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Abstract. This paper discusses the use of wall-modeled LES and hybrid RANS-LES models 
for the prediction of ship and submarine flows. Results from applied cases are discussed to il-
lustrate the use of these methods for practical problems as well as the differences between 
methods. The paper then discusses the underlying theories and assumptions of wall-modeled 
LES and hybrid RANS-LES models. The focus of this presentation is on wall-modeled LES 
as these methods are theoretically more well-founded than hybrid RANS-LES models. Re-
sults from both canonical and building block flows are then presented and discussed in order 
to provide a more firm and practical foundation for the recommendations for applied use that 
are provided in the final concluding remarks section. 

 
 
1 INTRODUCTION 

Much of the current understanding of ship hydrodynamics has been obtained through sys-
tematic wind tunnel and towing tank experiments and tests in model-scale as well as trials and 
experiments in full-scale. Systematic and continuous analysis of experimental and test results 
has developed the current understanding of ship hydrodynamics, and to a significant extent al-
so the advanced hull and propulsor designs now entering production. However, the cost of 
both model-scale, and in particular full-scale, tests and experiments currently precludes large 
systematic variation of multiple parameters in order to increase our general knowledge of ship 
hydrodynamics, and other methods of investigation are necessary. Only recently have Compu-
tational Fluid Dynamics (CFD) made its entrance onto the ship hydrodynamic arena, [1-2], as 
supported by the advancements in scientific computing, and the increasing access to large-
scale massively parallel computational platforms needed for rapid turn around of simulations 
and very large simulations, [3]. The ability to perform a very large number of relatively sim-
ple and cheap CFD simulations (with limited details) facilitates automatic hull and propeller 
optimization, [4], whereas the ability to perform very large CFD simulations (with much de-
tail) enables increased detailed understanding of the flow physics. With improved access to 
such tools, new experimental challenges are posed, focusing on revealing and quantifying de-
tails of the flow in order to validate the CFD models, e.g. [5]. 

The flow around a ship or submarine hull is dominated by the boundary layer that develops 
over the hull, but is also influenced by the pressure gradients developing over the bow and the 
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stern as well as the disturbances caused by appendages, struts, bilge-keels, rudders and the 
propeller(s). CFD simulations require the volume of interest to be subdivided into control 
volumes, the size of which represents the flow structures to be resolved by the simulation. For 
the sake of discussion we consider two ships, a small ship with a length of 50 m, a width of 12 
m and draught of 4 m, moving at 10 knots, and a large ship with a length of 300 m, a width of 
30 m and draught of 10 m, moving at 30 knots. The global Reynolds numbers (measuring the 
ratio of inertial forces to viscous forces, indicating the level of turbulence) of these ships are 
Re0=v0L/ν=2.5·108 and 4.6·109, respectively, in which v0, L and ν are the speed, hull length 
and viscosity. At model-scale, the Re0 numbers are approximately two orders of magnitudes 
smaller, whereas the integral Re number, ReI, (representative of the most energetic eddy tur-
bulence scales) can be assumed one order of magnitude smaller than Re0. Based on the pre-
sent understanding of turbulence, [6-9], the ratio of the integral scales, ℓI, to the Kolmogorov 
scales, ℓK, scale with ReI such that ℓ I/ℓK≈ReI3/4 , which means that the Kolmogorov scales are 
ℓK≈0.13 mm and 0.09 mm, respectively. In Direct Numerical Simulation (DNS) (in which all 
turbulent scales are resolved), [10], the grid resolution, ∆, should be smaller than ℓK, which 
implies that ∼2.1·1011 and ∼6.6·1012 surface grid cells are needed to resolve the surface flow. 
If we assume that the computational domain extends one hull-length away from the hull in all 
directions, and if geometrical progression is used to expand the cells from the hull to a distan-
ce of 10% of the hull length, whereafter uniform cells are used, ∼56500 and ∼348000 cells are 
required in the wall-normal direction. All in all, this results in that ∼1.2·1016 and ∼2.3·1018 

grid cells are needed to resolve the computational domains around the hulls.  The same type 
of estimate suggests that ∼5.0·1011 and ∼1.0·1013 grid cells are required for DNS of the corre-
sponding model-scale hulls. These estimates suggest that DNS is unachievable for both mod-
el-scale and full-scale ship and submarine hydrodynamics for some time. 

The traditional alternative to DNS is to employ Reynolds Averaged Navier-Stokes (RANS) 
models, [11-12], which is based on computing the mean (time-averaged or ensemble average-
ed) flow using models, [12-14], for the whole spectrum of the turbulence. RANS has been 
successfully used for decades to compute the mean flow around many hull forms, and is also 
widely used in aerodynamics and other related fields. The main drawbacks of RANS are that 
it cannot handle large-scale unsteadiness, and that the method is not designed to provide in-
formation about unsteady features of the flows or small details of the flows. The grid resoluti-
on is primarily dictated by the turbulence model selected, [14], but is usually on the order of 
∼1·106 to ∼30·106 grid cells for a full-scale ship hull. 

An alternative to DNS and RANS is Large Eddy Simulation (LES), [15-20], in which only 
the large energetic eddy scales are explicitly simulated, using a subgrid model to represent the 
effects of the small-scale turbulence. If we assume that the Taylor scales, [7-9], should be re-
solved in LES, an estimate, based on the perception that the Taylor scales gradually reduce to 
the Kolmogorov scales in the wall-normal direction as the hull is approached (resulting in ani-
sotropic near-wall scales) results in that ∼5.0·1011 and ∼1.0·1013 grid cells are needed for a 
wall-resolved LES of the full-scale hulls, whereas ∼1.2·108 and ∼1.6·109 grid cells are re-
quired for wall-resolved LES of the model-scale hulls. Wall-resolved LES of full-scale ship 
flows are thus unfeasible but wall-resolved LES of model-scale ship flows are within reach as 
demonstrated by Posa & Balares, [21]. Analysis, [22-24], suggests that more than 90% of the-
se grid cells are employed to resolve the gradually decreasing eddy scales in the boundary 
layer. If it can be assumed that the inner part of the boundary layer is ‘enslaved’ by the outer 
part of the boundary layer, and hence to behave in a deterministic manner relative to the outer 
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part of the boundary layer, a model may be used to replace the explicit simulation of the inner 
part of the boundary layer. Such a simulation approach will hereafter be referred to as a wall-
modeled LES in contrast to the wall-resolved LES in which the flow in the whole boundary 
layer is explicitly simulated. Wall-modeled LES thus has the potential of being able to tackle 
full-scale ship hydrodynamics with available computational resources without significant de-
crease in accuracy compared to wall-resolved LES, [25]. A similar approach is hybrid RANS-
LES, [26-27], which attempts, using different schemes, to merge RANS in the (inner) attach-
ed part of the flow with LES in the (outer) detached part of the flow. 

In this review we will discuss and compare DNS, wall-resolved LES, wall-modeled LES, 
hybrid RANS-LES and RANS in order to increase the understanding and usefulness of these 
complementary methods. Both applied and canonical flows will be discussed using example 
references idiosyncratic to the author and his colleagues. 

2 TARGET CONFIGURATIONS 
Here we discuss major flow features of typical target configurations such as flows around 

surface ships and submarines at straight-ahead and yaw conditions. These discussions are here 
based on RANS, hybrid RANS-LES and wall-modeled LES in order to illustrate the spectrum 
of flow physics features that can be predicted by these methods. 

Figure 1 shows the flow around a 1:58 scale model of the KRISO Very Large Crude Carri-
er (KVLCC2), which in full scale has a length of 320.0 m, a width of 58.0 m, a draught of 
20.8 m and a displacement volume of 312622 m3, originally introduced by Van et al., [28]. 
Comprehensive experimental data are available, ranging from towing tank measurements, 
[28-31], to wind tunnel measurements, [32-33]. There are also a significant number of compu-
tational studies, [34-37], performed on this hull form using different CFD models. More spe-
cifically Petterson et al., [37], used this hull form to evaluate RANS, hybrid RANS-LES and 
wall-modeled LES, and to further elucidate the flow physics at straight ahead conditions and 
12° and 30° of drift at global Re numbers of Re0=3.70·106 and 4.60·106. The RANS computa-
tions were performed with ReFRESCO, [38], using the 2003 version of Menter’s SST k-ω 
model, [39], and block-structured O-O grids with 12.7 Mcells in a large cylindrical computa-
tional domain with a normalized wall distance of y+<1. Here, y+=u τy/ν  is the normalized dis-
tance to the wall in which u τ=τw1/2  is the friction velocity and τw  the wall shear stress. The hy-
brid RANS-LES were performed with EDGE, [40], using an algebraic turbulence model bas-
ed on combining a mixing length RANS model, [16], with the Smagorinsky model, [42]. Un-
structured grids with 73.5 Mcells and y+<1 were used. The wall modeled LES were performed 
with OpenFOAM, [43], using the mixed model, [44], a wall model, and unstructured grids 
with 121, 194 and 202 Mcells depending on the drift angle, with y+≈10. 

The flow images in figure 1 show the vorticity distributions around the KVLCC2 hull from 
RANS, hybrid RANS-LES and wall-modeled LES at 0°, 12°, and 30° drift, respectively, in 
terms of iso-surfaces of the second invariant of the velocity gradient tensor, λ2. At 0° drift the 
flow is dominated by the boundary layer over the forebody, parallel mid-section and stern. 
LES reveals a pair of flat bilge vortices, developing at the bow, extending towards the sides of 
the hull, whereafter they become unstable and participate in forming the aft-body vortices, not 
observed in RANS or hybrid RANS-LES. Similar vortex shapes are however observed at the 
midship cross-section in the experimental results of Lee et al., [32]. The flow over the stern is 
very complex due to the combined influences of geometry, pressure gradient and viscosity, 
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Compared to the RANS, which only predicts the mean aft-body vortices, the hybrid RANS-
LES and the LES predicts a complex vorticity field evolving around the unsteady undulating 
aft-body vortices containing also Ω-shaped vortices developing sideways to the hull. With 
gradually increasing drift angle, the flow rapidly becomes more complicated: At 12° drift new 
vortical systems such as a forebody bilge vortex, a fore-body side vortex, a stern vortex, an 
aft-body side vortex, an aft-body bilge vortex and aft-body hairpin vortices develops, whereas 
the aft-body vortices have been combined into the aft-body side vortex on the windward side 
and the aft-body hairpin vortex on the leeward side. The unsteadiness also becomes more evi-
dent as can be observed from the hybrid RANS-LES and the LES predictions. At 30° drift the 
fore-body bilge vortex, forebody side vortex, aft-body side vortex, aft-body hairpin vortex 
and the aft-body bilge vortex are very well established. A stern vortex can also be found be-
tween the aft-body side vortex on the windward side and the aft-body hairpin vortex on the 
leeward side. As observed also in the LES of the 12° drift case, oblique bilge vortices are ob-
served aft of the fore-body bilge vortex. From the LES predictions these vertical structures are 
surrounded by secondary vortical structures resulting from Kelvin-Helmholtz vortices and 
von-Karman shedding over the fore-body and helical instabilities. 

The time-averaged axial velocity profiles in figure 1 compares RANS, hybrid RANS-LES 
and LES predictions in the propeller plane with experimental data from [32] at 0° drift. The 
most pronounced feature in the axial velocity distribution is the hook-shaped pattern of low-
velocity around the propeller boss and the low-velocity regions on either side of the transom 
part of the hull. These features are captured by all simulation models, but most accurately by 
the wall-modeled LES. The RANS and hybrid RANS-LES predictions either overpredict or 
underpredict the size and strength of these features. The hook-shaped flow pattern results 
from the counter-rotating after-body vortex pair developing on each side of the tapered part of  

 
Figure 1: Flow around the KVLCC2 hull in model scale seen from below at 0º drift (top), 12º drift (middle) and 
30º drift (bottom). RANS predictions are presented in the left column, hybrid RANS-LES in the middle column, 
and wall modeled LES in the right column, [37]. In all cases the flow is illustrated using iso-surfaces of the se-
cond invariant of the velocity gradient tensor, λ2. In the three lowest panels the time-averaged axial velocity at 0° 
drift in the nominal propeller plane is compared with the experimental data from [32]. 
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the lower hull gradually developing over the propeller boss, which in turn is influenced by the 
low-velocity regions on either side of the stern transom. The low-velocity regions on either 
side of the stern result from the change in cross-sectional hull area and the large adverse pres-
sure gradient, and gradually thickening boundary layer. This results in the development of the 
multiple hairpin and Ω-shaped vortex structures found in the LES predictions. 

Figure 2 shows the flow around the DSTG Joubert generic submarine model created from 
the work of Joubert, [45-46], who proposed a design based on principles consistent to achieve 
low resistance and flow noise, in particular over the forward sonar. The hull-form comprises 
an axisymmetric body of revolution with a length to diameter ratio of 7.3 and a length of 70.2 
m. The bow shape provides a small negative pressure coefficient and pressure gradient, while 
keeping the location of pressure minima as far aft as possible. Several experimental and com-
putational studies of this hull-form have been conducted, [47-50]. In [47] wind-tunnel exper-
iments were combined with RANS and wall-modeled LES to investigate the flow around the 
boat in model scale at straight-ahead conditions, whereas in [48] this research was extended to 
also include effects of yaw. Unstructured grids with between 209 and 340 Mcells were used, 
with surface averaged y+ values of ∼20. Good agreement between experimental data, compris-
ing surface flow characterization using tufts, pressure distribution along the meridian plane 
and Particle Imaging Velocimetry (PIV) data in ‘stitched’ patches at the meridian plane and in  

 
Figure 2: Flow around the fully appended Joubert submarine model in full scale at straight ahead conditions at 
9.2 knots with a 5-bladed propeller (top) and a 7-bladed propeller (bottom), [50]. The flow is illustrated with iso-
surfaces of the second invariant of the velocity gradient tensor, λ2. At the two lower panels the time-averaged ax-
ial velocity, 〈vx 〉/v0 , and its rms fluctuations, vxrms/v0 , are presented in various cross-sections along the hull for 
the two propeller configurations and for the two boat speeds of 4.6 and 9.2 knots. 
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several cross-sectional planes, [47-49], and RANS as well as wall-modeled LES were demon-
strated. The combined experimental and computational flow predictions provided a compre-
hensive picture of the flow physics that was summarized in [48]. In [49] this research was fur-
ther extended to include also propulsion effects. More specifically, numerical simulations us-
ing wall-modeled LES were performed for a full-scale version of the DSTG Joubert generic 
submarine equipped with a 5-bladed propeller (DSTG 115-1) and a 7-bladed propeller (DSTG 
057-1), and simulations were performed at two speeds, 4.6 and 9.2 knots. For the wall model-
ed LES, unstructured grids were employed with between 209 and 309 Mcells, having surface 
averaged y+ values of ∼100 and ∼200 depending on the speed. Particular refinement patches 
were added in the stern region, around the propeller and in the slipstream. 

The top and middle panels of figure 2 show the flow around the full-scale DSTG Joubert 
generic submarine in terms of iso-surfaces of the second invariant of the velocity gradient ten-
sor, λ2, colored by the axial velocity. Near the intersection of the fin and the casing, the flow 
rolls up into a horseshoe-vortex system that surrounds the base of the fin and extends down-
stream along the casing until it interacts with other vortices in the stern, and with the wake of 
the fin. Standing side-vortices are formed towards the trailing edge of the fin that interact with 
the unsteady hull boundary layer and the horseshoe vortex, creating an unsteady wake behind 
the fin. The flow over the fin-cap is dominated by two sets of vortical structures – a main pair 
of counter-rotating vortices that develop at the widest section of the fin-cap, separate from the 
trailing edge of the fin-cap and persist far downstream to the stern region; and a secondary 
pair consisting of a vortex on each side of the fin just below the cap. This secondary pair is 
seen to separate from the trailing edge of the fin, below the fin cap, and continue downstream 
with a small deviation towards the casing. In contrast, the primary vortex pair appears to devi-
ate away from the casing as they travel downstream. Towards the stern, the legs of the horse-
shoe vortex system pass between the upper rudders whilst interacting with the innermost leg 
of the horseshoe- vortex system developing around the upper rudders. Additional horseshoe-
vortex systems develop around the lower rudders. Tip vortices are shed from the propeller 
blades and are seen to persist for a number of propeller diameters until they gradually break-
up. A central vortex extending downstream of the hub is also produced by the propeller and 
maintains its form much further aft than the blade-tip vortices. 

The two bottom panels of figure 2 compare the predictions of the time-averaged axial ve-
locity, 〈vx 〉/v0 , and the axial rms velocity fluctuations, vxrms/v0 , at some axial locations from 
x/L=0.550 to x/L=1.105. Included in the comparisons are all four wall-modeled LES predic-
tions with both propeller configurations at both boat speeds. Regarding 〈vx 〉/v0 , it is seen that 
the velocity is virtually unaffected by the choice of propeller and only marginally influenced 
by the speed. The boundary-layer development and the gradually weakening imprints of the 
fin-tip vortex pair and secondary fin-tip vortex system are not affected by either the propeller 
or the speed. Even the time-averaged flow over the stern appears almost unaffected by the 
choice of propeller. The 〈vx 〉/v0  distribution across the slipstream, however, reveals that that 
5-bladed DSTG115-1 propeller results in a more intense hub-vortex. Regarding vxrms/v0 , ele-
vated fluctuation levels are observed in the wake behind the fin and in the hull boundary lay-
er. Along the tapered stern part of the hull, the region of high velocity fluctuations gradually 
widens as the horseshoe vortex structures interact with the boundary layer. Only small differ-
ences in vxrms/v0  can be observed along the stern, but vxrms/v0  increases with increasing speed. 
Moreover, the stronger tip vortex of the 5-bladed DSTG115-1 propeller also results in higher 
levels of vxrms/v0  that stretches far downstream in the slipstream. 
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3 MATHEMATICAL MODELING 
Next, we will outline the frameworks involved in the mathematical modeling of turbulent 

flows in general and near-wall flows in particular. This modeling survey will be brief, and for 
details of different methods and implementations we refer to the original papers. 

3.1 Governing Equations, DNS, LES, Hybrid RANS-LES and RANS 
Irrespectively of modeling approach, DNS, wall-resolved LES, wall-modeled LES, hybrid 

RANS-LES or RANS, the governing equations are the Navier-Stokes equations, 

∂t (v)+∇⋅(v⊗v)=−∇p+∇⋅S,  ∇⋅v=0,  (1) 

in which v is the velocity, S=2νD the rate of strain tensor, ν the viscosity, and D=12(∇v+∇vT )  
the rate of strain tensor, in which ∇v  is the velocity gradient tensor. 
 In RANS the Navier-Stokes equations (1) are averaged over an ensemble of equivalent 
flows, 〈v〉(x)= 1NΣi=1N v(N) (x,t) , or equivalently over time, 〈v〉(x,t)= v(x,t)T∫ dt , so that, 

∂t (〈v〉)+∇⋅(〈v〉⊗〈v〉)=−∇〈p〉+∇⋅(〈S〉−R),  ∇⋅〈v〉=0,  (2) 

in which R=〈 ʹv⊗ ʹv 〉  is the Reynolds stress tensor, representing the transport of momentum 
due to the velocity fluctuations ʹv . In order to close (2) and to represent the effects of the tur-
bulence, R must be modeled. A common method of approximating the R is based on the hy-
pothesis that the effects of turbulence are analogous to an increased viscosity. This is justifia-
ble when effects such as energy dissipation and increased mass transport normal to mean flow 
streamlines are considered. The Boussinesq relationship, [51], between the Reynolds stresses 
and the mean flow strain embodies this approximation and is formulated as R=−2νt 〈D〉D , in 
which νt is the turbulent viscosity and 〈D〉  the mean rate-of-strain tensor. Many different clo-
sure models for R are available, [12, 52], including algebraic, one-equation, two-equation and 
differential stress equation models. The most widely used RANS turbulence models are the k-
ε model, [53, 12], in which νt=cµk2/ε , and the Shear Stress Transport (SST) k-ω model, [39], 
in which νt=a1k/max(a1ω, F2||〈D〉||) . Here, k is the turbulent kinetic energy, ε the dissipation 
rate, and ω the specific dissipation rate, all of which are obtained from modeled transport 
equations. For further details we refer to [12, 39, 52-53]. Most of these models are available 
in two versions: one for use with grids that have a wall-normal resolution of y+≤1, and one for 
use with grids that have a wall-normal resolution of y+>30, and then in conjunction with a 
RANS wall-model, [52], that relates the wall shear stress, τw , to the mean or time-averaged 
velocity 〈v〉  adjacent to the wall, using additional physical relationships. 
 In wall-resolved and wall-modeled LES, the Navier-Stokes equations (1) are low-pass 
filtered, [15], using a convolution operator of the form v(x,t)=G∆∗v= G∆ (x− ʹx ,∆)v( ʹx ,t)D∫ d3 ʹx  
to remove the small subgrid scales (assumed more universal), [15-19], so that, 

∂t (v)+∇⋅(v⊗v)=−∇p+∇⋅(S−B),  ∇⋅v=0,  (3) 

in which B=(v⊗v−v⊗v)  is the subgrid stress tensor, representing unresolved transport of mo-
mentum on the resolved flow, [15-19]. In order to close (3) and to represent the physics of the 
unresolved flow, B must be modeled. According to Sagaut, [15], models for B can generally 
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be divided into functional and structural models depending on if they are indented to mimic 
the kinetic energy cascade from large to small eddy scales, usually assumed to be of inertial 
sub-range character, or if they are intended to mimic the structure of the subgrid flow physics. 
A wide variety of LES subgrid models are available, and Sagaut, [15], provides a comprehen-
sive summary and review of these two model classes. Functional models are more frequently 
used than structural models, and are also generally more robust, since most functional models 
are based on a Boussinesq relationship, so that B=−2νkD , in which νk is the subgrid viscosity. 
A wide range of subgrid viscosity models are available including algebraic models such as the 
well-known Smagorinsky (SMG) model, the Wall-Adapting Local Eddy (WALE), and the σ- 
model, as well as one-equation models such as the One Equation Eddy Viscosity (OEEVM) 
model and the Localized Dynamic k-equation Model (LDKM). For further details we refer to 
[15] and references therein. Note that whereas wall-resolved LES only need the subgrid mod-
els, wall-modeled LES typically need additional models to represent the near-wall flow phys-
ics that is not explicitly resolved on the grid. The modeling of the near-wall flow physics in 
wall-modeled LES is significantly more challenging than in RANS since in LES we are resol-
ving a significant part of the unsteady eddy motion in the boundary layer, and particularly in 
the outer part of the boundary layer where the flow is more energetic. 
 RANS have been successful in simulating wall bounded flows for decades, providing, 
however, only the mean velocity, 〈v〉 , and the modeled turbulent stresses, R, whereas LES, 
providing instantaneous flow realizations of the resolved velocity, v , as well as any statistical 
moment of v , have been considered too expensive for practical applications unless used with 
a wall model. Wall-modeled LES have been less-well understood and is questioned due to the 
additional complexity of modeling only a fraction of the near wall flow physics, whereas the 
remaining fraction of the near wall flow physics is resolved on the grid. As an alternative, the 
class of hybrid RANS-LES has evolved in which the attached flow is treated by RANS and 
the detached flow is treated by LES, [14, 26-27], and references therein. Hybrid RANS-LES 
suffers from the well-known issues of how to unambiguously define the attached and detach-
ed flow regions and how to create grids that support both RANS and LES in the two regions, 
as well as the transition between these two regions, [26-27]. Improved understanding of the 
flow physics as well as the governing equations have resulted in improved hybrid RANS-LES 
models that better handle different grid topologies and inappropriate grid resolution. An issue 
not discussed is that of how the governing hybrid RANS-LES equations are formulated: That 
both the RANS and LES equations (2) and (3), respectively, have the same mathematical ap-
pearance is thus taken as a basis for the hybrid RANS-LES equations, 

∂t ( !v)+∇⋅( !v⊗ !v)=−∇!p+∇⋅( !S−T),  ∇⋅!v=0,  (4) 

in which T=(v⊗v~ −!v⊗!v)  is the hybrid RANS-LES stress tensor. The bridge between the LES 
and RANS formulations can be expressed by the definition of the hybrid RANS-LES variabl-
es !v(x,t)=(G∆"GT)∗v(x,t)= G(x− ʹx ,∆)v( ʹx ,t)D∫ d3 ʹxT∫ dt , in which G∆!GT  is a spatio-temporal fil-
ter kernel that may be able to distinguish between attached (or RANS) flow regions, in which 
!v(x,t)=GT∗v=〈v〉(x,t) , and detached (or LES) flow regions, in which !v(x,t)=G∆∗v=v(x,t) . Two 
conceptually different hybrid RANS-LES model types are commonly referred to: The first ap-
proach can be divided into two branches in which the first branch is based on Speziale’s, [54], 
ideas that T=f∆ (∆/ℓK )R , in which any RANS turbulence model, R, can be used, and f∆ (∆/ℓK )  
is the contribution function, the role of which is to damp the contribution of R, since part of 
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the turbulence is resolved in the regime where the solution becomes unsteady. One suggested 
contribution function, [53], is f∆ (∆/ℓK )=(1−exp(−β∆/ℓK )n , in which β=0.001 and n=1. The se-
cond branch is based on a weighted sum of LES and RANS models so that for eddy-viscosity 
and subgrid viscosity models, the hybrid RANS-LES stress tensor is T=−2νhRL !D , in which the 
hybrid RANS-LES viscosity is νhRL=ψνt+(1−ψ)νk , in which νt is the RANS eddy-viscosity, νk 
the LES subgrid viscosity, and ψ the blending factor. In this approach any RANS turbulence 
and LES subgrid viscosity model can be used. Typically, the blending factor depends on dif-
ferent solution dependent parameters from the RANS and LES models including the filter 
width, ∆, and the distance to the wall, d. The second approach in commonly referred to as De-
tached Eddy Simulation (DES), [14, 26-27], and is based on a unified approach in which the 
same model is used both for the attached (RANS) and detached (LES) flow regions. The dis-
criminating factor is that the distance, d, to the wall is typically replaced by a simple switch 
function of the form !d=min{d, cDES∆} . Close to the wall, where d<cDES∆, the model utilize the 
original RANS model. Away from the wall, were d>cDES∆, the model turns into a subgrid mo-
del. The original formulation is based on the Spalart-Allmaras model, [55], that turns into the 
well-known Smagorinsky subgrid model, [15], in the limit of LES. 

3.2 Near-Wall Flow Physics 
The general understanding of a turbulent boundary layer has been known since the 1950’s 

and it is composed of virtually chaotic fluid motion that results in pressure fluctuations at the 
wall surface. Figure 3 is a schematic of a turbulent boundary layer that shows the irregular di-
vision between the turbulent and freestream flow and the flattened shape of the mean velocity 
as a function of the distance from the wall, [56]. It is generally assumed that the pressure and 
velocity fluctuations disappear outside of the intermittent edge of the boundary layer. Experi-
mental data and DNS predictions agree on that the boundary layer can be divided into an in-
ner layer, which in turn is composed of a viscous sub-layer, dominated by viscous stresses, a 
buffer layer, in which both viscous and turbulent stresses are important, and a log-law region, 
which is dominated by turbulent stresses, and an outer layer, which is dominated by the ex-
ternal flow and the large-scale turbulence, [57]. As evident from the visualizations in [57], the 
turbulence kinetic energy is primarily carried by eddies of different characteristic sizes in the 
different layers near and far from the wall. This reveals that the turbulent boundary layer is a 
multi-scale phenomenon that any form of modeling needs to respect. 

 
Figure 3: Flow physics in a turbulent boundary layer: (a) experimental visualization, (b) schematic of the coher-
ent structure topology and (c) layers, and velocity profiles. Legend: (— ) DNS data from fully developed turbu-
lent channel flow, [58], (— ) analytical solution to the ensemble averaged Navier-Stokes equations in the viscous 
sublayer (0<y+<5) (5), (— ) analytical solution to the ensemble averaged Navier-Stokes equations in the log-law 
region (60<y+<300) (7) and finally (— ) Spalding’s law of the wall (8), [59]. 

31



C. Fureby 

 10 

The key aspects of turbulent boundary layers are most easily explained using the ensemble 
averaged incompressible Navier-Stokes equations (2). For the viscous sublayer, y+<5, equati-
on (2) simplifies to ν∂2 〈vx 〉/∂y2=∂〈p〉/∂x .

.
By integrating this equation twice with respect to y, 

assuming that ∂〈p〉/∂x  is independent of y, and after introducing the wall-shear stress compo-
nent, τw=ν(∂〈vx 〉/∂y)|w , and the normalized streamwise velocity, vx+=〈vx 〉/u τ , and wall distan-
ce, y+=u τy/ν , with u τ=τw1/2  being the friction velocity, we obtain that,  

vx+ =y++
ν
2u τ3

∂〈p〉
∂x
(y+ )2.  (5) 

For the log-law region, 60<y+<300, equation (1) becomes ∂Rxy/∂y=−∂〈p〉/∂x , By integrating 
this equation with respect to y, assuming that ∂〈p〉/∂x  is independent of y, and moreover that 
Rxy=−νt (∂〈vx 〉/∂y) , in which the turbulent viscosity is modeled as νt≈κu τy , with κ being the 
von-Karman constant, we obtain, after rearrangement and the subsequent introduction of the 
non- normalized velocity vx+=〈vx 〉/u τ  and wall distance y+=u τy/ν , that, 

∂vx+

∂y+
=
1
κy+

+
ν
κu τ3

∂〈p〉
∂x
.  (6) 

By integrating equation (6) we finally obtain that, 

vx+ =
1
κ
ln(y+ )+ ν

κu τ3
∂〈p〉
∂x
y++B.  (7) 

For a zero pressure-gradient boundary layer the von-Karman constant is κ≈0.41, whereas B≈ 
5.2. In the intermediate buffer-layer, 5<y+<60, the flow physics dominating the viscous sub-
layer gradually transitions into the flow physics dominating the inertial sub-layer, and hence 
no analytical model exists for this layer. Figure 3 shows a typical turbulent boundary layer ve-
locity profile in which the viscous and log-law regions are presented as dashed lines together 
with the well-known Spalding’s law-of-the-wall curve fit, [59], 

y+=vP++e−(κB)[e(κvP
+ )−[1−(κvP+ )− 12!(κvP+ )2− 13!(κvP+ )3+…]],  (8) 

designed using experimental data to provide a continuous velocity profile through a zero pres-
sure gradient boundary layer. The continuous velocity profile (8) asymptotically agrees with 
(5), when ∂〈p〉/∂x=0 , in the viscous sub-layer and (7) in the log-law region, and thus provides 
a foundation for developing a deterministic model of the near wall flow. 

3.3 Wall-Modeled LES 
The philosophy of wall-modeled LES is to respect the multi-scale nature of the boundary 

layer, by directly resolving the energetic eddies in the outer layer (where they are large) but to 
model the energetic eddies in the inner layer (where they are small). As a consequence of this, 
the inner-layer dynamics (streaks, quasi-streamwise vortices, peak production and dissipation, 
etc.) is completely or partly removed from the dynamical system explicitly computed and rep-
resented by a single value of the wall shear stress, τw, that the models is supposed to provide. 
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This is a severe truncation of the wall-turbulence dynamical system – as it has to be in order 
to drastically reduce the computational cost – and since the model is also required to handle a 
situation where parts of the inner-layer dynamics is resolved, the model needs to be very flex-
ible and be able to take a passive role compared to the evolution of the resolved flow structur-
es. Given the removal of the peak production region in the inner layer (typically occurring at 
y+≈12) turbulence can no longer be produced in the modeled boundary layer, and thus all re-
solved outer-layer turbulence needs to be produced (and later dissipated) in the outer layer, as 
expected in high-Re wall-turbulence, where the Reynolds stresses have been found to be pre-
dominantly produced at the same wall distance as they are later dissipated, [60]. 

At a first glance this understanding of wall-modeled LES also incorporates hybrid RANS-
LES models. There is, however, an important and discriminating distinction between wall-
modeled LES and hybrid RANS-LES models in that for wall-modeled LES the LES equations 
(3) apply all the way down to the wall, whereas for hybrid RANS-LES models the LES equa-
tions (3) apply only above a certain ‘interface’ yint (which may be defined implicitly, but nev-
ertheless exists) below which the RANS equations (2) apply. The distinction between hybrid 
RANS-LES and wall-modeled LES is subtle but important: In wall-modeled LES, a wall-
model is used to estimate τw but the coupling between the LES and wall-model is rather weak: 
the LES feeds velocity data to the wall-model at y=hwm, and the wall-model feeds wall-shear-
stress data back to the LES at y=0. Apart from this, no other information is exchanged. Nota-
bly, while the LES could impart flow structures onto the wall-model, the ability of flow struc-
tures in the wall-model to enter the LES region is limited. Perhaps more importantly, the for-
mal definition of the LES equations applying all the way down to the wall implies that the 
LES equations and the wall-model overlap for a distance of hwm. 

Two different types of wall modeled LES are currently employed: one-equation and alge-
braic. In one-equation wall-models, [61-62], the thin boundary layer equations, [12], 

∂
∂y

[(ν+νt )
∂vx

∂y
]=0  with  νt=κyu τ(1−exp(y+ /A+ )2,  (9) 

in which A+≈17, are solved on an auxiliary one-dimensional wall-normal grid extending away 
from the wall into the LES domain. Equation (9) is solved over the region 0≤y≤ hwm, using a 
no-slip condition at the wall, y=0, and with vx equal to the LES wall-parallel velocity, v// , at 
y=hwm. The wall-shear stress τw from the wall-model (9) is computed from τw=ν(∂vx/∂y)|w . 
The next step is to construct the full wall-shear stress vector τw by assuming that it is aligned 
with the velocity parallel to the wall, and by using a simple linear approximation for the wall-
normal velocity (for the wall-normal stress). The final step is to couple this back to the LES 
equations (3) which is often done by using τw as a boundary condition for the LES momen-
tum equation. In algebraic wall-models, [63], an even simpler procedure is followed, using 
Spalding’s law-of-the-wall. Given the LES velocity in the grid cells adjacent to the wall, vP , 
the friction velocity, uτ, and hence also the wall-shear stress, τw, are computed by solving (8), 
in which vP+  is substituted for vP/u τ , for each grid cells adjacent to the wall, 

y+=vP /u τ+e−(κB)[e(κvP/uτ )−[1−(κvP /u τ )− 12!(κvP /u τ )2− 13!(κvP /u τ )3+…]].  (10) 

The next step is to construct the full wall-shear stress vector τw by assuming that it is aligned 
with the velocity parallel to the wall, and by using a simple linear approximation for the wall-
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normal velocity (for the wall-normal stress). The final step is to couple this back to the LES 
equations (3) which can be done by using τw as a boundary condition for the LES momentum 
equation or by modifying the viscosity at the wall, [63], by introducing a wall-viscosity, νBC 
such that τw=u τ2=ν(∂vx/∂y)|w≈(ν+νBC)(vP/yP ) , which can be inverted to give the value for the 
effective viscosity ν+νBC at the wall, ν+νBC=u τ2yP/vP=u τyP/vP+ . 

It is important to note the ‘input-output’ character of the wall-model irrespectively of it be-
ing of one-equation or algebraic nature. The wall-model takes information from the LES in 
the form of instantaneous data at grid points some distance above the wall and returns the wall 
shear stress or friction velocity to the LES at the wall, y=0. This data is then used by the LES 
to construct approximate boundary conditions at the wall, y=0. 

Figure 4 attempts to illustrate the principal differences between wall-resolved LES, the two 
main branches of wall-modeled LES, algebraic and one-equation, and hybrid RANS-LES. For 
wall-resolved LES the main challenge is to create a computational grid that is sufficiently fine 
everywhere to resolve the Taylor scales, ℓT≈ ʹv /(ε/ν)1/2 , in which ε is the dissipation rate and 
ʹv=k1/2  the velocity fluctuations. When the wall is approached the Taylor scales gradually de-

crease in size until they approach the Kolmogorov scales, ℓK=(ν3/ε)1/4 , which are the smallest 
scales in turbulence. From the definition of the Taylor and Kolmogorov scales if follows that 
ℓT≈ℓ I/ReI1/2  and ℓK≈ℓ I/ReI3/4 , which in turn implies that ℓT/ℓK≈ReI1/4 , from which we may con-
clude that the characteristic scales become highly anisotropic, with aspect ratios of between 
50 and 200 for high Re number flows, as the wall is approached. DNS results and experiment-
al data indeed reveal that the near-wall flow is highly anisotropic, being dominated by large-
scale high- and low-speed streaks aligned with the flow, being ∼1000(ν/uτ) long, and having a 
spacing of ∼100(ν/uτ), in which (ν/uτ) is the viscous length-scale in the boundary layer. Around 
these streaks we have vortex structures that are aligned with the streaks for some distance un-
til they rise to form part of Ω-shaped structures of different sizes. High-speed fluid, sweeps, 
moves from the outer part of the boundary layer into the inner part of the boundary layer and, 
conversely, low-speed fluid, ejections, moves from the inner to the outer part of the boundary 
layer. A wall-resolved LES have no problems capturing these features as showed for example 
for a turbulent pipe flow at Reτ=1000, [64]. Here, a grid of 589 Mcells was required for the 
DNS whereas a grid of only 36 Mcells was required for the wall-resolved LES. The difference 

 
Figure 4: The principles of (a) wall-resolved LES, (b) wall-modeled LES using algebraic wall-models (left) and 
one-equation wall-models (right) and (c) hybrid RANS-LES. The background is from wall-resolved, wall-mo-
deled and hybrid RANS-LES simulations of fully developed turbulent channel flow at Reτ=1000. The different 
grid systems are superimposed on the LES velocity predictions. 

in skin friction between the DNS and LES predictions in comparison to hot-wire anemometry 
data were 1.7% and 5.2%, respectively, whereas the differences in boundary layer and mo-
mentum thickness, and shape factor were smaller. For wall-resolved LES it may be advanta-
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geous to use unstructured grids with hanging nodes as illustrated in figure 4a to concentrate 
the grid resolution to the inner part of the boundary layer. 

The two main branches of wall-modeled LES are illustrated in the left and right panels of 
figure 4b, respectively. In both cases, the LES grid is comparatively coarse in the wall normal 
direction, which significantly reduces the overall computational cost, but relies on a model to 
represent the physics in the inner part of the boundary layer and to some extent also the phys-
ics in the outer part of the boundary layer. The fact that these models work with both resolved 
and unresolved flow physics data makes their interactions with the underlying LES flow more 
complicated. The remedy to this issue is to make sure that there is an overlap region in which 
both the resolved LES fields and the wall-model are active and exchange information. Regar-
ding the grid resolution in wall-resolved LES we anticipate a conventional LES grid with cell 
sizes of the size of the Taylor scales, as often assumed to the most appropriate cell size for an 
LES, all the way to the wall, also in the wall normal direction. Since the boundary layer flow 
physics is generally described in terms of viscous length scales, ℓV=ν/u τ , which can be con-
verted to Taylor scales, ℓV=( ʹv /u τ )ℓT , the streaks (∼1000ℓV long, having a spacing of ∼100ℓV 
and a radius of ∼5ℓV) are generally rather well resolved in a wall-resolved LES with a grid 
spacing of O(ℓT). It is, however, the smallest scales and flow structures associated with the ve-
locity gradient and the viscosity at the wall, residing in the viscous sub-layer and in the buffer 
layer, that need to be explicitly handled by the wall-model. 

Regarding the hybrid RANS-LES illustrated in figure 4c the interface between the RANS 
and LES regimes is allowed to vary depending on how the flow develops. Regarding the grid, 
it is determined in principle by the implicit requirement of the RANS model, usually request-
ing that y+≤1, typically resulting in a grid that is extensively stretched towards the wall, result-
ing in flat, sheet-like grid cells at the wall. Most hybrid RANS-LES models suffer from some 
degree of problem in maintaining the correct mean velocity profile around the interface. Most 
often, the mean velocity v+(y+) in the LES region ends up above the log-law, and thus this is 
called the “log-layer mismatch”. Multiple studies have reported improvements that can re-
move the log-layer mismatch, through either the addition of small-scale forcing or by tailoring 
the blending function between the RANS and LES eddy-viscosities. The caveat, however, is 
that the results depend quite strongly on the forcing amplitude, [65]. 

4 CANONICAL FLOW CASES 

 In order understand more about the RANS, DES and LES models we next summarize the 
application of these models to a few relevant canonical flow cases. 

4.1 Fully Developed Turbulent Channel Flow 
Fully developed turbulent channel flow is a simple canonical building block flow that has 

been examined using RANS, DES, LES and DNS for decades, e.g. [58, 66-69]. The channel 
is typically confined between two parallel plates, 2h apart, where h is the channel half-width. 
The flow is driven by a mass flow in the axial (ex) direction, no-slip conditions are applied in 
the cross-stream (ey) direction, and periodic conditions are applied in the spanwise (ez) directi-
on. Here, results will be discussed for Reτ=550 and 1000, 2000 and 5200, following the DNS 
of Lee & Moser, [58]. The channel used is 9h×2h×4h in the axial, wall-normal and spanwise 
directions, respectively. For wall-resolved LES the grid is designed with ∆x=∆y=∆z≈0.0333·h 
in the core of the channel, whereas in the near-wall region, y<0.0333·h, the grid is uniformly 
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refined in all three directions so that y+≈1. For the different Reτ numbers, this strategy results 
in grids of 4.21, 11.47, 40.50 and 152.5 Mcells, respectively. For wall-modeled LES the grid 
is designed so that ∆x=∆y=∆z≈0.0333·h in the whole channel, resulting in 1.94 Mcells, and y+ 
values of 9, 16, 32 and 84, respectively, for the different Reτ numbers. For DES, the grid is de-
signed with ∆x=∆y=∆z≈0.0333·h in the core of the channel, whereas in the near-wall region, 
y<0.0333·h, stretching is applied in the wall normal direction so that y+≈1 at the wall, result-
ing in between 2.65 and 3.88 Mcells depending on Reτ. 

The upper and lower panels of figure 6a show perspective views of the flow in the channel 
from wall-modeled LES using the LDKM model, [15], and wall-resolved LES using the WA-
LE model, [15], at Reτ=2000, in terms of contours of the axial velocity, vx , and the friction 
velocity, uτ, at the lower wall, and iso-surfaces of the second invariant, λ2, of the velocity gra-
dient tensor, ∇v. For both the wall-resolved and wall-modeled LES the λ2-iso-surfaces reveal 
a plethora of different vortical structures: Streamwise vorticies, forming an acute angle with 
the wall, are observed to agglomerate in the low-speed streaks, and hairpin vorticies, rapidly 
bending away from the wall, form due to shear between the low-speed and high-speed streaks. 
Thinner, mainly streamwise, vortical structures are located in the wall-resolved LES between 
and beneath the low-speed and high-speed streaks. The streaks are ∼1000·ν/uτ long, having a 
spacing of ∼100·ν/uτ, and the hairpin vortices have a diameter of between 2 and 10·ν/uτ. The 
wall-modeled LES cannot resolve the vortical structures between and beneath the streaks, but 
resolves the streaks as well as the largest (and strongest) hairpin vortices. 

 
Figure 5: Fully developed turbulent channel flow. In (a) results from wall-modeled (top) and wall-resolved bot-
tom) LES at Reτ=2000 are presented in terms of λ2. In (b) and (c) profiles of the time-averaged axial velocity, 
〈vx 〉 , and its rms fluctuations, vxrms , are presented for Reτ=550, 1000, 2000 and 5200, respectively. Legend: (— ) 
DNS, [58], (— ) wall-resolved LES using the LDKM model, (— ) wall-modeled LES using the WALE model, 
(— ) wall-modeled LES using the LDKM model, (— ) hybrid RANS-LES using the DES model, [14], and (— ) 
hybrid RANS-LES using the IDDES model, [26-27]. 

Figures 5b and 5c compare the mean streamwise velocity, 〈vx 〉 , and the streamwise rms-
velocity fluctuations, vxrms= 〈(vx−〈vx 〉)2 〉 , normalized with uτ, from DNS, [58], wall-resolved 
LES, using the WALE subgrid models, wall-modeled LES, using the WALE and LDKM sub-
grid models, DES, [14], and IDDES, [26-27]. For 〈vx 〉  we find excellent agreement between 
DNS and wall-resolved LES for Reτ=550, 1000 and 2000, with no existing LES for Reτ=5200. 
The wall-modeled LES present very good agreement with the DNS given the coarse grids in 
the near-wall region. Virtually no difference is noted between the WALE and LDKM subgrid 
models. For DES and IDDES we find that IDDES performs better than DES, and both models 
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show good agreement across the whole range of Reτ numbers. Evidence of the ‘log-layer mis-
match’ can however be detected in the DES, IDDES and wall-modeled LES. For vxrms  we find 
good agreement between the DNS and the wall-resolved LES, whereas the wall-modeled LES 
predicts a peak in vxrms  at the first grid point instead of at y+≈12 due to the coarse grid. Apart 
from that, the agreement is satisfactory. For the DES and IDDES results we find that both of 
these methods fail to predict vxrms  in the core flow, and IDDES also undrerpredicts the peaks 
in vxrms . For the wall-resolved LES the error in skin-friction, Cf, is ∼2% at Reτ=5200. For the 
wall-modeled LES, DES and IDDES the error in Cf, is between 5% and 9%. 

4.2 Zero Pressure Gradient Flat Plate Boundary Layer Flow 
The next level of complexity is facilitated by the flow over a flat plat at zero pressure gra-

dient. Historically, knowledge of flat plate turbulent boundary layers was gained experimen-
tally, [70-72], but more recently have DNS, [73-74], and LES, [75-76], also significantly con-
tributed to the current level of understanding of boundary layers. Spatially developing bound-
ary layer simulations are typically set up in a rectilinear computational domain as illustrated 
in figure 6a. Here, a computational domain is set-up to emulate the experimental study of De-
Graaf & Eaton, [72], and the DNS of Schlatter & Örlü, [74]. The domain is 2.00 m long, 0.20 
m wide and 0.127 m high, and is discretized with hexahedral cells having cell sizes of ∆x=2.6 
mm, ∆y=0.80 mm and ∆z=2.00 mm, resulting in a baseline grid of 12.16 Mcells. A uniformly 
refined grid with 97.28 million cells has been used to study the statistical grid convergence. 
No-slip boundary conditions are applied at the wall, periodic boundary conditions are applied 
in the spanwise direction, whereas open inflow/outflow boundary conditions are applied at the 
inlet and outlet, respectively. RANS, with the SST k-ω model, wall-modeled LES, with the 
WALE and LDKM models, and hybrid RANS-LES, with the DES and IDDES models, have 
here be-en performed. The LES are provided with a numerical trip, 20 mm downstream of the 
inlet, at ∼Reθ=100, to stimulate the boundary layer development. 

 
Figure 6: Zero Pressure Gradient Flat Plate Boundary Layer flow. In (a) results from wall-modeled LES are pre-
sented in terms of λ2, instantaneous and time-averaged velocity contours, vx  and 〈vx 〉 , and friction velocity, uτ, 
contours, and in (b) and (c) normalized axial velocity profiles, 〈vx 〉 , are compared for Reτ≈2900 and 5200, re-
spectively. Legend: (×) experimental data, [72], (— ) DNS, [74], (— ) wall-modeled LES using the WALE mod-
el, (— ) wall-modeled LES using the LDKM model, (— ) hybrid RANS-LES using the DES model, (— ) hybrid 
RANS-LES using the IDDES model, and (— ) RANS using the SST k-ω model. 

In figure 6a we present a few selected views of the flat plate boundary layer flow in terms 
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of instantaneous and time-averaged axial velocities, vx, and 〈vx〉, wall-friction velocities, uτ, 
and iso-surfaces of the second invariant of the velocity gradient tensor, ∇v, from the wall-mo-
deled LES with the LDKM model on the baseline grid. All simulations result in boundary 
layers that thicken with downstream distance from the leading edge approximately according 
to δ≈0.16x/Rex1/7≈0.16x6/7 (ν/v0 )1/7 , [70]. The boundary layers predicted by the LES models are 
all populated by a plethora of vortices, developing downstream of the numerical trip, whereas 
those predicted by the DES and IDDES seem virtually free of vortical structures. In the LES, 
the disturbances created by the numerical trips gradually develop into coherent vortical struc-
tures in which the streamwise vorticies, forming an acute angle with the wall, agglomerate in 
the low-speed streaks, and hairpin vorticies, rapidly bending away from the wall, form due to 
shear between the low-speed and high-speed streaks. The vortices resolved in the wall-model-
ed LES are typically thicker than those resolved in the target DNS, but reveal the same topol-
ogy and dynamic behavior as the target DNS. This behavior is similar to the so-called ‘fat 
worms’ observed in LES of homogeneous isotropic turbulence, [77]. 

Figures 6b and 6c present time-averaged axial velocity profiles, 〈vx 〉 , normalized by the 
freestream velocity, v0, at two different locations corresponding to momentum thickness Re-
numbers of Reθ≈3030 and 4060, respectively. The boundary layer thickens with downstream 
distance from the leading edge, as observed in the experimental data from deGraaff & Eaton, 
[72], and from the DNS of Schlatter & Örlu, [74], and it is apparent that the RANS SST-kω 
prediction captures this behavior very well. The DES model underpredicts the growth rate of 
the boundary layer, and predicts a more laminar like profile along the whole flat plate. The 
IDDES models predict a boundary layer in agreement with the experimental and DNS data. 
The wall-resolved LES, using the WALE and LDKM subgrid models, respectively, show vir-
tually indistinguishable boundary layer profiles in reasonable agreement with the experiment-
al and DNS data but with a somewhat broader and fuller 〈vx 〉 -profile.  

5 INTERMEDIATE COMPLEXITY FLOW CASES 

 To further enhance the understanding of the RANS, DES and LES models we summarize 
the application of these models to a few selected flow cases of higher geometrical and induced 
physical complexity relevant to marine or offshore interest. 

5.1 Flow around a 3D Bump 
The next case considered is the flow over a 3D hill attached to a rectilinear wind tunnel 

section, [78-80]. The experiment feature a h=0.078 m high 3D axisymmetric hill mounted on 
the floor of a H=0.25 m high wind tunnel. The inlet speed is v0=27.5 m/s giving a Re number, 
based on h, of Re≈143,000. The wind tunnel test section is 7.62 m long and 3.03 m wide, and 
the hill is analytically defined, [78]. LES of this flow have been performed by e.g. Patel & 
Menon, [81], Persson et al., [82], Visbal & Risetta, [83], and Garcia-Villalba et al., [84], and 
RANS have been performed by several researchers as summarized in [85]. Different computa-
tional domains are used by different investigators but as illustrated in figure 7a two approach-
es prevail: short domains using pre-curser channel flow simulations, [84], and simulations of 
the whole test section of the wind tunnel, [82], to model the boundary layer evolution. The 
grids used in [81-85] range from 4.0 to 134.5 Mcells, and the objectives of these computations 
are also different as explained in the references. Here, we will compare the wall-resolved LES 
of Garcia-Villalba et al., [84], with wall-modeled LES, using the LDKM and WALE subgrid 
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models, and RANS using the SST-k-ω model. Open inflow/outflow boundary conditions are 
used at the in- and outlets, respectively, no-slip boundary conditions are used at the upper and 
lower channel walls and slip conditions are applied in the spanwise direction. 

The flow over and around the 3D hill is very complicated as explained in all the referen-
ces cited, and as also seen from figure 7b, showing instantaneous iso-surfaces of the second 
invariant of the velocity gradient tensor, λ2, colored by the velocity, vx. As the boundary layer 
approaches the 3D hill, the pressure increases but the increase is not large enough to cause 
separation. As the flow accelerates over the top of the hill the pressure decreases. Minimum 
pressure occurs at the top, and is followed by an adverse pressure gradient at the lee-side of 
the hill, which results in complex flow separation and reattachment in the shallow wake of the 
hill. Oil-flow visualization and skin-friction visualizations from the LES shows that the sepa-
ration and reattachment is very complicated with multiple unsteady vortical structures. These 
flow structures result as a consequence of the acceleration over the top and around the sides of 
the hill due to the favorable pressure gradients in both directions. The spanwise favorable 
pressure gradient in front of the hill causes the flow to diverge outward, however, at the lee-
side this gradient becomes adverse, causing the side boundary layers to converge on the back 
of the hill and closer to the center plane in a high-pressure region. The presence of the 3D hill 
modifies the vorticity distribution, primarily through the pressure gradients, and results in a 
wake that is inhabited by hairpin-vortices that are deformed by the high level of resolved and 
subgrid turbulence in the wake behind the 3D hill. 

 
Figure 7: Flow around a 3D bump. In (a) different computational set-ups are presented, (b) results from wall-
modeled LES in terms of λ2, and in (c), (d) and (e) normalized velocity and turbulence profiles, 〈vx 〉 , 〈vz 〉  and 
k, respectively, are compared. Legend: (×) experimental data, [79], (!) experimental data, [80], (— ) wall-
resolved LES using the DSMG model, [84], (— ) wall-modeled LES using the WALE model, (— ) wall-modeled 
LES using the LDKM model and (— ) RANS using the SST k-ω model. 

Figures 7c to 7e show normalized and time-averaged streamwise, 〈vx 〉 , and cross-stream, 
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〈vz 〉 , velocity profiles, together with profiles of the turbulent kinetic energy, k. Experimental 
data from LDV of Byun & Simpson, [79], and hot-wire of Ma & Simpson, [80], are included 
together with wall-resolved LES predictions of Garcia-Villalba et al., [84], and wall-modeled 
LES predictions, using the LDKM and WALE subgrid models, together with RANS predic-
tions, using the SST k-ω model. The first observation is the similarity of the two experimental 
velocity data sets, and the difference in the corresponding k data sets. This is due to the differ-
ence in measurement technique employed, and highlight the complexity of performing accu-
rate flow measurements of complex cases. The RANS predictions do not capture the essential 
features of the flow, resulting in poor predictions of both 〈vx 〉 , 〈vz 〉  and k. The RANS results 
are good representatives of what may be expected from modern RANS as may be observed by 
comparing also with other RANS results in [85]. The wall-resolved LES, [84], show extreme-
ly good agreement with both experimental velocity data sets, and with the hot-wire experi-
mental data set for k, supporting the use of hot-wire anemometry. The two wall-modeled LES 
predictions show very similar results, with only minor variations due to choice of subgrid mo-
del, that also agrees favorably with the wall-resolved LES, [84], and both experimental veloc-
ity data sets, and with the hot-wire experimental data set for k. 

5.2 Flow around a Generic Bare Hull Submarine Configuration 
The final case considered is the flow around the bare-hull version of the DSTG Joubert ge-

neric submarine model created from the work of Joubert, [45-46], and discussed in more de-
tail in [47]. The model have an overall length of 1.35 m, a length to diameter ratio of 7.3, and 
consists of a cylindrical mid-body, an ellipsoid bow and a parabolic stern, figure 8a. Repre-
sentative of modern submarine shapes, this generic test article has no full-scale equivalent. 
The model was experimentally tested in the DSTO low speed wind tunnel, [86], in the octag-
onal test section of which it was mounted using a floor-mounted pylon with a shrouded fair-
ing. The experimental testing was boundary layer tripping devices, which consisted of either a 
circular wire of diameter 0.2 mm or 0.5 mm, or a 3 mm wide circumferential strip of distrib-
uted silicon carbide grit of size 80, [47]. The trip was located at an axial coordinate of x=67.5 
mm measured from the nose of the hull, which corresponds to x/L≈0.05. Moreover, the loca-
tion of the trip was positioned far enough upstream to ensure it did not experience an adverse 
pressure gradient, which under such conditions could lead to undesirable separation, and far 
enough downstream to ensure the boundary layer would not relaminarize. The overall block-
age ratio for the model at zero-incidence was estimated to be about 2.2%. The model was 
equipped with flush mounted static pressure tappings along the top centerline of the hull in 
order to estimate the mean pressure coefficient CP, whereas the mean turbulent skin-friction 
coefficients, Cf, was measured using the Preston tube method, [87]. The velocity around the 
upper part of the stern section was measured with Particale Imaging Velocimetry (PIV) in two 
patches shown in figure 8a. These two patches are stitched together to provide a complete de-
scription of the stern flow. Some influence of the mounting was observed. The experimental 
Re number, based on the hull length and freestream velocity was 5.4·106. 

Simulations of this case with RANS, using the SST-k-ω model, hybrid RANS-LES, using 
the DES and IDDES models, and wall-modeled LES, using the WALE and LDKM models, 
have been performed. Hexahedral grids with 17.0 Mcells, [47], and unstructured grids with 44 
and 126 Mcells have been used. No-slip boundary conditions are applied on the hull, whereas 
conventional freestream and open inflow-outflow boundary conditions are used at the outer 
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computational boundaries. The freestream turbulence was estimated to 3% in the RANS, DES 
and IDDES as measured in the wind-tunnel, whereas in LES no freestream turbulence was in-
cluded. In the IDDES and LES, a numerical trip model was included to model the effects of 
the trip wire or trip grit used in the wind-tunnel experiments. 

Figure 6b shows the vorticity distribution over the hull in terms of iso-surfaces of the se-
cond invariant of the velocity gradient tensor, ∇v, denoted λ2, from the wall-modeled LES us-
ing the LDKM model. The iso-surfaces of λ2 clearly the presence of the numerical trip, befor 
which the boundary layer is laminar, and after which a turbulent boundary layer gradually de-
velops. The boundary layer remains turbulent along the whole parallel midsection of the hull, 
and towards the tapered stern an adverse pressure gradient assists in thickening the boundary 
layer. The LES models as well as the RANS models predict an attached boundary layer all the 
way to the stern tip. The λ2 structures of which the boundary layer is composed consists ini-
tially of azimuthal disturbances that gradually breaks up to develop a carpet of hairpin-type 
vortices, the legs of which forms an acute angle to the hull, whereas the neck rises sharply as 
it bends sideways to connect with is companion forming on the other side of the high-speed or 
low-speed streak. The hairpin vortex elements are thicker than anticipated, but they behave in 
the expected way, and so this behavior can be similar to the so-called ‘fat worms’ observed in 
the spatially developing boundary layer of Section 4.2, and also in early LES of homogeneous 
isotropic turbulence as described by Ashurst et al., [77]. Along the tapered stern cone, in the 
thickening boundary layer, the cross-wise momentum transfer creates streamwise vortices that 
are transported down behind the hull and into the gradually developing wake. 

 
Figure 8: Flow around the DSTG Joubert generic bare-hull submarine configuration. In (a) the hull-shape is out-
lined together with the PIV patches. In (b) results from wall-modeled LES, using the LDKM model, is presented 
in terms of λ2 colored by the streamwise velocity vx, and in (c) and (d), comparisons of CP and 〈vx 〉  are present-
ed. Legend: (×) experimental data, [47], (— ) wall-modeled LES using the WALE model, (—) wall-modeled 
LES using the LDKM model, (— ) hybrid RANS-LES using the DES model, (— ) hybrid RANS-LES using the 
IDDES model, and (— ) RANS using the SST k-ω model. 

Figure 6c compares the time-averaged or mean static pressure coefficient, CP. The agree-
ment between the experimental CP-profile and the computed profiles from the RANS, hybrid 
RANS-LES and LES predictions is very good along the whole hull. Note that the CP-profile 
from the SST-k-ω RANS model is hidden beneath the other profiles. Virtually no difference 
at all can be observed between the two wall-modelled LES predictions, whereas some minor 
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differences an be observed between the DES and IDDES models. Figure 6d compares stream-
wise time averaged or mean velocity profiles in the stern, at x/L=0.867, 0.900, 0.933, 0.967, 
1.000 and 1.100, normalized by the freestream velocity v0. Over the stern-most part of the tail 
cone, between x/L=0.867 and 1.000, the IDDES and, in particular, the RANS SST-k-ω model 
predictions show very good agreement with the measurement data. The differences between 
the RANS SST-k-ω and IDDES model predictions and the PIV data are certainly within the 
accuracy of the PIV. The DES predictions predict the occurrence of a separation bubble over 
the stern-most part of the tail cone, not observed experimentally or in any of the simulations, 
which suggests that this model may be substantially in error. The two wall-modelled LES re-
sults are virtually indistinguishable, and seems to predict somewhat too full velocity profiles, 
and hence slightly too thin boundary layers as also observed in the case of the spatially evolv-
ing boundary layer in Section 4.2. The reason for this may very well lie in the details of the 
numerical trip or in the absence of freestream turbulence, which will interact with the bounda-
ry layer turbulence developing over the hull. 

6 CONCLUDING REMARKS 
High-fidelity (LES and hybrid RANS-LES) numerical simulations of ship and submarine 

hydrodynamics have reached a certain level of maturity, yet there are still obstacles to over-
come before these methods become an everyday tool in marine engineering. The central chal-
lenge is the very high Re number encountered in ship- and submarine hydrodynamics, and 
how to manage the associated issue of an extensive range of eddy scales, ranging from the 
size of the large eddies of the hull to the smallest Kolmogorov scales. The eddy scales associ-
ated with the hull can be O(1) m whereas the associated Kolmogorov scales, representing dis-
sipation of turbulence into heat, can be O(10) mm. The intermediate Taylor scales, at which 
viscosity affects the turbulence dynamics, can be O(1) mm. This extreme range of scales mak-
es DNS unfeasible for both full-scale and model scale applications. The alternative of RANS 
have been successfully used for decades to compute the mean flow around numerous hull 
forms, and is also widely used in aerodynamics and other related fields. The major drawbacks 
of RANS are that it cannot handle large-scale unsteadiness, and that the method is not design-
ed to provide information about unsteady features of the flows or small details of the flows. 
This essentially leaves the two branches of wall-resolved and wall-modeled LES, as well as 
hybrid RANS-LES, as the main candidates for practical ship and submarine flow simulations. 
These methods are typically required when accurate predictions are needed that also include 
information about dynamic features such as pressure and turbulence fluctuations that may in-
fluence flow noise and vibrations. Wall-resolved LES is however found to be too expensive 
for today’s computational architectures with respect to full-scale predictions, whereas predica-
tions of model-scale hull forms are now just manageable. 

This leaves wall-modeled LES and hybrid RANS-LES as the only currently feasible candi-
dates for high-fidelity ship and submarine hydrodynamics. The use of any of these methods is 
not entirely straightforward, and requires substantial knowledge about the methodology as 
well as some background information about the flow to be computed. This background infor-
mation can be obtained by RANS and is usually employed to generate computational grids 
well suited for the two methods of wall-modeled LES and hybrid RANS-LES. Different wall-
modeled LES and hybrid RANS-LES models are available but the underlying principles are 
the same irrespectively of which model is used. Hybrid RANS-LES requires a computational 
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grid that switches, seamlessly, from an LES grid in the detached flow to a RANS grid in the 
attached flow. Wall-modeled LES requires an LES grid throughout the whole computational 
domain. Hybrid RANS-LES relay on an interface, explicit or implicit, to determine when to 
switch from LES to RANS, whereas wall-modeled LES is based on solving the LES equa-
tions all the way to the wall. A wall-model is used just adjacent to the wall to estimate the 
wall-shear stress (or the friction velocity) from the LES solution in order to provide a bounda-
ry condition for the wall-modeled LES. 

The flow predictions used to illustrate different aspects of ship and submarine flow physics 
clearly points at some lack of understanding of high Re number turbulent boundary layers de-
veloping over curved and complex surfaces. More high-quality experimental data as well as 
DNS simulation results are needed to fill the gaps in our current understanding of the bounda-
ry layer flow physics, Not until this gap has decreased, improved simulation models, based on 
the underlying physics can be developed. It is anticipated that such simulation models will be 
of multi-scale nature, [88], to reflect the multi-scale nature of the boundary layer. The contin-
uous development of algorithms and hardware will help in rapidly reaching higher and thus 
more relevant Re number flows which are likely to reveal new physical challenges in terms of 
new physical mechanisms for the composition of a turbulent boundary layer. 
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