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Background fluorescence, especially when it exhibits undesired
spatial features, is a primary factor for reduced image quality in
optical microscopy. Structured background is particularly detrimen-
tal when analyzing single-molecule images for 3-dimensional local-
ization microscopy or single-molecule tracking. Here, we introduce
BGnet, a deep neural network with a U-net-type architecture, as a
general method to rapidly estimate the background underlying the
image of a point source with excellent accuracy, even when point-
spread function (PSF) engineering is in use to create complex PSF
shapes. We trained BGnet to extract the background from images of
various PSFs and show that the identification is accurate for a wide
range of different interfering background structures constructed
from many spatial frequencies. Furthermore, we demonstrate that
the obtained background-corrected PSF images, for both simulated
and experimental data, lead to a substantial improvement in
localization precision. Finally, we verify that structured background
estimation with BGnet results in higher quality of superresolution
reconstructions of biological structures.

deep learning | background estimation | superresolution | single-molecule
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In optical microscopy, the term “background” (BG) summarizes
contributions to an image that do not arise from the species

that is investigated, but from other sources (1, 2). These con-
tributions lower the quality of the image and are, therefore,
unwanted. For example, when performing fluorescence microscopy
of a cellular protein labeled via immunochemistry, antibodies may
bind nonspecifically to other cellular components or to the sample
chamber, or the sample itself can exhibit autofluorescence (3).
Often, during camera-based localization within a small region

of interest (ROI), the BG structure of an image is considered to
be uniform within that region and is accounted for by subtraction
of a mean or median fluorescence signal that is extracted from an
image area that has no contribution from the fluorescently labeled
species of interest (4). The assumption of unstructured (uniform)
BG is, however, an oversimplification in most situations. For ex-
ample, in biological microscopy, a typical specimen such as a cell
or a tissue slice features a huge number of different components
that are distributed over many different spatial length scales that
may be autofluorescent (5). A fluorescent probe introduced to
label a component may also bind nonspecifically to other com-
ponents. Therefore, the resulting fluorescent BG will be composed
of many different spatial frequencies. Thus, this type of BG can be
termed “structured BG” (sBG) (6).
sBG is especially detrimental when single emitters such as

single molecules are detected and imaged to estimate their po-
sition on the nanometer scale, as is done in localization-based
superresolution microscopy methods (e.g., photoactivated lo-
calization microscopy [PALM], stochastic optical reconstruction
microscopy [STORM], fluorescence PALM [f-PALM]) or single-
molecule tracking (7–9). In these approaches, a BG-free model
function of the point-spread function (PSF), i.e., the response
function of the microscope when a single emitter is imaged, is fit

to the experimentally recorded camera image of the single mol-
ecule containing BG (2, 10). In the simplest case, the standard
(open aperture) PSF of a typical microscope can be approximated
by a 2-dimensional (2D) Gaussian. For 3-dimensional (3D) im-
aging, more complex PSFs have been developed via PSF engi-
neering in the Fourier plane, and the information about z position
is encoded in the more complex image (11). Similar PSF engi-
neering strategies can be used to encode other variables such as
emitter orientation, wavelength, etc. (12–14).
While unstructured BG can be easily accounted for in the PSF

fitting process as an additive offset, removing sBG is much more
challenging: a simple subtraction of some number will just shift the
average BG magnitude but not remove the underlying structure.
The remaining sBG changes the PSF shape, which can strongly
affect the result of the position estimation, regardless of the fitting
algorithm used (e.g., least squares or maximum-likelihood esti-
mation [MLE]) (15, 16).
Unfortunately, correction for sBG is not trivial as it can exhibit

contributions from various spatial scales. Any approach to
remove sBG must be able to differentiate between the spatial
information from the PSF alone, which must be retained, and the
spatial information in the sBG (17, 18). A recent Bayesian ap-
proach estimated background for a specific case (19), but more
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general background estimation procedures are needed. Methods
such as sigma clipping (20, 21) have been developed to account for
sBG; however, for more complex PSFs used in 3D imaging, sBG
estimation with these approaches is very challenging. Therefore,
even though sBG is a prominent feature for experimental datasets,
the simple assumption of constant BG is still widely used today. In
this work, we address this problem by employing advanced image
analysis with deep neural networks (DNNs), using the network to
extract the sBG for proper removal.

Results and Discussion
General Workflow and BGnet Architecture. Here, we introduce
BGnet, a DNN that allows for rapid and accurate estimation of
sBG. DNNs are versatile tools for various applications, among
which, image analysis for general purpose feature recognition as
well as for optical microscopy are prominent (22–26). Recently,
the U-net architecture has been demonstrated to be well suited for
image segmentation (27, 28). Fundamentally, image segmentation
is similar to sBG estimation: a feature—the PSF without BG—is
overlaid with the sBG, which should be identified from the com-
bined image in order to subsequently remove it. Therefore, we
suspected that a U-net-type architecture might also be applicable
for sBG estimation in optical microscopy, as schematically
depicted in Fig. 1A. The architecture of BGnet is depicted in Fig.
1B, illustrating the U-shaped architecture of the network. The
fundamental idea is to first condense the spatial size of the input
image stepwise while increasing its filter space. Then, stepwise up-
sampling is performed until the original spatial scale of the image
is obtained, and the filter space is reduced in turn. This is often
termed encoder–decoder architecture (22, 29). In U-net-type ar-
chitectures, the output before each down-sampling (left arm of the
U) is concatenated with the result of the up-sampling (right arm of
the U) at corresponding spatial scales. This is reminiscent of re-
sidual nets where the output of a layer is added to the output of a
deeper layer via skipped connections (30).
First, we provided BGnet with training data that covers the

wide parameter space that sBG estimation poses: A given PSF
that should be analyzed can have various shapes and sizes at dif-
ferent axial positions of the emitter; and many different spatial
frequencies can combine to form the sBG. Therefore, we turned
to accurate PSF simulations of 3 PSFs commonly used for
superresolution imaging and single-particle tracking: The standard
open aperture (OA) PSF, the double-helix (DH) PSF with 2-μm
axial range (15, 31), and the Tetrapod PSF with 6-μm axial range
(Tetra6 PSF) (32). Also, we included an arbitrary PSF with a
rather chaotic shape to test whether our approach is robust against
PSF shapes that do not exhibit a well-defined symmetric structure.
See SI Appendix, Fig. S1 for the development of the 4 investigated
PSF throughout their respective relevant focal range. As a model
for sBG, we chose Perlin noise because it is 1) able to accurately
resemble sBG encountered under most experimental conditions
and 2) precisely controllable in its spatial frequency composition
(see SI Appendix, Fig. S2 for an overview) (33).
PSFs were simulated by means of vectorial diffraction theory

(34, 35) using simulation parameters matching typical experi-
mental values and accurately characterized aberrations, de-
termined via phase retrieval as previously published (16). The
PSFs were simulated at different focal positions and different
distances away from a glass coverslip (n = 1.518) in water (n =
1.33) (see SI Appendix, Tables S1–S4 for simulation parameters).
The Perlin noise used for sBG modeling contained spatial fre-
quencies of L/12, L/6, L/4, and L/2 for the OA PSF; L/20, L/10,
L/5, and L/2 for the DH and arbitrary PSF; and L/40, L/20, L/10,
L/5, and L/2, for the Tetra6 PSF; with the parameter L being the
size of the image in pixels (12, 20, or 40, respectively). Notably,
the contribution of each individual frequency was not restricted
and was chosen randomly to be anywhere between 0 and 100%.
Signal and BG photons were simulated across a wide range,

dependent on the PSF, to generate training and validation data.
Each input PSF was normalized between 0 and 1, and the target,
i.e., the true BG that BGnet is trained to return, was scaled
identically. Therefore, the BGnet not only predicts the structure of
the BG but also its intensity relative to the input PSF image at
each pixel.
BGnet was implemented in Keras with Tensorflow backend

and trained on a desktop personal computer (PC) equipped with
64-gigabyte random-access memory, an Intel Xeon E5-1650
processor, and an Nvidia GeForce GTX Titan graphics-processing
unit (GPU). Convergence was reached after training for approx-
imately 1 h (OA PSF) to approximately 9 h (Tetra6 PSF). Detailed
training parameters are listed in SI Appendix, Table S5. All vali-
dation experiments were done with an independent dataset that
was not part of the training dataset.

BGnet Accurately Estimates sBG from Images of Various PSF Shapes.
Fig. 2 shows representative examples for the PSF simulation
process and the performance of BGnet on validation data. In
Fig. 2A, the probability density functions (PDFs) are shown as a
reference for one axial position. The PSFs containing BG (Fig. 2
B, top images for each PSF) are supplied to BGnet, which
returns the predicted BGs (Fig. 2 C, bottom images). The
agreement between true (Fig. 2 B, bottom images) and predicted
BGs is excellent, reflected in small residuals (Fig. 2 C, top
images).The obtained BGs can then be subtracted from the PSF
images for BG correction. The strongly improved quality of the
PSF shapes after BG correction is evident. Illustrating the quality
of the BG estimation, the images for the PSFs corrected with the
true BGs and the PSF corrected with the predicted BGs are very
similar (Fig. 2D). For additional representative examples, see SI
Appendix, Figs. S3–S6.
To quantify the overall agreement between true and predicted

BGs, we normalized each pair of true and predicted BGs be-
tween 0 and 1 (otherwise, due to varying signal and background
levels, the residuals cannot be directly compared). Then, we
calculated the pixelwise difference between true and predicted
BGs for all of the PSFs in the validation dataset. The result is
depicted in Fig. 2E. Clearly, the residuals, which can range be-
tween −1 and 1, form a narrow distribution that is centered at 0.
The control, i.e., pixelwise comparison of the true background to
pure Poisson noise exhibiting the same average photon count per
pixel, forms a significantly broader distribution, as expected. This
indicates that the BG is accurately estimated by BGnet. Impor-
tantly, this process is very fast; 3,500 to 5,000 PSFs were analyzed
in 4 to 30 s on a standard desktop PC (quickest for the OA PSF,
slowest for the Tetra6 PSF due to the different image sizes),
which corresponds to ∼1 to 6 ms/PSF, suitable for real-time
analysis. Using a PC equipped with a dedicated GPU could
speed up BG estimation even more if required.

BGnet Strongly Improves Localization Precision of Single Molecules.
The good agreement between predicted and true BGs is prom-
ising. However, it is critical to verify that removing the predicted
sBGs translates to improved precision of extracted single-
molecule parameters compared to conventional BG correction
approaches. Therefore, we explored how BG correction with
BGnet affects the 3D emitter-localization precision via MLE
fitting of the images to the models (Materials and Methods). For
this analysis, we simulated PSFs at various distances from the
coverslip and various focal positions. Furthermore, we varied the
signal photons and the average BG photons per pixel over a wide
range, specific to each PSF, and used values typical for experi-
ments, which resulted in 90 different parameter combinations for
the OA, the DH, and the arbitrary PSF and in 270 different pa-
rameter combination for the Tetra6 PSF (SI Appendix, Table S6).
Each parameter combination was realized 100 times with the re-
spective PSF position held constant. However, each of the 100
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PSF realizations for a specific parameter combination was cor-
rupted with different BG structures. As the true PSF position is
always the same, the “spread” of the localizations (i.e., the mean
of the SDs of the position estimates in each spatial dimension x, y,
and Δf) directly reports on the effect of BG subtraction.
We analyzed 4 different scenarios: 1) BG correction with the

predicted BG from BGnet (scenario i); 2) BG correction with the
ground-truth, true BG (scenario ii); 3) a BG-free PSF that only
exhibits Poisson noise (scenario iii); and 4) conventional BG
correction with a constant BG as typically assumed (scenario iv).
Scenario iii is a baseline reference that exhibits the best locali-
zation precision obtainable in a BG-free scenario for the de-
tected photons assumed. The results are depicted in Fig. 3.
For each of the 4 scenarios, the MLE fitting of the images with

different background structures yields 100 position estimates, the
spreads of which can be quantified by an SD. The x/y scatter plots
in Fig. 3A show a representative result for the OA PSF (10,000
signal photons, 150 average BG photons/pixel, emitter at 2 μm,
focal position for scatter plot at 0.5 μm; for further examples of
all investigated PSFs, including x/Δf scatter plots, see SI Ap-
pendix, Figs. S7–S10). The spreads of the position estimates for
scenarios i, ii, and iii are plotted against the spread of the ref-
erence scenario, the constant BG estimate (scenario iv, on the
right in Fig. 3A) for each parameter combination. Fig. 3 B–E
depicts the OA, DH, arbitrary, and Tetra6 PSF, respectively. The
significant improvement in localization precision when using
BGnet is evident for all PSFs and any condition: The spread of
the position estimates is much smaller when BG correction with
BGnet is used. Nearly all points corresponding to BG correction
with BGnet are located far below the line with slope unity. This
demonstrates that the excellent accuracy with which BGnet ex-
tracts the BG from PSF images directly results in improved
localization precision.
For many cases, the crude BG correction with a constant BG

leads to spreads of hundreds of nanometers, which is considerably

reduced when BG correction with BGnet is performed. These
extreme cases with large x-axis coordinates correspond to PSFs
with high BG and low signal and would likely be hard to detect
under experimental conditions. These PSFs would therefore
probably not be analyzed in localization microscopy. However, for
single-particle tracking, this is not the case. When a fluorescently
labeled object gradually bleaches away, one has high confidence in
the presence of a dim object within a certain ROI due to the
known trajectory from previous frames. Therefore, subtraction of
the BG with BGnet can strongly increase the length of the whole
trajectory, increasing the statistical strength of a diffusion analysis,
for example. Furthermore, for brighter emitters that would be
easily detected, BGnet remarkably still improves the localization
precision by a factor of approximately 2 to 10 (insets in Fig. 3 B–E).
For an additional analysis for the Tetra6 PSF with higher signal
photon counts as typical for quantum dots or polystyrene fluo-
rescent beads, see SI Appendix, Figs. S11 and S12.

BGnet Strongly Improves Localization Accuracy of Single Molecules
for Various BG Complexities. In the approach described above, the
100 PSF realizations were corrupted by different BG structures.
The obtained position estimates were subsequently pooled to
extract the spread of the localizations. While this method is in-
tuitive, it does not report on the effect of an individual BG
structure. To confirm that BG correction with BGnet improves
the performance at the level of an individual localization event,
we first developed a metric to quantify the complexity of the BG
(termed “BG complexity”) in a given PSF image. First, we cal-
culated the spatial Fourier transform (FT) of the sBG alone.
Additionally, we calculated the FT of a constant BG with the
same average photon count per pixel and Poisson noise. Then,
we subtracted the FT of the constant BG from the FT of the sBG
to remove the dominant lowest spatial frequency. Next, we cal-
culated the integrated weighted radial distribution. The result
was normalized by the signal-to-background ratio (SBR) (see
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SI Appendix, Fig. S13 for details), yielding the BG complexity
metric for the considered sBG, which is larger for BG with
higher spatial frequencies or lower SBR. For each localization
event, we calculated the Euclidian distance from the known true
position (i.e., the accuracy) and plotted it against the respective
normalized BG complexity, as depicted in Fig. 4.

This analysis confirms that BG correction with BGnet im-
proves the accuracy of each single localization event. As is clearly
visible, the differences between the estimated and the true po-
sitions are significantly smaller when the BG is corrected with
BGnet compared to correction with a constant BG. This is true
for all 4 analyzed PSF shapes. As one would expect, the accuracy
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decreases when the normalized BG complexity increases, re-
gardless of the BG correction method (Fig. 4, bottom graphs for
each PSF—the scatter clouds rising from the x axis). However,
when the predicted BG from BGnet is used, this trend is clearly
dampened. Thus, BG correction with BGnet performs much
closer to the ideal case, i.e., BG correction with the true BG.
Additionally, the number of significant outliers is strongly re-
duced compared to BG correction with constant BG (Fig. 4, top
graphs for each PSF). In an experimental setting, for example in
localization microscopy, this is of high relevance as gross mis-
localizations deteriorate image quality 2-fold: first, the number
of spurious localizations in the reconstruction increases; and,
second, the localizations no longer report on the structure to be
imaged, reducing the spatial resolution.

BGnet Enhances Localization Precision and Image Quality for
Experimental Datasets. Finally, we verify the performance of
BGnet on experimental data, without retraining the neural net.

For this, we first imaged 100-nm fluorescent polystyrene beads in
water that were attached to a glass cover slide using either no
phase mask (OA), the DH, or the Tetra6 phase mask. sBG was
introduced with a continuously moving white light source that
illuminated the sample nonhomogenously during data acquisi-
tion. Also, a large number of beads was not attached to the glass,
but diffused freely in solution. Their emission contributed to the
structured BG as well. For each PSF shape, we imaged different
immobile beads for 1,000 frames, which were positioned at dif-
ferent regions of the field of view and exhibited different SBRs
and BG structures. Then, we performed MLE fitting, either as-
suming a constant BG or performing BG correction with BGnet.
Fig. 5A shows representative frames from the obtained stacks

for the 3 PSFs, the corresponding estimated BGs using BGnet,
and the resulting BG-corrected PSFs. The results for BGnet are
striking. For example, a part of a PSF caused by a diffusing bead is
visible for the Tetra6 PSF 13 at the left edge, which is correctly
identified by BGnet. Also, sBG with lower spatial frequency, vis-
ible from “humps” in the images, is accurately removed, leading to
more pronounced PSF images for all 3 investigated PSFs. We also
extracted the BG complexity metric using the same approach as
for the simulated data and also scaled it identically to provide the
same arbitrary units as in Fig. 4. For the ROIs shown in Fig. 5A,
the values range from 0.1 to 1.34 (Fig. 5 caption). Compiling the
scaled BG complexities for all frames of all beads yielded the
histograms shown in SI Appendix, Fig. S14. Importantly, some
values are larger than 1, which was the highest value we realized
when training BGnet. Nevertheless, BGnet still performed well.
This indicates that our approach is robust and does not sharply
decrease in performance when the boundary of the training pa-
rameter space is exceeded.
The visual impression translates to significantly improved lo-

calization precisions when performing MLE fitting. Fig. 5B shows
the SD of the position estimates, averaged over x, y, and Δf (Δf
only for the DH and Tetra6 PSF) for 6 cases for each PSF (see SI
Appendix, Fig. S15 for example scatter plots). The localization
precision is evidently increased by BG correction with BGnet.
Only very rarely, BGnet performs worse than when constant BG is
assumed (PSF 3, PSF 6, and PSF 11). However, in these cases,
BGnet also does not strongly reduce the localization precision.
Therefore, in the worst case, BG correction with BGnet performs
comparable to constant BG subtraction but will, in the majority of
cases, greatly improve the localization precision.
While BGnet improves localization precision in a proof-of-

concept scenario, a further relevant assessment is to test its ca-
pability in a commonly encountered experimental setting. To this
end, we investigated how BG correction with BGnet performs in
localization-based superresolution microscopy of a biological
structure. We labeled microtubules in fixed BSC-01 cells via
immunostaining, using AlexaFluor 647 as a fluorescent dye.
Then, we acquired STORM superresolution microscopy data
and localized the detected single molecules. Also, we acquired
an sBG image by illuminating an empty well with a light-emitting
diode white-light source. We added this sBG image to each
frame of the single-molecule localization data to introduce a
strong sBG and thus to perform an assessment of BGnet under
truly challenging conditions (see SI Appendix, Fig. S16 for the
sBG image and a representative frame). In the localization step,
we corrected for BG either by assuming a constant BG or by
using the estimate from BGnet (see Materials and Methods). The
result is depicted in Fig. 5C. The assumption of constant BG
leads to severe artifacts in the reconstructions, evident from
spurious localizations, nonstructured regions, and loss of finer
details. BG correction with BGnet, in contrast, yields excellent
reconstructions of the microtubules (compare magnifications in
Fig. 5C). Thus, we have successfully demonstrated the capabil-
ity of BGnet to improve the image quality of superresolution
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Fig. 3. Significant improvement in localization precision occurs with MLE fit-
ting when BG correction with BGnet is used. (A) Schematic of data visualization
approach and representative x/y scatter plots for a given parameter combina-
tion for the OA PSF. The spreads of the position estimates are 105, 27, 7, and
3 nm for scenarios i to iv, respectively, leading to the points placed on the plot
in the center. (B–E) The spread of the position estimates for scenarios i, ii, and iii
is plotted against the spread of the position estimates for scenario iv, that is,
the constant BG estimate is used as a reference. Insets showmagnifications. The
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reconstructions, a result that can be readily transferred to other
flavors of single-molecule experiments.

Conclusion
In summary, we have developed a robust and easy-to-implement
method to rapidly correct PSF images for sBG. We demonstrate
that this approach significantly improves emitter localization of
OA, DH, and Tetra6 PSFs both for accurate PSF simulations
and for experimental data. BGnet is not restricted to any specific
assumptions about the BG characteristics. The method works
because the PSF model is known, and it can be obtained accu-
rately using known techniques.
Using single-molecule emitters as point-like markers for lo-

calizing nanoscale objects has developed from a specialized
technique into a generally available, widely used method across
biology, chemistry, and materials science. However, removal of
sBG was so far not addressed. In our work, we provide a robust
and easy-to-implement method to tackle this problem, and all
applications of single-molecule localization microscopy will im-
mediately benefit. Our experimental demonstration of the ef-
fectiveness of BGnet in the simplest experimental setting,
epifluorescent illumination using the 2D open aperture PSF,
underscores the general relevance of our results as this is a
widely employed localization microscopy method today. Never-
theless, BGnet is equally powerful when applied to more com-
plex PSFs used, e.g., for 3D imaging.
Our method should improve PSF analysis for a wide range of

powerful state-of-the-art techniques such as single-molecule lo-
calization microscopy (36–38), single-molecule and single-particle
tracking (39), aberration correction with adaptive optics (40), or
deep-tissue imaging, where sBG is an especially prominent issue as

recently highlighted by a noteworthy study (41). Furthermore, we
are confident that our workflow can be readily generalized
according to the requirements of other flavors of microscopy (e.g.,
optical coherence tomography [OCT], scattering microscopy, or
stimulated emission-depletion [STED] microscopy) and is not
limited to just fluorescence microscopy, providing a broad range of
scientific disciplines with a highly versatile resource.

Materials and Methods
Cell Culture. BSC-01 cells were cultured in phenol red-free Dulbecco’s mod-
ified Eagle medium (Thermo Fisher), supplemented with 1 mM sodium py-
ruvate (Thermo Fisher) and 10% fetal bovine serum (Thermo Fisher), at 37 °C
in a humidified 5% CO2 atmosphere. The cells were seeded into 8-well
chambered cover slides (ibidi GmbH) and used 2 d after seeding.

Immunolabeling. BSC-01 cells were washed with prewarmed phosphate-
buffered saline (PBS) plus Ca2+/Mg2+ (Thermo Fisher) and preextracted
with prewarmed 0.2% saponin in citrate-buffered saline (CBS)—10 mM 2-(N-
morpholino)ethanesulfonic acid, 138 mM NaCl, 3 mM MgCl2, 2 mM ethylene
glycol bis(2-aminoethyl)tetraacetic acid, 320 mM sucrose (all Sigma-Aldrich)—
for 1 min. Then, cells were fixed with 3% paraformaldehyde and 0.1%
glutaraldehyde (Sigma-Aldrich) in CBS for 15 min at room temperature (RT).
Then, cells were reduced with 0.1% NaBH4 (Sigma-Aldrich) in PBS for 7 min
at RT and rinsed 3 times for 3 min with PBS. Next, cells were blocked and
permeabilized with 3% bovine serum albumin (BSA) (Sigma-Aldrich) and
0.2% Triton X-100 (Sigma-Aldrich) in PBS for 30 min at RT. Then, cells were
incubated with the primary antibody (1:100 rabbit anti-alpha tubulin;
ab18251 [Abcam]) in 1% BSA and 0.2% Triton X-100 in PBS for 1 h at RT,
which was followed by washing 3 times for 5 min each with 0.05% Triton
X-100 in PBS at RT. Then, cells were incubated with the secondary antibody
(1:1,000 donkey anti-rabbit AF647; ab150067 [Abcam]) in 1% BSA and 0.2%
Triton X-1900 at RT. Finally, the cells were washed 3 times for 5 min with
0.05% Triton X-100 in PBS at RT and postfixed with 4% paraformaldehyde
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for 10 min at RT. Finally, cells were washed 3 times for 3 min each with PBS
at RT and stored at 4 °C.

Microscopy. Cells were imaged on a custom epifluorescence microscope using
a Nikon Diaphot 200 as core, equipped with an Andor Ixon DU-897 electron-
multiplying charge-coupled device camera, a high-NA oil-immersion objec-
tive (UPlanSapo 100×/1.40 NA; Olympus), a motorized xy-stage (M26821LOJ;
Physik Instrumente), and a xyz-pizeo stage (P-545.3C7; Physik Instrumente).
Molecules were excited with a 642-nm, 1-W continuous-wave laser (MPB
Communications Inc.). The emission was passed through a quadpass dichroic
mirror (Di01-R405/488/561/635; Semrock) and filtered using a ZET642 notch
filter (Chroma) and a 670/90 bandpass filter (Chroma). For 3D imaging, DH
(Double Helix Optics) and Tetra6 phase masks (described in ref. 42) were
inserted into the 4f-system of the microscope as described previously (43).

MLE Fitting Algorithm. In order to determine the position, signal photon
counts, and background photon counts of single-emitter images, amaximum-
likelihood fitting algorithm was employed. Under the assumption of Poisson
noise statistics, the objective function forMLE is given by

P

i
μiðθÞ−ni lnðμiðθÞÞ,

where ni is the photon count measured in pixel i and μiðθÞ is the total photon
count predicted in that pixel by a forward model of the PSF for specific
values of emitter parameters θ (position, signal photons, and background
photons). Minimizing the objective function with respect to θ yields the

maximum-likelihood parameter estimates θ̂.

Superresolution Data Acquisition and Image Reconstruction. For super-
resolution data acquisition, a reducing and oxygen-scavenging buffer was
used (44), consisting of 40 mM cysteamine, 2 μL/mL catalase, 560 μg/mL
glucose oxidase (all Sigma-Aldrich), 10% (wt/vol) glucose (BD Difco), and
100 mM tris(hydroxymethyl)aminomethane·HCl (Thermo Fisher). The expo-
sure time was 30 ms, and the calibrated EM gain was 186. Single-molecule
signals were detected with a standard local maximum-intensity approach.
Each single-molecule signal was fitted to a 2D Gaussian, either without BG
correction using BGnet or with BG correction using BGnet. In both cases, a
constant offset was implemented for the fitting. If no BG correction with
BGnet was applied, this translates to an estimated constant BG. For initial BG
correction with BGnet, the offset was, expectedly, very close to zero. The
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position of the maximum of the Gaussian fit was stored as the localization of
the single molecule. Drift correction was performed via cross-correlation.

Data Availability Statement. Data and code supporting the findings of this
paper are available from W.E.M. upon reasonable request.
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