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DIAGONAL RESTRICTIONS OF p-ADIC EISENSTEIN FAMILIES

HENRI DARMON, ALICE POZZI AND JAN VONK

ABSTRACT. We compute the diagonal restriction of the first derivative with respect to the
weight of a p-adic family of Hilbert modular Eisenstein series attached to a general (odd)
character of the narrow class group of a real quadratic field, and express the Fourier co-
efficients of its ordinary projection in terms of the values of a distinguished rigid analytic
cocycle in the sense of [DV1]] at appropriate real quadratic points of Drinfeld’s p-adic upper
half-plane. This can be viewed as the p-adic counterpart of a seminal calculation of Gross
and Zagier [GZ| §7] which arose in their “analytic proof” of the factorisation of differences
of singular moduli, and whose inspiration can be traced to Siegel’s proof of the rationality of
the values at negative integers of the Dedekind zeta function of a totally real field. Our main
identity enriches the dictionary between the classical theory of complex multiplication and
its extension to real quadratic fields based on RM values of rigid meromorphic cocycles, and
leads to an expression for the p-adic logarithms of Gross—Stark units and Stark-Heegner
points in terms of the first derivatives of certain twisted Rankin triple product p-adic L-

functions.
CONTENTS
[1. Diagonal restrictions of Hilbert Eisenstein series| 9
2. 'The incoherent Eisenstein series and its diagonal restriction| 19
13.  'The twisted triple product p-adic L-function| 29
Reference 36
INTRODUCTION

In their influential work on singular moduli [GZ, §7], Gross and Zagier consider the diag-
onal restriction of a family, indexed by a complex parameter s, of non-holomorphic Hilbert
modular Eisenstein series of parallel weight one attached to an odd genus character ¢ of
a real quadratic field. Since this family vanishes identically at s = 0, it becomes natural
to study its first derivative, a real analytic modular form of weight two on SLy(Z). The
vanishing of its holomorphic projection is used to calculate the arithmetic intersections of
singular moduli attached to the two imaginary quadratic subfields of the biquadratic field
cut out by ¢. The derivative of the non-holomorphic Eisenstein family provides a simple
but illustrative instance of the Kudla program, a framework that seeks similar modular gen-
erating series for the topological and arithmetic intersections of a broader class of special
cycles on Shimura varieties.
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The present work transposes the calculation of Gross and Zagier to a p-adic setting by
studying the diagonal restriction of the first derivative with respect to the weight of a p-
adic family of Hilbert modular Eisenstein series attached to a general (odd) character of the
narrow class group of a real quadratic field. The Fourier coeflicients of its ordinary projection
are expressed in terms of the values of a distinguished rigid analytic cocycle at appropriate
“real multiplication points” of Drinfeld’s p-adic upper half-plane. Such RM values are related
to a panoply of invariants defined (conjecturally) over ring class fields of real quadratic fields,
notably, the Stark—-Heegner points of [Darl], the Gross—Stark units of [DD], and the real
quadratic singular moduli of [DV1]. Our main identity enriches the analogy between the
classical theory of complex multiplication and its extension to real quadratic fields based on
the RM values of rigid meromorphic cocycles. It also leads to a new expression for the p-adic
logarithms of Gross—Stark units and Stark-Heegner points in terms of the first derivatives
of certain twisted Rankin triple product p-adic L-functions.

Let F' be a real quadratic field of discriminant D > 0, and let H denote its Hilbert class
field in the narrow sense. The narrow class group C1" (D) = Gal (H/F) of F is endowed
with a canonical element ¢ of order 1 or 2 represented by the class of the principal ideal
(), where @ € F* is an element of negative norm, which corresponds to the complex
conjugation in Gal (H/F). Given C € C17(D), write C* := ¢ - C. A function ) on C1"(D)
is said to be odd if it satisfies ¢(C*) = —1(C).

Assume from now on that ) is such an odd function on C1* (D). For each k > 1, it gives
rise to a holomorphic Eisenstein series of (odd) parallel weight % on the full Hilbert modular
group SLy(Op), whose Fourier expansion for k& > 1 is given by

(1)  Ep(1,9)(21,22) = L(F,0,1—k)+4 Z 01,5 (VD) exp(2mi(v1 21 + 1222)),
Vebll

where

(2) L(F.¢,s)= Y ¢(I)Nm(I)™*,  (Re(s) > 1)

1< Op

is the zeta-function attached to v, the index set ;' denotes the cone of totally positive
elements in the inverse different of /', and 0y_1 4 is the function

(3) Or—15(a 21/1 )Nm(1)",

the sum being taken over all the integral ideals I of O that divide ().

Let p be a rational prime. The p-stabilisation of Fj(1, ) has Fourier expansion given by

(4) Elgp)(l,z/)) = LP(F,1—k)+4 Z a,(gp)hp V) exp(2mi(v121 + 1222)),

VED+

where L) (F, 1), s) and U£@17w(&> are obtained from L(F’ 1, s) and oj_1 () respectively
by restricting the sums arising in their definitions to the ideals whose norm are prime to p.
The Eisenstein series E,gp )(1, 1) is of parallel weight & on the Hecke congruence group of
SLy(OF) consisting of matrices that are upper triangular modulo p, and hence its restriction
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to the diagonal H C H x H is a classical modular form of weight 2k on ['y(p):
5) Ci(t) = EP(1,4)(r,7) € Moy(To(p)),  forall k € Z>",

As functions of k, the Fourier coefficients of G (1)) interpolate to analytic (Iwasawa) func-
tions on weight space

W:=hom(Z;,Z;)= Z/(p—1)Z x Z,.

This can be verified directly for the coefficients of ¢" with n > 1, and general principles first
described and exploited by Serre in [Sel] reveal that this property is inherited by the constant
term L) (F, 1), 1—k). It can thus be viewed as the value at s = 1—k of an analytic function,
the p-adic L-function L, (F’, 1, s) attached to

Our first theorem — Theorem A below — relates the Fourier expansion of the weight two
specialisation G (1)) to Mazur’s winding element, defined as the image

Jw € H1(Xo(p); {0, 00},2Z)

of the vertical path on the Poincaré upper half plane joining 0 to oo in the homology of
Xo(p) relative to the cusps.

If p is split in F'/Q, then every narrow ideal class of F' can be represented by a primitive
binary quadratic form Q(z, y) = Az?+ Bxy+Cy? with p|A. Such a form is called a Heegner
form (at p). The set of Heegner forms in a given narrow ideal class C consists of two I'y(p)-
orbits of Heegner forms, depending on a square root s of D modulo p, and determined
by the condition B = s (mod p). These orbits are denoted C, and C_; respectively. The
automorph attached to a Heegner form () belongs to I'y(p), and its image in the homology
H,(Yy(p), Z), denoted g, depends only on the I'y(p)-orbit of (). The two homology classes
of Heegner forms in C are denoted g¢ s and g¢ _, respectively. Define

go= Y ¥C)ges+ge—s) € Hi(Yo(p).ZlW),
)

CeCl(D

where Z[¢)] is the ring generated over Z by the values of 1.

Let Tx(p) be the algebra of Hecke operators acting faithfully on the space My (T'o(p)) of
modular forms of weight k on I'g(p). It is generated by the Hecke operators T, for alln > 1,
where T), is used here to denote what is sometimes referred to as U),. These operators are
described in the standard way in terms of double cosets, and act naturally on the homol-
ogy groups H(Xy(p);{0,00},Z) and H,(Yy(p),Z), in a way that is compatible with the
intersection pairing

(6) <'7 > : Hl(XO(p);{ano}aZ) X Hl(%(p)7z) — Z

These structures extend by linearity to the homology groups with coefficients in more gen-
eral rings like Z[¢)]. Our first result, which is shown in §[1] is

"Its restriction to hom(Z), 1 + pZ,,) is customarily denoted L, (F,twy, s) in the literature.
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Theorem A. The Fourier expansion of the weight two specialisation G (1)) is given by

Gi(y) =
0 i (2)=-1.

Assume henceforth that (%) = —1. Since the family G, (¢) vanishes identically at k = 1,

it can be envisaged as the p-adic counterpart of the families of real analytic modular forms
that arise in [GZ] and in Kudla’s theory of incoherent Eisenstein series, as explored, for
instance, in [KRY]]. It then becomes natural to consider the first derivative

d
(7) Gi(¥) == %Gk(w)k:h
which is shown in § [2.1] to be an overconvergent p-adic modular form of weight two and
tame level one. Its image

®) GL(¥)ara 1= eara G (V) 1= lim UFGY(v) € Ma(To(p))

under Hida’s ordinary projector, which plays the same role as the holomorphic projection
operator in the work of Gross—Zagier, is a classical form of weight two on I'y(p). Our second
objective is to calculate the Fourier coefficients of G (1).;q and relate them to certain rigid
cocycles, whose RM values provide a natural framework for extending the theory of complex
multiplication to real quadratic fields, and whose definition is now briefly recalled.

Let H, denote Drinfeld’s p-adic upper half plane and let M* be the multiplicative group
of non-zero rigid meromorphic functions on H,, endowed with the translation action of

I':= SLy(Z[1/p])

by Mobius transformations. A rigid meromorphic cocycle is an M *-valued one-cocycle on
I'. It is said to be rigid analytic if it takes values in the group .A* of non-zero rigid analytic
functions on H,. The groups of rigid meromorphic and analytic cocycles are denoted by
HYT, M*) and H'(T', A*) respectively.

Because ' (T", C) is finite, the natural map H*(I", M*) — H*(I', M* /C) has finite
kernel. It is convenient to work with elements of the larger group of cocycles modulo scalars,
which are called theta-cocycles. This terminology is motivated by the analogy with the theta
functions that arise in the p-adic uniformisation theory of Mumford curves, which are in-
variant under the translation action of a p-adic Schottky group, but only up to multiplicative
scalars. Although there is a non-trivial obstruction in H?(T, C,) to lifting a theta-cocycle
J to an element of H'(I", M*), the restriction of J to SLy(Z) lifts to an element

J° € H*(SLy(Z), M™)
because of the vanishing of H*(SLy(Z),C), and this lift is essentially unique because the
group H'(SLy(Z),CY) is finite.

A simple example of an analytic theta cocycle is the universal theta-cocycle J,piy, defined
by fixing a base point ¢ in P(Q,) and letting Jyuiv(7) be the (unique, up to multiplicative
scalars) rational function having (7§) — (£) as a divisor. This example is too simple to
be of real arithmetic interest, since it takes values in rational functions rather than in the
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larger group of rigid analytic functions. But there are other instances, and in fact the group
H'(T', A*/C)) is intimately related to the space My (p). Namely, the group H'(T', M* /CX)
admits an action of the Hecke operators 7), for all n > 1, described in the standard way in
terms of double cosets. This action preserves the subgroup of analytic theta-cocycles, and
its restriction to this subspace factors through the algebra Ty(p). In fact, there is an explicit
Hecke-equivariant map

(9) ST* : H'(Ty(p),Z) — H'(I', A*/C))/JZ

described in [DV2], referred to as the “multiplicative Schneider-Teitelbaum lift”.

A rigid meromorphic cocycle can be evaluated at real multiplication points of H,, follow-
ing a recipe that is described in [DV1]]. Namely, a point 7 € H,, is said to be an RM point if
F(7,1) = 0 for some primitive integral binary quadratic form F'(z,y) = Az® + Bxy + Cy?
of positive discriminant, and the discriminant B 2 _ 4AC is also called the discriminant of
7. The RM points are characterised as those in H,, for which the stabiliser

(10) [[r] := Stabp(7)

of 7 in I is an infinite group, of rank one modulo torsion. A generator v, of I'[7] modulo
torsion admits the column vector (7, 1) as an eigenvector, with eigenvalue a unit ¢ of F. It
can be chosen in a consistent way by fixing a real embedding of F' = Q(7) and insisting
that € > 1, which implies that for all £ € H,

(11) dim AE=7,  lim Al =T
j—r—o00 j—ro0

The value of a cocycle J € HY(T', M*) at T is simply
(12) Jr] = J(v:)(r) € C,U{oo}.

More generally, a theta-cocycle J can also be evaluated at RM points 7 whose discriminant

is prime to p. Indeed, in this case the automorph 7, belongs to SLy(Z), and one can simply
define
J[r] == J°(v)(1) € C,U{oo}.

Let H[” be the set of 7 € H™ of discriminant D. The theory of composition of binary
quadratic forms identifies the orbit space SLy(Z)\#,) with the narrow class group Cl(D),
and hence v can be viewed as a function on SL;(Z)\H]. Let

(13) Ayi= Y (). € Div(SLa(2)\HY),
TESLo(Z)\HD

be the associated formal degree zero divisor on SLy(Z)\#,. Because p t D, a theta-cocycle
J can be evaluated at the points of HP, and we can set

(14) JAa = D, vl
SLa(Z)\HP
Section [2/introduces the winding cocycle, an explicit theta-cocycle
(15) Jw € HY(I', A*/CX),
that is related to the winding element g,, via

Jw = ST"(gu) (mod J5,,),

univ
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viewing g,, as an element of H'(T'g(p), Z) via the intersection pairing. The quantities .J,,[A,)]
belong to F* C C, where F), is the completion of [ at p, and we may consider their image
under the norm map Nm from £ to Q.. From now on, choose Iwasawa’s branch of the
p-adic logarithm

(16) log, : C; —C,

which is trivial on the torsion subgroup of C as well as on p.

Our second main result is

Theorem B. For all fundamental discriminants D > 0, for all primes p that are inert in

F = Q(v/D), and for all odd functions v on C1(D),

Gll(,lvb)ord = L/p(F’ ’QZ), 0) -2 Z logp (Nm((Tan)[Ad)])) q

n=1

Theorems A and B can be used to compute the spectral expansions of the modular forms
G1(¢) and G| (¢¥))ora. To this end, a normalised eigenform f € S3(I'¢(p)) with Fourier
coefficients in a ring Oy gives rise to a modular abelian variety quotient Ay of Jy(p) with
endomorphism ring containing Oy, and to a pair of homomorphisms

gf. 27 € H'(To(p),C),  &5(7) = /(wf +wyp), wp=2mif(z)dz
Y

These classes, which encode the real and imaginary periods of f respectively, can be rescaled
to take values in the the ring O of Fourier coefficients of f, by choosing appropriate periods
ij € C and setting

(17) of = () 7'ef, ©; = (Q7) g5
From the latter one obtains a pair of theta-cocycles
Jp =ST"(¢y) € (H'(L,A*/C})/J5) ® Oy,

which are eigenvectors for the Hecke operators with the same eigenvalues as f. They are
the elliptic modular cocycles described in [DV2] § 3]. The images of the RM values J]it [Ay] €
(’)X under the Tate-Morikawa p-adic uniformisation of A; are the Stark—Heegner points in
A f( ») @ Oy, conjectured to be defined over suitable ring class fields of F.

The elliptic cocycles in can be envisaged as the cuspidal counterparts of the Dedekind-
Rademacher cocycle of [DV2, §3] attached to the periods of the Eisenstein series of weight
two on I'g(p) (normalised so that is first Fourier coefficient is 1), defined by

dq

B (g) = ‘H; s B @) = 5 dos(AW)/Al))

It is given by
(18) Jor := ST”(¢pr),

where

(19) epr(7Y) = 24/E§p)(z)dz
v



This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance
improvements, or any corrections. The Version of Record is available online at:
http://dx.doi.org/10.1007/s00208-020-02086-2

DIAGONAL RESTRICTIONS OF p-ADIC EISENSTEIN FAMILIES 7

is the Dedekind-Rademacher homomorphism, whose expression in terms of Dedekind sums
can be found in [Ma] for example. In the theory of rigid meromorphic cocycles, the Dedekind
Rademacher cocycle plays the role of the modular unit A(z)/A(pz). The refinement of
Gross’s p-adic Stark conjecture proposed in [DD] predicts that the RM value Jpr[Ay] be-

longs to (Og[1/p])* ® Q.
For the next statement, let us choose the periods Q}t in in such a way that

Oy = (f,f), ¢ e H(Tolp),Ky),  »; € H(To(p), Op).
The Manin-Drinfeld theorem implies that the quantity

[e.9]

Lug(f.1) == (@) / wy

belongs to the field K, and in particular is algebraic. It is a multiple of the special value
L(f, 1) by a simple non-zero factor, and can therefore be envisaged as its “algebraic part”.

The third main result, discussed in § is readily deduced from Theorems A and B, is

Theorem C. The classical forms G1(1¢)) and G’ (¢))ora obtained in the coherent and incoher-
ent cases respectively may be written as a combination of newforms as follows:

(1) (Coherent case). If p is split in F'/Q, then we have
Gi(y) = M- EY + Y A+ f,
f

where f runs over the basis of normalised newforms in Sy(I'o(p)), and

—9 -
Ao = p—1 ¢DR(9); Ap = —2Lag(f,1) - 7 (gu)-

(2) (Incoherent case). If p is inert in F'/Q, then we have
G/1<w)0rd = )\6 : Eép) + Z >\/f ' fa
!

where the coefficients Ay and \; are given by

)\6 = p_T4 . Ing(Nm<JDR[A¢D), /f = _4Lalg(f7 1) ' logp(Nm(‘]f_ [Al/)]))

Table |Alillustrates Theorem C for p = 11 and v ranging over some odd unramified char-
acters of real quadratic fields. We consider all genus characters of discriminant D < 100,
corresponding to factorisations D = Dy D, of D into a product of two negative fundamen-
tal discriminants. The space M(I'y(11)) is spanned by the Eisenstein series ES™ and the
newform f attached to the Weil curve

E:y*+y=a®—2*—10z —20

of conductor 11, which has rank zero over Q, and L, (f, 1) = 1/5. In the coherent case, the
coefficients Ay and A; of Part 1 of Theorem C are rational numbers, and it was checked that
A = QODR(gw), as claimed. In the incoherent case, it was checked, to 50 significant 11-adic
digits, that
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(1) the coefficient \{ agrees with a rational multiple of the 11-adic logarithm of a global
11-unit in the biquadratic field Q(v/Dy, /D). More precisely, this unit belongs to
Q(v/Dy), where (D1, D,) are ordered in such a way that (%) = —(%) = 1.

(2) the coefficient \; agrees with a small rational multiple of the formal group logarithm
of a global point in F(Q(y/D;)). This is consistent with a theorem of Mok [Mok]|]
extending the main result of [BD] to elliptic curves of prime conductor, which implies
that the quantities ./, [A,] map to a global point in £(Q(v/D:)) ® Q under Tate’s
p-adic uniformisation when 1) is a genus character.

D| Di-Dy | (B)[X Ar|A Ny

12| (=3)(—4) 1|8 -8

21| (=7)(=3) | =1 |0 0| ¥log(2£7)  Blogy (L7, 1+2v7)

24| (=8)(=3) | =1 |0 0| Llog(32=2) —3Zlogp (-3-v=2,-4-3v-2)
28 | (=7)(—=4) | =1 |0 0] Zlog (2577)  —3logy (L7, 1+2v77)

56 | (—8)(—7) 10 0]0 0

57| (-19)(=3) | =1 |0 0| Llog (35T) —3Zlogy (~7+2y/-19,~38-2/~10)
69 | (—23)(-=3)| 1|2 -8

76 | (-19)(—4) | -1 |0 0] Zlog (34)  Zlogy (~7+2y/~19,~38-2/~19)
93| (-3)(-31)| 1 |& -8

TaBLE A. The spectral expansions of G () and G (%) orq-

Weight one Eisenstein series attached to odd genus characters also play a prominent role
in the calculations of [GZ]. That theorems B and C are not a direct p-adic counterpart of the
formulae in loc.cit. is suggested by the fact that they apply to arbitrary (odd) class characters,
and not just genus characters. This feature, which accounts for the relevance of Theorem
C to explicit class field theory for real quadratic fields, is illustrated in Section where a
numerical illustration is offered in its support.

Remark 1. Part 1 of Theorem C is essentially equation (1.4) of [Li] with the genus character
replaced by a general odd ideal class character of /', while Part 2 can be viewed as a p-adic
“incoherent” counterpart of this result.

Remark 2. When the prime p is split in F', comparing the constant terms for G (¢) given in
Theorem A and in Part 1 of Theorem C, we obtain
1
Ly(F,¢,0) = ﬁ@DR(gw)y

a classical result that follows from Meyer’s formula [Za, §4] for the value at s = 0 of
the L-function of a totally odd ring class character of a real quadratic field in terms of
the Dedekind-Rademacher homomorphism. When p is inert in F', comparing the constant
terms for G (1)ora given in Theorem B and in Part 2 of Theorem C leads to the identity

, 1
L,(F,v,0) = D log,(NmJpr[Ay]),
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which essentially recovers one of the main theorems of [DD]]. The proof of the p-adic Gross—
Stark conjecture given in [DDP] shows that L (F,,0) is a rational multiple of the p-adic
logarithm of the norm to Q, of a global p-unit — the Gross—Stark unit attached to 1) —
and leads to theoretical evidence for the algebraicity of the RM values of the Dedekind-
Rademacher cocycle. In a forthcoming work [DPV], the authors will parlay the infinitesimal
deformations of Ej(1,1)) in the anti-parallel direction and their diagonal restrictions into a
proof of the algebraicity of the full invariant Jpr[Ay]. This gives a new proof of one of
the main results of [DK1]], in the setting of real quadratic fields. It is worth noting that the
results in [DK1]] apply to general totally real fields, whereas the connection with the theory
of rigid cocycles is at present restricted to the quadratic case.

Remark 3. The coefficients \; that occur in the spectral expansion of (1 (1) can be viewed
as the first derivatives of certain twisted Rankin p-adic L-functions attached to f and to
the diagonal restriction of a family of Hilbert modular Eisenstein series. These quantities
can be likened to the “p-adic iterated integrals” of [DLR] arising from a pair of weight one
cusp forms, by viewing such a pair as a “Hilbert modular form of weight (1, 1) for the split
quadratic algebra Q x Q”. The connection between the products of logarithms of pairs of
Stark-Heegner points and the second derivatives of Rankin triple product L-functions has
already been exploited, notably in [DR] and [BSV]]. The simpler connection with the first
derivatives of their twisted variants that is revealed by Theorem C offers the prospect of
a more direct geometric approach to Stark-Heegner points via the K-theory of Hilbert
modular surfaces, which it would be interesting to flesh out.
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thank Francis Brown, Yingkun Li, David Loeffler, Don Zagier, and Sarah Zerbes for their
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Planck-Institut fiir Mathematik (Bonn), and NSF Grant No. DMS-1638352, during various
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1. DIAGONAL RESTRICTIONS OF HILBERT EISENSTEIN SERIES

The modular form G (1)) of weight 2k on I'y(p) described in (5) of the introduction has
Fourier expansion given by

(200 Gi(¥)=LP(F e, 1—k)+4) | > > o(INm(I)* | ¢".
n=1 | peat I,
Te(v)=n P11
The goal of this chapter is to investigate its weight 2 specialisation and prove Theorem A
from the introduction. When p splits in /', which by analogy with common nomenclature in
the Kudla programme is referred to as the coherent case, the weight two specialisation G (1))
is the generating series for the homological intersection product of certain geodesics, while
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it vanishes identically when p is inert in F'. The latter incoherent setting is arithmetically
richer: the first derivative G} (¢/) that is the object of Theorem B is studied in Chapter 2]

Notation. Retaining some of the notations and assumptions of the introduction, F' will
denote a real quadratic field with discriminant D, ring of integers Op, set of integral ideals
I, and different ideal 9. The notation 0, ' means the subset of totally positive elements of
the inverse different 9. Denote by Nm and Tr the norm and trace maps from F' to Q.

1.1. The weight two specialisation G1(¢). The weight two specialisation of the family
considered above plays a central role. The following lemma is well-known to experts.

Lemma 1.1. The specialisation G1(v) is a classical modular form of weight two and level
Lo(p). Its constant term is given by

(21) Ly(F,,0) = L(F,v,0) - [J(1 = ¢(p)).
plp

In particular, the constant term vanishes if p is inert in F'.

Proof. By [DDP, Prop. 3.2], the weight one specialisation of the family £ ,8’ ) (1,%)isaclassical
Hilbert modular form of parallel weight one and level

Lo(pOr) ={(2§) € SL2(OF) | c€pOr.}.

Thus, its diagonal restriction is a classical elliptic modular form of weight two and level
Lo(p). The formula for the constant coefficient follows from the fact that L,(F, v, s) inter-
polates the values of LP)(F,,n) for every n € Z<. In particular, if p is inert in F, the
p-adic L-function admits a trivial zero at s = 0, since the conductor of v is trivial. O

Remark 1.2. The weight one specialisation of the Eisenstein family can in fact be obtained
by p-stabilising the Eisenstein series of level one with Fourier expansion

Ey(1,9)(21,29) =4 Z 00,4 (V0) exp(2mi(1121 + 1222))

-1
veo

in the notation of (3). However, the constant term of the p-stabilisation E%p ) (1,%) may not
vanish in the coherent case, due to the contribution of non-zero constant terms at other
cusps. For more on the constant terms at various cusps, see Shih [Shih] and Dasgupta-
Kakde [DK2].

1.2. Ideals and RM points. The Fourier coefficient a,, of the diagonal restriction may
be written as

(22) a =4 Y ¥(C) > Nm(7)*!
CeClt(D) (L) € I(n,C)=1(n,C)p
where the index sets are given by
I(n,C) = {(I,v)e Fpx0' : Tr(v)=n, I|(w)p, [I]=C},
I(n,C), = {(I,v)€l(n,C) . p|Nm(l)}.

The finite index sets I(n,C) and I(n, C), will be placed in an explicit bijection with certain
sets of RM points. To ease the exposition, the case n = 1, where this set of RM points may
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be described in a particularly simple way, is treated separately. The calculations for the case
n > 1 are more involved, and are dealt with in the remainder of the chapter.

An RM point is defined to be a real quadratic irrationality, and is said to be of discriminant
D ifitis the root of a primitive binary quadratic form of discriminant D. The set of RM points
of discriminant D, denoted RM(D), is preserved by the action of SLy(Z).

Extending the definition in (10), write G[r] C G for the stabiliser of 7 in G, for G any
congruence subgroup of I and 7 an element of 7{,,.. If 7 is an RM point, then G[7] is always of
rank one, i.e., it is of the form G[r| = £ (7,) for the generator -, that is uniquely determined
by the property that 7 is it stable fixed point in the sense of (L1). As in the introduction, the
(open) hyperbolic geodesic in H between two RM points 71, 75 will be denoted by (71, 72),
whereas the (closed) hyperbolic geodesic segment between two points &1, &, of the extended
upper-half plane H* = HUP;(Q) is denoted by the symbol [¢1, £]. The intersection number
between two geodesics in H, which is always £1 or 0, is defined in the natural way after
fixing a standard orientation on #, and is denoted by the symbol “- " as above.

Ideals and RM points are related by the canonical bijection

CI*(D) —» SLy(Z) \ RM(D),

(23) o wn s,

where (wy,ws) is any positive Z-basis of I, i.e. a basis satisfying wyw) — wjws > 0. This is
well-defined, and defines a bijection with inverse given by:
ZroZ ifr—7 >0,

cl: RM(D) — CI"(D), cl(r) = { VD(Zr ®Z) ifr—7 <0,

which is constant on SLy(Z)-orbits. Given a narrow ideal class C in C1* (D), let
RM(C) := cl *(C) = SLy(2)T,

where 7 is any preimage of C. The group GLy(Z) acts transitively on RM(C) URM(C*), and
any matrix of determinant —1 interchanges RM(C) and RM(C*). In particular

(24) cl(—71) = cl(r)".

Definition 1.3. An RM point 7 is said to be reduced’if 77" < 0. A reduced RM point is
called positive if 7/ < 0 < 7, and negative if 7 < 0 < 7’. Denote by RM, and RM_ the sets
of positive and negative (reduced) RM points, and set

RM. (D) =RM(D)NRMs,  RM.(C) = RM(C) N RM..

Lemma 1.4. The sets RM_.(C) are finite. The assignment T — —7 induces a bijection from
RM.(C*) toRM_(C).

Proof. Any 7 in RM. (D) is the root of a primitive binary quadratic form Az? + Bzy +
Cy? of discriminant D in which AC' < 0. There are finitely many such forms, so the first
assertion follows. The second follows from given that 7 — —7 interchanges RM (D)
and RM_(D). O

Note that this differs from the notion of reducedness defined by Gauf} in his Disquisitiones Arithmeticae
[Gall. Reduced forms in his sense are always reduced in our sense, but the converse is not true.
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Definition 1.5. Let p be a prime that does not divide D. An RM point in RM(D) is said to
be Heegner (relative to p) if p7 also lies in RM(D). Equivalently, 7 is a Heegner RM point if it
is the root of a binary quadratic form of discriminant D that is Heegner at p in the sense of
the introduction. The set of Heegner RM points in RM(C) is denoted RM(C),,, and likewise
RM,(C), denotes the set of Heegner RM points in RM(C).

Note that if p is inert in F', then RM(D),, is empty. If p splits in F, it is nonempty and
stable under the action of I'y(p), with two distinct orbits, as described in the introduction.

Lemma 1.6. The sets |(1,C) and RM,(C) are in bijection via the map

vvD

(I,v) —> N (D)’

Proof. Any totally positive v € 0! of trace 1 can be uniquely expressed as

V_—b+\/5
2D

Given an ideal [ | ()0, its norm a := Nm(]) is a positive divisor of the negative integer
Nm(vv/D) = (b*> — D) /4, hence its quotient by a is equal to a negative integer c. Define

_ —b++vD
N 2a

which is a root of ax? + bxy + cy? and therefore contained in RM, (D). If (1, v) belongs to
I(1,C) it is readily checked that 7 belongs to RM, (C) C RM. (D).

Conversely, if 7 = (—b 4 v/D)/2a belongs to RM_.(C), then an element (I, ) of I(1,C)

in the preimage of 7 can be constructed by setting

wherebc Z, b —D <0, b=D (mod?2).

T

I:= (a,vVD), V= %ﬁ

U

The bijection in Lemma[1.6| will now be extended to general n. Due to the non-constancy
of discriminants in the set of RM points corresponding to 1(n,C), greater care becomes
necessary in introducing notation for certain double cosets that feature in the target of the
desired bijection.

As before, let 7 € RM(C). Let
(25) Mat{",(Z) := {A € Matays(Z) : det(A) = n}

and let M,, and M, (7) be a system of representatives for SLQ(Z)\MaténX)Q(Z) and for the

double coset space SLQ(Z)\MathQ(Z) /SLs(Z)[7] respectively, where as above we write
SLy(Z)[7] for the stabiliser of 7 in SLy(Z), a group of rank 1. In other words,

(26) Matdh(Z2) = || SL(2)
n€Mn
(27) = || SLx2):6.-SL(2)[7]:

On€Mp(T)
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It will be convenient to choose the standard set of representatives of the Hecke operator 7,

(28) Mn::{(”éd é); d|n, 0§j§d—1},

and to assume without loss of generality that M,,(7) is contained in M,,.

Definition 1.7. For any choice of sign + define the set
(29) RMi(n,C) = {(w,d,) € RMy x M, (1) : w € SLy(Z)d,7}

Let w € RM4(n,C), and let az? + bxy + cy? be the unique quadratic formf| of discriminant
n?D which has w as its stable root. Using the first coefficient of this quadratic form gives a
well-defined map

(30) RMi(n,C) — Z : w+— a(w) = a.

Write RM4 (n, C), for the subsets of those (w, 6,,) for which p | a(w). Note that the sets
RM. (C) defined in §[1.2)are canonically identified with RM(1,C).

The following is a generalisation of Lemma 1.4 for all n > 1:
Lemma 1.8. The sets RM(n,C) are finite. The map
RM,(n,C*) — RM_(n,C) : (w,d,) — (—w,d;),

is a bijection, where 0 is the representative of the conjugate of d,, by the matrix

1 0
(0.

Proof. The finiteness of RM4 (n, C) follows from the fact that the discriminant of §,,7 divides
n?D, and that the set of reduced RM points of a fixed discriminant is finite. The second
statement follows easily from the observation that —w = W w. U

The following more general version of Lemma establishes a bijection between the
index set appearing in the expression for the Fourier coefficient a,, of the diagonal
restriction, and an explicit set of “augmented RM points” of the above form.

Lemma 1.9. There exists a bijection
I(n,C) — RM(n,C)
such that if (I, v) corresponds to (w, 6,,), then Nm(I) = a(w).

Proof. Define the ideal a = (A, (—B + v/D)/2) where Az?> + Bxy 4+ Cy? is the unique
quadratic form of discriminant D whose stable root is 7, whose narrow ideal class is C.

First, let (1,v) € I(n,C) and define a triple of integers a, b, ¢ by

a = Nm(J)
b = unique integer such that v = =2=2=
¢ = —Nm(J), where I.J = (v)d.

3Note that this form may fail to be primitive.
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One readily sees that ¢ < 0 < a and b? — 4ac = n?D. Now define

B —b+nvD c
a

w RM+

If ()" is the non-trivial automorphism of F', then I is in the narrow ideal class of a™!. Define
A to be a totally positive generator of the principal ideal /’a. Then the lattice

A=2Z\+Zw)

is well defined up to multiplication by a totally positive unit in OF. We claim that A is a
lattice in a of index n. Indeed, A belongs to a, and on the other hand wA also belongs to a
since

(wA) = (vWD/Nm(I)I'a
= Ja.

The resulting containment A C a is of index 7, since the quadratic form
Nm(Az — i) /Nm(a)

is equal to az? + bxy + cy?, which is of discriminant n?D. Therefore

Aw AT
()\)N(A)’ det N = n,

and hence there is a unique 9,, € M,,(7) such that
N € SLy(Z) -6, SL(Z)[7].

Note that 0,, is well-defined, since multiplication of A by a totally positive unit in O changes
N by right multiplication by an element of SLy(Z)[7], and hence does not change d,,. Since
w belongs to SLy(Z)d,,7, it follows that w lies in RM, (n, C).

To check that this defines a bijection, we construct an explicit inverse. For an element
(w,d,) € RMy(n,C), let ax?® + bzy + cy? be the unique quadratic form of discriminant n*D
whose stable root is w. Define

B —b—l—n\/ﬁ
2/D

which is a totally positive element of 07! of trace n. Write w = 4,7, and define \ by

()= ()

Note that 4, is only well-defined up to left multiplication by elements in STy (Z)[w], and up
to right multiplication by elements in SLy(Z)[7], which makes A well-defined up to totally
positive units. This makes the integral ideals

I=(\N)/d, J=(w)a?

v

well-defined, and one checks directly that /J = (v)d. Therefore (1, ) belongs to I(n,C),

and this assignment defines the desired inverse to the map defined above. U
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1.3. An unfolding lemma for geodesics. This section presents an unfolding identity be-
tween certain sums of intersection numbers of geodesics that will appear multiple times in
subsequent calculations. The results below are stated for a congruence subgroup I'y(N) for
a general /V, but only the cases N = 1 or N = p will be used.

Lemma 1.10. Suppose 7 is an RM point and let 7y, be the normalised generator for the stabiliser
subgroup I'o(IN)[7] modulo torsion. Letn > 1 be an integer that is relatively prime to N. Then
for any pointn € H,

1

(31) > [0, 00] - (Va7 70nT) = 5 > [0,00] - [yymn, Yl
6ﬂ,€Mn(T) ’YneMn
vy €E€T9(N)/To(N)[0nT] v €To(N)

Proof. For any RM point p, let 7, be its automorph in I'y(V), i.e. the generator of I'y(N)[p]
whose stable fixed point is p. Equation implies that, for any £ € H,

[e.9]

[0,00] - (v, 7p) = Y [0,00] - [y, v ).

j=—o00

Setting p = 9,,7, this allows us to unfold the left hand side of into the expression

(32) S>> 0,09 vl

6 € My (1) v€To(N)

where the factor 1/2 accounts for the torsion subgroup 1/ of I'y(N)[0,,7]. Now note that
Y, = 6,716, for some f > 1. Setting n = 4,, ' we can rewrite

[0,00] - [v&,77,6] = [0,00] - [y8nn, v0nvin)]
[0,00] - ([V0nm, V0uvem) + -+ V(6 m, 700y )vem])

Note that the sum on the right hand side of can be identified with the intersection
product in homology of two homology classes on the open modular curve of level N, the
first being the geodesic between the cusps 0 and oo viewed as a class in the homology of
Xo(N) relative to the cusps, and the second being the T,,-translate of the geodesic joining
the images of 7 and 7,7, whose class in H,(Yy(N), Z) is independent of 7. Since

|_| ( )5 I‘0 |_| I_lFO 'nlyia

On € M (1) Sn € My (1) i=

the elements §,7. form a complete set of coset representatives for the action of the Hecke

operator 7T, so the sum (32) agrees with the right hand side of (31)), as claimed. O

1.4. The Fourier expansion of Gi{ (). This section is devoted to the coherent case, where
it is assumed that the prime p splits in F'. Its goal is to prove Theorem A of the introduction,
which asserts that the form G (1)) is the generating series for certain intersection products
of the classes of geodesics in the homology of the modular curve Xy (p).

Lemma 1.11. For everyn > 1, the sum S := Z »(C ,C)| vanishes.
cectt(D)
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Proof. 1t suffices to show this when v is the odd indicator function of a narrow class C, i.e.

1 ifleC,
()= —1 iflecC

0 otherwise.
Combining Lemma[1.9/and Lemma 1.8 gives

Let 7 be an RM point such that cl(7) = C. For any RM point p,

1 ifpeRM,,
[0,00] - (p,p)) = ¢ —1 ifpEeRM_,
0 otherwise

by definition, where the oriented intersections are taking place on H. The set S can therefore

be rewritten as
S = ) 1 - > 1

(w,0,)ERM L (n,C) (w,0n)ERM_(n,C)
= Z [07 OO] ’ (’stnT/, 75,17-)
On €My (1)
7 € SL2(Z)/SL2(Z)[6n7]
By Lemma(1.10]
1 1
S=3 > {Gu gy) = 59w Tugy)
Yn €My,

where (-, -) denotes the intersection pairing between the homology of X (1) relative to the
cusps and the homology of the open modular curve Y, (1), and g,, and g, are as defined in the
introduction. Since these homology groups are trivial, it follows that S = 0 as claimed. [J

We now come to Theorem A, asserting (in the coherent case) that G; (1)) is a generating
series for intersection products of geodesics on Xy (p). The proof uses the previous lemma,
and consists of a rearrangement of a sum over SLy(Z) with an additional restriction to sums
over I'g(p) without any restriction, identifying the latter with the intersection number in
homology.

Theorem 1.12. Ifp splits in F, the Fourier expansion of G1(v) is given by
Gl(¢) = Lp(Fu 77Z)7 0) -2 Z <gw7 Tng¢>p qn
n=1

Proof. It suffices to show this when v is the odd indicator function of a narrow ideal class
C. Equation (22) and Lemma|1.9)imply the following explicit expression for the n-th Fourier
coefficient of G (¢):

(33) ap =4 |RMy (n,C) \ RM,(n,C),| — 4 |RMy(n,C*) \ RM,(n,C*), |-
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Using Lemma and Lemma 1.8} this may be rewritten as

an = —ARM,(n,C),| + 4IRM,(n,C"),
— —4RM,(n.C),] + 4RM_(n,C ),|

As in the proof of Lemma|1.11] this can be further rewritten as

(34) a, = -4 Y Lo+ 4y 1

(w,6n) €ERM4(n,C)p (w,6n) €RM_(n,C)p

(35) = —4 Z Z [0, 00] - (W', w),

OnE€Mn (1) weSLa(Z)dnT
pla(w)
This is almost in the correct form for the unfolding of Lemma|1.10] except for the condition
p | a(w), which will be removed by passing from SLy(Z)-orbits to I'y(p)-orbits.

Suppose first that n is coprime to p. Fix an RM point 7 € RM(C), and choose representa-
tives for the two I'y(p)-orbits in RM(C),,

Ts - AsTy As GSLQ(Z)
T_s = A_T, A, €SLy(2)

characterised by the property that all elements in the orbit are the stable roots of quadratic
forms of discriminant D whose middle coefficient is congruent to s and —s respectively, for
a fixed choice s of square root of D modulo p. The set of Heegner forms az? + bxy + cy?
in an SLy(Z)-orbit of discriminant n?D is likewise the disjoint union of two I'y(p)-orbits,
distinguished by the congruences b = ns (mod p) and b = —ns (mod p). We will first
identify two explicit representatives for these orbits.

Choose subsets Ny(f) and N7(L_S) of M,, such that

(36) Mat§hy(Z) = || SLa(Z)-8%) - SLy(2)[r]
5 e NS

(37) = || SL2)-607-SLa(Z)[r]
55 e NS

For any 6, € M,(7), the two matrices 65 € N\ and 6% € N\ are defined to be the
double coset representatives of 4,5, A7 and A_,6,A".. Then

SLy(Z) - 6% - SLy(Z)[1] = SLa(Z) - A6, ALY - SLy(Z)[r]
= SLy(Z) -8, - SLy(2)[7] - A
and likewise for 65 ), from which one may conclude that the maps

{ M,(1) — N s, e 8
M,(1) — NP s, s 65
are bijections, and therefore that
{w € SLy(2)6,7} = {w € SLy(Z)6%) 7.}
= {w € SLy(2)5; "7}
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Now observe that the action of matrices in ), on quadratic forms is via

(az? + bry + cy?) - (E)i nj/d> = (ad®)2* + (nb+ 2dja)zy + (- -+ )y
Inspection of the first two coefficients reveals that for any d,, € M, (7),

o 67, and 65 *'7_, are the stable roots of Heegner forms, and are hence in RM(n, C),,.

° 5559)7’5 and 51(1_8)7‘_3 are the stable roots of quadratic forms whose middle coefficients
are respectively congruent to ns and —ns modulo p, and hence are not equivalent
under [y(p).

It follows from these two observations that
{w € SLy(2)d,7 : pla(w)} = To(p)sP | | Tolp)sl I
Equation can now be rewritten as

a, = —4 Z Z [07 OO] : (76£S)T;v 757(18)78)
(38) 5eN v eTo(p)/To(p)[65) 7]
—4 ) > [0,00] - (Y657, 0L7).

85V eNT v ETo(p)/To(p)0 ) 7-,]

It remains to show that both of these double sums are in the required form for Lemma
1.10} in the case I'o(N) = I'g(p). Note that 75 is the root of a Heegner form, so that

SLy(Z)[7s) = To(p)[7s),

and hence for any 7,7, € M, (which are upper triangular) and M € SLy(Z) such that
YnYi = M~ it must be that M belongs to I'y(p). It follows that

L] To@) - =[] To) 65 To(p)r]

YnEMn 57(15> ENT(LS)

and likewise for 7_g. Since n is coprime to p, the left hand side is equal to the union of double
cosets defining 7T, for the congruence subgroup I'y(p). Lemma|1.10|can now be applied for
['o(p) in order to rewrite as

ap = —2 Z ([07 OO] : [7’77157 7771’7735] + [07 OO] ’ h/’yng» 7’771’77155]) :

Yn € Mn
v€To(p)

This expression is equal to the topological intersection between g,, and 7}, ¢,, on the modular
curve Xy (p). This shows the proposition for the Fourier coefficients away from p.

Since the higher coefficients of the Fourier expansion on the right hand side is obtained
from a linear function on the Hecke algebra for I'y(p), they must agree with the Fourier
expansion of some modular form f in M(Iy(p)). The difference of G1(¢) and f has van-
ishing Fourier coefficients away from p and must therefore be an oldform. Since there are
no non-trivial oldforms, the statement follows for all Fourier coefficients. O

Remark 1.13. Even though the above argument relies on the triviality of the space M»(SLa(Z)),
we expect it to go through with minimal changes for more general congruence subgroups
of I', where this triviality fails. Our reliance on this fact merely simplifies the argument.
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We now complete the proof of Theorem A, by showing that, in the incoherent setting
when p is inert in F', the weight 2 specialisation G () of vanishes identically.

Proposition 1.14. Ifp is inert in F, the weight two specialisation G (1)) vanishes.

Proof. Let n > 1, and suppose (I, v) is an element of (n,C) such that p f Nm(7). Let J be
the minimal ideal that is coprime to (p) and such that /.J divides (~)0. The map

(I,v) — (J', V)

defines an involution, and ¢/(J") = —(I). Since v and v’ both have trace n, it follows from
the expression that the n-th Fourier coefficient of (G1(¢)) vanishes, and the proposition
follows. u

Remark 1.15. Note that the proof of Proposition only used the fact that ¢((p)) = 1,
and shows for example also that the series G1(¢) vanishes when p = pp’ and ¢(p) = 1
(see §[3.6). When ¢ is unramified and p is inert in ', one can alternatively observe that the
operation of p-stabilisation commutes with the diagonal restriction, and therefore G (v)) is
the p-stabilisation of a weight two modular form on SL(Z). The proposition then follows
from the fact that there are no non-zero modular form of weight two and level one.

2. THE INCOHERENT EISENSTEIN SERIES AND ITS DIAGONAL RESTRICTION

The goal of this chapter is to prove Theorem B of the introduction, showing that the
overconvergent form G’ ()oq discussed in the introduction is a generating series for the
RM values of an appropriate rigid analytic theta cocycle. Assume for the remainder of this
chapter that p is inert in F".

2.1. The overconvergence of G’ (¢)). Arguments similar to those of Buzzard-Calegari
[BC| §8] will be used to show that the first derivative G (¢)) is an overconvergent p-adic
modular form of level 1. The following general lemma considers the first derivative of an
“overconvergent family” at a point where it vanishes identically:

Lemma 2.1. Suppose G(t) is a family of overconvergent forms of weight k(t), indexed by a
parameter t on a closed rigid analytic disk D. If G(0) = 0, and k = k(0) € Z, then

(%g(t))

=0
is an overconvergent modular form of weight k.
Proof. Let E be the level one modular form

Ep—l if Y% Z 5
(39) E=¢ Es if p=3

where E is the unique level one Eisenstein series of weight k& with constant term 1 at the
cusp oo. Since the weight of E is a multiple of (p — 1), and its g-expansion reduces to
1 modulo p, it must be a lift of a power of the Hasse invariant, and therefore |[E — 1| <
1 on a strict neighbourhood of the ordinary locus of Xy(p). In particular, by shrinking
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D if necessary, there is a power series e(t) such that E°® converges for all € D to an
overconvergent form of weight r(¢)x(0) .

Let AL be the space of overconvergent modular forms of weight k, and A¢"! the space of
p-adic modular forms of weight £, so that AL C A9, The rigid analytic functions on the
closed disk D and its boundary B = {t € D : |t| = 1} are given by the Tate algebras

{cht” : hm |l —O} C,(t,t7™ 1) = {cht” : lm ey —0}

n>0 ez n|—oc0
Now consider the family
t=t.G(t)/EW
Since B is an affinoid, this defines a family of overconvergent forms over B, and therefore
an element of AT ® C,(t,t"). On the other hand, since G(0) = 0, its g-expansion is integral,
and therefore it is an element of A9 ® C,(t). Since

(40) ATIRC, () [ ALBC,(tt7!) = AL@Cy(t).

it follows that it is a family of overconvergent forms of weight k. Multiplying out E¢(*),
shows that t "'G(#) is an overconvergent family over the disk D, so that in particular

(%g(t))

which is its value at ¢ = 0, is an overconvergent modular form, of weight k. O

t=0

Lemma 2.2. The modular form G' (1)) is overconvergent.

Proof. Lemma [2.1| applies to the family G (v), which is overconvergent because it is the
diagonal restriction of the (overconvergent) Hilbert Eisenstein family. It follows from this
lemma that G| () is also overconvergent. d

Remark 2.3. For numerical computations, it is useful to quantify the rate of overconvergence
of G/ (1)). The ideas above can be refined to show that G/, (1) is -overconvergent for any r <
p/(p+1). Since this finer result is not needed in this paper, its proof shall merely be sketched.
The work of Goren-Kassaei [GK|, Theorem A] shows that the family Ej(1,1)) analytically
continues to the canonical region V,.,,. The diagonal embedding on moduli stacks is given
by E/S — E ®z Op ~ E Xg E, endowed with the natural pieces of extra structure,
and it can be checked directly that the valuations of the lifts of the partial Hasse invariants
appearing in loc. cit. all coincide with the valuation of the lift of the Hasse invariant on E.
It follows that the diagonal embedding induces an embedding X, — V.., for any r with
Ir| < p/(p + 1), and hence the family of diagonal restrictions is r-overconvergent for any
such r. By adapting the proofs of Lemma 2.1} one shows that G’ (¢) inherits the same rate
of overconvergence. See also Buzzard—Calegari [BC, §8].

2.2. The Bruhat-Tits tree and the Drinfeld upper half-plane. We first establish some
notation related to the Drinfeld upper half plane H,. Let v, be the standard vertex of the
Bruhat-Tits tree 7 of PGL3(Q,), whose stabiliser in I" is SLy(Z). For each integer n > 0, let
7 <" and T =" denote the subgraph of 7 consisting of vertices and edges that are at distance
< nand < n from v,, respectively. Let 7—[;" C 7—[;” C H, denote the inverse images of



This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance
improvements, or any corrections. The Version of Record is available online at:
http://dx.doi.org/10.1007/s00208-020-02086-2

DIAGONAL RESTRICTIONS OF p-ADIC EISENSTEIN FAMILIES 21

7 <" and 7 =" under the reduction map. The collection of Hy" and ’H;" gives an admissible
covering of H, by wide open subsets and affinoid subsets respectively, which are stable
under the action of SLy(Z).

A pair (z,y) € OF is said to be primitive if ged(z,y) = 1. Any 7 € Py(C,) can be
written in projective coordinates as 7 = (7 : T2), where (71, 72) € O%F is primitive. With
this convention, the sets H~" and 75" can be described as
Hs" = {(m : 72) such that ord,(ar; — bry) < n, for all primitive (a,b) € Z2},

41 g
4D H5" = {(m1 : 72) such that ord,(ar; — bry) < n, for all primitive (a,b) € Z2}.

2.3. The winding cocycle. We now define the winding cocycle, which gives a class
Jw € HY(I', A/CX),

appearing in Theorem B. The cocycle J,, is obtained by taking suitable infinite products of
cross-ratios. Recall that for any four points p1, p2, p3, ps in P'(C,), using the usual conven-
tion when some of the points are oo, the cross-ratio is defined by

P3 —DP1 Pa— P2
(42) (p1, P23 P3,D4) = - ,
Ps — P2 Psa— D1

and is invariant under the action of GL5(Q,) on all four points simultaneously.

The definition of J,, depends on a choice of admissible base points £ = (§,, &) € Hp X H,
whose class in H' (I, A% /C) will turn out to be independent of this choice (cf. Lemma .
The pair £ = (§,, ) is said to be admissible if:

e & € M., does not lie on any geodesic in the I'-orbit of [0, o],
* &, € H, lies in the affinoid #;° of (41).

Since the non-admissible points have £, contained in a countable union of sets of measure
zero, the existence of admissible base points is apparent.

Remark 2.4. For computational purposes, it may be desirable to dispose of explicit choices
for &.. For instance, let £ be the root of a primitive integral binary quadratic form [a, b, c|
of discriminant A := b? — 4ac < 0 for which

(1) the prime p is inert in the imaginary quadratic order of discriminant A,
(2) the class of [a, b, c] is of order > 2 in the class group attached to A.

Letting {o, € Hoo and &, € H,, be the complex and p-adic root of the same binary quadratic
form obtained by choosing embeddings of Q({) in C, and C respectively, it can be shown
that the pair (¢, £~) is admissible. Since no use will be made of this fact in this paper, its
proof is omitted.

The determinant of a pair (r, s) of distinct elements of P1(Q) is ad — bc, where r = a/b
and s = ¢/d are expressions for r and s as fractions in lowest terms, adopting the usual
convention that co = 1/0. It is an integer that is well-defined up to sign, hence shall always
be normalised to be positive. If (r, s) and (1, s’) are [-equivalent, then their determinants
equal up to multiplication by a power of p. Let ¥ denote the I'-orbit of the pair (0, c0), and
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let X(™) C X be the subset of pairs (r, s) with ord, (det(r, s)) = m. It is not hard to see that
»(™) is non-empty for all m > 0 and that

(43) Y = U (m).
m=0
Choose an admissible base point { = (,, {~ ), and define
(49 B = T (s o) 6nes]
(r,s) €X

where the exponent [, s] - [{s, Vx| denotes the topological intersection of these two hy-
perbolic geodesic segments on the Poincaré upper half-plane.

Proposition 2.5. For each v € T, the infinite product defining JS(v) converges to a rigid
analytic function on H,, and it satisfies a cocycle condition modulo scalars, namely

(45) JS(1172) = J5(n) x 71 J5(2)  (mod C).

Proof. Observe first that I', := SLy(Z) acts on the set X" by Mébius transformations, and
that there are finitely many orbits for this action:

N = To.(ry,s1) U To-(ra,s9) U oo U Ty-(re,my).
But the cardinality of the set
{a € T'; such that [ar, as] - [{x, Vo] = £1}

is equal to the number of intersection points between the images of the geodesics [r, s] and
[£oos Y€oo) in the quotient SLy(Z)\ Heo. Since this number is finite, it follows that the product

Ji,m(V) = H (r,s;ng)[ns]-[éooqgoo]
(r,s)ex(m)

has finitely many factors # 1, so it is a rational function of z. To prove convergence of
To ) =[] J5m()
m=0

as arigid meromorphic function of z € ’HE” it suffices to show that the restriction of Jg’m ()
to ’HE” converges uniformly to 1 as m — oo. To see this, write = a/band s = ¢/d in
lowest terms as above, let z := (29 : 21) and §, = (& : &) be primitive homogenous
coordinates in Oc, for z and &, and note that

(r,8:8p,2) = 1—(1r,&:s,2)
_ (ad — be) ) (&120 — &o21)

(§1c = &od) (b2 — az)
It follows from the definitions of #~” and H>" in that
‘ (Tv 83 éIH Z) - 1| < pnfm
when z € H5" and (r,s) € $™). Therefore, the infinite product defining J§(z) converges

absolutely and uniformly on affinoid subsets of H,,. The cocycle condition for .J§ modulo
scalars now follows from a direct calculation. U
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The following proposition asserts that the choice of admissible base point ¢ that went into
the definition of this cocycle does not affect its class in cohomology.

Proposition 2.6. The class of J§, in H'(I', A* /C ), denoted .J,,, does not depend on the choice
of admissible base point £ that was made to define it.

Proof. The requirement that §, € HEO implies that
(r,5:6p,2) = (r,81§,,2)  (mod OF)

for any other choice of {, € ’HEO, and hence changing &, to §, does not affect the cocycle in
ZHT, A /CX). As for replacing £, by £.,, a direct calculation reveals that the associated
cocycles differ by the coboundary dF’, where ' € A* is defined by

F(z) = H (r, 5: 1/7’ 2)[?“78]{500,&!,0] '
(r,s)ex

0

2.4. Hecke operators on rigid cocycles. Our goal is to investigate generating series con-
structed from the sequence 7,,J,, for all n > 1 of Hecke translates of the winding cocycle
Jy, constructed above. We now briefly recall the definition of the Hecke operators 7;,.

These Hecke operators are defined in terms of relevant coset representatives. For all
n > 1, choose a finite set I',, such that

J Tal = || T

aEM,(Z) €Dy
det(a)=n

For p { n, one may choose the usual set of representatives I',, = M,, defined in (26). On the
other hand, when n = p" we may take

= (00

Following Shimura [[Shi, § 8.3] we describe the action of the Hecke operators T}, on H!(T', A)
for any multiplicative ['-module A. Let v € I, then for any ~,, € [',,,
Yoy =7, forsomey €' v, €T,.
Suppose J is in Z*(T', A), then one defines
(T D)) = [T - 7()
RGISIED

where the involution (—)* is defined by a* = det(«) - a~!. It can be checked that with
these definitions, 7},J defines an element in Z'(I", A), whose equivalence class in group
cohomology does not depend on the choice of coset representatives I',,.

There are also two involutions W, and W, determined by the matrices

() )

which lie in the normaliser of I in GL2(Q). The action of these involutions on the cohomol-
ogy class of the winding cocycle are easily described, as in the following lemma.
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Lemma 2.7. The cohomology class defined by the winding cocycle J,, has eigenvalue —1 for
the involution W, and eigenvalue +1 for W,

Proof. The action of W, on the winding cocycle JS with respect to some choice of base
point { = ({, &) is defined by

(46) Wodi)() = (5.%) - Jo(v) = ] (rsig—z)ieliomresd
(r,s)ex

(47) = H (—7", —S; _€p7 2)7[774775]'[75;7*@]
(r,s)eEX

(48) — H (_7"’ _S; _fp’ Z)—[—T,—S]{—é;,v(—f;)]
(r,s)eX

The second equality is justified by the fact that the map a — —a defines an orientation
reversing diffeomorphism from the upper half plane to itself, causing the sign of the in-
tersection in the exponent to change. To obtain our conclusion, note that it is clear that
(r,s) = (—r, —s) defines a bijection on ¥, so we obtain the equality

WaoJS = (J§)™!

where ¢’ = (=&, —¢,) is a different choice of base point. By Proposition [2.6the cohomol-
ogy class of the winding cocycle is independent of the choice of base point &, so that the
result follows. The statement about ¥, is proved similarly. O

2.5. Lifting the winding cocycle. As a preamble to the explicit determination of the RM
values of the cocycles T, .J,,, we first discuss how to lift their restrictions to SLy(Z). Consider
the natural diagram

HY(T, A*/C)

l res

H'(SLy(Z), C} ) — H(SLu(Z), A) —= H'(SLy(Z), A* /C; ) —~ H*(SLs(2),C})

where the vertical arrow is restriction to the natural subgroup I'; := SLy(Z) of I, which is
the stabiliser of the standard vertex v, in the Bruhat-Tits tree. Whereas the cocycles 7;,.J,,
need not admit a lift to H'(T", A*), their restrictions to I', do admit a lift

(T Jw)® € H'(SLy(Z), A%),
by the triviality of H*(SLy(Z), C)). Since H'(SLy(Z),C)) is a finite group of order at most
12, this lift is unique up to torsion. We start by giving an explicit description of (7,,.J,,)°.

For each pair (7, s) define functions ¢, ;(%) by expressing r = a/band s = ¢/d as fractions
in lowest terms, in such a way that ad — bc > 0, and setting

(49) trs(z) = bz—a

Cdz—c
The function ¢, (=) depends only on the pair (7, s) and its divisor is equal to (1) — (s). Hence
(50) trs(2)/trs(&p) = (1, 8:&p, 2)

Observe that the constant ¢, ,(&,) of proportionality lies in Oép, since &, lies in "HEO.
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Lemma 2.8. For all v € Matyys(Z) with det(y) > 0 and all (r, s) € P1(Q)?,
do
tyrns(72) = d trs(2),
for some positive divisors dy, dy of det(7y). In particular, t.,, ,s(v2) = t,s(2) when~y € SLy(Z).

Proof. Let r = a/b in lowest terms, so that au + bt = 1 for some u,v € Z. We have
(51) yr = %, where = (é, g)
and furthermore
ged(Aa + Bb,Ca+ Db) | (Aa+ Bb)(Dt — Cu) + (Ca + Db)(Au — Bt)
= AD — BC = det(7).
This implies that up to some divisor +d; of det(~), the fraction in is in lowest terms,
and analogously we find a divisor +ds for s. Furthermore,

(Aa+ Bb)(Cc+ Dd) — (Ca+ Db)(Ac+ Bd) = (AD — BC)(ad — be) > 0
so that the quantity ds/d, is positive. U

We now give an explicit description of the lift (7},.J,,)°, where T,, is the Hecke operator
defined in § Since (73,J,,)° does not depend on the choice of &,, we will simplify our
notation and simply write ¢ for &.

Proposition 2.9. For all v € SLy(Z), the infinite product

[e o]

(T dw)®(7) = H (T dw)m (),

m=0

where the factors are deﬁned by
(T, J ) H H tros () [7“ 8]+ [€, Yy (7)€

Tn [SIP% (7’ S) eE(m)

converges to a rigid analytic function on H,, up to 12-th roots of unity, and defines an element
of H'(SLy(Z), A*/ p112), which is the unique lift of the restriction of T),.J,, to ', = SLo(Z).

Proof. For integers m > N + ord ( ) > 0, consider the restriction of (7,,J,,)5,(7) to the
affinoid H5". Suppose (r, s) € X" withr = a/band s = ¢/d in lowest terms. The fact that
ord,(ad — bc) m implies that the primitive vectors (a, b) and (c, d) in Z? are proportional
to each other modulo p™. Hence there exists v € Z for which

(a b) =v (C,d) —|—pm(€,f)
for some (e, f) € Z2. It follows that

If v, € M, and z € H=", then 7,2 € H5" with N’ = N + ord,,(n). The description of the
latter set given in shows that

fymz —e N
— c Oc,,
dypz — ¢ b Cr
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so that (T},.J,,)°, (7) is constant modulo p™ "', and its reduction defines a cocycle of SLy(Z)
valued in the trivial module (Z/p™ ¥'Z)*. Since the abelianisation of SLy(Z) is of order
12, it follows that

(Taduw)ia sy € iz (mod p™ ).

The convergence of the infinite product (up to 12 th roots of unity) follows. The rest of the
statement follows by definition of the Hecke action on cohomology. O

2.6. RM values of the winding cocycle. The main interest in the winding cocycle and
its Hecke translates 7},.J,, lies in their RM values, which we now investigate. Recall that if
7 € H, is an RM point, then we defined

Tndw|t] = (Tndw)*(v:)(1) € C,U{oo}.

We will now obtain an explicit formula for this quantity, using Proposition

First, we fix some notation. Suppose n is coprime to p, and choose M, (1) C M, as in
(26). Note that the condition (n, p) = 1 implies that

(52) || T = || T-6.-Th)
(7)

YnE€Mn dn €My (T

We also use the notation I := GLJ (Z[1/p]) for the group of invertible matrices with entries
in Z[1/p] and positive determinant, and let D and D be the subgroups of diagonal matrices
inI" and T" respectively. We have the following explicit formula for 7, J,,[7]:

Theorem 2.10. For all 7 € HY, and for alln > 1 such that (n,p) = 1,

(53) T.Julrl= ] [ w*t.
0n€Mn(T) wel's, T
vp(w)=0

Proof. We start by choosing a set of coset representatives I, for the Hecke operator 7;, that
is more convenient for our purposes than the standard choice M,,: For every 6, in M, (7),
there is an integer f such that the stabiliser subgroup I'[4,,7] is generated modulo torsion
by the matrix 6,775 1. Now choose

(54) o= || {60 6uver - 67{ ')
OnEMnp(T)

which is a set of coset representatives for 7,,. The Hecke action is independent of the choice
of representatives, and with this choice, we find

{ 77177’(7&)71 = Vour 1f7n = 5n S Mn(T)

YYe ()t = 1 otherwise,

where we recall that 75, , = 0,7/, ! is the automorph of the RM point §,,7. It now follows
from Proposition [2.9| that

T Jwlr] = H H tvoﬁw(5117.)[70,700}-[&%”75]

5n€Mn(7_) ’YEf/D
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where we used the fact that the map 7 — (70, yo0) gives a natural identification
/D= | =,
m=0

where as before ¥(™) C ¥ is the subset of pairs (r, s) with ord, (det(r, s)) = m.

Since (n,p) = 1, the stabiliser subgroup I'[0,,7] is contained in SLy(Z), and it follows
from Lemma that the quantity ¢, (0,7) only depends on the double coset of v in
fy(;znT\F /D. As a consequence, a similar unfolding argument as in Lemma implies that

A7'+1ﬂ

.o = ] I1 £ 000 (8 7) Zre210701 1, 61

On €My (T) vyE F[(Snﬂ\f‘/D

— H H £0 00 (8, 7)D107001 (007" 007)

6nEMn(T) bAS F[(Snﬂ\f‘/b

Consider f‘prim cT, consisting of the elements whose two columns are primitive vectors
in Z%. Clearly, each coset in I'/D has a unique primitive representative, and hence the
natural inclusion I',,/ & 1 C I'/ D is a bijection. Furthermore, if 7 is primitive, then

t0 00 (0nT) =716,
Now observe the equality of sets
(v 10,7 : v €Tpim/ £1} = {w € T6,7 : vy(w) =0},
which allows us to rewrite the above expression as

(55) Tan [T] = H H (,y—l(snT)[0700].(7715n7/77715n7_)

on€ My (T) S F[(Sn'r]\f‘prim

(56) = H H w000l (' w).

On€Mn(T)  weld,r
vp(w) =0

g

2.7. Diagonal restrictions: the incoherent case. Finally, we return to the incoherent
case of the diagonal restriction of the p-adic family of Hilbert Eisenstein series. Recall that
we showed that when p is inert in F', the diagonal restriction G(¢)) vanishes identically,
and the first order derivative G (1) is an overconvergent form of weight 2 and tame level
1. We are now ready to prove Theorem B from the introduction:

Theorem 2.11. For any odd function 1) on C1(D),

57) G (V)ora = L (Fr10,0) 23" log, (Nm((T,1,)[A)) o™

n=1

Proof. Note that all Fourier coefficients are linear in the character 1, so it suffices to prove
this for the odd indicator function of the class C attached to an RM point 7, which takes
values 1 and —1 on C and C*, and 0 elsewhere. Let 7 be an RM point in RM(C).

Suppose first that n is not divisible by p. Define the map

5,7 — C, : w — log,, (a(w))
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sending an RM point w to the p-adic logarithm of the leading coefficient of any quadratic
form whose prime-to-p discriminant is n2 D, and whose stable root is w. The integer a(w) is
only defined up to powers of p, but its logarithm is well-defined. By Lemmal(l.8|and Theorem
we obtain the identities

(58) log,(Nm((T,,J.,)[Ay))) = > Y [0,00] - (w', w) - log, (Nm(w))
On€EMn(T) weldyr
vp(w)=0

(59) = -2 > > (0,00 (w'w)-log, (a(w))
6n€Mn(7)  wels,T
vp(w)=0
where the last equality is justified by the obvious relations
[07 OO} ) (w/7 w) = _[Oa OO] ’ (_]‘/wla —1/11))

(60) log, (Nm(w)) = —log, (a(w)) +log, (a(~1/w)).

The next step is to rewrite the inner sum of (59). First observe that its index set is

lim X,,(0,), where  X,,,(0,) := {w € T,7 : v,(w) =0, v,(disc(w)) < 2m}.

m—r0o0

For any w € X,,,(0,,) we let a, b, ¢ be the the unique integers such that

e the stable root of az? + bx + ¢ = 0 is w,
e b? — dac = n*p?*™ = D, where v, (disc(w)) = 2m — 2k,

Define 1w = p*w, then 0 is the stable root of the equation az? + bp*x + cp** = 0. Since
vp(a) = 0 there exists a matrix M € Mj(Z) of determinant p*™ such that w = M, 7. This
means there is a unique d,m € M, (7) such that M belongs to the double coset

SLQ(Z) : 5pm : SLQ(Z)[(STLT]
We claim that the map w —— (w0, d,») defines a bijection
(61) Xn(6n) <— RM(p™,0,,7) \ RM(p™, 6,7),.

To prove this claim, note that the image is contained in RM(p™, §,,7), and p t a(w) = a(w).
To see that it is a bijection, note that the inverse map is given by

(10, 6pm ) = b - p~ (@),

In conclusion, shows that

2log, (Nm((T0Ju)[Ay])) = —4 lim > > 10,00 (w', w) - log, a(w)
Sn€Mn (1) WEXm(dn)
= —4 lim > [0,00] - (@, @) - log, a(w)

(ﬁ)’(snpm ) S RM(npm ,C)\RM(npm ,C)P

where the inner sum is the np™-th Fourier coefficient of G| (¢) by and Lemma|1.9]

It now follows that for all n that are prime to p, the nth Fourier coefficient of G’ (¢)ora
agrees with the corresponding coefficient on the right-hand side of (57). Because the Hecke
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action on the space H'(T', A*/ C,) of analytic theta-cocycles factors through the Hecke
algebra Ty (p) C End(M>(Tg(p)) acting faithfully on Ms(I'o(p)), the formal g-series

G i=L" =2 log,(Nm((T,Ju)[Ay)) ¢"

n=1

is a classical weight two modular form on I'y(p), for a uniquely determined constant L’ €
C,. Therefore the difference G’ (¢’)ora — G is an oldform in M5(I'y(p)), and therefore zero.
It follows that L” = L (F, ¢, 0), and hence that both sides of (57) coincide. O

3. THE TWISTED TRIPLE PRODUCT p-ADIC L-FUNCTION

We now turn to the proof of Theorem C of the introduction, which rests on a careful
analysis of the winding element ¢,, and winding cocycle .J,,, and on the decomposition of
the latter as a linear combination of the Dedekind-Rademacher cocycle Jpg and the elliptic
modular cocycles J}t.

3.1. The Schneider-Teitelbaum lift. The logarithmic derivative map embeds the multi-
plicative group H'(T", A*/C)) into the C,-vector space H'(T', A;), where A, denotes the
rigid analytic functions on H,, equipped with the “weight two action” of I'. Let

(62) U:={2€C,withl < |2z| <p} CH,

denote the standard annulus, whose stabiliser in I" is equal to I'g(p). The p-adic annular
residue w +— resy(w), as described for instance in [Sch, §II] or [Te], determines a I'y(p)-
equivariant map

resy : ./42 — Cp,

with [y (p) acting trivially on the target.

Theorem 3.1. The linear map
resy 1 H'(T', Ay) — H'(To(p), C,)

induced by the p-adic annular residue is a surjection of C,-vector spaces. Its kernel is one-
dimensional and generated by the cocycle dlogJ iy
The proof of this assertion is given in [DV2] § 3]. It rests on the construction of an explicit
inverse to the residue map, referred to as the Schneider—Teitelbaum lift:
ST : H'(Ty(p),C,) — H'(T', A3)/C,, - dlogJuniv-
There is also a multiplicative variant, the so-called multiplicative Schneider—Teitelbaum lift
(63) ST* : H'(To(p), Z) — H'(T, A*/C)/ T

of [DV2 § 3], which fits into the commutative square

(To(p), Z) —5 HY(T, A* /C}) /T2

univ
[\ dlog l/

H* 2)
HY(To(p), C,) —2= HY(T', A3)/C, - dlog Jumi.




This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance
improvements, or any corrections. The Version of Record is available online at:
http://dx.doi.org/10.1007/s00208-020-02086-2

30 HENRI DARMON, ALICE POZZI AND JAN VONK

The multiplicative Schneider-Teitelbaum lift leads to the construction of various explicit
rigid analytic theta-cocycles, as described in the introduction and in [DV2, § 3], namely the
Dedekind-Rademacher cocycle Jpr := ST*(¢pr) attached to the Dedekind—-Rademacher
homomorphism, and the elliptic modular cocycles J?E = ST~ (gojjf) attached to the real and
imaginary periods of weight two cusp forms on I'y(p).

Remark 3.2. Although the theta-cocycles Jpr and in are only defined up to multiples of
Junivs the RM values of the latter are given by

(64) Juniv [7—] =&,

where ¢, is the fundamental unit of the order attached to 7 (cf. [DV2, §3]). Since this
quantity depends only on the discriminant of 7 rather than on 7 itself, it follows that

(65) Juniv[Ay] = 1
for any odd function ¢, and hence that the RM values Jpr[A,] and J;[ [Ay] are well-defined.

3.2. The winding element and the winding cocycle. Recall that the winding element g,,
is the class of the geodesic path from 0 to co in the homology of X (p) relative to the cusps,
and define

(66) ow:Top) —Z, 7 (9w 7)),

where (, ) denotes the intersection pairing of (6)

Hl(Xo(p);{0,00},Z) X H1<Yb<p),2) — Z

Proposition 3.3. The winding cocycle .J,, is the image of the homomorphism y,, under the

multiplicative Schneider—Teitelbaum lift of (63):
Jw = Lir(2¢u)-

Proof. Recall the standard annulus U of having I'y(p) as its stabiliser in I'. The inverse
of the Schneider-Teitelbaum lift takes a cocycle J € H'(I', A*/C) to the homomorphism

¢5:To(p) — Z,  ¢s(7) :=resy(dlog J (7)),
where resy; is the p-adic annular residue attached to U. Consider the infinite product expres-
sion of Propositionfor J., and observe that the terms dlog J, ,,,(7) for m > 1 contribute
nothing to the annular residue at U: indeed, two cusps r, s for which det(r, s) = p™ with
m > 1 necessarily belong to the same connected affinoid component of the complement of
U, and hence resy (dlogt, s(2)) = 0 for such pairs. On the other hand,
1 ifr¢zZ,sez,
-1 ifrez,s¢ZzZ,
Hence, any pair (r,s) for which the residue of dlogt, s(z) is equal to 1 is of the form
(a0, aco). It follows that

resy(dlog rs(7)) = Y (+D)[ad,acc] - [€,7¢]+ D (=1)[aco,a0] - [¢, ¥¢]

a€lg(p) a€ly(p)

= 9 Z [0, acc] - [€,~E].

a€lo(p)

resy (dlogt, s(2)) =
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This last expression equals twice the intersection product of the relative homology class g,,
with the class of v in H;(Ys(p), Z). The proposition follows. d

3.3. Spectral expansion of the winding element. The following lemma describes the de-
composition of the cohomology class ,, relative to the Q- basis (¢pr, gojf) for H'(T'y(p), Q)

described in (19) and (17).

Lemma 3.4. The homomorphism ,, is equal to

1 _
@w:ﬁ'@DR + ZLalg(fvl)'SOfv
f

where the sum runs over a basis of normalised eigenforms for Sa(I'o(p)),
1 oo
Lag(f,1) == or / W? € Ky
7 Jo
is the “algebraic part” of the special value L(f, 1), and
_ I
©;(y) = F/ wy € 0Of
f 7z
is the minus class in H'(Lo(p), Oy) attached to f, normalised by the periods ij chosen in (17).

Proof. Recall the canonical identifications
H, (Yo(p); {0, 00}, C) — He (Yo(p))” — Har(Yo(p)),

where H! denotes the deRham cohomology with compact support and the superscript V
denotes the C-linear dual. The first identification arises from the integration pairing and
the second from Poincaré duality. Let GG, be the class in H}(Yy(p)) corresponding to ¢,
under this identification, which is characterised by the equivalent conditions

(67) / G = (1,0s),  forally € Hy(Yo(p), Z),
gl
(68) (Gy,w) = /Oow, for allw € H} (Yo(p)).
0

Let ap and ozf € C be the coordinates of G,, relative to the basis of H(Yy(p)) consisting
of wg;s and of the classes w? andw; as f ranges over the normalised weight two eigenforms
on I'y(p):

(69) Guw = aqwis + »_(Afwf + Ajwy).
f

Let v € Hi(Yo(p),Z) be the class attached to the standard (upper-triangular) parabolic
element of ['y(p), which is orthogonal to the cuspidal classes w;f and w;. Applying to
this class and substituting for the expansion of G, one obtains

1

(70) 2mi(p—1) -y =1 andhence ap= = 1)
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The class G, — apwr;s belongs to Hiy (Xo(p)) and can therefore be paired against any el-
ement of the de Rham cohomology of Xy (p). Applying with w = w; and substituting

for once again, yields
(71) — Qfoz}r = /0 wy =0, andhence a;{ = 0.

The same calculation with w = w;{ reveals that

oo

(72) Qf@;:A w;f, and hence a;:(Qf)l/O w}r:Lalg(f,l)(QJI)’l.

We have thus obtained
1

7 “ T i1

- WEis T Z Lalg(fa 1) : (Q;)_lw;7
!

where the sum is taken over a basis of eigenforms for f. The lemma now follows from
and the definitions in and (17). O

3.4. Spectral decomposition: the coherent case. We now turn to the proof of Part 1 of
Theorem C of the introduction, concerning the expansion of the modular form G () as a
linear combination of eigenforms in Ms(T'o(p)).

Theorem 3.5. The modular form G(v) is equal to
Gi(¥) = Ao~ EY + 3 - f,
f

where the sum runs over the basis of normalised eigenforms f in Sa(I'o(p)), and

—2

M=o wor(ge), Ay = —2Lag(f, 1) - 5 (9)-

Proof. By Theorem|1.12] the generating series G (1)) is equal to

G1(¢) = LP(F7w7 0) - 2 Z Sow(Tngw)qn
n=1

Lemma [3.4] implies the n-th Fourier coefficient in this expression is equal to

1 ,
u(Tngy) = 1 oor(Tugy) + > Lag(f:1) - 7 (Tugy)
f
1 _
= =7 vor(9)an(E) + 3 Lag(f. Dy (90)an():
f
The theorem follows by substituting this into the g-expansion formula for G (). O

Remark: The coefficient A in the above decomposition can be understood as the special
value of a twisted triple product L-function attached to f and the family of Hilbert modular
Eisenstein series E(1,1)).
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As an illustration of this result, consider the unique unramified odd character 1/ of dis-
criminant 12, which is the odd genus character attached to the factorisation 12 = (—3)(—4).
Let p = 23, which is split in Q(v/12), then we compute

G1(1) = ao + 8¢ + 8¢* + 8¢° + 16¢° + 8¢° + 16¢"° + . ..

As before, we express (G1(?)) in a basis of normalised eigenforms, and obtain

le):é.E(%) = (75 4 . 75/_4-15)

11 2 5

where 3 = (1 + /5)/2 is the golden ratio, and f; = ¢ — 8¢® + ... and its conjugate f,
are the newforms of weight 2 and level 23. In light of the above result, we note that the
algebraic part of the L-value of the modular surface attached to the pair { f1, f>} is equal to
1/11, which is consistent with the fact that the trace of (73 —4)/5 is —3.

3.5. Spectral decomposition: the incoherent case. The following direct corollary of
Lemma [3.4] expresses the theta-cocycle .J,, as a linear combination of Hecke eigenvectors.

Lemma 3.6. The rigid analytic theta cocycle J,, satisfies

2
Ty = el Jor + Y 2Lag(f,1)-J;  (mod JZ,),
f

where the sum runs over a basis of normalised eigenforms for So(Iy(p)), and additive notation
is used to denote the group operation in H'(I', A /C)) ® K.
Proof. This follows by applying the Schneider-Teitelbaum lift to Lemma U

We are now ready to prove part (2) of Theorem C.

Theorem 3.7. The modular form G| (¢))ora is equal to
Gi®)ora = Ny B + D N+ f
f
where the coefficients Ay and \; are given by
X, = p_T41 og, (Nm(Jor[Ay]), N = —4Lag(f, 1) - log, (Nm(J} [A,])).
Proof. By Theorem|[2.11] the generating series G (¢)orq is equal to

Gy (W)ora = Ly(F.97,0) =2 log,(Nm((T,Ju)[Ay]))q"
n=1
By Lemma the n-th Fourier coefficient A, := —2log,(Nm((7},.J,)[Ay])) in this ¢-
expansion is equal to

An = ])—41 logp(Nm((T JDR A¢ —4 ZLaIg fa 1ng(Nm((TnJ]:>[Aw]>>

—da,(E3”) )
= b— 1 . lng(Nm(JDR[Aw])) - 4 Z Lalg(f, 1) : 1ogp(Nm(Jf [Al/)]))an(f)y
!
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where the sum runs over a basis of normalised eigenforms for S5(I'y(p)). The result follows
in exactly the same way as in the proof of Theorem O

Remark 3.8. Recall from [DV2| § 3] that

JorlAy] € (Oxl1/p)* ©Q

is conjectured to be the Gross—Stark unit attached to the RM divisor A, If f is a normalised
eigenform on I'(p) having integer Fourier coefficients, so that it corresponds to a modular
elliptic curve 'y via the Eichler-Shimura construction, [DV2, § 3] likewise predicts that the
Stark—Heegner points

THAG € Ep(H),  Jr[A] € Ey(H)

are global points on . The global point JJ?L [Ay] is conjecturally fixed by complex conju-
gation, i.e., is defined over the class field in the wide sense, while Jf_ [Ay] is expected to be
in the minus eigenspace for complex conjugation. The coefficient A; in the above decompo-
sition can be understood as the special value of a twisted triple product L-function attached
to f and the family of Hilbert modular Eisenstein series Ej(1,1). It is notable that these
coefficients involve the logarithms of the Stark-Heegner points attached to odd modular
symbols, which are conjecturally in the minus part for complex conjugation.

3.6. Examples. Using Lemma we may efficiently compute the diagonal restrictions
G1(¢) and the first derivative G| (¢)). This will be described in a more general setting in
[LV]. The algorithms of Lauder [Lal] can then be used to compute the ordinary projection
G (¥)ora- Expressing these classical modular forms of weight two and level p as linear
combinations of eigenforms leads to the following numerical illustrations of Theorem C.

Example 1. When p = 17, the space M(I'y(p)) is two-dimensional and is spanned by the

Eisenstein series Eém and the normalised newform f attached to the elliptic curve

E:ytay+y=2>—2*—z—-14

of rank 0 over Q, whose associated central L-value is L, (f,1) = 1/4.

Table B presents the coefficients of the spectral decompositions of G1(¢) and G’ (¢)ora
for all genus characters associated to a factorisation D = D, - Dy with D < 100, where the
labelling is chosen such that (]13—71) = — (11)—72) = 1 in the incoherent case. The coefficients ),
and A are rational numbers, and were computed exactly. The coefficients \{, and /\’f were
computed numerically up to 30 digits of 17-adic precision. We note that the exceptional

vanishing for D = 76 is explained by Remark [1.15]

Example 2. We now turn to the attractive case of elliptic curves of conductor 37, where
there are two isogeny classes with different ranks:

37a ET: y*+y = 2*—2z
37b E-: v»+y = 23422 -232-50
We denote f* and f~ for the associated modular forms, which span S5(I'y(37)). The elliptic

curve £ has non-split multiplicative reduction at 37, and rank 1 over Q, whereas £~ has
split multiplicative reduction, and rank 0 over Q. We also have L,,(f~,1) = 1/3.
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D| Di-Dy [ (B) X Ar| X Ny
12 (—4)(=3) | -1 0 o 1og(4—17m) log; (3-+v/=T,~5—4y=1)
2| (=3)(-7) | 1] 2 -2
24| (=8)(=3) | =1 | 0 0] —2log 3—21%7) 2logE(—22+g7m,181+§;*m>
28| (=4)(=7) | =1 | 0 0| 3log 4_IF) log g (3+v/~1,~5-4v~1)
33 (=3)(-11)| 1| 2 -2
4] (—4)(~11)| -1 | 0 0| 3log 4‘;5) logp (34+v/=T.—5-4y=T)
56| (=8)(=7) | —1 | 0 0| 6log (222 QIOgE(_22+é7\/j2,181+§’;1‘/j2>
57[(=19)(=3) | =1 | 0 0| 2log (552 2log (vV=T9-3,—v/~19-11)
69| (-23)(=3)| 1| 6 2
76| (-4)(-19)| 1] 0 0| o0 0
(== 1] 6 2
88 | (—8)(~11)| =1 | 0 0 610g(3_21‘7/j2> —zlogE(—z’“g?m,lSHg’;*m)
93| (=3)(=31)| 1| 6 2

TABLE B. The spectral decompositions of G(¢) and G’ (¢)orqg Wwhen p = 17.

It turns out that the modular form G (¢) vanishes systematically when 1) is a genus char-
acter, in the coherent as well as in the incoherent cases. In the coherent setting, this “excep-
tional vanishing” of G;(¢)) = 0 can be explained by the presence of an exceptional zero of
the associated p-adic L-function, as described in Remark It follows from Proposition
that G| (1) is also overconvergent in the coherent setting. Our numerical experiments
found in all these cases that G (1))oq is @ nonzero multiple of f*. We expect the constant
of proportionality to be a rational multiple of the p-adic height of a Mordell-Weil generator
of E*(Q), but have not verified this.

Table |C| shows the coefficients of the spectral decompositions of G| (1))rq for all genus
characters associated to the factorisation D = D; - Dy with D < 100 and (D/p) = —1,
with the ordering of D; and D; as in the previous example. The coefficients A and A, were
computed numerically up to 20 digits of 37-adic precision.

We note that the vanishing of /\’f, for D = 69 and 93 in Table|C|can be accounted for by

the fact that the twists of £~ by the odd quadratic characters of conductor 23 and 31 have
analytic rank equal to 2.
Example 3. Finally, we illustrate how Theorems B and C do not only apply to genus
characters, by considering ) = 316 which has narrow class number 6. Let ¢ be the odd
character which takes value 1 on the trivial class, value —1 on the class of 0, and zero
elsewhere. Setting p = 11, we compute that G4 (1)) = 0 and that

G (¥)g = N B + N, f,

where f is the modular form attached to the elliptic curve X,(11) considered also in the
introduction. The coefficients \{, and Xf were calculated to 200 digits of 11-adic precision,
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D | Di-Dy | A Now N
24| (=3)(=8) || Slog (HIY=3) 0 Elogp- (I, =2HeV=3
56 | (—7)(=8) | Slog (H2T) 0 Slogp (2T 1543yT
57 | (=3)(=19) | Slog (H¥=2) 0 Zlogp _5,7—9+£¢?3>
8 1+7v/=3
69 | (—3)(—23) | Slog (1= 0 0
76 | (—4)(-19) | dlog (ML) 0 Slogg- (-3, =SV
88 | (—11)(—8) | £log 7+§\.3/7—11> 0 Slogp- 7657158\/711’6871;)%/7711)
93 | (=3)(~31) | &log 13?{3) 0 0

TaBLE C. The spectral decompositions of G} (¢))orqa when p = 37.

and we found that

12
)‘6 = T logy; (u)

where v is the root of a sextic polynomial agx® + . . . +ayz + ag which generates the narrow

Hilbert class field of Q(1/316), and whose coefficients are given by

ag = 112

ap = 119 x —23684126

as = 11* x 38858607

a3 = 118 x 1575649852
as = 11 x 38858607

as = 1170 x —23684126

ag = 1132

The constant \; was slightly more difficult to identify because of the large height of the
polynomials involved. Using the efficient implementation in Sage by Guitart—-Masdeu
[GM]] of the polynomial time algorithm of [DP] for computing Stark-Heegner points on
elliptic curves, Marc Masdeu verified that

1
)\/f = m logn (Pw) (mod 11200),

where P, = (x,y) is a global point on X(11) defined over the narrow Hilbert class field of
Q(+/316), whose z-coordinate satisfies the polynomial

72456194397209968278659172637696x3 — 1754759625381093482118945975612802>
—183621530533243510414048237467536x + 103446014224118434016969398063313 = 0

The authors are grateful to Marc Masdeu for his help with this calculation.
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