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Abstract. We compute the diagonal restriction of the �rst derivative with respect to the
weight of a p-adic family of Hilbert modular Eisenstein series a�ached to a general (odd)
character of the narrow class group of a real quadratic �eld, and express the Fourier co-
e�cients of its ordinary projection in terms of the values of a distinguished rigid analytic
cocycle in the sense of [DV1] at appropriate real quadratic points of Drinfeld’s p-adic upper
half-plane. �is can be viewed as the p-adic counterpart of a seminal calculation of Gross
and Zagier [GZ, §7] which arose in their “analytic proof” of the factorisation of di�erences
of singular moduli, and whose inspiration can be traced to Siegel’s proof of the rationality of
the values at negative integers of the Dedekind zeta function of a totally real �eld. Our main
identity enriches the dictionary between the classical theory of complex multiplication and
its extension to real quadratic �elds based on RM values of rigid meromorphic cocycles, and
leads to an expression for the p-adic logarithms of Gross–Stark units and Stark–Heegner
points in terms of the �rst derivatives of certain twisted Rankin triple product p-adic L-
functions.
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Introduction

In their in�uential work on singular moduli [GZ, §7], Gross and Zagier consider the diag-
onal restriction of a family, indexed by a complex parameter s, of non-holomorphic Hilbert
modular Eisenstein series of parallel weight one a�ached to an odd genus character ψ of
a real quadratic �eld. Since this family vanishes identically at s = 0, it becomes natural
to study its �rst derivative, a real analytic modular form of weight two on SL2(Z). �e
vanishing of its holomorphic projection is used to calculate the arithmetic intersections of
singular moduli a�ached to the two imaginary quadratic sub�elds of the biquadratic �eld
cut out by ψ. �e derivative of the non-holomorphic Eisenstein family provides a simple
but illustrative instance of the Kudla program, a framework that seeks similar modular gen-
erating series for the topological and arithmetic intersections of a broader class of special
cycles on Shimura varieties.
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�e present work transposes the calculation of Gross and Zagier to a p-adic se�ing by
studying the diagonal restriction of the �rst derivative with respect to the weight of a p-
adic family of Hilbert modular Eisenstein series a�ached to a general (odd) character of the
narrow class group of a real quadratic �eld. �e Fourier coe�cients of its ordinary projection
are expressed in terms of the values of a distinguished rigid analytic cocycle at appropriate
“real multiplication points” of Drinfeld’s p-adic upper half-plane. Such RM values are related
to a panoply of invariants de�ned (conjecturally) over ring class �elds of real quadratic �elds,
notably, the Stark–Heegner points of [Dar], the Gross–Stark units of [DD], and the real
quadratic singular moduli of [DV1]. Our main identity enriches the analogy between the
classical theory of complex multiplication and its extension to real quadratic �elds based on
the RM values of rigid meromorphic cocycles. It also leads to a new expression for the p-adic
logarithms of Gross–Stark units and Stark–Heegner points in terms of the �rst derivatives
of certain twisted Rankin triple product p-adic L-functions.

Let F be a real quadratic �eld of discriminant D > 0, and let H denote its Hilbert class
�eld in the narrow sense. �e narrow class group Cl+(D) = Gal (H/F ) of F is endowed
with a canonical element c of order 1 or 2 represented by the class of the principal ideal
(α), where α ∈ F× is an element of negative norm, which corresponds to the complex
conjugation in Gal (H/F ). Given C ∈ Cl+(D), write C∗ := c · C. A function ψ on Cl+(D)
is said to be odd if it satis�es ψ(C∗) = −ψ(C).

Assume from now on that ψ is such an odd function on Cl+(D). For each k ≥ 1, it gives
rise to a holomorphic Eisenstein series of (odd) parallel weight k on the full Hilbert modular
group SL2(OF ), whose Fourier expansion for k > 1 is given by

(1) Ek(1, ψ)(z1, z2) := L(F, ψ, 1− k) + 4
∑
ν∈d−1

+

σk−1,ψ(νd) exp(2πi(ν1z1 + ν2z2)),

where

(2) L(F, ψ, s) =
∑
I�OF

ψ(I)Nm(I)−s, (Re(s) > 1)

is the zeta-function a�ached to ψ, the index set d−1
+ denotes the cone of totally positive

elements in the inverse di�erent of F , and σk−1,ψ is the function

(3) σk−1,ψ(α) :=
∑
I|(α)

ψ(I)Nm(I)k−1,

the sum being taken over all the integral ideals I of OF that divide (α).
Let p be a rational prime. �e p-stabilisation of Ek(1, ψ) has Fourier expansion given by

(4) E
(p)
k (1, ψ) := L(p)(F, ψ, 1− k) + 4

∑
ν∈d−1

+

σ
(p)
k−1,ψ(νd) exp(2πi(ν1z1 + ν2z2)),

where L(p)(F, ψ, s) and σ(p)
k−1,ψ(α) are obtained from L(F, ψ, s) and σk−1,ψ(α) respectively

by restricting the sums arising in their de�nitions to the ideals whose norm are prime to p.
�e Eisenstein series E(p)

k (1, ψ) is of parallel weight k on the Hecke congruence group of
SL2(OF ) consisting of matrices that are upper triangular modulo p, and hence its restriction
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to the diagonalH ⊂ H×H is a classical modular form of weight 2k on Γ0(p):

(5) Gk(ψ) := E
(p)
k (1, ψ)(τ, τ) ∈M2k(Γ0(p)), for all k ∈ Z≥1.

As functions of k, the Fourier coe�cients of Gk(ψ) interpolate to analytic (Iwasawa) func-
tions on weight space

W := hom(Z×p ,Z
×
p ) = Z/(p− 1)Z × Zp.

�is can be veri�ed directly for the coe�cients of qn with n ≥ 1, and general principles �rst
described and exploited by Serre in [Se] reveal that this property is inherited by the constant
termL(p)(F, ψ, 1−k). It can thus be viewed as the value at s = 1−k of an analytic function,
the p-adic L-function Lp(F, ψ, s) a�ached to ψ1.

Our �rst theorem – �eorem A below – relates the Fourier expansion of the weight two
specialisation G1(ψ) to Mazur’s winding element, de�ned as the image

gw ∈ H1(X0(p); {0,∞},Z)

of the vertical path on the Poincaré upper half plane joining 0 to ∞ in the homology of
X0(p) relative to the cusps.

If p is split in F/Q, then every narrow ideal class of F can be represented by a primitive
binary quadratic formQ(x, y) = Ax2+Bxy+Cy2 with p|A. Such a form is called a Heegner
form (at p). �e set of Heegner forms in a given narrow ideal class C consists of two Γ0(p)-
orbits of Heegner forms, depending on a square root s of D modulo p, and determined
by the condition B ≡ s (mod p). �ese orbits are denoted Cs and C−s respectively. �e
automorph a�ached to a Heegner form Q belongs to Γ0(p), and its image in the homology
H1(Y0(p),Z), denoted gQ, depends only on the Γ0(p)-orbit of Q. �e two homology classes
of Heegner forms in C are denoted gC,s and gC,−s respectively. De�ne

gψ =
∑
C∈Cl(D)

ψ−1(C)(gC,s + gC,−s) ∈ H1(Y0(p),Z[ψ]),

where Z[ψ] is the ring generated over Z by the values of ψ.
Let Tk(p) be the algebra of Hecke operators acting faithfully on the space Mk(Γ0(p)) of

modular forms of weight k on Γ0(p). It is generated by the Hecke operators Tn for all n ≥ 1,
where Tp is used here to denote what is sometimes referred to as Up. �ese operators are
described in the standard way in terms of double cosets, and act naturally on the homol-
ogy groups H1(X0(p); {0,∞},Z) and H1(Y0(p),Z), in a way that is compatible with the
intersection pairing

(6) 〈 · , · 〉 : H1(X0(p); {0,∞},Z) × H1(Y0(p),Z) −→ Z.

�ese structures extend by linearity to the homology groups with coe�cients in more gen-
eral rings like Z[ψ]. Our �rst result, which is shown in § 1, is

1Its restriction to hom(Z×
p , 1 + pZp) is customarily denoted Lp(F,ψωp, s) in the literature.
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�eorem A. �e Fourier expansion of the weight two specialisation G1(ψ) is given by

G1(ψ) =


Lp(F, ψ, 0)− 2

∞∑
n=1

〈gw, Tngψ〉 qn if
(
D
p

)
= 1,

0 if
(
D
p

)
= −1.

Assume henceforth that
(
D
p

)
= −1. Since the familyGk(ψ) vanishes identically at k = 1,

it can be envisaged as the p-adic counterpart of the families of real analytic modular forms
that arise in [GZ] and in Kudla’s theory of incoherent Eisenstein series, as explored, for
instance, in [KRY]. It then becomes natural to consider the �rst derivative

(7) G′1(ψ) :=
d

dk
Gk(ψ)k=1,

which is shown in § 2.1 to be an overconvergent p-adic modular form of weight two and
tame level one. Its image
(8) G′1(ψ)ord := eordG

′
1(ψ) := lim

n→∞
Un!
p G

′
1(ψ) ∈ M2(Γ0(p))

under Hida’s ordinary projector, which plays the same role as the holomorphic projection
operator in the work of Gross–Zagier, is a classical form of weight two on Γ0(p). Our second
objective is to calculate the Fourier coe�cients of G′1(ψ)ord and relate them to certain rigid
cocycles, whose RM values provide a natural framework for extending the theory of complex
multiplication to real quadratic �elds, and whose de�nition is now brie�y recalled.

LetHp denote Drinfeld’s p-adic upper half plane and letM× be the multiplicative group
of non-zero rigid meromorphic functions onHp, endowed with the translation action of

Γ := SL2(Z[1/p])

by Möbius transformations. A rigid meromorphic cocycle is anM×-valued one-cocycle on
Γ. It is said to be rigid analytic if it takes values in the group A× of non-zero rigid analytic
functions on Hp. �e groups of rigid meromorphic and analytic cocycles are denoted by
H1(Γ,M×) and H1(Γ,A×) respectively.

Because H1(Γ,C×p ) is �nite, the natural map H1(Γ,M×) −→ H1(Γ,M×/C×p ) has �nite
kernel. It is convenient to work with elements of the larger group of cocycles modulo scalars,
which are called theta-cocycles. �is terminology is motivated by the analogy with the theta
functions that arise in the p-adic uniformisation theory of Mumford curves, which are in-
variant under the translation action of a p-adic Scho�ky group, but only up to multiplicative
scalars. Although there is a non-trivial obstruction in H2(Γ,C×p ) to li�ing a theta-cocycle
J to an element of H1(Γ,M×), the restriction of J to SL2(Z) li�s to an element

J◦ ∈ H1(SL2(Z),M×)

because of the vanishing of H2(SL2(Z),C×p ), and this li� is essentially unique because the
group H1(SL2(Z),C×p ) is �nite.

A simple example of an analytic theta cocycle is the universal theta-cocycle Juniv, de�ned
by �xing a base point ξ in P1(Qp) and le�ing Juniv(γ) be the (unique, up to multiplicative
scalars) rational function having (γξ) − (ξ) as a divisor. �is example is too simple to
be of real arithmetic interest, since it takes values in rational functions rather than in the
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larger group of rigid analytic functions. But there are other instances, and in fact the group
H1(Γ,A×/C×p ) is intimately related to the spaceM2(p). Namely, the groupH1(Γ,M×/C×p )
admits an action of the Hecke operators Tn for all n ≥ 1, described in the standard way in
terms of double cosets. �is action preserves the subgroup of analytic theta-cocycles, and
its restriction to this subspace factors through the algebra T2(p). In fact, there is an explicit
Hecke-equivariant map
(9) ST× : H1(Γ0(p),Z) −→ H1(Γ,A×/C×p )/JZ

univ,

described in [DV2], referred to as the “multiplicative Schneider–Teitelbaum li�”.
A rigid meromorphic cocycle can be evaluated at real multiplication points ofHp follow-

ing a recipe that is described in [DV1]. Namely, a point τ ∈ Hp is said to be an RM point if
F (τ, 1) = 0 for some primitive integral binary quadratic form F (x, y) = Ax2 +Bxy+Cy2

of positive discriminant, and the discriminant B2 − 4AC is also called the discriminant of
τ . �e RM points are characterised as those inHp for which the stabiliser
(10) Γ[τ ] := StabΓ(τ)

of τ in Γ is an in�nite group, of rank one modulo torsion. A generator γτ of Γ[τ ] modulo
torsion admits the column vector (τ, 1) as an eigenvector, with eigenvalue a unit ε of F . It
can be chosen in a consistent way by �xing a real embedding of F = Q(τ) and insisting
that ε > 1, which implies that for all ξ ∈ H,
(11) lim

j−→−∞
γjτξ = τ ′, lim

j−→∞
γjτξ = τ.

�e value of a cocycle J ∈ H1(Γ,M×) at τ is simply
(12) J [τ ] := J(γτ )(τ) ∈ Cp ∪ {∞}.
More generally, a theta-cocycle J can also be evaluated at RM points τ whose discriminant
is prime to p. Indeed, in this case the automorph γτ belongs to SL2(Z), and one can simply
de�ne

J [τ ] := J◦(γτ )(τ) ∈ Cp ∪ {∞}.
Let HD

p be the set of τ ∈ HRM
p of discriminant D. �e theory of composition of binary

quadratic forms identi�es the orbit space SL2(Z)\HD
p with the narrow class group Cl(D),

and hence ψ can be viewed as a function on SL2(Z)\HD
p . Let

(13) ∆ψ :=
∑

τ∈SL2(Z)\HDp

ψ(τ) · τ ∈ Div(SL2(Z)\HD
p ),

be the associated formal degree zero divisor on SL2(Z)\Hp. Because p - D, a theta-cocycle
J can be evaluated at the points ofHD

p , and we can set

(14) J [∆ψ] :=
∑

SL2(Z)\HDp

ψ(τ)J [τ ].

Section 2 introduces the winding cocycle, an explicit theta-cocycle
(15) Jw ∈ H1(Γ,A×/C×p ),

that is related to the winding element gw via
Jw := ST×(gw) (mod JZ

univ),

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance

improvements, or any corrections. The Version of Record is available online at:
http://dx.doi.org/10.1007/s00208-020-02086-2



6 HENRI DARMON, ALICE POZZI AND JAN VONK

viewing gw as an element ofH1(Γ0(p),Z) via the intersection pairing. �e quantities Jw[∆ψ]
belong to F×p ⊂ C×p , where Fp is the completion of F at p, and we may consider their image
under the norm map Nm from F×p to Q×p . From now on, choose Iwasawa’s branch of the
p-adic logarithm
(16) logp : C×p −→ Cp

which is trivial on the torsion subgroup of C×p as well as on p.
Our second main result is

�eorem B. For all fundamental discriminants D > 0, for all primes p that are inert in
F = Q(

√
D), and for all odd functions ψ on Cl(D),

G′1(ψ)ord = L′p(F, ψ, 0)− 2
∞∑
n=1

logp
(
Nm((TnJw)[∆ψ])

)
qn.

�eorems A and B can be used to compute the spectral expansions of the modular forms
G1(ψ) and G′1(ψ)ord. To this end, a normalised eigenform f ∈ S2(Γ0(p)) with Fourier
coe�cients in a ring Of gives rise to a modular abelian variety quotient Af of J0(p) with
endomorphism ring containing Of , and to a pair of homomorphisms

ϕ̃+
f , ϕ̃

−
f ∈ H

1(Γ0(p),C), ϕ̃±f (γ) :=

∫
γ

(ωf ± ω̄f ), ωf := 2πif(z)dz.

�ese classes, which encode the real and imaginary periods of f respectively, can be rescaled
to take values in the the ringOf of Fourier coe�cients of f , by choosing appropriate periods
Ω±f ∈ C and se�ing

(17) ϕ+
f := (Ω+

f )−1ϕ̃+
f , ϕ−f := (Ω−f )−1ϕ̃−f .

From the la�er one obtains a pair of theta-cocycles
J±f := ST×(ϕ±f ) ∈ (H1(Γ,A×/C×p )/JZ

univ)⊗Of ,
which are eigenvectors for the Hecke operators with the same eigenvalues as f . �ey are
the elliptic modular cocycles described in [DV2, § 3]. �e images of the RM values J±f [∆ψ] ∈
O×Fp under the Tate–Morikawa p-adic uniformisation of Af are the Stark–Heegner points in
Af (Fp)⊗Of , conjectured to be de�ned over suitable ring class �elds of F .

�e elliptic cocycles J±f can be envisaged as the cuspidal counterparts of the Dedekind–
Rademacher cocycle of [DV2, §3] a�ached to the periods of the Eisenstein series of weight
two on Γ0(p) (normalised so that is �rst Fourier coe�cient is 1), de�ned by

E
(p)
2 (q) =

p− 1

24
+
∑
n≥1

σ
(p)
1 (n)qn, E

(p)
2 (q)

dq

q
=

1

24
dlog(∆(qp)/∆(q)).

It is given by
(18) JDR := ST×(ϕDR),

where

(19) ϕDR(γ) := 24

∫
γ

E
(p)
2 (z)dz
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is the Dedekind–Rademacher homomorphism, whose expression in terms of Dedekind sums
can be found in [Ma] for example. In the theory of rigid meromorphic cocycles, the Dedekind
Rademacher cocycle plays the role of the modular unit ∆(z)/∆(pz). �e re�nement of
Gross’s p-adic Stark conjecture proposed in [DD] predicts that the RM value JDR[∆ψ] be-
longs to (OH [1/p])× ⊗ Q.

For the next statement, let us choose the periods Ω±f in (17) in such a way that

Ω+
f Ω−f = 〈f, f〉, ϕ+

f ∈ H
1(Γ0(p), Kf ), ϕ−f ∈ H

1(Γ0(p),Of ).

�e Manin–Drinfeld theorem implies that the quantity

Lalg(f, 1) := (Ω+
f )−1

∫ ∞
0

ωf

belongs to the �eld Kf , and in particular is algebraic. It is a multiple of the special value
L(f, 1) by a simple non-zero factor, and can therefore be envisaged as its “algebraic part”.

�e third main result, discussed in § 3, is readily deduced from �eorems A and B, is

�eorem C. �e classical formsG1(ψ) andG′1(ψ)ord obtained in the coherent and incoher-
ent cases respectively may be wri�en as a combination of newforms as follows:

(1) (Coherent case). If p is split in F/Q, then we have

G1(ψ) = λ0 · E(p)
2 +

∑
f

λf · f,

where f runs over the basis of normalised newforms in S2(Γ0(p)), and

λ0 =
−2

p− 1
· ϕDR(gψ), λf = −2Lalg(f, 1) · ϕ−f (gψ).

(2) (Incoherent case). If p is inert in F/Q, then we have

G′1(ψ)ord = λ′0 · E
(p)
2 +

∑
f

λ′f · f,

where the coe�cients λ′0 and λ
′
f are given by

λ′0 =
−4

p− 1
· logp

(
Nm(JDR[∆ψ])

)
, λ′f = −4Lalg(f, 1) · logp

(
Nm(J−f [∆ψ])

)
.

Table A illustrates �eorem C for p = 11 and ψ ranging over some odd unrami�ed char-
acters of real quadratic �elds. We consider all genus characters of discriminant D < 100,
corresponding to factorisations D = D1D2 of D into a product of two negative fundamen-
tal discriminants. �e space M2(Γ0(11)) is spanned by the Eisenstein series E(11)

2 and the
newform f a�ached to the Weil curve

E : y2 + y = x3 − x2 − 10x− 20

of conductor 11, which has rank zero over Q, and Lalg(f, 1) = 1/5. In the coherent case, the
coe�cients λ0 and λf of Part 1 of �eorem C are rational numbers, and it was checked that
λ0 = ϕDR(gψ), as claimed. In the incoherent case, it was checked, to 50 signi�cant 11-adic
digits, that
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(1) the coe�cient λ′0 agrees with a rational multiple of the 11-adic logarithm of a global
11-unit in the biquadratic �eld Q(

√
D1,
√
D2). More precisely, this unit belongs to

Q(
√
D1), where (D1, D2) are ordered in such a way that (D1

p
) = −(D2

p
) = 1.

(2) the coe�cient λ′f agrees with a small rational multiple of the formal group logarithm
of a global point in E(Q(

√
D1)). �is is consistent with a theorem of Mok [Mok]

extending the main result of [BD] to elliptic curves of prime conductor, which implies
that the quantities J−f [∆ψ] map to a global point in E(Q(

√
D1)) ⊗ Q under Tate’s

p-adic uniformisation when ψ is a genus character.

D D1 ·D2

(
D
11

)
λ0 λf λ′0 λ′f

12 (−3)(−4) 1 8
5 −8

5

21 (−7)(−3) −1 0 0 16
5 log

(
2+
√
−7

11

)
8
5 logE

(
1−
√
−7

2
, 1+2

√
−7
)

24 (−8)(−3) −1 0 0 16
5 log

(
3+
√
−2

11

)
−8

5 logE (−3−
√
−2,−4−3

√
−2)

28 (−7)(−4) −1 0 0 24
5 log

(
2+
√
−7

11

)
−8

5 logE
(

1−
√
−7

2
, 1+2

√
−7
)

56 (−8)(−7) 1 0 0 0 0

57 (−19)(−3) −1 0 0 16
5 log

(
5+
√
−19

22

)
−8

5 logE (−7+2
√
−19,−38−2

√
−19)

69 (−23)(−3) 1 48
5 −8

5

76 (−19)(−4) −1 0 0 24
5 log

(
5+
√
−19

22

)
8
5 logE (−7+2

√
−19,−38−2

√
−19)

93 (−3)(−31) 1 48
5 −8

5

Table A. �e spectral expansions of G1(ψ) and G′1(ψ)ord.

Weight one Eisenstein series a�ached to odd genus characters also play a prominent role
in the calculations of [GZ]. �at theorems B and C are not a direct p-adic counterpart of the
formulae in loc.cit. is suggested by the fact that they apply to arbitrary (odd) class characters,
and not just genus characters. �is feature, which accounts for the relevance of �eorem
C to explicit class �eld theory for real quadratic �elds, is illustrated in Section 3.6, where a
numerical illustration is o�ered in its support.

Remark 1. Part 1 of �eorem C is essentially equation (1.4) of [Li] with the genus character
replaced by a general odd ideal class character of F , while Part 2 can be viewed as a p-adic
“incoherent” counterpart of this result.

Remark 2. When the prime p is split in F , comparing the constant terms for G1(ψ) given in
�eorem A and in Part 1 of �eorem C, we obtain

Lp(F, ψ, 0) =
1

12
ϕDR(gψ),

a classical result that follows from Meyer’s formula [Za, §4] for the value at s = 0 of
the L-function of a totally odd ring class character of a real quadratic �eld in terms of
the Dedekind–Rademacher homomorphism. When p is inert in F , comparing the constant
terms for G′1(ψ)ord given in �eorem B and in Part 2 of �eorem C leads to the identity

L′p(F, ψ, 0) =
1

12
logp(NmJDR[∆ψ]),
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which essentially recovers one of the main theorems of [DD]. �e proof of the p-adic Gross–
Stark conjecture given in [DDP] shows that L′p(F, ψ, 0) is a rational multiple of the p-adic
logarithm of the norm to Qp of a global p-unit – the Gross–Stark unit a�ached to ψ –
and leads to theoretical evidence for the algebraicity of the RM values of the Dedekind–
Rademacher cocycle. In a forthcoming work [DPV], the authors will parlay the in�nitesimal
deformations of Ek(1, ψ) in the anti-parallel direction and their diagonal restrictions into a
proof of the algebraicity of the full invariant JDR[∆ψ]. �is gives a new proof of one of
the main results of [DK1], in the se�ing of real quadratic �elds. It is worth noting that the
results in [DK1] apply to general totally real �elds, whereas the connection with the theory
of rigid cocycles is at present restricted to the quadratic case.

Remark 3. �e coe�cients λ′f that occur in the spectral expansion ofG′1(ψ)ord can be viewed
as the �rst derivatives of certain twisted Rankin p-adic L-functions a�ached to f and to
the diagonal restriction of a family of Hilbert modular Eisenstein series. �ese quantities
can be likened to the “p-adic iterated integrals” of [DLR] arising from a pair of weight one
cusp forms, by viewing such a pair as a “Hilbert modular form of weight (1, 1) for the split
quadratic algebra Q × Q”. �e connection between the products of logarithms of pairs of
Stark–Heegner points and the second derivatives of Rankin triple product L-functions has
already been exploited, notably in [DR] and [BSV]. �e simpler connection with the �rst
derivatives of their twisted variants that is revealed by �eorem C o�ers the prospect of
a more direct geometric approach to Stark–Heegner points via the K-theory of Hilbert
modular surfaces, which it would be interesting to �esh out.

Acknowledgements. �e authors are grateful to Marc Masdeu for numerically verifying
the global nature of the point constructed in the �nal example of this paper. �ey also
thank Francis Brown, Yingkun Li, David Loe�er, Don Zagier, and Sarah Zerbes for their
support and for their interest in this work. �e research of the �rst author was supported
by an NSERC discovery grant. �e second author was supported by the ERC-COG Grant
523950 ‘Euler Systems’. �e third author was supported by ERC-COG Grant 724638 ‘GA-
LOP’, the Carolyn and Franco Gianturco Fellowship at Linacre College (Oxford), the Max-
Planck-Institut für Mathematik (Bonn), and NSF Grant No. DMS-1638352, during various
stages of this project.

1. Diagonal restrictions of Hilbert Eisenstein series

�e modular form Gk(ψ) of weight 2k on Γ0(p) described in (5) of the introduction has
Fourier expansion given by

(20) Gk(ψ) := L(p)(F, ψ, 1− k) + 4
∞∑
n=1

 ∑
ν∈d−1

+

Tr(ν)=n

∑
I | (ν)d,
p - I

ψ(I)Nm(I)k−1

 qn.

�e goal of this chapter is to investigate its weight 2 specialisation and prove �eorem A
from the introduction. When p splits in F , which by analogy with common nomenclature in
the Kudla programme is referred to as the coherent case, the weight two specialisationG1(ψ)
is the generating series for the homological intersection product of certain geodesics, while
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10 HENRI DARMON, ALICE POZZI AND JAN VONK

it vanishes identically when p is inert in F . �e la�er incoherent se�ing is arithmetically
richer: the �rst derivative G′1(ψ) that is the object of �eorem B is studied in Chapter 2.
Notation. Retaining some of the notations and assumptions of the introduction, F will

denote a real quadratic �eld with discriminant D, ring of integers OF , set of integral ideals
IF , and di�erent ideal d. �e notation d−1

+ means the subset of totally positive elements of
the inverse di�erent d−1. Denote by Nm and Tr the norm and trace maps from F to Q.

1.1. �e weight two specialisation G1(ψ). �e weight two specialisation of the family
considered above plays a central role. �e following lemma is well-known to experts.

Lemma 1.1. �e specialisation G1(ψ) is a classical modular form of weight two and level
Γ0(p). Its constant term is given by

(21) Lp(F, ψ, 0) = L(F, ψ, 0) ·
∏
p|p

(1− ψ(p)).

In particular, the constant term vanishes if p is inert in F .

Proof. By [DDP, Prop. 3.2], the weight one specialisation of the familyE(p)
k (1, ψ) is a classical

Hilbert modular form of parallel weight one and level
Γ0(pOF ) = {( a bc d ) ∈ SL2(OF ) | c ∈ pOF , } .

�us, its diagonal restriction is a classical elliptic modular form of weight two and level
Γ0(p). �e formula for the constant coe�cient follows from the fact that Lp(F, ψ, s) inter-
polates the values of L(p)(F, ψ, n) for every n ∈ Z≤0. In particular, if p is inert in F, the
p-adic L-function admits a trivial zero at s = 0, since the conductor of ψ is trivial. �

Remark 1.2. �e weight one specialisation of the Eisenstein family can in fact be obtained
by p-stabilising the Eisenstein series of level one with Fourier expansion

E1(1, ψ)(z1, z2) = 4
∑
ν∈d−1

+

σ0,ψ(νd) exp(2πi(ν1z1 + ν2z2))

in the notation of (3). However, the constant term of the p-stabilisation E(p)
1 (1, ψ) may not

vanish in the coherent case, due to the contribution of non-zero constant terms at other
cusps. For more on the constant terms at various cusps, see Shih [Shih] and Dasgupta–
Kakde [DK2].

1.2. Ideals and RM points. �e Fourier coe�cient an of the diagonal restriction (20) may
be wri�en as
(22) an = 4

∑
C∈Cl+(D)

ψ(C)
∑

(I,ν) ∈ I(n,C)−I(n,C)p

Nm(I)k−1

where the index sets are given by
I(n, C) :=

{
(I, ν) ∈ IF × d−1

+ : Tr(ν) = n, I | (ν)d, [I] = C
}
,

I(n, C)p :=
{

(I, ν) ∈ I(n, C) : p | Nm(I)
}
.

�e �nite index sets I(n, C) and I(n, C)p will be placed in an explicit bijection with certain
sets of RM points. To ease the exposition, the case n = 1, where this set of RM points may
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DIAGONAL RESTRICTIONS OF p-ADIC EISENSTEIN FAMILIES 11

be described in a particularly simple way, is treated separately. �e calculations for the case
n > 1 are more involved, and are dealt with in the remainder of the chapter.

An RM point is de�ned to be a real quadratic irrationality, and is said to be of discriminant
D if it is the root of a primitive binary quadratic form of discriminantD. �e set of RM points
of discriminant D, denoted RM(D), is preserved by the action of SL2(Z).

Extending the de�nition in (10), write G[τ ] ⊂ G for the stabiliser of τ in G, for G any
congruence subgroup of Γ and τ an element ofHp. If τ is an RM point, thenG[τ ] is always of
rank one, i.e., it is of the formG[τ ] = ±〈γτ 〉 for the generator γτ that is uniquely determined
by the property that τ is it stable �xed point in the sense of (11). As in the introduction, the
(open) hyperbolic geodesic in H between two RM points τ1, τ2 will be denoted by (τ1, τ2),
whereas the (closed) hyperbolic geodesic segment between two points ξ1, ξ2 of the extended
upper-half planeH∗ = H∪P1(Q) is denoted by the symbol [ξ1, ξ2]. �e intersection number
between two geodesics in H, which is always ±1 or 0, is de�ned in the natural way a�er
�xing a standard orientation onH, and is denoted by the symbol “ · ” as above.

Ideals and RM points are related by the canonical bijection

(23) Cl+(D) −→ SL2(Z) \ RM(D),
[I] 7−→ ω1/ω2,

where (ω1, ω2) is any positive Z-basis of I , i.e. a basis satisfying ω1ω
′
2 − ω′1ω2 > 0. �is is

well-de�ned, and de�nes a bijection with inverse given by:

cl : RM(D) −→ Cl+(D), cl(τ) =

{
Zτ ⊕ Z if τ − τ ′ > 0,√

D(Zτ ⊕ Z) if τ − τ ′ < 0,

which is constant on SL2(Z)-orbits. Given a narrow ideal class C in Cl+(D), let

RM(C) := cl−1(C) = SL2(Z)τ,

where τ is any preimage of C. �e group GL2(Z) acts transitively on RM(C)∪ RM(C∗), and
any matrix of determinant −1 interchanges RM(C) and RM(C∗). In particular

(24) cl(−τ) = cl(τ)∗.

De�nition 1.3. An RM point τ is said to be reduced2 if ττ ′ < 0. A reduced RM point is
called positive if τ ′ < 0 < τ , and negative if τ < 0 < τ ′. Denote by RM+ and RM− the sets
of positive and negative (reduced) RM points, and set

RM±(D) = RM(D) ∩ RM±, RM±(C) = RM(C) ∩ RM±.

Lemma 1.4. �e sets RM±(C) are �nite. �e assignment τ 7→ −τ induces a bijection from
RM+(C∗) to RM−(C).

Proof. Any τ in RM±(D) is the root of a primitive binary quadratic form Ax2 + Bxy +
Cy2 of discriminant D in which AC < 0. �ere are �nitely many such forms, so the �rst
assertion follows. �e second follows from (24) given that τ 7→ −τ interchanges RM+(D)
and RM−(D). �

2Note that this di�ers from the notion of reducedness de�ned by Gauß in his Disquisitiones Arithmeticae
[Ga]. Reduced forms in his sense are always reduced in our sense, but the converse is not true.
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12 HENRI DARMON, ALICE POZZI AND JAN VONK

De�nition 1.5. Let p be a prime that does not divide D. An RM point in RM(D) is said to
be Heegner (relative to p) if pτ also lies in RM(D). Equivalently, τ is a Heegner RM point if it
is the root of a binary quadratic form of discriminant D that is Heegner at p in the sense of
the introduction. �e set of Heegner RM points in RM(C) is denoted RM(C)p, and likewise
RM±(C)p denotes the set of Heegner RM points in RM±(C).

Note that if p is inert in F , then RM(D)p is empty. If p splits in F , it is nonempty and
stable under the action of Γ0(p), with two distinct orbits, as described in the introduction.

Lemma 1.6. �e sets I(1, C) and RM+(C) are in bijection via the map

(I, ν) 7−→ ν
√
D

Nm(I)
.

Proof. Any totally positive ν ∈ d−1 of trace 1 can be uniquely expressed as

ν =
−b+

√
D

2
√
D

, where b ∈ Z, b2 −D < 0, b ≡ D (mod 2).

Given an ideal I | (ν)d, its norm a := Nm(I) is a positive divisor of the negative integer
Nm(ν

√
D) = (b2 −D)/4, hence its quotient by a is equal to a negative integer c. De�ne

τ :=
−b+

√
D

2a

which is a root of ax2 + bxy + cy2 and therefore contained in RM+(D). If (I, ν) belongs to
I(1, C) it is readily checked that τ belongs to RM+(C) ⊂ RM+(D).

Conversely, if τ = (−b +
√
D)/2a belongs to RM+(C), then an element (I, ν) of I(1, C)

in the preimage of τ can be constructed by se�ing

I := (a, ν
√
D), ν :=

−b+
√
D

2
√
D

.

�

�e bijection in Lemma 1.6 will now be extended to general n. Due to the non-constancy
of discriminants in the set of RM points corresponding to I(n, C), greater care becomes
necessary in introducing notation for certain double cosets that feature in the target of the
desired bijection.

As before, let τ ∈ RM(C). Let

(25) Mat
(n)
2×2(Z) := {A ∈ Mat2×2(Z) : det(A) = n}

and let Mn and Mn(τ) be a system of representatives for SL2(Z)\Mat
(n)
2×2(Z) and for the

double coset space SL2(Z)\Mat
(n)
2×2(Z)/SL2(Z)[τ ] respectively, where as above we write

SL2(Z)[τ ] for the stabiliser of τ in SL2(Z), a group of rank 1. In other words,

Mat
(n)
2×2(Z) =

⊔
γn∈Mn

SL2(Z) · γn(26)

=
⊔

δn∈Mn(τ)

SL2(Z) · δn · SL2(Z)[τ ].(27)
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It will be convenient to choose the standard set of representatives of the Hecke operator Tn

(28) Mn :=

{(
n/d j

0 d

)
: d|n, 0 ≤ j ≤ d− 1

}
,

and to assume without loss of generality that Mn(τ) is contained in Mn.

De�nition 1.7. For any choice of sign ± de�ne the set

(29) RM±(n, C) := {(w, δn) ∈ RM± ×Mn(τ) : w ∈ SL2(Z)δnτ}

Let w ∈ RM±(n, C), and let ax2 + bxy + cy2 be the unique quadratic form3 of discriminant
n2D which has w as its stable root. Using the �rst coe�cient of this quadratic form gives a
well-de�ned map

(30) RM±(n, C) −→ Z : w 7→ a(w) := a.

Write RM±(n, C)p for the subsets of those (w, δn) for which p | a(w). Note that the sets
RM±(C) de�ned in § 1.2 are canonically identi�ed with RM±(1, C).

�e following is a generalisation of Lemma 1.4 for all n ≥ 1:

Lemma 1.8. �e sets RM±(n, C) are �nite. �e map

RM+(n, C∗) −→ RM−(n, C) : (w, δn) 7−→ (−w, δ∗n),

is a bijection, where δ∗n is the representative of the conjugate of δn by the matrix

W∞ =

(
1 0
0 −1

)
.

Proof. �e �niteness of RM±(n, C) follows from the fact that the discriminant of δnτ divides
n2D, and that the set of reduced RM points of a �xed discriminant is �nite. �e second
statement follows easily from the observation that −w = W∞w. �

�e following more general version of Lemma 1.6 establishes a bijection between the
index set appearing in the expression (20) for the Fourier coe�cient an of the diagonal
restriction, and an explicit set of “augmented RM points” of the above form.

Lemma 1.9. �ere exists a bijection

I(n, C) −→ RM+(n, C)

such that if (I, ν) corresponds to (w, δn), then Nm(I) = a(w).

Proof. De�ne the ideal a = (A, (−B +
√
D)/2) where Ax2 + Bxy + Cy2 is the unique

quadratic form of discriminant D whose stable root is τ , whose narrow ideal class is C.
First, let (I, ν) ∈ I(n, C) and de�ne a triple of integers a, b, c by

a = Nm(I)

b = unique integer such that ν = −b+n
√
D

2
√
D

c = −Nm(J), where IJ = (ν)d.

3Note that this form may fail to be primitive.
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14 HENRI DARMON, ALICE POZZI AND JAN VONK

One readily sees that c < 0 < a and b2 − 4ac = n2D. Now de�ne

w =
−b+ n

√
D

2a
∈ RM+.

If (·)′ is the non-trivial automorphism of F , then I ′ is in the narrow ideal class of a−1. De�ne
λ to be a totally positive generator of the principal ideal I ′a. �en the la�ice

Λ = Zλ+ Zwλ

is well de�ned up to multiplication by a totally positive unit in O×F . We claim that Λ is a
la�ice in a of index n. Indeed, λ belongs to a, and on the other hand wλ also belongs to a
since

(wλ) = (ν
√
D/Nm(I))I ′a

= Ja.

�e resulting containment Λ ⊆ a is of index n, since the quadratic form

Nm(λx− µy)/Nm(a)

is equal to ax2 + bxy + cy2, which is of discriminant n2D. �erefore(
λw
λ

)
= N

(
Aτ
A

)
, detN = n,

and hence there is a unique δn ∈Mn(τ) such that

N ∈ SL2(Z) · δn · SL2(Z)[τ ].

Note that δn is well-de�ned, since multiplication of λ by a totally positive unit inO×F changes
N by right multiplication by an element of SL2(Z)[τ ], and hence does not change δn. Since
w belongs to SL2(Z)δnτ , it follows that w lies in RM+(n, C).

To check that this de�nes a bijection, we construct an explicit inverse. For an element
(w, δn) ∈ RM+(n, C), let ax2 + bxy+ cy2 be the unique quadratic form of discriminant n2D
whose stable root is w. De�ne

ν =
−b+ n

√
D

2
√
D

,

which is a totally positive element of d−1 of trace n. Write w = γδnτ , and de�ne λ by(
λw
λ

)
= γδn

(
Aτ
A

)
.

Note that γδn is only well-de�ned up to le� multiplication by elements in SL2(Z)[w], and up
to right multiplication by elements in SL2(Z)[τ ], which makes λ well-de�ned up to totally
positive units. �is makes the integral ideals

I = (λ′)/a′, J = (λw)a−1

well-de�ned, and one checks directly that IJ = (ν)d. �erefore (I, ν) belongs to I(n, C),
and this assignment de�nes the desired inverse to the map de�ned above. �
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1.3. An unfolding lemma for geodesics. �is section presents an unfolding identity be-
tween certain sums of intersection numbers of geodesics that will appear multiple times in
subsequent calculations. �e results below are stated for a congruence subgroup Γ0(N) for
a general N , but only the cases N = 1 or N = p will be used.

Lemma 1.10. Suppose τ is an RM point and let γτ be the normalised generator for the stabiliser
subgroup Γ0(N)[τ ] modulo torsion. Let n ≥ 1 be an integer that is relatively prime toN . �en
for any point η ∈ H,

(31)
∑

δn ∈Mn(τ)
γ ∈Γ0(N)/Γ0(N)[δnτ ]

[0,∞] · (γδnτ ′, γδnτ) =
1

2

∑
γn ∈Mn

γ ∈Γ0(N)

[0,∞] · [γγnη, γγnγτη].

Proof. For any RM point ρ, let γρ be its automorph in Γ0(N), i.e. the generator of Γ0(N)[ρ]
whose stable �xed point is ρ. Equation (11) implies that, for any ξ ∈ H,

[0,∞] · (γρ′, γρ) =
∞∑

j=−∞

[0,∞] · [γγjρξ, γγj+1
ρ ξ].

Se�ing ρ = δnτ , this allows us to unfold the le� hand side of (31) into the expression

(32) 1

2

∑
δn ∈Mn(τ)

∑
γ ∈Γ0(N)

[0,∞] · [γξ, γγρξ]

where the factor 1/2 accounts for the torsion subgroup ±I of Γ0(N)[δnτ ]. Now note that
γρ = δnγ

f
τ δ
−1
n for some f ≥ 1. Se�ing η = δ−1

n ξ we can rewrite

[0,∞] · [γξ, γγρξ] = [0,∞] · [γδnη, γδnγ
f
τ η]

= [0,∞] ·
(
[γδnη, γδnγτ η] + . . . + [γ(δnγ

f−1
τ )η, γ(δnγ

f−1
τ )γτη]

)
Note that the sum on the right hand side of (31) can be identi�ed with the intersection
product in homology of two homology classes on the open modular curve of level N , the
�rst being the geodesic between the cusps 0 and∞ viewed as a class in the homology of
X0(N) relative to the cusps, and the second being the Tn-translate of the geodesic joining
the images of η and γτη, whose class in H1(Y0(N),Z) is independent of η. Since

⊔
δn ∈Mn(τ)

Γ0(N) · δn · Γ0(N)[τ ] =
⊔

δn ∈Mn(τ)

f−1⊔
i=0

Γ0(N) · δnγiτ ,

the elements δnγiτ form a complete set of coset representatives for the action of the Hecke
operator Tn, so the sum (32) agrees with the right hand side of (31), as claimed. �

1.4. �e Fourier expansion ofG1(ψ). �is section is devoted to the coherent case, where
it is assumed that the prime p splits in F . Its goal is to prove �eorem A of the introduction,
which asserts that the form G1(ψ) is the generating series for certain intersection products
of the classes of geodesics in the homology of the modular curve X0(p).

Lemma 1.11. For every n ≥ 1, the sum S :=
∑

C∈Cl+(D)

ψ(C)|I(n, C)| vanishes.
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16 HENRI DARMON, ALICE POZZI AND JAN VONK

Proof. It su�ces to show this when ψ is the odd indicator function of a narrow class C, i.e.

ψ(I) =


1 if I ∈ C,
−1 if I ∈ C∗,

0 otherwise.

Combining Lemma 1.9 and Lemma 1.8 gives

S = |RM+(n, C)| − |RM+(n, C∗)|
= |RM+(n, C)| − |RM−(n, C )|.

Let τ be an RM point such that cl(τ) = C. For any RM point ρ,

[0,∞] · (ρ, ρ′) =


1 if ρ ∈ RM+,
−1 if ρ ∈ RM−,

0 otherwise

by de�nition, where the oriented intersections are taking place onH. �e setS can therefore
be rewri�en as

S =
∑

(w,δn)∈RM+(n,C)

1 −
∑

(w,δn)∈RM−(n,C)

1

=
∑

δn∈Mn(τ)
γ ∈ SL2(Z)/SL2(Z)[δnτ ]

[0,∞] · (γδnτ ′, γδnτ).

By Lemma 1.10,

S =
1

2

∑
γn∈Mn

〈gw, γngψ〉 =
1

2
〈gw, Tngψ〉

where 〈· , ·〉 denotes the intersection pairing between the homology of X0(1) relative to the
cusps and the homology of the open modular curve Y0(1), and gw and gψ are as de�ned in the
introduction. Since these homology groups are trivial, it follows that S = 0 as claimed. �

We now come to �eorem A, asserting (in the coherent case) that G1(ψ) is a generating
series for intersection products of geodesics on X0(p). �e proof uses the previous lemma,
and consists of a rearrangement of a sum over SL2(Z) with an additional restriction to sums
over Γ0(p) without any restriction, identifying the la�er with the intersection number in
homology.

�eorem 1.12. If p splits in F , the Fourier expansion of G1(ψ) is given by

G1(ψ) = Lp(F, ψ, 0)− 2
∞∑
n=1

〈gw, Tngψ〉p qn.

Proof. It su�ces to show this when ψ is the odd indicator function of a narrow ideal class
C. Equation (22) and Lemma 1.9 imply the following explicit expression for the n-th Fourier
coe�cient of G1(ψ):

(33) an = 4 |RM+(n, C) \ RM+(n, C)p| − 4 |RM+(n, C∗) \ RM+(n, C∗)p|.
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DIAGONAL RESTRICTIONS OF p-ADIC EISENSTEIN FAMILIES 17

Using Lemma 1.11 and Lemma 1.8, this may be rewri�en as

an = −4|RM+(n, C)p| + 4|RM+(n, C∗)p|
= −4|RM+(n, C)p| + 4|RM−(n, C )p|

As in the proof of Lemma 1.11, this can be further rewri�en as

an = −4
∑

(w,δn)∈RM+(n,C)p

1 + 4
∑

(w,δn)∈RM−(n,C)p

1(34)

= −4
∑

δn∈Mn(τ)

∑
w∈ SL2(Z)δnτ

p | a(w)

[0,∞] · (w′, w),(35)

�is is almost in the correct form for the unfolding of Lemma 1.10, except for the condition
p | a(w), which will be removed by passing from SL2(Z)-orbits to Γ0(p)-orbits.

Suppose �rst that n is coprime to p. Fix an RM point τ ∈ RM(C), and choose representa-
tives for the two Γ0(p)-orbits in RM(C)p{

τs = Asτ, As ∈ SL2(Z)
τ−s = A−sτ, A−s ∈ SL2(Z)

characterised by the property that all elements in the orbit are the stable roots of quadratic
forms of discriminantD whose middle coe�cient is congruent to s and−s respectively, for
a �xed choice s of square root of D modulo p. �e set of Heegner forms ax2 + bxy + cy2

in an SL2(Z)-orbit of discriminant n2D is likewise the disjoint union of two Γ0(p)-orbits,
distinguished by the congruences b ≡ ns (mod p) and b ≡ −ns (mod p). We will �rst
identify two explicit representatives for these orbits.

Choose subsets N (s)
n and N (−s)

n of Mn such that

Mat
(n)
2×2(Z) =

⊔
δ
(s)
n ∈N

(s)
n

SL2(Z) · δ(s)
n · SL2(Z)[τs](36)

=
⊔

δ
(−s)
n ∈N(−s)

n

SL2(Z) · δ(−s)
n · SL2(Z)[τ−s](37)

For any δn ∈ Mn(τ), the two matrices δ(s)
n ∈ N (s)

n and δ(−s)
n ∈ N (−s)

n are de�ned to be the
double coset representatives of AsδnA−1

s and A−sδnA−1
−s . �en

SL2(Z) · δ(s)
n · SL2(Z)[τs] = SL2(Z) · AsδnA−1

s · SL2(Z)[τs]

= SL2(Z) · δn · SL2(Z)[τ ] · A−1
s

and likewise for δ(−s)
n , from which one may conclude that the maps{

Mn(τ) −→ N
(s)
n : δn 7−→ δ

(s)
n

Mn(τ) −→ N
(−s)
n : δn 7−→ δ

(−s)
n

are bijections, and therefore that

{w ∈ SL2(Z)δnτ} = {w ∈ SL2(Z)δ(s)
n τs}

= {w ∈ SL2(Z)δ(−s)
n τ−s}
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18 HENRI DARMON, ALICE POZZI AND JAN VONK

Now observe that the action of matrices in Mn on quadratic forms is via

(ax2 + bxy + cy2) ·
(
d j
0 n/d

)
= (ad2)x2 + (nb+ 2dja)xy + (· · · ) y2

Inspection of the �rst two coe�cients reveals that for any δn ∈Mn(τ),

• δ(s)
n τs and δ(−s)

n τ−s are the stable roots of Heegner forms, and are hence in RM(n, C)p.
• δ(s)

n τs and δ(−s)
n τ−s are the stable roots of quadratic forms whose middle coe�cients

are respectively congruent to ns and −ns modulo p, and hence are not equivalent
under Γ0(p).

It follows from these two observations that

{w ∈ SL2(Z)δnτ : p | a(w)} = Γ0(p)δ(s)
n τs

⊔
Γ0(p)δ(−s)

n τ−s

Equation (35) can now be rewri�en as

(38)

an = −4
∑

δ
(s)
n ∈N

(s)
n

∑
γ ∈Γ0(p)/Γ0(p)[δ

(s)
n τs]

[0,∞] · (γδ(s)
n τ ′s, γδ

(s)
n τs)

−4
∑

δ
(−s)
n ∈N(−s)

n

∑
γ ∈Γ0(p)/Γ0(p)[δ

(−s)
n τ−s]

[0,∞] · (γδ(−s)
n τ ′−s, γδ

(−s)
n τ−s).

It remains to show that both of these double sums are in the required form for Lemma
1.10, in the case Γ0(N) = Γ0(p). Note that τs is the root of a Heegner form, so that

SL2(Z)[τs] = Γ0(p)[τs],

and hence for any γn, γ′n ∈ Mn (which are upper triangular) and M ∈ SL2(Z) such that
γnγ

i
τs = Mγ′n, it must be that M belongs to Γ0(p). It follows that⊔

γn∈Mn

Γ0(p) · γn =
⊔

δ
(s)
n ∈N

(s)
n

Γ0(p) · δ(s)
n · Γ0(p)[τs]

and likewise for τ−s. Since n is coprime to p, the le� hand side is equal to the union of double
cosets de�ning Tn for the congruence subgroup Γ0(p). Lemma 1.10 can now be applied for
Γ0(p) in order to rewrite (38) as

an = −2
∑

γn ∈Mn

γ ∈Γ0(p)

(
[0,∞] · [γγnξ, γγnγτsξ] + [0,∞] · [γγnξ, γγnγτ−sξ]

)
.

�is expression is equal to the topological intersection between gw and Tngψ on the modular
curve X0(p). �is shows the proposition for the Fourier coe�cients away from p.

Since the higher coe�cients of the Fourier expansion on the right hand side is obtained
from a linear function on the Hecke algebra for Γ0(p), they must agree with the Fourier
expansion of some modular form f in M2(Γ0(p)). �e di�erence of G1(ψ) and f has van-
ishing Fourier coe�cients away from p and must therefore be an oldform. Since there are
no non-trivial oldforms, the statement follows for all Fourier coe�cients. �

Remark 1.13. Even though the above argument relies on the triviality of the spaceM2(SL2(Z)),
we expect it to go through with minimal changes for more general congruence subgroups
of Γ, where this triviality fails. Our reliance on this fact merely simpli�es the argument.
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DIAGONAL RESTRICTIONS OF p-ADIC EISENSTEIN FAMILIES 19

We now complete the proof of �eorem A, by showing that, in the incoherent se�ing
when p is inert in F , the weight 2 specialisation G1(ψ) of (20) vanishes identically.

Proposition 1.14. If p is inert in F , the weight two specialisation G1(ψ) vanishes.

Proof. Let n ≥ 1, and suppose (I, ν) is an element of I(n, C) such that p - Nm(I). Let J be
the minimal ideal that is coprime to (p) and such that IJ divides (ν)d. �e map

(I, ν) 7−→ (J ′, ν ′)

de�nes an involution, and ψ(J ′) = −ψ(I). Since ν and ν ′ both have trace n, it follows from
the expression (22) that the n-th Fourier coe�cient of G1(ψ) vanishes, and the proposition
follows. �

Remark 1.15. Note that the proof of Proposition 1.14 only used the fact that ψ((p)) = 1,
and shows for example also that the series G1(ψ) vanishes when p = pp′ and ψ(p) = 1
(see § 3.6). When ψ is unrami�ed and p is inert in F , one can alternatively observe that the
operation of p-stabilisation commutes with the diagonal restriction, and therefore G1(ψ) is
the p-stabilisation of a weight two modular form on SL2(Z). �e proposition then follows
from the fact that there are no non-zero modular form of weight two and level one.

2. The incoherent Eisenstein series and its diagonal restriction

�e goal of this chapter is to prove �eorem B of the introduction, showing that the
overconvergent form G′1(ψ)ord discussed in the introduction is a generating series for the
RM values of an appropriate rigid analytic theta cocycle. Assume for the remainder of this
chapter that p is inert in F .

2.1. �e overconvergence of G′1(ψ). Arguments similar to those of Buzzard–Calegari
[BC, §8] will be used to show that the �rst derivative G′1(ψ) is an overconvergent p-adic
modular form of level 1. �e following general lemma considers the �rst derivative of an
“overconvergent family” at a point where it vanishes identically:

Lemma 2.1. Suppose G(t) is a family of overconvergent forms of weight κ(t), indexed by a
parameter t on a closed rigid analytic disk D. If G(0) = 0, and k = κ(0) ∈ Z, then(

∂

∂t
G(t)

) ∣∣∣∣
t=0

is an overconvergent modular form of weight k.

Proof. Let E be the level one modular form

(39) E =


Ep−1 if p ≥ 5
E6 if p = 3
E4 if p = 2

where Ek is the unique level one Eisenstein series of weight k with constant term 1 at the
cusp ∞. Since the weight of E is a multiple of (p − 1), and its q-expansion reduces to
1 modulo p, it must be a li� of a power of the Hasse invariant, and therefore |E − 1| <
1 on a strict neighbourhood of the ordinary locus of X0(p). In particular, by shrinking
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20 HENRI DARMON, ALICE POZZI AND JAN VONK

D if necessary, there is a power series e(t) such that Ee(t) converges for all t ∈ D to an
overconvergent form of weight κ(t)κ(0)−1.

Let A†k be the space of overconvergent modular forms of weight k, and Aord
k the space of

p-adic modular forms of weight k, so that A†k ⊂ Aord
k . �e rigid analytic functions on the

closed disk D and its boundary B = {t ∈ D : |t| = 1} are given by the Tate algebras

Cp〈t〉 =

{∑
n≥0

cnt
n : lim

n→∞
|cn| = 0

}
Cp〈t, t−1〉 =

{∑
n∈Z

cnt
n : lim

|n|→∞
|cn| = 0

}
Now consider the family

t−1 · G(t)/Ee(t).

Since B is an a�noid, this de�nes a family of overconvergent forms over B, and therefore
an element ofA†k ⊗̂Cp〈t, t−1〉. On the other hand, since G(0) = 0, its q-expansion is integral,
and therefore it is an element of Aord

k ⊗̂Cp〈t〉. Since

(40) Aord
k ⊗̂Cp〈t〉

⋂
A†k ⊗̂Cp〈t, t−1〉 = A†k ⊗̂Cp〈t〉.

it follows that it is a family of overconvergent forms of weight k. Multiplying out Ee(t),
shows that t−1G(t) is an overconvergent family over the disk D, so that in particular(

∂

∂t
G(t)

)∣∣∣∣
t=0

which is its value at t = 0, is an overconvergent modular form, of weight k. �

Lemma 2.2. �e modular form G′1(ψ) is overconvergent.

Proof. Lemma 2.1 applies to the family Gk(ψ), which is overconvergent because it is the
diagonal restriction of the (overconvergent) Hilbert Eisenstein family. It follows from this
lemma that G′1(ψ) is also overconvergent. �

Remark 2.3. For numerical computations, it is useful to quantify the rate of overconvergence
ofG′1(ψ). �e ideas above can be re�ned to show thatG′1(ψ) is r-overconvergent for any r <
p/(p+1). Since this �ner result is not needed in this paper, its proof shall merely be sketched.
�e work of Goren–Kassaei [GK, �eorem A] shows that the family Ek(1, ψ) analytically
continues to the canonical region Vcan. �e diagonal embedding on moduli stacks is given
by E/S 7→ E ⊗Z OF ' E ×S E, endowed with the natural pieces of extra structure,
and it can be checked directly that the valuations of the li�s of the partial Hasse invariants
appearing in loc. cit. all coincide with the valuation of the li� of the Hasse invariant on E.
It follows that the diagonal embedding induces an embedding Xr ↪→ Vcan for any r with
|r| < p/(p + 1), and hence the family of diagonal restrictions is r-overconvergent for any
such r. By adapting the proofs of Lemma 2.1, one shows that G′1(ψ) inherits the same rate
of overconvergence. See also Buzzard–Calegari [BC, §8].

2.2. �e Bruhat–Tits tree and the Drinfeld upper half-plane. We �rst establish some
notation related to the Drinfeld upper half plane Hp. Let v◦ be the standard vertex of the
Bruhat–Tits tree T of PGL2(Qp), whose stabiliser in Γ is SL2(Z). For each integer n ≥ 0, let
T <n and T ≤n denote the subgraph of T consisting of vertices and edges that are at distance
< n and ≤ n from v◦, respectively. Let H<n

p ⊂ H≤np ⊂ Hp denote the inverse images of
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DIAGONAL RESTRICTIONS OF p-ADIC EISENSTEIN FAMILIES 21

T <n and T ≤n under the reduction map. �e collection ofH<n
p andH≤np gives an admissible

covering of Hp by wide open subsets and a�noid subsets respectively, which are stable
under the action of SL2(Z).

A pair (x, y) ∈ O2
Cp is said to be primitive if gcd(x, y) = 1. Any τ ∈ P1(Cp) can be

wri�en in projective coordinates as τ = (τ1 : τ2), where (τ1, τ2) ∈ O2
Cp is primitive. With

this convention, the setsH<n
p andH≤np can be described as

(41)
H<n
p = {(τ1 : τ2) such that ordp(aτ1 − bτ2) < n, for all primitive (a, b) ∈ Z2

p},
H≤np = {(τ1 : τ2) such that ordp(aτ1 − bτ2) ≤ n, for all primitive (a, b) ∈ Z2

p}.

2.3. �e winding cocycle. We now de�ne the winding cocycle, which gives a class

Jw ∈ H1(Γ,A×/C×p ),

appearing in �eorem B. �e cocycle Jw is obtained by taking suitable in�nite products of
cross-ratios. Recall that for any four points p1, p2, p3, p4 in P1(Cp), using the usual conven-
tion when some of the points are∞, the cross-ratio is de�ned by

(42) (p1, p2; p3, p4) :=
p3 − p1

p3 − p2

· p4 − p2

p4 − p1

,

and is invariant under the action of GL2(Qp) on all four points simultaneously.
�e de�nition of Jw depends on a choice of admissible base points ξ = (ξp, ξ∞) ∈ Hp×H,

whose class inH1(Γ,A×/C×p ) will turn out to be independent of this choice (cf. Lemma 2.6).
�e pair ξ = (ξp, ξ∞) is said to be admissible if:

• ξ∞ ∈ H∞ does not lie on any geodesic in the Γ-orbit of [0,∞],
• ξp ∈ Hp lies in the a�noidH≤0

p of (41).

Since the non-admissible points have ξ∞ contained in a countable union of sets of measure
zero, the existence of admissible base points is apparent.

Remark 2.4. For computational purposes, it may be desirable to dispose of explicit choices
for ξ∞. For instance, let ξ be the root of a primitive integral binary quadratic form [a, b, c]
of discriminant ∆ := b2 − 4ac < 0 for which

(1) the prime p is inert in the imaginary quadratic order of discriminant ∆,
(2) the class of [a, b, c] is of order > 2 in the class group a�ached to ∆.

Le�ing ξ∞ ∈ H∞ and ξp ∈ Hp be the complex and p-adic root of the same binary quadratic
form obtained by choosing embeddings of Q(ξ) in Cp and C respectively, it can be shown
that the pair (ξp, ξ∞) is admissible. Since no use will be made of this fact in this paper, its
proof is omi�ed.

�e determinant of a pair (r, s) of distinct elements of P1(Q) is ad − bc, where r = a/b
and s = c/d are expressions for r and s as fractions in lowest terms, adopting the usual
convention that∞ = 1/0. It is an integer that is well-de�ned up to sign, hence shall always
be normalised to be positive. If (r, s) and (r′, s′) are Γ-equivalent, then their determinants
equal up to multiplication by a power of p. Let Σ denote the Γ-orbit of the pair (0,∞), and
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22 HENRI DARMON, ALICE POZZI AND JAN VONK

let Σ(m) ⊂ Σ be the subset of pairs (r, s) with ordp(det(r, s)) = m. It is not hard to see that
Σ(m) is non-empty for all m ≥ 0 and that

(43) Σ =
∞⋃
m=0

Σ(m).

Choose an admissible base point ξ = (ξp, ξ∞), and de�ne

(44) Jξw(γ)(z) =
∏

(r,s)∈Σ

(r, s; ξp, z)
[r,s] · [ξ∞,γξ∞] ,

where the exponent [r, s] · [ξ∞, γξ∞] denotes the topological intersection of these two hy-
perbolic geodesic segments on the Poincaré upper half-plane.

Proposition 2.5. For each γ ∈ Γ, the in�nite product de�ning Jξw(γ) converges to a rigid
analytic function onHp and it satis�es a cocycle condition modulo scalars, namely

(45) Jξw(γ1γ2) = Jξw(γ1)× γ1 · Jξw(γ2) (mod C×p ).

Proof. Observe �rst that Γ◦ := SL2(Z) acts on the set Σ(m) by Möbius transformations, and
that there are �nitely many orbits for this action:

Σ(m) = Γ◦ · (r1, s1) t Γ◦ · (r2, s2) t · · · t Γ◦ · (r`,m`).

But the cardinality of the set
{α ∈ Γ◦ such that [αr, αs] · [ξ∞, γξ∞] = ±1}

is equal to the number of intersection points between the images of the geodesics [r, s] and
[ξ∞, γξ∞] in the quotient SL2(Z)\H∞. Since this number is �nite, it follows that the product

Jξw,m(γ) :=
∏

(r,s)∈Σ(m)

(r, s; ξp, z)
[r,s] · [ξ∞,γξ∞]

has �nitely many factors 6= 1, so it is a rational function of z. To prove convergence of

Jξw(γ)(z) :=
∞∏
m=0

Jξw,m(γ)(z)

as a rigid meromorphic function of z ∈ H≤np it su�ces to show that the restriction of Jξw,m(γ)

to H≤np converges uniformly to 1 as m −→ ∞. To see this, write r = a/b and s = c/d in
lowest terms as above, let z := (z0 : z1) and ξp := (ξ0 : ξ1) be primitive homogenous
coordinates in OCp for z and ξp, and note that

(r, s; ξp, z) = 1− (r, ξp; s, z)

= 1− (ad− bc)
(ξ1c− ξ0d)

· (ξ1z0 − ξ0z1)

(bz0 − az1)

It follows from the de�nitions ofH≤0
p andH≤np in (41) that

| (r, s; ξp, z)− 1| ≤ pn−m

when z ∈ H≤np and (r, s) ∈ Σ(m). �erefore, the in�nite product de�ning Jξw(z) converges
absolutely and uniformly on a�noid subsets of Hp. �e cocycle condition for Jξw modulo
scalars now follows from a direct calculation. �
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�e following proposition asserts that the choice of admissible base point ξ that went into
the de�nition of this cocycle does not a�ect its class in cohomology.

Proposition 2.6. �e class of Jξw inH1(Γ,A×/C×p ), denoted Jw, does not depend on the choice
of admissible base point ξ that was made to de�ne it.

Proof. �e requirement that ξp ∈ H≤0
p implies that

(r, s; ξp, z) = (r, s; ξ′p, z) (mod O×Cp)

for any other choice of ξ′p ∈ H≤0
p , and hence changing ξp to ξ′p does not a�ect the cocycle in

Z1(Γ,A×/C×p ). As for replacing ξ∞ by ξ′∞, a direct calculation reveals that the associated
cocycles di�er by the coboundary dF , where F ∈ A× is de�ned by

F (z) =
∏

(r,s)∈Σ

(
r, s; ξ′p, z

)[r,s]·[ξ∞,ξ′∞]
.

�

2.4. Hecke operators on rigid cocycles. Our goal is to investigate generating series con-
structed from the sequence TnJw for all n ≥ 1 of Hecke translates of the winding cocycle
Jw constructed above. We now brie�y recall the de�nition of the Hecke operators Tn.

�ese Hecke operators are de�ned in terms of relevant coset representatives. For all
n ≥ 1, choose a �nite set Γn such that⋃

α∈M2(Z)
det(α)=n

ΓαΓ =
⊔

γn∈Γn

Γ · γn.

For p - n, one may choose the usual set of representatives Γn = Mn de�ned in (26). On the
other hand, when n = pm we may take

Γpm =

{(
pm 0
0 1

)}
.

Following Shimura [Shi, § 8.3] we describe the action of the Hecke operators Tn onH1(Γ, A)
for any multiplicative Γ-module A. Let γ ∈ Γ, then for any γn ∈ Γn,

γnγ = γ′γ′n, for some γ′ ∈ Γ, γ′n ∈ Γn.

Suppose J is in Z1(Γ, A), then one de�nes

(TnJ)(γ) =
∏
γn∈Γn

γιn · J(γ′)

where the involution (−)ι is de�ned by αι = det(α) · α−1. It can be checked that with
these de�nitions, TnJ de�nes an element in Z1(Γ, A), whose equivalence class in group
cohomology does not depend on the choice of coset representatives Γn.

�ere are also two involutions W∞ and Wp determined by the matrices(
−1 0
0 1

) (
p 0
0 1

)
which lie in the normaliser of Γ in GL2(Q). �e action of these involutions on the cohomol-
ogy class of the winding cocycle are easily described, as in the following lemma.
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Lemma 2.7. �e cohomology class de�ned by the winding cocycle Jw has eigenvalue −1 for
the involutionW∞, and eigenvalue +1 forWp.

Proof. �e action of W∞ on the winding cocycle Jξw with respect to some choice of base
point ξ = (ξ∞, ξp) is de�ned by

(W∞J
ξ
w)(γ) =

(
1 0
0 −1

)
· Jξw(γι) =

∏
(r,s)∈Σ

(r, s; ξp,−z)[r,s]·[ξ∞,γιξ∞](46)

=
∏

(r,s)∈Σ

(−r,−s;−ξp, z)−[−r,−s]·[−ξ∞,−γιξ∞](47)

=
∏

(r,s)∈Σ

(−r,−s;−ξp, z)−[−r,−s]·[−ξ∞,γ·(−ξ∞)](48)

�e second equality is justi�ed by the fact that the map a 7→ −a de�nes an orientation
reversing di�eomorphism from the upper half plane to itself, causing the sign of the in-
tersection in the exponent to change. To obtain our conclusion, note that it is clear that
(r, s) 7→ (−r,−s) de�nes a bijection on Σ, so we obtain the equality

W∞J
ξ
w = (Jξ

′

w )−1

where ξ′ = (−ξ∞,−ξp) is a di�erent choice of base point. By Proposition 2.6 the cohomol-
ogy class of the winding cocycle is independent of the choice of base point ξ, so that the
result follows. �e statement about Wp is proved similarly. �

2.5. Li�ing the winding cocycle. As a preamble to the explicit determination of the RM
values of the cocycles TnJw, we �rst discuss how to li� their restrictions to SL2(Z). Consider
the natural diagram

H1(Γ,A×/C×p )

res
��

H1(SL2(Z),C×p ) // H1(SL2(Z),A×) // H1(SL2(Z),A×/C×p ) // H2(SL2(Z),C×p )

where the vertical arrow is restriction to the natural subgroup Γ◦ := SL2(Z) of Γ, which is
the stabiliser of the standard vertex v◦ in the Bruhat–Tits tree. Whereas the cocycles TnJw
need not admit a li� to H1(Γ,A×), their restrictions to Γ◦ do admit a li�

(TnJw)◦ ∈ H1(SL2(Z),A×),

by the triviality ofH2(SL2(Z),C×p ). SinceH1(SL2(Z),C×p ) is a �nite group of order at most
12, this li� is unique up to torsion. We start by giving an explicit description of (TnJw)◦.

For each pair (r, s) de�ne functions tr,s(z) by expressing r = a/b and s = c/d as fractions
in lowest terms, in such a way that ad− bc > 0, and se�ing

(49) tr,s(z) =
bz − a
dz − c

.

�e function tr,s(z) depends only on the pair (r, s) and its divisor is equal to (r)−(s). Hence
(50) tr,s(z)/tr,s(ξp) = (r, s; ξp, z)

Observe that the constant tr,s(ξp) of proportionality lies in O×Cp , since ξp lies inH≤0
p .
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Lemma 2.8. For all γ ∈ Mat2×2(Z) with det(γ) > 0 and all (r, s) ∈ P1(Q)2,

tγr,γs(γz) =
d2

d1

· tr,s(z),

for some positive divisors d1, d2 of det(γ). In particular, tγr,γs(γz) = tr,s(z) when γ ∈ SL2(Z).

Proof. Let r = a/b in lowest terms, so that au+ bt = 1 for some u, v ∈ Z. We have

(51) γr =
Aa+Bb

Ca+Db
, where γ =

(
A B
C D

)
and furthermore

gcd(Aa+Bb,Ca+Db) | (Aa+Bb)(Dt− Cu) + (Ca+Db)(Au−Bt)
= AD −BC = det(γ).

�is implies that up to some divisor ±d1 of det(γ), the fraction in (51) is in lowest terms,
and analogously we �nd a divisor ±d2 for γs. Furthermore,

(Aa+Bb)(Cc+Dd)− (Ca+Db)(Ac+Bd) = (AD −BC)(ad− bc) > 0

so that the quantity d2/d1 is positive. �

We now give an explicit description of the li� (TnJw)◦, where Tn is the Hecke operator
de�ned in § 2.4. Since (TnJw)◦ does not depend on the choice of ξp, we will simplify our
notation and simply write ξ for ξ∞.

Proposition 2.9. For all γ ∈ SL2(Z), the in�nite product

(TnJw)◦(γ) :=
∞∏
m=0

(TnJw)◦m(γ),

where the factors are de�ned by

(TnJw)◦m(γ) :=
∏
γn∈Γn

∏
(r,s)∈Σ(m)

(tr,s(γnz))[r,s] · [ξ, γnγ(γ′n)−1ξ]

converges to a rigid analytic function onHp, up to 12-th roots of unity, and de�nes an element
of H1(SL2(Z),A×/µ12), which is the unique li� of the restriction of TnJw to Γ◦ = SL2(Z).

Proof. For integers m > N + ordp(n) ≥ 0, consider the restriction of (TnJw)◦m(γ) to the
a�noidH≤Np . Suppose (r, s) ∈ Σ(m) with r = a/b and s = c/d in lowest terms. �e fact that
ordp(ad− bc) = m implies that the primitive vectors (a, b) and (c, d) in Z2 are proportional
to each other modulo pm. Hence there exists v ∈ Z×p for which

(a, b) = v · (c, d) + pm(e, f)

for some (e, f) ∈ Z2. It follows that

tr,s(z) = v + pm
fz − e
dz − c

.

If γn ∈Mn and z ∈ H≤Np , then γnz ∈ H≤N
′

p with N ′ = N + ordp(n). �e description of the
la�er set given in (41) shows that

fγnz − e
dγnz − c

∈ p−N
′OCp ,
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26 HENRI DARMON, ALICE POZZI AND JAN VONK

so that (TnJw)◦m(γ) is constant modulo pm−N ′ , and its reduction de�nes a cocycle of SL2(Z)
valued in the trivial module (Z/pm−N

′
Z)×. Since the abelianisation of SL2(Z) is of order

12, it follows that

(TnJw)◦m(γ)(z)|H≤Np ∈ µ12 (mod pm−N
′
).

�e convergence of the in�nite product (up to 12 th roots of unity) follows. �e rest of the
statement follows by de�nition of the Hecke action on cohomology. �

2.6. RM values of the winding cocycle. �e main interest in the winding cocycle and
its Hecke translates TnJw lies in their RM values, which we now investigate. Recall that if
τ ∈ Hp is an RM point, then we de�ned

TnJw[τ ] := (TnJw)◦(γτ )(τ) ∈ Cp ∪ {∞}.

We will now obtain an explicit formula for this quantity, using Proposition 2.9.
First, we �x some notation. Suppose n is coprime to p, and choose Mn(τ) ⊆ Mn as in

(26). Note that the condition (n, p) = 1 implies that⊔
γn∈Mn

Γ · γn =
⊔

δn∈Mn(τ)

Γ · δn · Γ[τ ].(52)

We also use the notation Γ̃ := GL+
2 (Z[1/p]) for the group of invertible matrices with entries

in Z[1/p] and positive determinant, and let D and D̃ be the subgroups of diagonal matrices
in Γ and Γ̃ respectively. We have the following explicit formula for TnJw[τ ]:

�eorem 2.10. For all τ ∈ HD
p , and for all n ≥ 1 such that (n, p) = 1,

(53) TnJw[τ ] =
∏

δn∈Mn(τ)

∏
w∈Γ̃δnτ
vp(w)=0

w[0,∞]·(w′,w).

Proof. We start by choosing a set of coset representatives Γn for the Hecke operator Tn that
is more convenient for our purposes than the standard choice Mn: For every δn in Mn(τ),
there is an integer f such that the stabiliser subgroup Γ[δnτ ] is generated modulo torsion
by the matrix δnγfτ δ−1

n . Now choose

(54) Γn =
⊔

δn∈Mn(τ)

{δn, δnγτ , . . . , δnγf−1
τ },

which is a set of coset representatives for Tn. �e Hecke action is independent of the choice
of representatives, and with this choice, we �nd{

γnγτ (γ
′
n)−1 = γδnτ if γn = δn ∈Mn(τ)

γnγτ (γ
′
n)−1 = 1 otherwise,

where we recall that γδnτ = δnγ
f
τ δ
−1
n is the automorph of the RM point δnτ . It now follows

from Proposition 2.9 that

TnJw[τ ] =
∏

δn∈Mn(τ)

∏
γ∈Γ̃/D̃

tγ0,γ∞(δnτ)[γ0,γ∞]·[ξ,γδnτ ξ]
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where we used the fact that the map γ 7→ (γ0, γ∞) gives a natural identi�cation

Γ̃/D̃ =
∞⋃
m=0

Σ(m),

where as before Σ(m) ⊂ Σ is the subset of pairs (r, s) with ordp(det(r, s)) = m.
Since (n, p) = 1, the stabiliser subgroup Γ[δnτ ] is contained in SL2(Z), and it follows

from Lemma 2.8 that the quantity tγ0,γ∞(δnτ) only depends on the double coset of γ in
γZ
δnτ
\Γ̃/D̃. As a consequence, a similar unfolding argument as in Lemma 1.10 implies that

TnJw[τ ] =
∏

δn∈Mn(τ)

∏
γ ∈Γ[δnτ ]\Γ̃/D̃

tγ0,γ∞(δnτ)
∑
j∈Z[γ0,γ∞]·[γjδnτ ξ,γ

j+1
δnτ

ξ]

=
∏

δn∈Mn(τ)

∏
γ ∈Γ[δnτ ]\Γ̃/D̃

tγ0,γ∞(δnτ)[γ0,γ∞]·(δnτ ′,δnτ)

Consider Γ̃prim ⊂ Γ̃, consisting of the elements whose two columns are primitive vectors
in Z2. Clearly, each coset in Γ̃/D̃ has a unique primitive representative, and hence the
natural inclusion Γ̃prim/± 1 ⊂ Γ̃/D̃ is a bijection. Furthermore, if γ is primitive, then

tγ0,γ∞(δnτ) = γ−1δnτ.

Now observe the equality of sets
{γ−1δnτ : γ ∈ Γ̃prim/± 1} = {w ∈ Γ̃δnτ : vp(w) = 0},

which allows us to rewrite the above expression as

TnJw[τ ] =
∏

δn∈Mn(τ)

∏
γ ∈Γ[δnτ ]\Γ̃prim

(γ−1δnτ)[0,∞]·(γ−1δnτ ′,γ−1δnτ)(55)

=
∏

δn∈Mn(τ)

∏
w∈ Γ̃δnτ
vp(w) = 0

w[0,∞]·(w′,w).(56)

�

2.7. Diagonal restrictions: the incoherent case. Finally, we return to the incoherent
case of the diagonal restriction of the p-adic family of Hilbert Eisenstein series. Recall that
we showed that when p is inert in F , the diagonal restriction G1(ψ) vanishes identically,
and the �rst order derivative G′1(ψ) is an overconvergent form of weight 2 and tame level
1. We are now ready to prove �eorem B from the introduction:

�eorem 2.11. For any odd function ψ on Cl(D),

(57) G′1(ψ)ord = L′p(F, ψ, 0)− 2
∞∑
n=1

logp
(
Nm((TnJw)[∆ψ])

)
qn.

Proof. Note that all Fourier coe�cients are linear in the character ψ, so it su�ces to prove
this for the odd indicator function of the class C a�ached to an RM point τ , which takes
values 1 and −1 on C and C∗, and 0 elsewhere. Let τ be an RM point in RM(C).

Suppose �rst that n is not divisible by p. De�ne the map
Γ̃δnτ −→ Cp : w 7−→ logp (a(w))
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28 HENRI DARMON, ALICE POZZI AND JAN VONK

sending an RM point w to the p-adic logarithm of the leading coe�cient of any quadratic
form whose prime-to-p discriminant is n2D, and whose stable root is w. �e integer a(w) is
only de�ned up to powers of p, but its logarithm is well-de�ned. By Lemma 1.8 and �eorem
2.10, we obtain the identities

logp
(
Nm((TnJw)[∆ψ])

)
=

∑
δn∈Mn(τ)

∑
w∈Γ̃δnτ
vp(w)=0

[0,∞] · (w′, w) · logp (Nm(w))(58)

= −2
∑

δn∈Mn(τ)

∑
w∈Γ̃δnτ
vp(w)=0

[0,∞] · (w′, w) · logp (a(w))(59)

where the last equality is justi�ed by the obvious relations

(60) [0,∞] · (w′, w) = −[0,∞] · (−1/w′,−1/w)
logp (Nm(w)) = − logp (a(w)) + logp (a(−1/w)) .

�e next step is to rewrite the inner sum of (59). First observe that its index set is

lim
m→∞

Xm(δn), where Xm(δn) := {w ∈ Γ̃δnτ : vp(w) = 0, vp(disc(w)) ≤ 2m}.

For any w ∈ Xm(δn) we let a, b, c be the the unique integers such that

• the stable root of ax2 + bx+ c = 0 is w,
• b2 − 4ac = n2p2m−2kD, where vp(disc(w)) = 2m− 2k,

De�ne w̃ = pkw, then w̃ is the stable root of the equation ax2 + bpkx + cp2k = 0. Since
vp(a) = 0 there exists a matrix M ∈ M2(Z) of determinant p2m such that w̃ = Mδnτ . �is
means there is a unique δpm ∈Mpm(τ) such that M belongs to the double coset

SL2(Z) · δpm · SL2(Z)[δnτ ].

We claim that the map w 7−→ (w̃, δpn) de�nes a bijection

(61) Xm(δn) ←→ RM(pm, δnτ) \ RM(pm, δnτ)p.

To prove this claim, note that the image is contained in RM(pm, δnτ), and p - a(w̃) = a(w).
To see that it is a bijection, note that the inverse map is given by

(w̃, δpm) 7→ w̃ · p−vp(w̃).

In conclusion, (61) shows that

2 logp
(
Nm((TnJw)[∆ψ])

)
= −4 lim

m→∞

∑
δn∈Mn(τ)

∑
w∈Xm(δn)

[0,∞] · (w′, w) · logp a(w)

= −4 lim
m→∞

∑
(w̃,δnpm )∈RM(npm,C)\RM(npm,C)p

[0,∞] · (w̃′, w̃) · logp a(w̃)

where the inner sum is the npm-th Fourier coe�cient of G′1(ψ) by (22) and Lemma 1.9.
It now follows that for all n that are prime to p, the nth Fourier coe�cient of G′1(ψ)ord

agrees with the corresponding coe�cient on the right-hand side of (57). Because the Hecke
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action on the space H1(Γ,A×/C×p ) of analytic theta-cocycles factors through the Hecke
algebra T2(p) ⊂ End(M2(Γ0(p)) acting faithfully on M2(Γ0(p)), the formal q-series

Gw := L? − 2
∞∑
n=1

logp
(
Nm((TnJw)[∆ψ])

)
qn

is a classical weight two modular form on Γ0(p), for a uniquely determined constant L? ∈
Cp. �erefore the di�erence G′1(ψ)ord−Gw is an oldform in M2(Γ0(p)), and therefore zero.
It follows that L? = L′p(F, ψ, 0), and hence that both sides of (57) coincide. �

3. The twisted triple product p-adic L-function

We now turn to the proof of �eorem C of the introduction, which rests on a careful
analysis of the winding element gw and winding cocycle Jw, and on the decomposition of
the la�er as a linear combination of the Dedekind–Rademacher cocycle JDR and the elliptic
modular cocycles J±f .

3.1. �e Schneider–Teitelbaum li�. �e logarithmic derivative map embeds the multi-
plicative group H1(Γ,A×/C×p ) into the Cp-vector space H1(Γ,A2), where A2 denotes the
rigid analytic functions onHp equipped with the “weight two action” of Γ. Let

(62) U := {z ∈ Cp with 1 < |z| < p} ⊂ Hp

denote the standard annulus, whose stabiliser in Γ is equal to Γ0(p). �e p-adic annular
residue ω 7→ resU(ω), as described for instance in [Sch, §II] or [Te], determines a Γ0(p)-
equivariant map

resU : A2 −→ Cp,

with Γ0(p) acting trivially on the target.

�eorem 3.1. �e linear map

resU : H1(Γ,A2) −→ H1(Γ0(p),Cp)

induced by the p-adic annular residue is a surjection of Cp-vector spaces. Its kernel is one-
dimensional and generated by the cocycle dlogJuniv.

�e proof of this assertion is given in [DV2, § 3]. It rests on the construction of an explicit
inverse to the residue map, referred to as the Schneider–Teitelbaum li�:

ST : H1(Γ0(p),Cp) −→ H1(Γ,A2)/Cp · dlogJuniv.

�ere is also a multiplicative variant, the so-called multiplicative Schneider–Teitelbaum li�

(63) ST× : H1(Γ0(p),Z) −→ H1(Γ,A×/C×p )/JZ
univ

of [DV2, § 3], which �ts into the commutative square

H1(Γ0(p),Z)
ST× //

� _

��

H1(Γ,A×/C×p )/JZ
univ

dlog

��
H1(Γ0(p),Cp)

ST // H1(Γ,A2)/Cp · dlogJuniv.
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�e multiplicative Schneider–Teitelbaum li� leads to the construction of various explicit
rigid analytic theta-cocycles, as described in the introduction and in [DV2, § 3], namely the
Dedekind–Rademacher cocycle JDR := ST×(ϕDR) a�ached to the Dedekind–Rademacher
homomorphism, and the elliptic modular cocycles J±f := ST×(ϕ±f ) a�ached to the real and
imaginary periods of weight two cusp forms on Γ0(p).

Remark 3.2. Although the theta-cocycles JDR and J±f are only de�ned up to multiples of
Juniv, the RM values of the la�er are given by
(64) Juniv[τ ] := ετ ,

where ετ is the fundamental unit of the order a�ached to τ (cf. [DV2, §3]). Since this
quantity depends only on the discriminant of τ rather than on τ itself, it follows that
(65) Juniv[∆ψ] = 1

for any odd function ψ, and hence that the RM values JDR[∆ψ] and J±f [∆ψ] are well-de�ned.

3.2. �ewinding element and the winding cocycle. Recall that the winding element gw
is the class of the geodesic path from 0 to∞ in the homology ofX0(p) relative to the cusps,
and de�ne
(66) ϕw : Γ0(p) −→ Z, γ 7−→ 〈gw, γ〉,
where 〈 , 〉 denotes the intersection pairing of (6)

H1(X0(p); {0,∞},Z) × H1(Y0(p),Z) −→ Z.

Proposition 3.3. �e winding cocycle Jw is the image of the homomorphism ϕw under the
multiplicative Schneider–Teitelbaum li� of (63):

Jw = L×ST(2ϕw).

Proof. Recall the standard annulus U of (62) having Γ0(p) as its stabiliser in Γ. �e inverse
of the Schneider–Teitelbaum li� takes a cocycle J ∈ H1(Γ,A×/C×p ) to the homomorphism

φJ : Γ0(p) −→ Z, φJ(γ) := resU(dlog J(γ)),

where resU is the p-adic annular residue a�ached toU . Consider the in�nite product expres-
sion of Proposition 2.9 for J◦w and observe that the terms dlog J◦w,m(γ) form ≥ 1 contribute
nothing to the annular residue at U : indeed, two cusps r, s for which det(r, s) = pm with
m ≥ 1 necessarily belong to the same connected a�noid component of the complement of
U , and hence resU(dlog tr,s(z)) = 0 for such pairs. On the other hand,

resU(dlog tr,s(z)) =

{
1 if r /∈ Zp, s ∈ Zp,
−1 if r ∈ Zp, s /∈ Zp.

Hence, any pair (r, s) for which the residue of dlog tr,s(z) is equal to 1 is of the form
(α0, α∞). It follows that

resU(dlog Jr,s(γ)) =
∑

α∈Γ0(p)

(+1)[α0, α∞] · [ξ, γξ] +
∑

α∈Γ0(p)

(−1)[α∞, α0] · [ξ, γξ]

= 2
∑

α∈Γ0(p)

[α0, α∞] · [ξ, γξ].
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�is last expression equals twice the intersection product of the relative homology class gw
with the class of γ in H1(Y0(p),Z). �e proposition follows. �

3.3. Spectral expansion of thewinding element. �e following lemma describes the de-
composition of the cohomology class ϕw relative to the Q̄- basis (ϕDR, ϕ

±
f ) forH1(Γ0(p), Q̄)

described in (19) and (17).

Lemma 3.4. �e homomorphism ϕw is equal to

ϕw =
1

p− 1
· ϕDR +

∑
f

Lalg(f, 1) · ϕ−f ,

where the sum runs over a basis of normalised eigenforms for S2(Γ0(p)),

Lalg(f, 1) :=
1

Ω+
f

∫ ∞
0

ω+
f ∈ Kf

is the “algebraic part” of the special value L(f, 1), and

ϕ−f (γ) :=
1

Ω−f

∫ γz0

z0

ω−f ∈ Of

is the minus class inH1(Γ0(p),Of ) a�ached to f , normalised by the periods Ω±f chosen in (17).

Proof. Recall the canonical identi�cations

H1(Y0(p); {0,∞},C) −→ H1
c (Y0(p))∨ −→ H1

dR(Y0(p)),

where H1
c denotes the deRham cohomology with compact support and the superscript ∨

denotes the C-linear dual. �e �rst identi�cation arises from the integration pairing and
the second from Poincaré duality. Let Gw be the class in H1

dR(Y0(p)) corresponding to ϕw
under this identi�cation, which is characterised by the equivalent conditions∫

γ

Gw = 〈γ, gw〉, for all γ ∈ H1(Y0(p),Z),(67)

〈Gw, ω〉 =

∫ ∞
0

ω, for all ω ∈ H1
c (Y0(p)).(68)

Let α0 and α±f ∈ C be the coordinates of Gw relative to the basis of H1
dR(Y0(p)) consisting

of ωEis and of the classes ω+
f and ω−f as f ranges over the normalised weight two eigenforms

on Γ0(p):

(69) Gw = α0ωEis +
∑
f

(λ+
f ω

+
f + λ−f ω

−
f ).

Let γ ∈ H1(Y0(p),Z) be the class a�ached to the standard (upper-triangular) parabolic
element of Γ0(p), which is orthogonal to the cuspidal classes ω+

f and ω−f . Applying (67) to
this class and substituting for the expansion (69) of Gw, one obtains

(70) 2πi(p− 1) · α0 = 1 and hence α0 =
1

2πi(p− 1)
.
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�e class Gw − α0ωEis belongs to H1
dR(X0(p)) and can therefore be paired against any el-

ement of the de Rham cohomology of X0(p). Applying (68) with ω = ω−f and substituting
for (69) once again, yields

(71) − Ωfα
+
f =

∫ ∞
0

ω−f = 0, and hence α+
f = 0.

�e same calculation with ω = ω+
f reveals that

(72) Ωfα
−
f =

∫ ∞
0

ω+
f , and hence α−f = (Ωf )

−1

∫ ∞
0

ω+
f = Lalg(f, 1)(Ω−f )−1.

We have thus obtained

(73) Gw =
1

2πi(p− 1)
· ωEis +

∑
f

Lalg(f, 1) · (Ω−f )−1ω−f ,

where the sum is taken over a basis of eigenforms for f . �e lemma now follows from (67)
and the de�nitions in (19) and (17). �

3.4. Spectral decomposition: the coherent case. We now turn to the proof of Part 1 of
�eorem C of the introduction, concerning the expansion of the modular form G1(ψ) as a
linear combination of eigenforms in M2(Γ0(p)).

�eorem 3.5. �e modular form G1(ψ) is equal to

G1(ψ) = λ0 · E(p)
2 +

∑
f

λf · f,

where the sum runs over the basis of normalised eigenforms f in S2(Γ0(p)), and

λ0 =
−2

p− 1
· ϕDR(gψ), λf = −2Lalg(f, 1) · ϕ−f (gψ).

Proof. By �eorem 1.12, the generating series G1(ψ) is equal to

G1(ψ) = Lp(F, ψ, 0)− 2
∞∑
n=1

ϕw(Tngψ)qn.

Lemma 3.4 implies the n-th Fourier coe�cient in this expression is equal to

ϕw(Tngψ) =
1

p− 1
· ϕDR(Tngψ) +

∑
f

Lalg(f, 1) · ϕ−f (Tngψ)

=
1

p− 1
· ϕDR(gψ)an(E

(p)
2 ) +

∑
f

Lalg(f, 1)ϕ−f (gψ)an(f).

�e theorem follows by substituting this into the q-expansion formula for G1(ψ). �

Remark: �e coe�cient λf in the above decomposition can be understood as the special
value of a twisted triple product L-function a�ached to f and the family of Hilbert modular
Eisenstein series Ek(1, ψ).
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As an illustration of this result, consider the unique unrami�ed odd character ψ of dis-
criminant 12, which is the odd genus character a�ached to the factorisation 12 = (−3)(−4).
Let p = 23, which is split in Q(

√
12), then we compute

G1(ψ) = a0 + 8q3 + 8q4 + 8q6 + 16q8 + 8q9 + 16q10 + . . .

As before, we express G1(ψ) in a basis of normalised eigenforms, and obtain

G1(ψ) =
8

11
· E(23)

2 − 8

11

(
7β − 4

5
· f1 +

7β′ − 4

5
· f2

)
where β = (1 +

√
5)/2 is the golden ratio, and f1 = q − βq2 + . . . and its conjugate f2

are the newforms of weight 2 and level 23. In light of the above result, we note that the
algebraic part of the L-value of the modular surface a�ached to the pair {f1, f2} is equal to
1/11, which is consistent with the fact that the trace of (7β − 4)/5 is −3.

3.5. Spectral decomposition: the incoherent case. �e following direct corollary of
Lemma 3.4 expresses the theta-cocycle Jw as a linear combination of Hecke eigenvectors.

Lemma 3.6. �e rigid analytic theta cocycle Jw satis�es

Jw =
2

p− 1
· JDR +

∑
f

2Lalg(f, 1) · J−f (mod JZ
univ),

where the sum runs over a basis of normalised eigenforms for S2(Γ0(p)), and additive notation
is used to denote the group operation in H1(Γ,A×/C×p )⊗Kf .

Proof. �is follows by applying the Schneider–Teitelbaum li� to Lemma 3.4. �

We are now ready to prove part (2) of �eorem C.

�eorem 3.7. �e modular form G′1(ψ)ord is equal to

G′1(ψ)ord = λ′0 · E
(p)
2 +

∑
f

λ′f · f,

where the coe�cients λ′0 and λ
′
f are given by

λ′0 =
−4

p− 1
· logp

(
Nm(JDR[∆ψ])

)
, λ′f = −4Lalg(f, 1) · logp

(
Nm(J−f [∆ψ])

)
.

Proof. By �eorem 2.11, the generating series G′1(ψ)ord is equal to

G′1(ψ)ord = L′p(F, ψ
−
τ , 0)− 2

∞∑
n=1

logp(Nm((TnJw)[∆ψ]))qn.

By Lemma 3.6, the n-th Fourier coe�cient An := −2 logp(Nm((TnJw)[∆ψ])) in this q-
expansion is equal to

An =
−4

p− 1
· logp(Nm((TnJDR)[∆ψ])) − 4

∑
f

Lalg(f, 1) · logp(Nm((TnJ
−
f )[∆ψ]))

=
−4an(E

(p)
2 )

p− 1
· logp(Nm(JDR[∆ψ])) − 4

∑
f

Lalg(f, 1) · logp(Nm(J−f [∆ψ]))an(f),
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where the sum runs over a basis of normalised eigenforms for S2(Γ0(p)). �e result follows
in exactly the same way as in the proof of �eorem 3.5. �

Remark 3.8. Recall from [DV2, § 3] that

JDR[∆ψ]
?
∈ (OH [1/p])× ⊗ Q

is conjectured to be the Gross–Stark unit a�ached to the RM divisor ∆ψ. If f is a normalised
eigenform on Γ0(p) having integer Fourier coe�cients, so that it corresponds to a modular
elliptic curveEf via the Eichler–Shimura construction, [DV2, § 3] likewise predicts that the
Stark–Heegner points

J+
f [∆ψ]

?
∈ Ef (H), J−f [∆ψ]

?
∈ Ef (H)

are global points on Ef . �e global point J+
f [∆ψ] is conjecturally �xed by complex conju-

gation, i.e., is de�ned over the class �eld in the wide sense, while J−f [∆ψ] is expected to be
in the minus eigenspace for complex conjugation. �e coe�cient λf in the above decompo-
sition can be understood as the special value of a twisted triple product L-function a�ached
to f and the family of Hilbert modular Eisenstein series Ek(1, ψ). It is notable that these
coe�cients involve the logarithms of the Stark–Heegner points a�ached to odd modular
symbols, which are conjecturally in the minus part for complex conjugation.

3.6. Examples. Using Lemma 1.9, we may e�ciently compute the diagonal restrictions
G1(ψ) and the �rst derivative G′1(ψ). �is will be described in a more general se�ing in
[LV]. �e algorithms of Lauder [La] can then be used to compute the ordinary projection
G′1(ψ)ord. Expressing these classical modular forms of weight two and level p as linear
combinations of eigenforms leads to the following numerical illustrations of �eorem C.
Example 1. When p = 17, the space M2(Γ0(p)) is two-dimensional and is spanned by the
Eisenstein series E(17)

2 and the normalised newform f a�ached to the elliptic curve

E : y2 + xy + y = x3 − x2 − x− 14

of rank 0 over Q, whose associated central L-value is Lalg(f, 1) = 1/4.
Table B presents the coe�cients of the spectral decompositions of G1(ψ) and G′1(ψ)ord

for all genus characters associated to a factorisation D = D1 ·D2 with D < 100, where the
labelling is chosen such that

(
D1

17

)
= −

(
D2

17

)
= 1 in the incoherent case. �e coe�cients λ0

and λf are rational numbers, and were computed exactly. �e coe�cients λ′0 and λ′f were
computed numerically up to 30 digits of 17-adic precision. We note that the exceptional
vanishing for D = 76 is explained by Remark 1.15.
Example 2. We now turn to the a�ractive case of elliptic curves of conductor 37, where
there are two isogeny classes with di�erent ranks:

37a E+ : y2 + y = x3 − x
37b E− : y2 + y = x3 + x2 − 23x− 50

We denote f+ and f− for the associated modular forms, which span S2(Γ0(37)). �e elliptic
curve E+ has non-split multiplicative reduction at 37, and rank 1 over Q, whereas E− has
split multiplicative reduction, and rank 0 over Q. We also have Lalg(f−, 1) = 1/3.
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D D1 ·D2

(
D
17

)
λ0 λf λ′0 λ′f

12 (−4)(−3) −1 0 0 log
(

4−
√
−1

17

)
logE (3+

√
−1,−5−4

√
−1)

21 (−3)(−7) 1 2 −2

24 (−8)(−3) −1 0 0 −2 log
(

3−2
√
−2

17

)
2 logE

(
−22+17

√
−2

9 , 181+34
√
−2

27

)
28 (−4)(−7) −1 0 0 3 log

(
4−
√
−1

17

)
logE (3+

√
−1,−5−4

√
−1)

33 (−3)(−11) 1 2 −2

44 (−4)(−11) −1 0 0 3 log
(

4−
√
−1

17

)
−logE (3+

√
−1,−5−4

√
−1)

56 (−8)(−7) −1 0 0 6 log
(

3−2
√
−2

17

)
2 logE

(
−22+17

√
−2

9 , 181+34
√
−2

27

)
57 (−19)(−3) −1 0 0 2 log

(
7−
√
−19

2·17

)
2 logE (

√
−19−3,−

√
−19−11)

69 (−23)(−3) 1 6 2

76 (−4)(−19) 1 0 0 0 0

77 (−7)(−11) 1 6 2

88 (−8)(−11) −1 0 0 6 log
(

3−2
√
−2

17

)
−2 logE

(
−22+17

√
−2

9 , 181+34
√
−2

27

)
93 (−3)(−31) 1 6 2

Table B. �e spectral decompositions of G1(ψ) and G′1(ψ)ord when p = 17.

It turns out that the modular formG1(ψ) vanishes systematically when ψ is a genus char-
acter, in the coherent as well as in the incoherent cases. In the coherent se�ing, this “excep-
tional vanishing” of G1(ψ) = 0 can be explained by the presence of an exceptional zero of
the associated p-adic L-function, as described in Remark 1.15. It follows from Proposition
2.1 that G′1(ψ) is also overconvergent in the coherent se�ing. Our numerical experiments
found in all these cases that G′1(ψ)ord is a nonzero multiple of f+. We expect the constant
of proportionality to be a rational multiple of the p-adic height of a Mordell–Weil generator
of E+(Q), but have not veri�ed this.

Table C shows the coe�cients of the spectral decompositions of G′1(ψ)ord for all genus
characters associated to the factorisation D = D1 · D2 with D < 100 and (D/p) = −1,
with the ordering of D1 and D2 as in the previous example. �e coe�cients λ′0 and λ′f were
computed numerically up to 20 digits of 37-adic precision.

We note that the vanishing of λ′f− for D = 69 and 93 in Table C can be accounted for by
the fact that the twists of E− by the odd quadratic characters of conductor 23 and 31 have
analytic rank equal to 2.
Example 3. Finally, we illustrate how �eorems B and C do not only apply to genus
characters, by considering D = 316 which has narrow class number 6. Let ψ be the odd
character which takes value 1 on the trivial class, value −1 on the class of d, and zero
elsewhere. Se�ing p = 11, we compute that G1(ψ) = 0 and that

G1(ψ)′ord = λ′0E
(11)
2 + λ′ff,

where f is the modular form a�ached to the elliptic curve X0(11) considered also in the
introduction. �e coe�cients λ′0 and λ′f were calculated to 200 digits of 11-adic precision,

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance

improvements, or any corrections. The Version of Record is available online at:
http://dx.doi.org/10.1007/s00208-020-02086-2



36 HENRI DARMON, ALICE POZZI AND JAN VONK

D D1 ·D2 λ′0 λ′f+ λ′f−

24 (−3)(−8) 8
9 log

(
1+7
√
−3

2·37

)
0 8

9 logE−
(
−7

3 ,
−9+19

√
−3

18

)
56 (−7)(−8) 8

3 log
(

3+2
√
−7

37

)
0 8

3 logE−
(
−27+

√
−7

8 , 15+3
√
−7

16

)
57 (−3)(−19) 8

9 log
(

1+7
√
−3

2·37

)
0 8

9 logE−
(
−7

3 ,
−9+19

√
−3

18

)
69 (−3)(−23) 8

3 log
(

1+7
√
−3

2·37

)
0 0

76 (−4)(−19) 4
3 log

(
1+6
√
−1

37

)
0 8

3 logE−
(
−5

4 ,
−4+37

√
−1

8

)
88 (−11)(−8) 8

3 log
(

7+3
√
−11

2·37

)
0 8

3 logE−
(
−65−5

√
−11

18 , 68−10
√
−11

27

)
93 (−3)(−31) 8

3 log
(

1+7
√
−3

2·37

)
0 0

Table C. �e spectral decompositions of G′1(ψ)ord when p = 37.

and we found that
λ′0 = −12

5
log11(u)

where u is the root of a sextic polynomial a6x
6 + . . .+a1x+a0 which generates the narrow

Hilbert class �eld of Q(
√

316), and whose coe�cients are given by
a0 = 112

a1 = 110 × −23684126
a2 = 114 × 38858607
a3 = 118 × 1575649852
a4 = 1114 × 38858607
a5 = 1120 × −23684126
a6 = 1132

�e constant λ′f was slightly more di�cult to identify because of the large height of the
polynomials involved. Using the e�cient implementation in Sage by Guitart–Masdeu
[GM] of the polynomial time algorithm of [DP] for computing Stark–Heegner points on
elliptic curves, Marc Masdeu veri�ed that

λ′f =
1

100
log11 (Pψ) (mod 11200),

where Pψ = (x, y) is a global point on X0(11) de�ned over the narrow Hilbert class �eld of
Q(
√

316), whose x-coordinate satis�es the polynomial
72456194397209968278659172637696x3 − 175475962538109348211894597561280x2

−183621530533243510414048237467536x+ 103446014224118434016969398063313 = 0

�e authors are grateful to Marc Masdeu for his help with this calculation.
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