
Department: Education
Editors: Beatriz Sousa Santos, bss@ua.pt and Ginger Alford, alfordg@smu.edu

Syntactic and Semantic Analysis
for Extended Feedback on
Computer Graphics Assignments

Carlos Andujar, Cristina R. Vijulie, and Àlvar Vinacua
ViRVIG - Universitat Politecnica de Catalunya - BarcelonaTech

Abstract—Modern Computer Graphics courses require students to complete assignments involving

computer programming. The evaluation of student programs, either by the student (self-assessment) or by

the instructors (grading) can take a considerable amount of time and does not scale well with large groups.

Interactive judges giving a pass/fail verdict do constitute a scalable solution, but they only provide

feedback on output correctness. In this paper we present a tool to provide extensive feedback on student

submissions. The feedback is based both on checking the output against test sets, as well as on syntactic

and semantic analysis of the code. These analyses are performed through a set of code features and

instructor-defined rubrics. The tool is built with Python and supports shader programs written in GLSL. Our

experiments demonstrate that the tool provides extensive feedback that can be useful to support

self-assessment, facilitate grading and identify frequent programming mistakes.

COMPUTER PROGRAMMING EXERCISES are a
keystone in current Computer Science and Com-
puter Graphics (CG) courses [1]. Most tradi-
tional courses [2], [3] and Massive Open Online
Courses (MOOCs) base their student training and
evaluation on programming assignments. How-
ever, a feedback-rich evaluation of student work
takes a considerable amount of time.

Most programming exercises require students
to construct code. Automatic judges [4] can run
their code using instructor-provided test data to
provide a pass/fail verdict. These judges have
been shown to be scalable for MOOCs [5]; when
run in real time, iterations could occur rapidly,
providing dynamic feedback to the student. Un-

fortunately, they provide only a binary output on
each individual exercise and thus offer limited
feedback to students.

Artificial Intelligence (AI) techniques have
been proposed to learn how instructors grade
a problem. Instructors first evaluate a sample
set of student responses to create a training
set. The system then creates a model reflect-
ing the instructor’s grading decisions, which can
be used to grade the work of other students.
These techniques are increasingly used to support
assessment of e.g. essays due to its efficiency,
consistency and immediate feedback. A major
issue is the opacity of the applied rules, which
prevent their use for making final decisions on

IT Professional Published by the IEEE Computer Society © 2020 IEEE 1

Department Head

student performance.
In this paper we present a tool to provide

feature-rich feedback on student submissions. We
focus on shader programming exercises in CG
courses (see Figure 1 and Listing 1). In contrast
to other evaluation solutions, assessment is based
both on checking the output against test sets, and
through a set of instructor-defined rubrics based
on syntactic and semantic analysis of the code.

Figure 1. One exercise involving shader programming.

// Vertex shader
in vec3 vertex, normal;
out vec3 pos, norm;
uniform mat3 normalMat;
uniform mat4 modelViewMat;
uniform mat4 modelViewProjectionMat;

void main() {
norm = normalMat * normal;
pos = (modelViewMat * vec4(vertex, 1)).xyz;
gl_Position = modelViewProjectionMat *

vec4(vertex, 1.0);
}

// Fragment shader
in vec3 pos, norm;
uniform int n;
void main() {
fragColor = vec4(0);
vec3 N = normalize(norm);
vec3 V = normalize(-pos);
for (int i=0; i<n; ++i) { // for each light
vec3 light = vec3(cos(2*PI*i/n),

sin(2*PI*i/n), 0);
vec3 L = normalize(light.xyz - pos);
fragColor += Phong(N, V, L);
}
}

Listing 1. One GLSL solution to the exercise in Figure 1.

The definition of Phong() is omitted for conciseness.

Rubrics can check, for example, whether some
particular function (e.g. normalize) is called or
not, and whether some particular operation (e.g.
moving the vertex position to eye space) is done.

Thanks to the semantic analysis, the tool is able
to track the coordinate space of variables repre-
senting 3D points and vectors, and thus detect
coordinate space inconsistencies.

A general assumption in this paper is that
exercises are written so that the output (for
a given input) is deterministic and fixed. This
means students must be provided with a CG
platform facilitating the description of the input
(3D models, cameras...) and the definition of
test sets. Modern CG courses already provide
students with programming frameworks [6], [7],
[8], [9]. In this paper we adopt the CG framework
proposed in [3]. The framework provides a simple
command-based language for describing a test
set such that a correct implementation should
produce the same image (up to rounding errors
or hardware specific rendering options) as the in-
structor reference implementation (see Figure 2).

Figure 2. Shader testing: the system runs the shaders to

get the output images under different test conditions. These

images are then compared to reference images.

Rubric characterization
We analyzed a large sample of manually-

graded exercises (about one thousand), looking
for instructor annotations. We classified the an-
notations according to different criteria.

Concerning the level of specificity, we con-
sider three types of issues. Some issues are spe-
cific to a particular exercise. These annotations
are highly unlikely to reoccur in other exercises
(e.g. “incorrect texture offset” in a parallax map-
ping exercise). Other issues are specific to a
family of exercises. For example, most lighting
models use the light vector, which is assumed to
be unit-length. An annotation such as “light vec-
tor not normalized” is likely to occur in different
lighting exercises. Finally, some issues apply to
any shader. For example, “gl_Position not written
in clip space”. The more general an issue is, the

2 IT Professional

more chances we can re-use the rubric code that
checks its occurrence.

Another criterion is the impact on output
correctness. Some errors cause wrong output
for all cases (e.g. “the light vector is not nor-
malized”) or for some specific cases (e.g. “this
only works for directional lights”). Some errors
might invalidate the output only on very specific
cases, and thus can be hard to catch via tests.
For example, “your code assumes non-negative
texture coordinates”. Other errors have no impact
on output correctness. This category includes a
large number of mistakes, like poor quality code,
redundant computations and unused variables.

We found annotations to be useful in all cases
above. However, we are specially interested in
errors with little or no impact on output correct-
ness, since a “pass” verdict for all test cases might
be mistakenly interpreted by the student as his
solution being “perfect”.

API design
A large part of the annotations above can

be computed automatically provided that a high-
level tool for syntactic and semantic analysis is
available. We propose a high-level Python API
able to recognize shading language elements such
as definitions, assignments, function calls and so
on. Our current prototype supports GLSL 3.3,
which includes Vertex Shaders (VS), Geometry
Shaders (GS) and Fragment Shaders (FS). We
provide below a quick summary of the API. See
the source code repository for further details.

Each rubric is essentially Python code com-
puting a description text plus a value. Two ex-
ample rubrics are shown in Listing 2. The first
rubric simply counts the number of calls to the
cross() function in the VS. The second one checks
for calls to the normalize() function with a
vec4 parameter.

Rubric 1
R("Calls to cross", vs.numCalls("cross"))

Rubric 2
R("Normalizing vec4", "vec4" in
vs.paramType("normalize"))

Listing 2. Rubric examples (Python code)

Rubrics can query parser data of the VS, GS
and FS through the parser objects vs, gs and fs.

API functions include an optional parameter to
specify the desired return type. The default is
string (actually a list of strings, one for each
occurrence). String return values allow for very
compact rubric code. We can e.g. check if the
normal attribute appears as parameter of a
normalize() call by simply writing:
"normal" in vs.param("normalize")

Conversely, parser objects allow for further
syntactical queries:
detecting nested loops
for p in vs.statements("for", True):
print(p.numStatements("for"))

We provide functions to check specific param-
eters of function calls. In the following examples,
we omit the parser object (e.g. “vs.”) for compact-
ness:
param("mix", 3)
3rd parameter of "mix" calls

This rubric checks if modelMatrix appears
on the right side of a product operation:
R("Wrong order in matrix product",
"modelMatrix" in vs.param("*",2))

Similarly, our API provides functions that
look for all appearances of specific variables,
functions, operators and statements. The follow-
ing rubrics check if some in variable is not used,
or some out variable is not assigned:
R("in var not used",
all([fs.numUses(v)>0 for v in vs.inNames()]))

R("out var not assigned",
all([vs.numAssignments(v)>0
for v in vs.outNames()]))

The API also offers functions that rely explic-
itly on the Abstract Syntax Tree (AST). For ex-
ample, the following rubric checks if a discard
statement is within a conditional block:
R("unconditional discard!",
any(fs.isDescendantOf("discard","if","body")))

Our API also supports coordinate space track-
ing (“object”, “world”, “eye”, “clip”) through
semantic analysis. This rubric checks that at some
moment the VS writes gl_Position in clip space:
R("gl_Position in wrong space",
"clip" not in vs.space("gl_Position"))

Space tracking is limited to expressions that
can be evaluated at parser time. Fortunately, trans-
formations are accomplished through predefined
uniform matrices, which simplifies this task.

May/June 2020 3

Department Head

API Implementation
We use ANTLR [10], an open-source parser

generator, and an open-source GLSL grammar
(https://github.com/labud/antlr4_convert) to gen-
erate both listener and visitor interfaces.

Listeners use a built-in AST walker that trig-
gers events at each grammar rule it encounters.
This makes it easy to implement basic features
(e.g. counting the number of calls to a certain
function) since we can extract information from
relevant nodes without visiting any children.

More complex rubrics require an explicit con-
trol of the AST traversal. We use visitors, which
let us visit children nodes explicitly. This makes
it possible to implement features that need in-
formation on the context of the whole program.
One example is inferring the coordinate space of
an expression. We keep track of each variable
declaration, assignment and its coordinate system
along each possible path that the program can
take.

API usage
Here we describe a potential workflow based

on our API. The workflow consists of three
main parts: testing, feature analysis and rubric
evaluation.

The testing step generates images comparing
the output of student shaders with that of instruc-
tor shaders.

The feature analysis step parses all student
submissions and extracts hundreds of syntax-
aware features such as number of function calls
to each predefined GLSL function (e.g. dot,
cross, normalize). This step might also use a
general rubric file looking for common mistakes
in shaders such as unused outputs or redundant
code. We consider a feature to be relevant if
it has some variance among submissions and it
has a significant impact on output correctness
(see below). The output is a short report with
detected relevant features. The idea is to provide
instructors with an a-priori overview of suspi-
cious features, so that they can quickly figure
out potential code problems. Instructors can then
turn some relevant features into problem-specific
rubrics with more clarifying comments, e.g. “the
light vector is not normalized before its use”.

The rubric evaluation step parses again all
student submissions, using those problem-specific

rubrics. The output includes detailed comments
and, whenever possible, highlighed code.

Finding relevant features
Figure 3 shows bar charts for a couple of

features on an exercise asking for a GS that
outputs four copies of each input triangle, one
for each quadrant of the viewport. Students were
advised to use NDC for translating the copies,
as (x,y) coordinates of NDC copies just differ
by ±0.5. Conversion from clip to NDC requires
dividing by the homogeneous coordinate w. In
this case, outliers in the number of .w accessors
corresponded to incorrect submissions or to sub-
missions performing the division multiple times,
e.g. once for each quadrant.

The bar chart on the number of EmitVertex()
also shows clear outliers. The natural solution
requires either one or four EmitVertex() calls,
depending on the number of loops used. Outliers
corresponded to wrong or poorly-factorized code.

Figure 3. Stacked bar charts for two features of an exercise

(about 80 submissions). Submissions with correct output

are shown in blue, and incorrect ones in red.

The potential impact of a given feature on
the pass/fail proportion can be evaluated through
a Pearson’s χ

2 test, which computes how likely
it is that any observed difference on these pro-
portions arises by chance. In other words, we
test whether population proportions are the same,
where populations are defined by submissions
sharing the same value for the feature. A sig-
nificant p-value suggests that the feature plays a
role in output correctness and thus it is potentially
useful as feedback about operational correctness.
On the other hand, features with equal pass/fail
proportions might still provide useful feedback
for output-independent issues such as efficiency
(e.g. overly complex code).

Features might reveal common mistakes when
solving a particular exercise, e.g. no access to

4 IT Professional

https://github.com/labud/antlr4_convert

the homogeneous coordinate (.w) in a shader that
requires a perspective division. The instructor can
decide to turn the feature into a rubric:

feature
R("Calls to .w", vs.numFieldSelectors("w"))

rubric
R("Accessing w coordinate was needed to "+
"perform the perspective division",
vs.numFieldSelectors("w") == 0)

The instructor might also decide a penalty:

-1 point for unnecessary loops
P("No loops are required in this exercise",
-1 if (fs.numStatements("for") > 0) else 0)

Feedback examples
Our system provides extensive feedback both

to instructors and students.
Figure 4 shows one possible web-based inter-

face to analyze a list of submissions. For large
groups, the analysis can be done on a submission
sample. The interface has four main parts. The
extracted features panel includes a table with
the relevant features extracted automatically from
the syntactic and semantic analysis of the source
code. The instructor can click on any feature
(e.g. calls to a particular GLSL function) to see
a bar chart with the feature value distribution.
Instructors can sort the table for example by p-
value to start analyzing those features likely to
impact output correctness. The submission list is
actually a table where rows correspond to student
submissions and columns indicate compile/link
results, test results (pass/fail) and the value for
all the features. A particular submission can be
further explored by clicking on it. The submission
results for different test cases are shown in the
test results panel. Its source code (VS, GS, FS)
and compile/link logs can be also reviewed in the
source code panel.

Currently, our approach when using this in-
terface is to analyze features one-by-one. The
bar chart already conveys important information
about the feature, and the p-value of the Pearson’s
χ

2 test might confirm a significant impact of
the feature on output correctness. Sometimes we
found unexpected features to play an important
role on output correctness. For example, in a
quantization exercise the use of loops indicated
an overly complex solution that was more prone
to errors. Some features reveal student shortcom-

Extracted features
Feature list Chart (selected feature)

Submission list
Feature valuesTest results

Test results (selected submission) Source code (selected submission)

Figure 4. Example of web-based interface to analyze

extracted features on a dithering FS. Arrows indicate that

panel data depends on the selected feature/submission.

Figure 5. Automatically generated comments.

ings. For example, in an exercise we found that
some students computed integer reminders using
a loop instead of using the modulo operator. In
this case, the feature was "number of loops", and
an inspection of the source code of a few samples
revealed the purpose of the loop.

Once a feature is confirmed to be worth
communicating to students, the instructor can
convert its Python code into a rubric with a more
descriptive comment. The source code panel in
the web-based interface (Figure 4) includes tabs
for feature and rubric code to facilitate this task.

All the information extracted from the final
rubrics on a submission can be made available
to the student. Furthermore, most rubrics refer
to specific code segments and thus descriptive
comments can be added automatically to specific
lines of the student-constructed code to further
facilitate finding their location in the code. Fig-
ure 5 shows one example of submission with

May/June 2020 5

Department Head

comments and highlighted code. Students are also
provided with the image comparing their output
with reference images.

Conclusions
From a pedagogical point of view, automatic

judges giving just a pass/fail output provide min-
imal feedback to students. On the one hand,
students with wrong submissions will get, at
most, a few test cases that lead to incorrect
output. Fortunately, the “fail” outcome is likely
to encourage students to try to fix the submission,
e.g. by comparing their code against a solution, so
they still have a chance to learn what was wrong.
On the other hand, students with functionally
correct code will just get a pass outcome, no
matter the code quality. Even worse, a “pass”
result might discourage students from comparing
against a valid solution, so their shader program-
ming mistakes are likely to persist in the future.

Our approach is not intended to replace man-
ual review, but to assist students and instructors
(through statistics on syntactical features, rubrics,
and automatically-generated code comments) in
quickly detecting both functionally-incorrect code
(through a test-based system comparing output
images) and poor-quality code (through syntacti-
cal analysis). As future work, we plan to explore
the integration of AI techniques on automatically-
detected and instructor-provided rubrics.

Repository
Source code for our shader analysis tool is
available in the following Git repository: https:
//gitrepos.virvig.eu/docencia/glcheck.

Acknowledgements
This work has been partially funded by the Span-
ish Ministry of Economy and Competitiveness
and FEDER Grant TIN2017-88515-C2-1-R.

REFERENCES

1. A. Toisoul, D. Rueckert, and B. Kainz, “Accessible GLSL

shader programming,” in Eurographics 2017 - Education Pa-

pers, Lyon, France, April 24-28, pp. 35–42, 2017.

2. M. Poženel, L. Fürst, and V. Mahnič, “Introduction of the auto-

mated assessment of homework assignments in a university-

level programming course,” in Information and Communication

Technology, Electronics and Microelectronics (MIPRO), 2015

38th International Convention on, pp. 761–766, IEEE, 2015.

3. C. Andújar, A. Chica, M. Fairén, and À. Vinacua, “Gl-socket: A

cg plugin-based framework for teaching and assessment,” in

EG 2018: education papers, pp. 25–32, European Association

for Computer Graphics (Eurographics), 2018.

4. J. Petit, O. Giménez, and S. Roura, “Jutge.org: An educational

programming judge,” in Proceedings of the 43rd ACM Tech-

nical Symposium on Computer Science Education, SIGCSE

’12, (New York, NY, USA), pp. 445–450, ACM, 2012.

5. A. Fox, D. A. Patterson, S. Joseph, and P. McCulloch,

“Magic: Massive automated grading in the cloud.,” in

CHANGEE/WAPLA/HybridEd@ EC-TEL, pp. 39–50, 2015.

6. J. R. Miller, “Using a software framework to enhance online

teaching of shader-based opengl,” in Proceedings of the 45th

ACM Technical Symposium on Computer Science Education,

SIGCSE ’14, pp. 603–608, 2014.

7. G. Reina, T. Müller, and T. Ertl, “Incorporating modern opengl

into computer graphics education,” IEEE Computer Graphics

and Applications, vol. 34, no. 4, pp. 16–21, 2014.

8. B. Bürgisser, D. Steiner, and R. Pajarola, “bRenderer: A Flexi-

ble Basis for a Modern Computer Graphics Curriculum,” in EG

2017 - Education Papers (J.-J. Bourdin and A. Shesh, eds.),

The Eurographics Association, 2017.

9. M. Thiesen, U. Reimers, K. Blom, and S. Beckhaus, “Shader-

school: a tutorial for shader programming,” in CGEMS: Com-

puter graphics educational materials source, p. 10, 01 2008.

10. T. J. Parr and R. W. Quong, “Antlr: A predicated-ll (k) parser

generator,” Software: Practice and Experience, vol. 25, no. 7,

pp. 789–810, 1995.

Carlos Andujar is associate professor at the Com-
puter Science Department of the Universitat Politecnica
de Catalunya - BarcelonaTech, and senior researcher at
the Research Center for Visualization, Virtual Reality and
Graphics Interaction, ViRVIG. His research interests include
3D modeling, Computer Graphics, and Virtual Reality. Con-
tact him at andujar@cs.upc.edu.

Cristina R. Vijulie is research assistant at the Com-
puter Science Department of the Universitat Politecnica de
Catalunya - BarcelonaTech. Her research interests include
Computer Graphics, Virtual Reality and Artificial Intelli-
gence. Contact her at vijulie@cs.upc.edu.

Àlvar Vinacua is associate professor at the Com-
puter Science Department of the Universitat Politecnica
de Catalunya - BarcelonaTech, and senior researcher at
the Research Center for Visualization, Virtual Reality and
Graphics Interaction, ViRVIG. His research interests include
Geometry Processing, 3D Modeling, Computer Graphics
and Virtual Reality. Contact him at alvar@cs.upc.edu.

6 IT Professional

https://gitrepos.virvig.eu/docencia/glcheck
https://gitrepos.virvig.eu/docencia/glcheck

	Rubric characterization
	API design
	API Implementation
	API usage
	Finding relevant features
	Feedback examples
	Conclusions
	REFERENCES
	Biographies
	Carlos Andujar
	Cristina R. Vijulie
	Àlvar Vinacua

