equations along with the turbulence equations for the Menter’s 
blended 𝑘𝑘-𝜔𝜔/𝑘𝑘-𝜀𝜀 model. The structural equation of elastic motion is solved by a modal 
expansion, where modes and frequencies are provided by the computational structural dynamics 
(CSD) solver ANSYS Mechanical APDL V15, a commercial FE code.  

In the Gauss-Seidl iterations for steady FSI, 𝐲𝐲/ and 𝐲𝐲0 are the hydrodynamic load predicted 
by the fluid solver and the displacement predicted by the structural solver, respectively, at the 
fluid-structure interface. The hydrodynamic load is transferred from the fluid to the structure 
mesh by Gauss interpolation of the force distribution 𝐟𝐟 𝐱𝐱  so that 𝐟𝐟/ 𝐱𝐱 ≈ 𝐟𝐟0 𝐱𝐱  and 𝐅𝐅/ ≈ 𝐅𝐅0, 
where 𝐅𝐅 = 𝐟𝐟 𝐱𝐱 𝑑𝑑𝐱𝐱 is the total force. The current interpolation approach allows for force 
conservation, while moments are conserved only in an asymptotic sense, i.e. for a mesh size 
that goes to zero. When transferring the displacement from the structure to the fluid mesh, the 
deformation is interpolated in the entire volume representing the fluid domain. The fluid volume 
mesh is structured with indices I, J, and K, where J = 1 corresponds to the fluid-solid interface. 

122



Silvia Volpi, Matteo Diez and Frederick Stern 

 5 

First, the J = 1 surface is deformed by Gauss interpolation so that 𝛅𝛅0 𝐱𝐱 ≈ 𝛅𝛅/ 𝐱𝐱 . Then, the 
volume inner nodes are displaced by linear interpolation between interface (J = 1) and outer (J 
= JMAX) boundary layer surfaces. Details and applications of the FSI routine are given in [16]. 

2.3 Shape modification, design-space assessment and dimensionality reduction 
The shape modification is performed using free-form deformation (FFD) [12]. The method 

allows for smooth deformations of an arbitrary object by deformation of the 3D space 
embedding the object. The deformation is propagated in the space from displacement of discrete 
control points. The design variables are the displacements of the control points. 

The design space assessment and dimensionality reduction are performed considering the 
breakdown of the geometric variance associated to the shape modification space. The method 
is based on the KLE of the shape modification vector [4]. It is extended here to a combined 
distributed/concentrated geometrical parameter vector, similarly to what introduced in [6] to 
integrate physical parameters in the design space assessment. 

The aim of the KLE is to find an optimal basis of orthonormal functions for the linear 
representation of the shape modification 𝜸𝜸 𝐱𝐱, 𝐮𝐮 = 𝛼𝛼Z(𝐮𝐮)𝝍𝝍Z(𝐱𝐱)\

Z<= , where 

 𝜸𝜸 𝐱𝐱, 𝐮𝐮 = 𝜹𝜹 𝐱𝐱, 𝐮𝐮 , 𝐱𝐱 ∈ 𝐷𝐷	
𝜽𝜽 𝐱𝐱, 𝐮𝐮 , 𝐱𝐱 ∈ 𝐶𝐶

   and   𝝍𝝍Z(𝐱𝐱) =
𝝋𝝋Z(𝐱𝐱), 𝐱𝐱 ∈ 𝐷𝐷	
𝝊𝝊Z(𝐱𝐱), 𝐱𝐱 ∈ 𝐶𝐶  (5) 

with 𝐷𝐷 and 𝐶𝐶 being the domains of the distributed and concentrated modifications 𝜹𝜹 and 𝜽𝜽, 
respectively. In the present work, 𝜹𝜹 is the distributed shape modification vector (displacement) 
and 𝜽𝜽 includes twist and camber at specified sections. The basis retaining the maximum 
variance is determined by solution of an eigenvalue problem [4]. The KLE eigenvalues 𝜆𝜆Z 
represent the design variability (variance) associated to the corresponding KLE modes 𝝍𝝍Z. 
Provided that 𝜆𝜆Z ≥ 𝜆𝜆Zf=, the reduced-dimensionality design space is built by truncating the 
linear expansion to the order 𝑁𝑁, so as to resolve a desired level of geometric variability 𝜆𝜆Z8

Z<= . 
The coefficients 𝛼𝛼Z are used as new design variables of the reduced-dimensionality design 
space. 

3 ANALYTICAL TEST CASE 

The MDO architecture is applied to the following two-dimensional test problem: 

 min
𝐮𝐮

			𝑓𝑓 𝐮𝐮 = 𝑢𝑢=N + 𝑢𝑢N + 𝑦𝑦= + 𝑒𝑒klm (6) 
 with         		𝑦𝑦= 𝐮𝐮, 𝑦𝑦N = 100 + 𝑢𝑢= + 𝑢𝑢N − 0.2𝑦𝑦N  
  		𝑦𝑦N 𝐮𝐮, 𝑦𝑦= = |𝑦𝑦=| + 10 + 𝑢𝑢N  

Box-constraints are −10 ≤ 𝑢𝑢= ≤ 25 and	−25 ≤ 𝑢𝑢N ≤ 10. The problem is solved using a 
convergence criterion based on the coupling uncertainty 𝑈𝑈D in the neighborhood of the 
optimum. 𝑈𝑈D and 𝑈𝑈H;I are set equal to 10-4. The RBF kernel used is a power law with exponent 
uniformly distributed between 1 and 3. Results are compared with the standard MDF 
architecture. The latter applies single-objective DPSO directly to objective function evaluations 
reaching multidisciplinary consistency (with tolerance 10-4). Both methods are initialized by a 
Hammersley sequence distribution of 16 points. Single- and multi-objective DPSO uses 16 
particles for 100 iterations. 

The convergence of the optimum is depicted in Figure 3a including the optimal solution as 
predicted by the surrogate model 𝑓𝑓A, the total uncertainty in prediction 𝑈𝑈LML, and the true value 
of 𝑓𝑓. In approximately 4 iterations 𝑈𝑈LML reduces significantly (0.01%) and the surrogate model 
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prediction appears accurate. A breakdown of the uncertainty is provided in Figure 3b showing 
𝑈𝑈A and 𝑈𝑈D. The current architecture outperforms a standard MDF with equivalent tolerance for 
𝑈𝑈D, as shown by Figure 3c. The number of function evaluations needed to achieve the optimum 
is smaller by an order of magnitude. The distribution of samples for the two architectures is 
shown in Figure 4. 

 
(a) 

 
(b) 

 
(c) 

Figure 3: Convergence of (a) optimum, (b) uncertainties, and (c) comparison with MDF 

 
(a) Current architecture 

 
(a) MDF 

Figure 4: Current architecture sampling 

4 INDUSTRIAL TEST CASE 

The 3D hydrofoil (Figure 5 and Table 1) is tapered with streamlined NACA 0009 cross-
sections and is clamped at the root section. An experimental study was carried out at the 
University of Tasmania-AMC to investigate the steady hydro-elastic behavior of the hydrofoil 
comparing different materials, including stainless steel, aluminum, and two sandwich structures 
manufactured with CFRP external skins and inner foam core [17]. The CFRP hydrofoils differ 
in fiber orientation: CFRP00 fibers are aligned with the span whereas CFRP30 fibers are at a 
30 degrees angle. The models have thicker trailing edge then standard NACA 0009 to 
accommodate the composite material. Lift	𝐶𝐶s, drag 𝐶𝐶t, and pitching moment 𝐶𝐶u coefficients, 
tip displacement 𝛿𝛿 and twist 𝜃𝜃 are available from water tunnel testing for several Reynolds 
number and angles of attack. 
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Figure 5: 3D hydrofoil geometry 

Table 1: 3D hydrofoil parameters 

Chord length at root 0.12 m 
Chord length at tip 0.06 m 
Mean chord length 0.09 m 

Span length 0.3 m 
Aspect ratio 3.33 

Cross-section NACA0009 
 

4.1 Fluid-structure interaction 
Steady two-way coupling FSI is performed at an angle of attack (α) equal to 8 degrees and a 

Reynolds number equal to 0.6x106. The condition is in the pre-stall range providing steady 
hydrodynamics. The two-way FSI analysis focuses on the validation of 𝐶𝐶s, 𝐶𝐶t, 𝐶𝐶u, 𝛿𝛿, and 𝜃𝜃. 

 

Figure 6: Lift, drag, pitching moment coefficients 

Figure 6 show the 𝐶𝐶s, 𝐶𝐶t, and 𝐶𝐶u curves including CFD simulations, FSI simulations, and 
experimental data (EFD/ESD). The deformation of steel and aluminum hydrofoils is small, 
affecting only slightly the hydrodynamic forces. Both CFD simulations for rigid body and FSI 
simulations provide a good approximation of the curves. At α = 8 degrees, the errors for 𝐶𝐶s, 𝐶𝐶t, 
and 𝐶𝐶u between FSI and experiments (as percentage of the experimental dynamic range) are     
-1.11, 0.97, and -0.72% for steel and -1.43, 2.01, and -0.11% for aluminum. 

The deformation of the CFRP00 hydrofoil is larger than the metals and for the CFRP30 is 
particularly significant, leading to a visible discrepancy between experimental and CFD curves 
(with errors up to 10%). The errors between FSI and experiments are smaller and equal 0.46, 
1.03, and 1.11% for CFRP00 and 1.77, 2.00, and 1.05% for CFRP30 for 𝐶𝐶s, 𝐶𝐶t, and 𝐶𝐶u, 
respectively. Overall, the FSI prediction of hydrodynamic forces is found accurate with a 
maximum error close to 2%. 

The hydrodynamic efficiency 𝐶𝐶s/𝐶𝐶t is shown in Figure 7. The experimental values for steel, 
aluminum, CFRP00, and CFRP30 are 20.1, 21.4, 19.3, and 21.3. Those computed by FSI are 
18.7, 18.7, 18.3, and 19.1. The experimental data for aluminum shows large peaks between 4 
and 8 degrees, which appear likely to be outliers. Excluding those, CFRP30 provides the largest 
efficiency overall. 

Figure 8 shows the hydrofoil shape computed by the FSI focusing on the tip deformation. 
The tip displacement for steel and aluminum is small (less than 3% of span) and the twist is 
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negligible. The error between FSI and experiments for steel and aluminum is -7.6 and -18% of 
the experimental pre-stall range. The tip displacement for CFRP00 is approximately 3% of the 
span whereas it is 6% of span for CFRP30. 0.5 degrees positive tip twist is found for CFRP00 
and 1.5 degrees of negative twist for CFRP30. The errors for CFRP00 and CFRP30 are -6.2 and 
-13% for 𝛿𝛿 and 36% and 1.2% for 𝜃𝜃, respectively. Overall, 𝛿𝛿 is under-predicted by the FSI but 
the trend is captured. 

 

Figure 7: Hydrodynamic efficiency 

    

Figure 8: Deformation and contour of the x-velocity at 95% of the span 

 
Figure 9: Velocity distribution along y and z axes at the vortex core 

CFRP30 results for 𝜃𝜃 are consistent with the experimental hydrodynamic curves, showing a 
reduction of forces and moment compared to the CFD. The stall-delay effect is due to the 
negative twist of the tip section, which reduces the effective angle of attack. The associated 
efficiency increase is due to the reduction of tip vortex intensity. Figure 9 depicts the non-
dimensional velocity distributions through the vortex core comparing CFRP30 with the rigid 
hydrofoil. The CFRP30 shows a smaller fluctuation in the predominant velocity component. 
Moreover, at the tip vortex core and downstream the tip trailing edge (x = 0.06m), the second 
invariant of the rate of strain tensor Q, taken as criterion for vortex identification, is equal to 
11600 for rigid body and 5500 for CFRP30. Overall, the FSI simulation captures the behavior 
of the structure giving a realistic description of the physics involved. 
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4.2 Shape modification and design space assessment 
Four distributions of FFD control points are compared, as shown in Figure 10. Control points 

are allowed to move in the chord- (x) and thickness-wise (y) directions, whereas their position 
along the span (z) is fixed. Table 2 summarizes the FFD setups including the number of 
associated design variables. Additional design variables are included in the geometry 
modification. Rigid displacement and rotation of the sections are imposed. Bounds for all x/y 
displacements are set equal to ±20% of the mean chord; bounds for the rotations are set equal 
to ±15 degrees. Overall, five design spaces are analyzed and summarized in Table 3. DS1 to 4 
have no rigid section displacement and uses a linear distribution for section rotation. DS5 
includes independent rigid displacements and rotations at 5 sections. 

 
(1) (2) (3) (4) 

Figure 10: FFD control points distribution 

Table 2: FFD setups 

Setup Control points 
distribution 

Number of 
variables 

1 2x2x2 16 
2 5x2x5 100 
3 10x2x10 400 
4 20x2x20 1600 

 

 
Table 3: Design space parameters and variance 

Design 
space 

FFD 
setup 

Additional 
DOF 

Total number of 
design variables 

DS1 1 1 17 
DS2 2 1 101 
DS3 3 1 401 
DS4 4 1 1601 
DS5 2 12 112 

 

Table 4 gives the geometric variance 𝜎𝜎N	of the five design spaces computed using a standard 
KLE method. The comparison of DS1 to 4 shows that increasing the number of control points 
in the FFD reduces 𝜎𝜎N. The comparison of DS2 and DS5, which share the same FFD setup, 
shows that using additional rigid displacements and rotations increases 𝜎𝜎N. Overall, DS5 has 
the largest 𝜎𝜎N. Figure 11 displays the KLE eigenvalues convergence. The number of 
eigenvalues required to retain the 50, 75, 90, 95, 99, and 99.9% of 𝜎𝜎N is summarized in Table 
4 and labeled in Figure 11. 

Table 4: Design space variance assessment 

Design 
space 𝜎𝜎N No. of modes for X% of 𝜎𝜎N 

50 75 90 95 99 99.9 
DS1 4.34x10-6 3 7 10 12 14 16 
DS2 1.42x10-6 8 16 27 36 54 77 
DS3 6.90x10-7 16 32 55 73 116 175 
DS4 3.50x10-7 27 59 105 141 226 347 
DS5 4.61x10-6 3 5 11 19 38 63 

 

 
Figure 11: Eigenvalues convergence 
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Table 5: Combined distributed/concentrated geometric parameters for KLE analysis  

Displacement weight  Twist weight  Camber weight  No. of modes for X% of 𝜎𝜎N 
50 75 90 95 99 99.9 

1.0 0.0 0.0 3 5 11 19 38 63 
0.9 0.05 0.05 3 6 13 20 39 65 
0.8 0.1 0.1 4 6 12 19 38 64 
0.6 0.2 0.2 4 6 11 17 35 61 
0.5 0.25 0.25 3 6 10 15 33 59 

0.333 0.333 0.333 2 5 9 12 28 54 

When performing combined distributed/concentrated parameter KLE, a weight is assigned 
to distributed (displacements) and concentrated (twist and camber) modifications. DS5 is 
evaluated comparing six sets of relative weights. The number of eigenvalues required to retain 
the 50, 75, 90, 95, 99, and 99.9% of 𝜎𝜎N is summarized in Table 5. Using even weights for the 
three parameters provides the most efficient dimensionality reduction. 

 

 

(a) Distributed parameter KLE (b) Combined distributed/concentrated parameter 
KLE 

Figure 12: Target geometry representation 

  
(1) 

 
(2) 

 
(3) 

Figure 13: Eigenvectors of DS5 representation with combined distributed/concentrated parameter KLE 

A nearly optimal shape inspired by [8] is used as a target to test the accuracy of the reduced-
dimensionality representation of the shape modification. Figure 12 shows the geometry 
reconstruction using a finite number of KLE modes comparing standard (a) and combined 
distributed/concentrated parameter KLE (b). The design space representation through the latter 
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method outperforms standard KLE in representing the target geometry. The first three 
eigenvectors used by the combined distributed/concentrated parameter KLE for representing 
DS5 are depicted in Figure 13. 

4.3 Multidisciplinary design optimization 

Ongoing MDO studies aim at the design optimization of the hydrofoil for maximizing the 
hydrodynamic efficiency at specified conditions. The multiple design choices offered by the 
CFRP material are investigated and a combined shape and structural design optimization is 
sought after.  

9 CONCLUSIONS AND FUTURE RESEARCH 
The development of an MDO architecture for high-fidelity FSI problems has been shown 

with preliminary application to a NACA 0009 3D hydrofoil in metal and CFRP materials. The 
MDO methodology and FSI benchmark solution were presented and discussed.  

The methodology for high-fidelity MDO integrates design space dimensionality reduction, 
surrogate modeling, and adaptive sampling into a global derivative-free optimization 
framework. The architecture performs sequential surrogate-based optimization refining the 
accuracy of the analysis by infill of new samples and improvement of the multidisciplinary 
consistency. The MDO methodology was applied to a two-dimensional analytical test problem 
and compared with a standard MDF architecture employing the same optimization algorithm 
and convergence criterion. The current method outperforms the MDF requiring fewer function 
evaluations by an order of magnitude. 

The FSI of the hydrofoil original geometry was studied and compared with available 
experimental data. The simulations showed an accurate description of the physics and 
prediction of lift and drag forces, pitching moment, hydrodynamic efficiency, tip displacement 
and twist. Results were shown for stainless steel, aluminum, and two types of carbon fiber-
reinforced plastic (CFRP) materials. The negative tip twist provided by one of the CFRP 
materials correlates with lower tip vortex intensity, stall delay, and higher hydrodynamic 
efficiency. 

Several design spaces for the hydrofoil were assessed by Karhunen–Loève expansion (KLE), 
showing geometric variability, convergence of the KLE eigenvalues, and capability in 
representing a target nearly optimal geometry. A novel KLE formulation based on combined 
distributed/concentrated geometrical parameters was used to build a more efficient reduced-
order representation of the design space than standard KLE. 

Future research includes the sensitivity analysis along KLE-provided design variables. The 
hydrodynamic shape optimization of the rigid hydrofoil will be performed along with the MDO 
of the aluminum and CFRP models. 
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