
Universitat Politècnica de Catalunya

Bachelor’s Degree in Engineering Physics

Bachelor’s Thesis

Least Squares Regression Principal
Component Analysis

A supervised dimensionality reduction method for

machine learning in scientific applications

Author:
Héctor Pascual Herrero

Supervisor:
Dr. Xin Yee

Dr. Joan Torras

June 29, 2020

Abstract

Dimension reduction is an important technique in surrogate modeling and machine
learning. In this thesis, we present three existing dimension reduction methods in de-
tail and then we propose a novel supervised dimension reduction method, ‘Least Squares
Regression Principal Component Analysis” (LSR-PCA), applicable to both classifica-
tion and regression dimension reduction tasks. To show the efficacy of this method, we
present different examples in visualization, classification and regression problems, com-
paring it to state-of-the-art dimension reduction methods. Furthermore, we present the
kernel version of LSR-PCA for problems where the input are correlated non-linearly.
The examples demonstrated that LSR-PCA can be a competitive dimension reduction
method.

1

Acknowledgements

I would like to express my gratitude to my thesis supervisor, Professor Xin Yee. I would
like to thank her for giving me this wonderful opportunity and for her guidance and
support during all the passing of this semester, putting herself at my disposal during
the difficult times of the COVID-19 situation. Without her, the making of this thesis
would not have been possible. I would like to extend my thanks to Mr. Pere Balsells,
for allowing students like me to conduct their thesis abroad, as well as to the Balsells
Foundation for its help and support throughout the whole stay.

In addition, I would like to express my thanks to the second supervisor of this thesis,
Professor Joan Torras, for helping me in the final stretch of the project, being as helpful
as attentive.

Finally, I wish to express my most sincere appreciation to my parents and my sister,
Alicia, and to my friends, for their support and encouragement during the whole stay.

2

Contents

Abstract 1

Acknowledgements 1

Introduction 4

1 Theoretical Background 7
1.1 Supervised and Unsupervised Learning 7

1.1.1 Supervised learning . 7
1.1.2 Unsupervised learning . 8

1.2 Cross Validation . 9
1.2.1 Non-exhaustive methods . 9
1.2.2 Exhaustive methods . 10

1.3 K-Nearest Neighbors . 10
1.4 Linear Regression . 11

2 Related works 13
2.1 Principal Component Analysis . 13

2.1.1 PCA Intuitive goal . 14
2.1.2 PCA Using Eigen-Decomposition 15

2.2 Partial Least Squares Regression . 16
2.2.1 PLS Using Eigen-Decomposition 19

2.3 Supervised Principal Component Analysis 20
2.3.1 Hilbert-Schmidt Independence Criterion 21
2.3.2 SPCA Derivation . 22
2.3.3 SPCA Connection to PCA . 23

3 Least Squares Regression Principal Component Analysis 25
3.1 LSR-PCA Formulation . 25
3.2 LSR-PCA Derivation . 26

3.2.1 LSR-PCA Connection to PCA 27

3

CONTENTS

4 Non-linear transformation methods 28
4.1 Kernels and Hilbert Space . 29
4.2 Kernel Principal Component Analysis 31
4.3 Kernel Supervised Principal Component Analysis 33
4.4 Kernel Least Squares Regression Principal Component Analysis 35

5 Code implementation 37
5.1 Dimension reduction routine . 37

5.1.1 Hyperparameter optimal search 38
5.2 Implementation of the methods . 39

6 Computational examples 40
6.1 Comparing linear methods . 40

6.1.1 Visualization . 40
6.1.2 Classification . 41
6.1.3 Regression . 42

6.2 Comparing kernel methods . 44

7 Conclusion 47

4

Introduction

During the last decade, the access to large amounts of data has risen considerably.
These sets of data, the data sets, are very useful to make estimations or predictions
of the response or target values of new similar sets of data. However, analyzing and
organizing data in high-dimensional spaces can lead to difficulties in processing this
data. In addition, the points we have in the data set are a small and non-representative
representation of the overall data. This is known as the curse of dimensionality.

The curse of dimensionality is a major challenge for machine learning (ML) in scien-
tific applications. Canonical scientific examples of this challenge are found in the learn-
ing of quantitative structure-property relationships for drug design and gene-expression
microarray experiments used in diagnosis and prognosis of diseases. In addition, the
visualization of the data becomes extremely difficult beyond three dimensions. To
alleviate the curse of dimensionality, it is necessary to reduce the number of input
dimensions to a ML model.

Take for example this situation: we are an experimenter who is trying to understand
some phenomenon by measuring various quantities (e.g. spectra, voltages, velocities)
in our system. Unfortunately, we may not be able to figure out what is happening
because the data appears to be unclear and even redundant. This is problem is a fun-
damental obstacle in empirical science. Examples abound from complex systems such
as neuroscience, photometry, meteorology and oceanography, where the number of vari-
ables to measure can be heavy and sometimes even deceptive, because the underlying
relationships between the input and response variables can often be quite simple [1].

Being an ignorant experimenter, we might not know which axes and dimensions
are important to measure. We often do not know which measurements best reflect the
dynamics of our system in question. Thus, we sometimes record more dimensions than
we actually need! Moreover, we have to deal with that annoying, real-world problem of
noise [1].

The goal of dimensionality reduction methods is to project the data onto a subspace
with fewer dimensions. In this lower dimensional subspace the transformed data must
be similar to the original one. Determining this fact allows an experimenter to discern
which dynamics are important, which are just redundant and which are just noise. One
can conclude that the most interesting dynamics occur only in the first k dimensions.
This process of throwing out the less important axes can help reveal hidden, simplified
dynamics in high dimensional data. This is aptly named dimensionality reduction.

5

INTRODUCTION

The fewer input dimensions of our data set, the fewer parameters and the simpler
structure in the machine learning model. If a model has too many input parameters, it is
likely to overfit the training data set and therefore might not perform well on new data.
By performing dimension on a data set, we can reduce the time and storage required to
process it and we can improve the performance of the learning model. Moreover, it can
provide an easy visualization of the data when it is reduced to two or three dimensions.

The techniques in dimension reduction refer to the possible processes of converting
a set of data from a vast dimension into a data with lesser dimensions. Dimension
reduction methods include: feature selection, linear algebra methods, projection meth-
ods and autoencoders. In this thesis, we will focus in projection methods. Similar to
other types of machine learning, the efficacy of a dimension reduction method is prob-
lem dependent. Also, the methods can be classified in supervised and unsupervised
learning.

Principal component analysis (PCA) [2] has been the work-horse of data-dimensionality
reduction. Its popularity owes to its simplicity in theory and implementation. However,
the principal components from PCA are selected completely independent of the target.
Therefore PCA only explains the variance of the input data, and not the variance of the
target data. This down-side lead to the development of several supervised dimension
reduction methods [3, 4, 5]. In this thesis, we will present a new supervised dimension
reduction method, which has been named as Least Squares Regression Principal Com-
ponent Analysis (LSR-PCA) [6]. It is a method that identifies the components of the
input data that contribute linearly to constructing a kernel-transformed target data.
We will also show that PCA is a special case of LSR-PCA, and that LSR-PCA can be
solved in closed-form with a simple generalized eigenvalue problem. Besides, we will
show how LSR-PCA can be extended to solve non-linear dimensionality reduction tasks
by means of a kernel formulation.

The thesis is organized as follows: Chapter 1 describes the theoretical background
needed to understand the foundations of this work. A detailed overview of three state-
of-the-art dimension reduction methods is given in Chapter 2. In Chapter 3, we present
and describe the proposed new supervised dimension reduction method, Least Squares
Regression PCA. Chapter 4 gives a detailed description of how to transform the methods
to be applicable to non-linear problems and presents the kernel formulation for LSR-
PCA. Next, Chapter 5, gives an overview of the code implementation that we have
applied in this thesis to compare the performance of the LSR-PCA method against
the other existing methods explained in Chapter 2. The results of this comparison
are provided in Chapter 6, with examples in visualization, classification and regression
problems. Finally, the thesis concludes in Chapter 7.

6

Chapter 1

Theoretical Background

The aim of this chapter is to establish the foundations of the theoretical terminology
that will appear throughout the thesis. First, we will introduce the difference between
supervised and unsupervised learning. Second, we will explain the concept of cross
validation. Finally, we will give a description of the two machine learning models we
will use in the thesis: k-Nearest Neighbors and Linear Regression.

1.1 Supervised and Unsupervised Learning

Machine Learning systems can be classified according to the amount and type of super-
vision they get during training. There are two major categories: supervised learning
and unsupervised learning. The main difference between the two types is that super-
vised learning is done using a prior knowledge of what the output values for the samples
should be, while unsupervised learning is not.

1.1.1 Supervised learning

The goal of supervised learning [7] is to learn a function that, given a sample of data
and desired outputs, best approximates the relationship between input and output
observable in the data.

It is called supervised learning because the process of an algorithm learning from
the training data set can be thought of as a teacher supervising the learning process.
Since we know the correct answers, the algorithm iteratively makes predictions on the
training data and is corrected by the “teacher”. Learning stops when the algorithm
achieves an acceptable level of performance.

Supervised learning problems can be further grouped into classification and regres-
sion problems. In classification, the task is to map input data to output labels, called
classes. In regression, the task is to predict a target numerical value given a set of fea-
tures called predictors. In both regression and classification, the goal is to find specific
relationships or structure in the input data that enable to effectively produce correct
output data. Determining whether the output is correct or not is done entirely from

7

CHAPTER 1. THEORETICAL BACKGROUND

the training data. Therefore, despite having a ground truth that the model will assume
is true, it is not to say that that data labels are always correct in real-world situations.
Noisy or incorrect data labels will clearly reduce the effectiveness of the model.

Some of the most important supervised machine learning algorithms are:

• Linear and Logistic regression

• Decision Trees and Random Forests

• Support vector machines (SVMs)

• k-Nearest Neighbors

1.1.2 Unsupervised learning

In unsupervised learning [7], the training data is unlabeled, so its goal is to infer the
natural structure present within a set of data points. These are called unsupervised
learning because unlike supervised learning there is no correct answers and there is no
teacher. Algorithms are left to their own devises to discover and present the interesting
structure in the data.

The most common use-cases for unsupervised learning are clustering, association
and dimensionality reduction. In a clustering problem one tries to discover the inherent
groupings in the data. The most used algorithms for this problem are k-Means, Hi-
erarchical Cluster Analysis (HCA) and Expectation Maximization. Another common
unsupervised task is association rule learning, in which the goal is to dig into large
amounts of data and discover rules and interesting relations between attributes. Some
useful algorithms are Apriori and Eclat.

Finally, dimensionality reduction has been typically known for its utility in unsu-
pervised learning. Its renown comes from the capacity of making data processing much
less intensive from eliminating redundant features. The most popular dimensionality
reduction techniques are Principal Component Analysis (PCA), Kernel PCA (KPCA)
and Locally-Linear Embedding (LLE). However, recently, some other methods that in-
corporate information about the target variable have been developed. This is due to
the fact that taking information from both the input and target variables can lead to
a better dimension reduction performance. These methods are known as supervised
dimension reduction method, and are the case of our proposed method, LSR-PCA.
There exist other supervised methods, like two of the methods we will compare against
LSR-PCA: Partial Least Squares Regression and Supervised PCA. But there are many
more approaches that will not be considered here, like Fisher’s Discriminant Analy-
sis (FDA), the family of methods known as Metric Learning (ML), or the family of
Sufficient Dimension Reduction (SDR) algorithms, among others.

8

CHAPTER 1. THEORETICAL BACKGROUND

1.2 Cross Validation

Cross validation is a form of model validation. In data analysis validation refers to
the process of deciding whether the numerical results quantifying hypothesized rela-
tionships between variables are acceptable as descriptions of the data. Generally, these
estimations are made by residual evaluations, i.e., an error estimation for the model
after the training is made. In this process, a numerical estimate of the difference in
predicted and original responses is done, also called the training error. The problem
with residual evaluations is that they do not give an indication of how well the learner
will do when it is asked to make new predictions for data it has not already seen.

One way to overcome this problem is to not use the entire data set when training a
learner. Some of the data is removed before training begins. Then, after the training
is done, the data that was removed can be used to test the performance of the learned
model on “new” data. This is the basic idea for a whole class of model evaluation
methods called cross validation.

1.2.1 Non-exhaustive methods

Non-exhaustive cross validation methods do not compute all ways of splitting the origi-
nal sample. The most used ones are the Holdout method and the K-fold cross-validation.

The holdout method [8], sometimes called test sample estimation, is the simplest
kind of cross validation. It partitions the data into two mutually exclusive subsets
called a training set and a test set, or holdout set. The size of each of the sets is
arbitrary although it is common to designate 2/3 of the data as the training set and
the remaining 1/3 as the test set.

In contrast to other cross-validation methods, the holdout method involves a single
run. The function approximator fits a function using the training set only. Then, the
function approximator is asked to predict the output values for the data in the testing
set, values which have never been seen. The errors it makes are accumulated to give
the mean absolute test error, which is used to evaluate the model. This method can be
effective and computationally inexpensive on very large data sets and therefore, usually
preferable to the residual method. However, its evaluation can have a high variance.
The evaluation may depend heavily on which data points end up in the training set
and which end up in the test set, and thus the evaluation may be significantly different
depending on how the division is made.

As there is never enough data to train your model, removing a part of it for validation
poses a problem of underfitting. By reducing the training data, there is the risk of losing
important trends in data set, which in turn increases the error induced by bias. Hence,
it is required a method that provides sample data for training the model and also leaves
sample data for validation. K-Fold cross validation does exactly that.

In K-Fold CV [9], the data is divided into k subsets and the holdout method is
repeated k times. Each time, one of the k subsets is used as the validation set and
the other k − 1 subsets are put together to form a training set. The error estimation

9

CHAPTER 1. THEORETICAL BACKGROUND

is averaged over all k trials to get total effectiveness of the model. Every data point
gets to be in a validation set exactly once, and gets to be in a training set k− 1 times.
This significantly reduces bias as most of the data is being used for fitting, and also
significantly reduces variance as most of the data is also being used in validation set.
Interchanging the training and test sets also adds to the effectiveness of this method. As
a general rule and empirical evidence, k = 5 or 10 is generally preferred, but nothing’s
fixed and it can take any value [10].

1.2.2 Exhaustive methods

Leave-P-Out CV [11] is an approach that involves using p observations as the validation
set and the remaining observations as the training set. For instance, if there are n data
points in the original sample then, n − p samples are used to train the model and p
points are used as the validation set. This is repeated for all combinations in which
original sample can be separated this way, and then the error is averaged for all trials,
to give overall effectiveness. This method is exhaustive in the sense that it needs to
train and validate the model for all possible combinations, and for moderately large p,
it can become computationally infeasible.

A particular case of this method is when p = 1 [10]. This is known as Leave one
out cross validation. This method is generally preferred over the previous one because
it does not suffer from the intensive computation, as number of possible combinations
is equal to number of data points in the original sample or n. Leave-one-out cross
validation is K-fold cross validation taken to its logical extreme, with k equal to n,
the number of data points in the set. That means that n separate times, the function
approximator is trained on all the data except for one point and a prediction is made for
that point. As before, the average error is computed and used to evaluate the model

1.3 K-Nearest Neighbors

As it has been previously mentioned, k-Nearest Neighbors (KNN) [12] is a method of
supervised learning used for classifying objects based on closest training examples in
the feature space. In pattern recognition, KNN is the fundamental and simplest classi-
fication technique when there is no prior knowledge about how the data is distributed.
Basically, KNN assigns to each new data point a class represented by the majority label
of its k-nearest neighbors in the training set. The simplest form of KNN is the Nearest
Neighbor rule (NN), which corresponds to the case when k = 1.

The concept of this method is to classify each unknown sample similarly to its
surrounding samples. In this way, one is predicting the unknown label by considering
the classification of its nearest neighbor samples. The first step when given an unknown
sample is to calculate all the distances between this new sample and all the samples
in the training set. Then, the collection of distances and indices must be sorted from
smallest to largest. The smallest k distances correspond to the samples in the training

10

CHAPTER 1. THEORETICAL BACKGROUND

set closest to the unknown sample. Therefore, the unknown sample is classified based
on the labels of its nearest neighbors.

It is worth noting that the performance of the method has a high dependence on
the selected value for k, since it will determine the neighborhood size, as well as the
distance metric applied. The radius of the local region determined by the distance of
the kth nearest neighbor to the new data point may yield different conditional class
probabilities for different k values. Sometimes, a small k value might be enough for
a good prediction, although it tends to be very sensitive to noisy data, leading to
ambiguous or mislabeled points. By increasing k and selecting a large region around
the unknown sample one can smooth the estimation. However, a large value of k will
not always be the solution, as it can make estimation over smoothed when introducing
outliers from other classes. We can see how important is to know how to select the
most suitable neighborhood size k in each situation. This selection is a key issue that
can largely affect the classification performance of KNN.

1.4 Linear Regression

As for regression problems in supervised learning, linear regression [13] [14] is one of the
most attractive methods thanks to its simple representation. In statistics, regression is
a method for modelling a target value based on independent predictors. This method
is typically used for forecasting and finding out cause and effect relationship between
variables. There are different regression techniques depending on the number of inde-
pendent variables and the type of relationship between the independent and dependent
variables.

The representation of linear regression is a linear equation that combines a specific
set of input values to give a predicted output. In the case of simple linear regression,
with a single explanatory variable, the form of the model would be:

ŷ = θ0 + θ1 · x (1.1)

where ŷ is the predictive output and θ0 and θ1 are the model parameters. This linear
equation assigns one scale factor θ1 to the input value called coefficient. One additional
coefficient θ0 is also added, the bias coefficient or intercept, which gives the line an
additional degree of freedom. In the general case of multiple input features, the linear
regression model form is:

ŷ = θ0 + θ1x1 + θ2x2 + ...+ θnxn = θT ·X (1.2)

where again ŷ is the predicted value and θj are the coefficients for the xi feature values.
In order to obtain the model parameters that best fit the training set we would

need a measure of how well is it fitting it. The most common performance measure of a
regression model is the Root Mean Square Error (RMSE), but in practice it is simpler
to minimize the Mean Square Error (MSE) and it leads to the same result. Therefore,

11

CHAPTER 1. THEORETICAL BACKGROUND

to train the Linear Regression model, one needs to find the value of θ that minimizes
the MSE. We have converted the search problem into a minimization problem where
we would like to minimize the error between the predicted value and the actual value.
The MSE is defined as follows:

MSE =
1

n

n∑
i=1

(
ŷi − yi

)2

(1.3)

Hence, our minimization problem is described as:

minimize
1

n

n∑
i=1

(
ŷi − yi

)2

(1.4)

With that, we have defined the cost function, that is, the function we want to minimize,
as the MSE.

The next important concept needed when applying Linear Regression is an iterative
algorithm capable of finding optimal solutions to a wide range of problems. Gradient
Descent is a very generic and useful method for updating the model parameters to
reduce the cost function. This method attempts to measure the local gradient of the
error function with regards to the parameter vector θ, and goes in the direction of
the steepest slope (descending gradient) until the gradient is zero and the minimum
is reached. In concrete, Gradient Descent starts by selecting a random θ value and
improves it gradually, each step attempting to decrease the cost function until the
algorithm converges to a minimum.

In the case of Linear Regression, the MSE cost function happens to be a convex and
continuous function. This implies that there is just one global minimum with a slope
that never changes abruptly, and guarantees a close approach to the global minimum.

The implementation of Gradient Descent yields on the computation of the gradient
of the cost function with regards to each model parameter θj. This is done through the
computation of partial derivatives or more directly applying the gradient vector which
contains all the partial derivatives of the cost function.

∇θMSE(θ) =


∂
∂θ0
MSE(θ)

∂
∂θ1
MSE(θ)

...
∂
∂θn
MSE(θ)

 =
2

n
XT · (X · θ − y) (1.5)

Finally, each step of this algorithm should go in the downhill direction, thus the opposite
direction to the gradient vector obtained. The size of the step will be determined by
the learning rate η.

θ(i+1) = θ(i) − η∇θMSE(θ) (1.6)

It is worth mentioning the importance of the η parameter, since while a learning rate
too small will take a long time to converge, a too high value of this step can make the
algorithm diverge, failing to find a good solution.

12

Chapter 2

Related works

The following chapter will explain in detail 3 different existing dimension reduction
methods, one unsupervised, Principal Component Analysis, and two supervised, Partial
Least Squares Regression and Supervised PCA. The aim of this sections is to understand
not only the purpose of each method but also the mathematical framework from which
they are developed, so that we can understand the theoretical framework in which rises
our proposed method.

2.1 Principal Component Analysis

Principal Component Analysis (PCA) [15] has been called one of the most valuable re-
sults from applied linear algebra. PCA is used abundantly in all forms of analysis, from
neuroscience to computer graphics, because it is a simple, non-parametric method of
extracting relevant information from confusing data sets. With minimal additional ef-
fort PCA provides a roadmap for how to reduce a complex data set to a lower dimension
to reveal the, sometimes hidden, simplified structure that often underlie it.

The goal of PCA is to find another basis which is a linear combination of the original
basis and best re-expresses the original data set. To do so, the first assumption that
PCA makes is linearity. Given an n × d matrix X, the original data set where each
column is a single sample and each, and another n × p matrix X̃ related by a linear
transformation U ∈ Rd×p [16].

X̃ = XU (2.1)

In addition, let us define the d× n matrix X̂, as the reconstructed data set:

X̂ = XUUT (2.2)

If the vectors of U are orthonormal, that is, the matrix U is orthogonal, then we have
UT = U−1 and thus UTU = I.

The Equation 2.1 can be interpreted as the projection onto the PCA subspace: The
XU projects X onto the row space of U. It is a subspace because we have p ≤ d where

13

CHAPTER 2. RELATED WORKS

p and d are the dimensions of the PCA subspace and the original X, respectively.
Likewise, Equation 2.2 can be interpreted as the reconstruction form the PCA, since
(XU)UT projects XU , the projected data, back onto the column space of U . By
assuming linearity the problem reduces to finding the appropriate change of basis. The
column vectors of U will become the principal components of X. With the problem set
out, the question that arises now is what is the best way to ”re-express” X, that is,
what is the best choice of basis U .

It is important to note that in PCA, all the data points should have zero mean, that
is, be centered. The reason is shown in Figure 2.1. From now on, we assume X to be
the centered data matrix.

(a) (b)

Figure 2.1: The principal components P1 and P2 for 2.1a non-centered and 2.1b cen-
tered data. As it is shown, the data should be centered for PCA. [16]

2.1.1 PCA Intuitive goal

In order to solve the laid out problem we will first build up an intuitive answer to the
question. The main factors to take into account in a linear system are noise, rotation
and redundancy [1].

Generally, all noise is measured relative to the measurement. If the measurement
noise is very high, no information about the system can be extracted. A typical measure
is the signal-to-noise ratio (SNR), defined as:

SNR =
σ2
signal

σ2
noise

. (2.3)

A high SNR indicates high precision in the data. Therefore, quantitatively we assume
that directions with largest variances, and presumably highest SNR, in our measurement

14

CHAPTER 2. RELATED WORKS

vector space contain the dynamics of interest. The naive chosen basis for the experiment
might not reflect the directions of largest variance. Maximizing the variance corresponds
to finding the appropriate rotation of the naive basis, in such a way that the new
directions reveal the dynamics of interest. The last confounding factor in the data is
redundancy. This has to do with the fact that sometimes, there are variables which are
highly correlated, in the sense that one can calculate one of these from another, and
solely one response would express the data more concisely and reduce the number of
features.

2.1.2 PCA Using Eigen-Decomposition

Recalling Equation 2.2, the projected data are X̃ ∈ Rn×p and the reconstructed data
are X̂ ∈ Rn×d. The squared Frobenius norm of this reconstructed matrix X̂ is [16]:

‖X̂‖2
F = ‖XUUT‖2

F

= tr((XUUT)(XUUT)T)

= tr(XUUTUUTXT)

= tr(XUUTXT)

= tr(UTXTXU)

where tr(.) stands for the trace of matrix, and we have used the orthogonality of U and
the cyclic property of the trace. Considering X = [x1, ..., xn]T ∈ Rn×d, we have:

S :=
n∑
i=1

xTi xi = XTX, (2.4)

where S ∈ Rd×d is called the covariance matrix. Therefore, we can rewrite the squared
Frobenius norm as:

‖X̂‖2
F = tr(UTSU) (2.5)

Note that we can also say that UTSU stands for the variance of the projected data onto
PCA subspace. Therefore, UTSU = Var(XU) and UTSU can be interpreted in two
ways. The first one, as the squared Frobenius norm of reconstruction and the second
one as the variance of the projection, as argued in the section 2.1.1. The problem posed
relies on finding the projection matrix of directions U which maximize the squared
Frobenius norm of reconstruction (or variance of projection) [16]:

max
U

tr(UTSU),

subject to UTU = I,
(2.6)

where the orthogonality of U is ensured in the constraint. To solve the optimization
problem we can use the method of Lagrange multipliers [17], and get:

L = tr(UTSU)− tr(ΛT (UTU − I)),

15

CHAPTER 2. RELATED WORKS

where Λ ∈ Rp×p is a diagonal matrix containing the Lagrange multipliers. Taking the
derivative of the Lagrangian and setting it to zero gives:

∂L

∂U
= 2SU − 2UΛ = 0

⇒ SU = UΛ (2.7)

which is the eigenvalue problem for the matrix S. The eigenvectors of S are stored
in the columns of the U matrix. The eigenvalues of S are stored in the diagonal of
the Λ matrix. Moreover, the variances associated with each direction ui quantify how
principal each direction is. Therefore, the eigenvectors and eigenvalues must be sorted
in decreasing order, since we are maximizing in the optimization problem. To sum up,
the PCA directions stored in U are the leading eigenvectors of the covariance matrix of
data X, and are called principal components.

So far, we have discussed how can be the U matrix selected and why. However,
there still remains the question about how many directions shall include U , that is,
what is the appropriate dimensionality of the PCA subspace. Generally, one would
truncate U to have U ∈ Rd×p. Truncating U means that we take a subset of the leading
eigenvectors rather than the whole d eigenvectors with non-zero eigenvalues. Therefore,
one should only be keeping the p ≤ d leading eigenvectors and not those directions
that correspond to smaller eigenvalues to have U ∈ Rd×p. Finally, the constraint of
orthogonality, UTU = I, will always be fulfilled as long as the columns of the matrix
U are orthonormal, mindless of the value p. If the orthogonal matrix U were not to be
truncated, one would still have the orthogonality constraint fulfilled [16].

Performing PCA in practice is quite simple. With all things considered, PCA could
be performed by a simple algorithm:

Algorithm 1 Principal Component Analysis

Input: Training data matrix, X, test data matrix, Xt, and training data size, n.
Output: Dimension reduced training and test data, X̃ and X̃t.

1: X ← X −mean(X)
2: S ← 1/(n− 1)XTX
3: Compute basis: U ← eigenvectors of S corresponding to the top p eigenvalues
4: Project training data: X̃ ← XU
5: Project test data: X̃t ← XtU

2.2 Partial Least Squares Regression

Partial Least Squares Regression (PLS) is a recent supervised dimension reduction
technique that generalized and combines features from PCA and multiple regression.
It is especially useful when ones needs to predict a set of dependent variables from

16

CHAPTER 2. RELATED WORKS

a large set of independent variables. It originated in the social sciences but became
popular first in chemometrics, its so-called domain of origin, and in sensory evaluation.
However, PLS is also becoming a tool of choice in the social science as a multivariate
technique for non-experimental and experimental data alike. It was first presented as
an algorithm akin to the power method but was rapidly interpreted in a statistical
framework [4].

The goal of PLS is to predict Y ∈ Rn×l from X ∈ Rn×d and to describe their
common structure. If Y was a vector and X full rank, this could be accomplished using
Ordinary Multiple Regression. When the number of dimensions, d, is larger than the
number of observations, n, the X matrix will probably be singular, and so the regression
approach is no longer possible. Several approaches have been developed to deal with
this problem. One of them is Principal Component Regression (PCR), which is closely
related to PLS. PCR performs a PCA of the X matrix and then use the principal
components of X as regressors of Y . The multicolinearity problem is eliminated thanks
to the orthogonality of the principal components. However, the problem of choosing
an optimum set of predictors remains. One possibility would be to keep only a few of
the first components. But since they are chosen to explain X rather than Y , nothing
guarantees that those principal components are also relevant for Y .

In contrast, PLS creates orthogonal components by using existing correlations be-
tween explanatory variables and corresponding outputs while also keeping most of the
variance of explanatory variables. PLS has proven to be useful in situations when the
number of observed variables d is significantly greater than the number of observations
n and high multicollinearity among the variables exists[18].

In order to find components from X that also relevant for Y , PLS decomposes both
the design matrix X and response matrix Y like in PCA and then perform regression
between T and U [19]. PLS searches for a set of components that performs a simul-
taneous decomposition of X and Y with the constraint that these components explain
as much as possible of the covariance between X and Y . These components are uncor-
related latent variables which are linear combinations of the original regressors in the
first step. The basic point of the procedure is that the weights used to determine these
linear combinations of the original regressors are proportional to the covariance among
input and output variables. A least squares regression is then performed on the subset
of extracted latent variables.

From now on, we assume centered input and output variables, i.e., the columns of
X and Y are zero mean. The general model of multivariate PLS is [20]:

X = TP T + F

Y = UQT +G
(2.8)

where T ∈ Rn×p and U ∈ Rn×p matrices of the extracted p latent vectors, also known
as score vectors. P ∈ Rd×p and Q ∈ Rl×p represent matrices of loadings, and F ∈ Rn×d

and G ∈ Rn×l are the matrices of residuals.
The basic form of the PLS method is based on the nonlinear iterative partial least

squares (NIPALS) algorithm [18]. NIPALS is a robust procedure for solving singular

17

CHAPTER 2. RELATED WORKS

value decomposition problems and is closely related to the power method. Using this
method, PLS finds weight vectors w, c such that [20]:

max
|r|=|s|=1

[cov(Xr, Y s)]2 = [cov(Xw, Y c)]2 = [cov(t, u)]2

where cov(t, u) = tTu/n denotes the sample covariance between the score vectors t and
u. The idea behind partial least squares is that we want the decomposition of X and
Y to be done by taking information from each other into account. One intuitive way
to achieve that is to apply the NIPALS algorithm with the aim to sequentially extract
the latent vectors t, u and weight vectors w, c from X and Y matrices in decreasing
order of their corresponding singular values. The NIPALS algorithm starts with an
initialization of the Y-score vector u and repeats a sequence steps until convergence.
After the convergence, by regressing X on t and Y on u, the loading vectors p and q
can be computed. The basic algorithm of PLS is as follows [21]:

1. Set u to the first column of Y

2. w = XTu/‖XTu‖

3. Scale w to be of length one

4. t = Xw

5. c = Y T t/‖Y T t‖

6. Scale c to be of length one

7. u = Y c

8. Repeat steps 2-7 until convergence

9. X-loadings: p = XT t/(tT t)

10. Y-loadings: q = Y Tu/(uTu)

11. Regression coefficient: b = uT t/(tT t)

12. Deflat X and Y : X ← X − tpT , Y ← Y − btcT

The PLS regression is an iterative process; i.e. after extraction of one component
the algorithm starts again using the residual matrices X and Y computed in step 12.
Thus we can achieve the sequence of the models up to the point when the rank of X is
reached. The vectors t, u, w, c, p and q are to be stored in the corresponding matrices
every iteration, and the scalar b is stored as a diagonal element of B.

The PLS regression model can be written in matrix form as:

Ŷ = XBPLS (2.9)

where BPLS ∈ Rd×l is the matrix of the regression coefficients. This is the same equation
as the one used in other regression problems such as Multiple Linear Regression, Ridge

18

CHAPTER 2. RELATED WORKS

Regression or Principal Components Regression. In PLS, the dependent variable is
predicted using the multivariate regression formula as:

Ŷ = TBCT (2.10)

Using that T = XW from step 4 and defining B = (P TW)−1 we get the following
derivation [20]:

Ŷ = TBCT = XWBCT

= XW (P TW)−1CT

Defining BPLS = W (P TW)−1CT we arrive to the original PLS regression model expres-
sion in Equation 2.9. Due to the fact that pTi wj = 0 for ij and in general pTi wj 6= 0 for
i ≤ j the matrix P TW is upper triangular and thus invertible.

If all the latent variables of X are used, this regression is equivalent to principal
component regression. When only a subset of the latent variables is used, the prediction
of Y is optimal for this number of predictors.

2.2.1 PLS Using Eigen-Decomposition

The steps described before might seem somewhat mysterious. Having a look at the
computation of step 2:

w = XTu/‖XTu‖
= XTY c/‖XTY c‖
= XTY Y T t/‖XTY Y T t‖
= XTY Y TXw/‖XTY Y TXw‖

=
1

λ
(Y TX)T (Y TX)w (2.11)

We can see that w is an eigenvector of the covariance matrix of Y TX [19]. Another
way to see this fact is recalling the optimization problem:

arg max
|w|=1

cov(Y TXw, Y TXw) = arg max
|w|=1

1

k − 1
(Y TXw)T (Y TXw)

= arg max
|w|=1

1

k − 1
wTXTY Y TXw

with the constraint that the loadings fulfill wTw = 1. Using the method of Lagrange
multipliers [17], we have:

L = wTXTY Y TXw − λ(wTw − 1)

19

CHAPTER 2. RELATED WORKS

where λ is the Lagrange multiplier. Taking the derivative of Lagrangian with respect
to w and λ and setting them to zero:

∂L
∂w

= 2XTY Y TXw − 2λw = 0

⇒ XTY Y TXw = λw (2.12)

which is again the eigenvalue problem shown in Equation 2.11. Now we take a look at
the computation of step 5.

c = Y T t/‖Y Tt‖
= Y TXw/‖Y TXw‖
= Y TXXTu/‖Y TXXTu‖
= Y TXXTY c/‖Y TXXTY c‖

=
1

λ
(XTY)T (XTY)c (2.13)

We see that c is an eigenvector of the covariance matrix of XTY . A similar derivation
as the one did with w, could be carried out for the vectors c, t and u, and we would
arrive to the following eigenvalue problems [21]:

Y TXXTY c = λc (2.14)

XXTY Y T t = λt (2.15)

Y Y TXXTu = λu (2.16)

The power method tells us that λ is the maximum eigenvalue of the eigenvalue prob-
lem. The vectors w, u, c and t are thus the eigenvectors of the appropriate matrices
corresponding to the maximum eigenvalue. The PLS algorithm can thus be viewed as
follows. For each set of residual matrices X and Y , one computes the maximum eigen-
value and associated eigenvectors of the matrices XTY Y TX, Y TXXTY , XXTY Y T

and Y Y TXXT , and the eigenvectors are used to compute new residual matrices [21].
Concerning the projection into a lower dimensional feature space, the P matrix of

X-loadings acts as the rotation matrix. The training data matrix, X, and the test data
matrix, Xt, are projected taking the leading eigenvectors of the P matrix:

X̃ = XP (2.17)

X̃t = XtP (2.18)

2.3 Supervised Principal Component Analysis

Supervised Principal Component Analysis (SPCA) [3] is a supervised dimensionality
reduction which arises from the necessity of estimating a sequence of principal compo-
nents that not only harvest the variance of the input response, but also the dependence

20

CHAPTER 2. RELATED WORKS

of those on the target variable. The aim of SPCA is to find a subspace that maximizes
the dependency between the inputs and outputs. As we will show, its derivation leads
to a closed-form solution, similar to the PCA one. One advantage of SPCA is that
it takes into account the quantitative value of the target response, a property which
makes it applicable to both classification and regression problems. Furthermore, it has
a kernel version which makes it applicable for estimating nonlinear transformation data.
This kernel version though, is not the subject for this section and will be presented in
the following sections.

2.3.1 Hilbert-Schmidt Independence Criterion

The dependence of two random variables X and Y can be easily measured using the
value of the correlation between them. According to [22], two random variables are
independent if and only if any bounded continuous functions of them are uncorrelated.
Therefore, by measuring the correlation of φ(x) and φ(y), the mapping of X and Y
to two different Reproducing Kernel Hilbert Spaces (RKHSs), we can estimate the
dependence of the original variables, X and Y .

The Hilbert-Schmidt Independence Criterion (HSIC) is an independence criterion in
RKHSs proposed in [23]. The HSIC is a measure of the dependence between two random
variables, X and Y . The measure is obtained by computing the Hilbert-Schmidt norm
of the cross-covariance operator associated with their RKHSs.

Let us now derive the formulation of the HSIC, which will be useful in the derivation
of the SPCA derivation. Define F as a separable RKHS containing all continuous
bounded real-valued functions of x from X to R. Similarly, let G be a separable RKHS
containing all continuous bounded real-valued functions of y from Y to R. Then the
cross-covariance between elements of F and G is [3]:

Cov(f(x), g(y)) = Ex,y[f(x)g(y)]− Ex[f(x)]Ey[g(y)] (2.19)

It can be shown that there exists a unique linear operator Cx,y : G → F mapping
elements of G to the elements of F which can be defined as [3]:

Cx,y := Ex,y[(Φ(x)− µx)⊗ (Ψ(y)− µy)] (2.20)

where µx = E[Φ(x)], µy = E[Ψ(y)], ⊗ is the tensor product and Φ and Ψ are the
associated feature maps of F and G, respectively. A useful norm for this operator is
the Hilbert-Schmidt (HS) norm, defined as:

‖C‖2
HS :=

∑
i,j

〈Cvi, uj〉2F (2.21)

where uj and vi are orthogonal bases of F and G, respectively. Finally, we can define
the HSIC as the square of the Hilbert-Schmidt norm of the cross-covariance operator.

21

CHAPTER 2. RELATED WORKS

Empirical HSIC

Using the explained intuition, an empirical estimation of the HSIC is introduced [3]:

HSIC :=
1

(n− 1)2
tr(KxHKyH) (2.22)

where H is the centering matrix defined as H := I − (1/n)11T , and 1 is a vector
of full ones. Kx and Ky are the kernels over x and y, respectively. In other words,
Kx = φ(x)Tφ(x) and Ky = φ(y)Tφ(y). The term 1/(n− 1)2 is used for normalization.

Based on this empirical result, we can deduce that the dependence between two
kernels will be maximized if we increase the value of the empirical estimate, i.e.,
tr(KxHKyH). Therefore, the greater the HSIC, the greater the dependence they have.
The HKyH double centers the Ky in HSIC. Also, note that if one of the kernel matri-
ces Kx or Ky is already centered, say Ky, then HKyH = Ky amd thus we may simply
use the objective function tr(KxKy) which no longer includes the centering matrix H.
Similarly, if HKxH = H we may rewrite tr(KxHKyH) = tr(HKxHKy) and arrive at
identical results [3].

2.3.2 SPCA Derivation

Given a n × d matrix X of features and a n × l matrix Y of outcome measurements,
SPCA addresses the problem of finding the subspace XU such that the dependency
between the projected data XU and the outcome Y is maximized [3]. In order to
measure this dependency, SPCA uses the Hilbert-Schmidt Independence Criterion.

For the projected data points, it uses a linear kernel defined as [16]:

Kx = (XU)(XU)T = XUUTXT . (2.23)

For the Y matrix, it uses an arbitrary kernel Ky. The HSIC in SPCA case becomes [16]:

HSIC =
1

(n− 1)2
tr(XUUTXTHKyH), (2.24)

where U ∈ Rd×p is the orthogonal transformation matrix which we are looking for and
which maps the data points to a space where the features are uncorrelated. The desired
dimensionality of the subspace is p and usually p� d.

In order to maximize the dependence of XU and Y , we should maximize the HSIC.
Hence, the optimization problem becomes:

max
U

tr(XUUTXTHKyH)

subject to UTU = I,
(2.25)

where the constraint ensures that the U is an orthogonal matrix and therefore, the
SPCA directions are orthonormal. To solve the optimization problem we can use the

22

CHAPTER 2. RELATED WORKS

method of Lagrangian multipliers [17]:

L = tr(XUUTXTHKyH)− tr(ΛT (UTU − I))

= tr(UUTXTHKyHX)− tr(ΛT (UTU − I)),

where we have used the cyclic property of trace to rearrange the first term. The
Λ ∈ Rp×p matrix is a diagonal matrix containing the Lagrange multipliers. Setting the
derivative with respect to U to zero gives:

∂L
∂U

= 2XTHKyHXU − 2UΛ = 0

⇒ XTHKyHXU = UΛ, (2.26)

which is the eigendecomposition of XTHKyHX. The columns of U and the diagonal
of Λ are the eigenvectors and eigenvalues of XTHKyHX, respectively. The eigenvec-
tors and eigenvalues are sorted in decreasing order because of the maximization of the
optimization problem. In other words, the columns of the projection matrix U are the
p leading components of SPCA.

Taking all the above into consideration, the SPCA procedure is summarized in
Algorithm 2 [3].

Algorithm 2 Supervised PCA

Input: training data matrix, X, testing data matrix, Xt, kernel matrix over target
variable, Ky, and training data size, n.

Output: Dimension reduced training and testing data, X̃ and X̃t.

1: H ← I − n−111T

2: Q← XTHLHX
3: Compute basis: U ← eigenvectors of Q corresponding to the top p eigenvalues
4: Project training data: X̃ ← XU
5: Project test data: X̃t ← XtU

2.3.3 SPCA Connection to PCA

Take the case of where the response variable is unknown, that is, an unsupervised
problem. This means that the kernel Ky would be equivalent to the identity matrix,
a kernel which only captures the similarity between a point and itself. Hence, the
maximization of the dependence of these two kernels would be like computing the
maximal diversity across all the original data points. This is equivalent to PCA.

23

CHAPTER 2. RELATED WORKS

Recall that SPCA is the eigendecomposition of XTHKyHXU = UΛ. In the unsu-
pervised case, this matrix becomes [3]:

XTHKyHX = XTHIHX

= (HX)T (HX)

= [(I − n−111T)X]T [(I − n−111T)X]

= (X − µx)T (X − µx)
= S

where mux refers to the mean of data X, and S is the covariance matrix whose eigen-
vectors are the PCA directions.

This result shows that the eigendecomposition of the covariance matrix of the data,
S, is the same as the eigendecomposition of XTHIHX and consequently maximiz-
ing the tr(XUUTXTHIH). Therefore, PCA is a particular case of a more general
framework proposed by SPCA.

24

Chapter 3

Least Squares Regression Principal
Component Analysis

In this chapter, we propose a novel supervised dimension reduction method, Least
Squares Regression Principal Component Analysis (LSR-PCA) [6], which is a general-
ization of the classical linear regression, applicable to both classification and regression
dimension reduction tasks. This method identifies the components of the input data
that contribute linearly to constructing a kernel-transformed target data.

3.1 LSR-PCA Formulation

Given a zero-centered data matrix X ∈ Rn×d, where n is the number of data points
and d is the number of features, and a corresponding matrix of target outcomes, Y ∈
Rn×l, where l is the dimension of the target outcomes, LSR-PCA consists in solving a
generalized eigenvalue problem:

XTKyXw = λXTXw.

The matrix Ky ∈ Rn×n is a kernel matrix for the target outcomes defined as Ky =
k(y, y

′
), where y and y

′
are the 1 × l row vectors of the target matrix, Y . LSR-PCA

can be shown to be equivalent to linear least squares regression if the kernel matrix
Ky = Y TY . Hence, the phrase “least squares regression” was chosen for its name. In
general, the kernel function k(y, y

′
) is problem dependant.

For classification problems, a choice for k(y, y
′
) is the Kronecker-Delta kernel, δy,y′ :

δy,y′ :=

{
1 if y = y

′

0 if y 6= y
′ (3.1)

For regression problems, a common choice for k(y, y
′
) is the squared exponential

kernel:

k(y, y
′
) = exp

(
−‖yi − yj‖

2

2σ2

)
. (3.2)

25

CHAPTER 3. LEAST SQUARES REGRESSION PRINCIPAL COMPONENT
ANALYSIS

3.2 LSR-PCA Derivation

The generalized eigenvalue problem for LSR-PCA can be derived using the following
minimization problem and then apply the kernel trick for the target outcomes y:

min
w∈Rd

∥∥yT − (yT ·Xw)Xw
∥∥2

(3.3)

subject to the constraint that:
‖Xw‖2 = 1 (3.4)

The minimization problem finds a linear combination of the input data, Xw, that
will maximize the projection of the transformed input data onto the target outcome ma-
trix, y, where w is a d×1 vector that contains the coefficients of the linear combination
of the input features.

The objective function in Equation 3.3 can be rewritten as:

max
w∈Rd

(yT ·Xw)2 (3.5)

subject to ‖Xw‖2 = wTXTXw = 1. (3.6)

Using the method of Lagrange multipliers, we have:

L = (yT ·Xw)2 − λ(wTXTXw − 1),

= (wTXTyTyXw)− λ(wTXTXw − 1)

where λ is the Lagrange multiplier. Taking the derivative of Lagrangian with respect
to w and setting them to zero:

∂L
∂w

= 2XyTyXw − 2λXTXw = 0,

⇒ XTyTyXw = λXTXw (3.7)

The generalized eigenvalue problem in equation 3.7 only requires the target outcomes
in the form of its inner products yTy. We can apply the kernel trick to the target
outcome by substituting for yTy any valid kernel of the form Ky = k(y, y

′
). After the

application of the kernel trick, we arrived at the the final generalized eigenvalue problem
for RPCA in equation 3.8.

⇒ XTKyXw = λXTXw. (3.8)

The eigenvectors w ∈ Rd that correspond to the largest eigenvalues are the leading
principal components for LSR-PCA. The leading p eigenvectors of LSR-PCA are stored
in the W matrix. The solution of the generalized eigenvalue problem requires that the
covariance matrix XTX has a full rank. In the event that XTX has rank r < d, a
singular decomposition of the covariance matrix is necessary to extract the subspace of

26

CHAPTER 3. LEAST SQUARES REGRESSION PRINCIPAL COMPONENT
ANALYSIS

p singular vectors that correspond to nonzero singular values. LSR-PCA can then be
applied to the reduced data matrix X̃ ∈ Rn×p so that X̃T X̃ has full rank.

Taking the p leading eigenvalues, the projection of the training data X according
to Equation 3.8 is:

X̃ = XW (3.9)

and for the out-of-sample/test data:

X̃t = XtW (3.10)

The reconstruction of the training data X and out-of-sample data Xt after projection
onto the LSR-PCA subspace is:

X = XWW T = X̃W T (3.11)

Xt = XtWW T = X̃tW
T (3.12)

The Least Squares Regression PCA procedure is summarized in Algorithm 3.

Algorithm 3 Least Squares Regression PCA

Input: training data matrix, X, testing data matrix, Xt, kernel matrix over target
variable, Ky.

Output: Dimension reduced training and testing data, X̃ and X̃t.

1: D ← XTKyX
2: B ← XTX
3: Compute basis: W ← generalized eigenvectors of (D,B) corresponding to the

top p eigenvalues
4: Project training data: X̃ ← XW
5: Project test data: X̃t ← XtW

3.2.1 LSR-PCA Connection to PCA

The formulation of LSR-PCA is closely connected to the projection interpretation of
PCA [2]. PCA can be derived from picking a d × 1 unit vector w that minimizes
the distance between the n training data points {xi}ni=1 and their projection onto the
direction w:

min
w∈Rd

1

n

{
n∑
i=1

‖xi − (xi · w)w‖2

}
, (3.13)

subject to the constraint that:
‖w‖2 = 1.

The minimization problem for PCA can be transformed into the following eigenvalue
problem:

XTXw = λw, (3.14)

where X is the n× d data matrix. The ith row of X is the training data point xi.
The LSR-PCA formulation is the application of the same projection interpretation

except on the target outcome vector y.

27

Chapter 4

Non-linear transformation methods

In this chapter, we will derive the non-linear versions of the methods described before,
PCA, SPCA and LSR-PCA, which are called ‘Kernel Principal Component Analysis’,
‘Kernel Supervised Principal Component Analysis’ and ‘Kernel Least Squares Regres-
sion Principal Component Analysis’, respectively. We will start with a motivation
and informal explanation and then we will discuss the mathematical ideas behind each
method.

All the methods described above have one thing in common: linearity. They all
perform a linear projection technique of the input data matrix X. This is a good
approach provided that the data might be linearly separable. However, in the case that
the data points exist in a non-linear sub-manifold, the linear methods considered above
might not be entirely effective. Let’s see an illustrative example to understand this
problem.

Take the case of a 2-dimensional data where the data points can be classified using
two classes. The data points in Figure 4.1a allow a linear separation, whereas the data
points in Figure 4.1b, do not. In order to handle this problem, we can either change
the linear dimension reduction method to become a non-linear method or, instead, we
can leave them to be linear but transform the data with the hope that it will fall on
a linear subspace. The methods presented below do the latter, so they change the
data. The cost to do that is that we need map the data to a feature space with higher
dimensionality hoping that in this new subspace, it falls on a linear manifold. This
implies that we will have to increase the dimensionality of data.

Let us know consider a 2-dimensional binary classification problem with features x1

and x2 shown in Figure 4.2a. This is a very similar problem to the one presented in
Figure 4.1b and again, it can be easily seen that the problem is not solvable by any
linear classifier. Introducing a new feature x2

1 + x2
2 and extending our space of features

we get the data distribution shown in Figure 4.2b. As we can see, the new distribution
now does allow us to use a linear classifier in this new feature space. The expression
used to extend the data is what is known as kernel function, and it is the key idea
behind non-linear transformation methods.

28

CHAPTER 4. NON-LINEAR TRANSFORMATION METHODS

(a) (b)

Figure 4.1: 4.1a[24]:2-dimensional data classified in two classes, blue and green, linearly
separable. 4.1b[24]: 2-dimensional data classified in two classes, blue and green, not
linearly separable.

4.1 Kernels and Hilbert Space

In this section we will provide a mathematical description of the intuition described
above. Consider the function phi which maps the data x to the Hilbert space (feature
space) such that:

Φ : x→ H,
x 7→ φ(x).

where φ(x) is a set of t basis functions that span the feature space, H.
If X denotes the set of points x ∈ X , the kernel of two vectors x1 and x2 is k :

X × X → R and is defined as [16]:

k(x1, x2) := φ(x1)Tφ(x2), (4.1)

which is a measure of “similarity” between the two vectors. The inner product captures
the similarity. Next we defined Φ(X) to be a t×n data matrix where the original data
matrix X have been transformed to the new feature space.

Φ(X) = {φ(x1), φ(x2), · · · , φ(xn)}. (4.2)

One can build the kernel of two matrices X1 ∈ Rn1×d and X2 ∈ Rn2×d and have a kernel
matrix K ∈ Rn1×n2 :

K(X1, X2) := Φ(X1)TΦ(X2). (4.3)

We can also build the kernel matrix of the original data matrix X over itself Kx ∈ Rn×n:

Kx := K(X,X) = Φ(X)TΦ(X) (4.4)

29

CHAPTER 4. NON-LINEAR TRANSFORMATION METHODS

(a) (b)

Figure 4.2: 2-dimensional data classified in two classes, red and blue. In 4.2a[25], the
classes are not linearly separable. In 4.2b[25], the data is extended to the feature space
x2

1 + x2
2 and is linearly separable.

It is important to note that in kernel methods, the mapped data Φ(X) is usually not
available. Only the kernel matrix K(X,X), which is the inner product of the mapped
data with itself, is available [16]. Kernel methods owe their name to the use of kernel
functions, which enable them to operate in a high-dimensional feature space without the
need of computing the explicit mapped data Φ(X). This approach of simply computing
the inner product between the images of all pairs of data in the feature space is known
as the kernel trick.

There exist different types of kernel functions. Some of the most well-known kernels
are:

Linear: k(x1, x2) = xT1 x2 + c1, (4.5)

Polynomial: k(x1, x2) = (c1x
T
1 x2 + c2)c3 , (4.6)

Squared Exponential: k(x1, x2) = exp(−‖x1 − x2‖2

2σ2
), (4.7)

where c1, c2, c3 and σ are parameters that need to adjusted depending on the data.
Note that the Squared Exponential kernel can also be expressed as exp(−γ‖x1−x2‖2),
where γ = 1/(2σ2) and γ > 0.

In the Squared Exponential kernel, the dimensionality of the feature space is infi-
nite. This can be easily shown by computing the Maclaurin series expansion of this
function: [16]

exp(−γr) ∼ 1− γr +
γ2

2!
r2 − γ3

3!
r3 + . . .

where r := ‖x1 − x2‖2.

30

CHAPTER 4. NON-LINEAR TRANSFORMATION METHODS

4.2 Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) is the non-linear version of the linear
method Principal Component Analysis. This method uses the kernel functions ex-
plained above to efficiently compute principal components in high-dimensional feature
spaces, related to input space by some non-linear map [26].

Let us denote a covariance matrix in a new feature space as:

Σ =
1

N

N∑
n=1

φ(xn)φ(xn)T =
1

N
ΦTΦ (4.8)

The eigendecomposition of Σ is given by:

Σvi = λivi (4.9)

By the definition of Σ, we get:

[
1

N

N∑
n=1

φ(xn)φ(xn)T]vi =
1

N

N∑
n=1

(φ(xn) · vi)φ(xn)T = λivi.

We see that vi is a linear combination of φ(xn) and thus can be written as:

vi =
N∑
n=1

ainφ(xn). (4.10)

where ain = 1
λiN

(φ(xn) · vi). Substituting vi in Equation 4.2 and writing it in matrix
notation, we get:

Kxai = λiNai (4.11)

where Kx is the kernel matrix of the training data and ai are the N eigenvectors of Kx,
which can be obtained by solving the eigenvalue problem for Kx. The ai eigenvectors
should be orthonormal, therefore, we get the following constrain:

Nλia
T
i ai = 1.

Any new data point xt ∈ Rd can now be mapped onto the high-dimensional feature
space by performing the projection onto the i-th eigenvector:

φ(xt) · vi = (φ(xt) ·
N∑
n=1

ainφ(xn)) =
N∑
n=1

ain(φ(xt)
Tφ(xn)) =

N∑
n=1

aink(xt, xn)

The above discussion is based on the assumption that the data points have zero
mean, and thus, the covariance of two data points is the same as their correlation.

31

CHAPTER 4. NON-LINEAR TRANSFORMATION METHODS

However, this is not always the case, and one needs to ensure the zero mean of the data
in the feature space too [16]:

φc(xi)) := φ(xi)−
1

N

N∑
n=1

φ(xn) (4.12)

Since the mapping is not explicit and φ(xn) is never available, we must center the kernel
matrix too:

Kc : = φc(xi)
Tφc(xj)

= (φ(xi)−
1

N

N∑
k1=1

φ(xk1))
T (φ(xj)−

1

N

N∑
k2=1

φ(xk2))

= φ(xi)
Tφ(xj)−

1

N

N∑
k1=1

φ(xk1)
Tφ(xj)

− 1

N

N∑
k2=1

φ(xi)
Tφ(xk2)

+
1

N2

N∑
k1=1

N∑
k2=1

φ(xk1)
Tφ(xk2).

In matrix form, the double centered kernel matrix of the training data points, Kc ∈
RN×N is:

Kc = Kx −
1

N
1N1TNKx −

1

N
Kx1N1TN +

1

N2
1N1TNKx1N1TN (4.13)

where 1N := [1, . . . , 1]T is a vector of N ones.
Regarding any new data point, such as a test data sample xt, its corresponding

kernel matrix for the training data and the test data is:

Kt = Φ(X)TΦ(Xt) (4.14)

which also needs to be centered using the mean of the training data. A similar derivation
can be carried out to obtain the following double-centered kernel matrix over training
and test data, Ktc ∈ RN×nt [16]:

Ktc = Kt −
1

N
1N1TNKt −

1

N
Kx1N1Tnt

+
1

N2
1N1TNKx1N1Tnt

(4.15)

where nt is the number of test samples, and 1nt := [1, . . . , 1]T is a vector of n− t ones.
Taking all of the above into consideration, we can summarize the steps of KPCA in

Algorithm 4.

32

CHAPTER 4. NON-LINEAR TRANSFORMATION METHODS

Algorithm 4 Kernel PCA

Input: Double-centered kernel matrix of training data, Kc, double-centered kernel of
test data, Ktc .

Output: Dimension reduced training and testing data, X̃ and X̃t.

1: Compute basis: V ← eigenvectors of Kc corresponding to the top p eigenvalues
2: Project training data: X̃ ← V TKc

3: Project test data: X̃t ← V TKtc

The KPCA steps described above require to define some kernel function for Kx

and Kt, e.g., the squared exponential kernel. Besides, the corresponding parameters
of the kernel function will need to be adjusted depending on the data. It should be
noted that the number of non-linear principal components in the general case is infinite.
However, since we are computing the eigenvectors of a N ×N matrix, at maximum we
can calculate N nonlinear principal components.

4.3 Kernel Supervised Principal Component Anal-

ysis

In this section, we derive the kernel version of Supervised Principal Component Analysis
(SPCA), Kernel Supervised Principal Component Analysis (KSPCA) [3], which allows
SPCA to be extended to non-linear mappings of the data.

One way to do it is by direct formulation. According to representation theory [27],
any solution u ∈ H must lie in the span of “all” the training vectors mapped to H, that
is, Φ(X) ∈ Rt×n [16]. Therefore, the transformation matrix U can be expressed as a
linear combination of the mapped data points:

U = Φ(X)Θ, (4.16)

where Θ ∈ Rn×p contains the θi unknown vector coefficients, and U ∈ Rt×p contains
the KSPCA directions in the Hilbert space, ui.

In the feature space, the HSIC in Equation 2.24 becomes:

HSIC =
1

(n− 1)2
tr(Φ(X)TUUTΦ(X)HKyH) (4.17)

The trace expression can be simplified as:

tr(Φ(X)TUUTΦ(X)HKyH) = tr(UUTΦ(X)HKyHΦ(X)T)

= tr(UTΦ(X)HKyHΦ(X)TU) (4.18)

By plugging Equation 4.16 in Equation 4.18 we get:

tr(ΘTΦ(X)TΦ(X)HKyHΦ(X)TΦ(X)Θ) = tr(ΘTKxHKyHKxΘ) (4.19)

33

CHAPTER 4. NON-LINEAR TRANSFORMATION METHODS

where Kx is the kernel function described in the previous sections.
Moreover, the constraint of orthogonality of the transformation matrix in the feature

space becomes:

UTU = (Φ(X)Θ)T (Φ(X)Θ)

= ΘTΦ(X)TΦ(X)Θ

= ΘTKxΘ (4.20)

The optimization problem in Equation 2.25 has been re-expressed in terms of inner
products between data points. Therefore, the new optimization problem has the fol-
lowing form:

max
Θ

tr(ΘTKxHKyHKxΘ)

subject to ΘTKxΘ = I
(4.21)

where the objective variable is the unknown Θ.
Using the method of Lagrange multipliers [17], we have:

L = tr(ΘTKxHKyHKxΘ)− tr(ΛT (ΘTKxΘ− I))

= tr(ΘΘTKxHKyHKx)− tr(ΛT (ΘTKxΘ− I))

where Λ is a diagonal matrix containing the p Lagrange multipliers. Setting the first
derivative of Lagrangian with respect to Θ to zero gives:

∂L
∂Θ

= 2KxHKyHKxΘ− 2KxΘΛ = 0

⇒ KxHKyHKxΘ = KxΘΛ (4.22)

which is the generalized eigenvalue problem for Kernel SPCA.
Taking all of the above into consideration, we can summarize the steps of KSPCA

using Algorithm 5 [3].

Algorithm 5 Kernel Supervised PCA

Input: Kernel matrix of training data, Kx, kernel matrix of testing data, Kt, kernel
matrix over target variable, Ky, and training data size, n.

Output: Dimension reduced training and testing data, X̃ and X̃t.

1: H ← I − n−111T

2: Q← KxHKyHKx

3: Compute basis: Θ ← generalized eigenvectors of (Q,Kx) corresponding to the
top p eigenvalues

4: Project training data: X̃ ← ΘTKx

5: Project test data: X̃t ← ΘTKt

34

CHAPTER 4. NON-LINEAR TRANSFORMATION METHODS

4.4 Kernel Least Squares Regression Principal Com-

ponent Analysis

As we have seen, when the data matrix exists on a non-linear sub-manifold, the linear
subspace learning becomes ineffective. This motivates the need for a kernel formulation
for LSR-PCA [6].

Consider a t dimensional feature space H such that:

Φ : x→ H,
x 7→ φ(x).

where φ(x) is a set of t basis functions that span the feature space, H.
Next we defined Φ(X) to be a t× n data matrix where the original data matrix X

have been transformed to the new feature space.

Φ(X) = {φ(x1), φ(x2), · · · , φ(xn)}.

The idea behind kernel LSR-PCA is to express the coefficients w as a linear combi-
nation of the transformed data matrix:

w = Φ(X)θ,

where θ ∈ Rn are the coefficients of the linear combination, and w is a t× 1 vector.
Using the kernel trick on the inputs x, we can extend the feature space H to an

infinite dimensional feature space,

k(x, x
′
) = φ(x)Tφ(x

′
),

and the resulting n× n kernel matrix:

Kx = Φ(X)TΦ(X).

Given a n × 1 target outcome vector y, we can rewrite the objective function in
Equation 3.3 as:

min
ω∈Rt

∥∥y − y · Φ(X)Tw)Φ(X)Tw
∥∥2
,

=⇒ min
θ∈Rn

∥∥y − (y · Φ(X)TΦ(X)θ)Φ(X)TΦ(X)θ
∥∥2
,

=⇒ min
θ∈Rn
‖y − (y ·Kxθ)Kxθ‖2 ,

with the constraint:
‖Kxθ‖2 = θTKT

xKxθ = 1. (4.23)

The above optimization is equivalent to the following optimization problem:

max
θ∈Rn

(y ·Kxθ)
2, (4.24)

35

CHAPTER 4. NON-LINEAR TRANSFORMATION METHODS

subject to ‖Kxθ‖2 = 1. (4.25)

Using the method of Lagrangian multipliers, we get:

L = (y ·Kxθ)
2 − λ(θTKT

xKxθ − 1)

= (θTKT
x y

TyKxθ)− λ(θTKT
xKxθ − 1)

Setting the first derivative of Lagrangian with respect to θ to zero gives:

∂L
∂θ

= 2KT
x yy

TKxθ − 2λKT
xKxθ = 0,

⇒ KT
x y

TyKxθ = λKT
xKxθ (4.26)

which is the generalized eigenvalue problem for kernel LSR-PCA. We can apply the
kernel trick again to the target outcome by substituting for yTy any valid kernel of the
form Ky = k(y, y′). Once again, we arrive at the final generalized eigenvalue problem
for Kernel LSR-PCA in Equation 4.27:

⇒ KT
xKyKxθ = λKT

xKxθ (4.27)

where θ ∈ Rn are the eigenvectors of (KT
xKyKx, K

T
xKx), and λ are the eigenvalues.

Our Kernel LSR-PCA procedure is summarized in Algorithm 6.

Algorithm 6 Kernel LSR-PCA

Input: Kernel matrix of training data, Kx, kernel matrix of test data, Kt, kernel
matrix over target variable, Ky.

Output: Dimension reduced training and testing data, X̃ and X̃t.

1: D ← KT
xKyKx

2: B ← KT
xKx

3: Compute basis: Θ← generalized eigenvectors of (D,B) corresponding to the top
p eigenvalues

4: Project training data: X̃ ← ΘTKx

5: Project test data: X̃t ← ΘTKt

36

Chapter 5

Code implementation

The aim of this chapter is to give an overview of the code used in this thesis. We will
comment the purpose, the structure, and its main functions.

In order to provide a trustful comparison between all the methods, we developed a
code which returned the good or bad performance of a method in terms of some error
rate. The challenge here, relied on the way of checking if a method performs well or
not, since as we have already explained, it has a strong dependency on the data we are
treating. Therefore, we have tested several data sets from different research fields. The
data sets with more conclusive results will be shown in the next chapter.

The code of this thesis is ran in Python 3.7. The files containing all the work
are available on the following GitHub repository: https://github.com/hpascualh/

dim-reduction-py. This repository consists of different Python modules with the
necessary functions to test the performance of the methods. In this repository there is
not a single main file but a collection of main-like files, one for each data set.

5.1 Dimension reduction routine

The routine that computes the results that allow us to properly compare all the methods
is the DimReductionClass function. This function is inside the MainRoutineClass.py
Python module and it is defined as a class. This means that this function creates an
object which can have, in Python terms, attributes and methods. In a Python class,
the attributes and the methods refer to the outputs and the subfunctions of the class.
Also, the inputs needed to initiate the class are called the parameters.

The goal of this routine is to give a measure of the performance of each dimension
reduction method in terms of the number of components, p, to which they are reducing
the original data set, X and Y . Thus, once the data set has been projected onto a lower
dimensional subspace, it needs to be validated using some sort of machine learning
model. The way to do this is using cross-validation techniques. For the purpose of this
thesis, we have used the holdout method, splitting the data in 70% training and 30%
test. Both the training and test subsets are given to each of the dimension reduction

37

https://github.com/hpascualh/dim-reduction-py
https://github.com/hpascualh/dim-reduction-py
https://github.com/hpascualh/dim-reduction-py/blob/master/MainRoutineClass.py
https://github.com/hpascualh/dim-reduction-py/blob/master/MainRoutineClass.py

CHAPTER 5. CODE IMPLEMENTATION

methods to obtain their corresponding projected training and test subsets. Then, the
training and test subsets are given to the appropriate machine learning model along
with the response variables, to predict and give a measure of the error rate obtained.
The errors from the machine learning models are averaged over 50 random splits of the
data. See Figure 5.1 for an illustrative representation.

Figure 5.1: Schematic representation of the dimension reduction routine.

Some of the parameters of the DimReductionClass are the number of runs, the
maximum number of components and whether to use a classification or regression ma-
chine learning model. Also, the attributes consist of collection of arrays, one for each
method, containing the error rate in terms of the number of components to which the
data set has been reduced. Finally, one of the main methods is the get gamma function,
which will be explained in the next section.

5.1.1 Hyperparameter optimal search

In this section, we will explain the foundation of the hyperparameter optimal search
implemented in the code. In machine learning it is very typical to deal with certain
parameters that need to be adjusted before applying the machine learning model in
question. In order to do that, one would need to split the data using cross-validation
techniques, while going over a set of possible values for the desired parameter. Then,
store the accuracy of the predicted data with each of the parameter values and finally
select the one that gave the better results.

38

https://github.com/hpascualh/dim-reduction-py/blob/master/MainRoutineClass.py
https://github.com/hpascualh/dim-reduction-py/blob/master/MainRoutineClass.py

CHAPTER 5. CODE IMPLEMENTATION

In our case, the parameter we need to adjust is the γ coefficient of the squared
exponential kernel for the training data. Recall that γ = 1/(2σ2).

k(x, x′) = exp(−γ‖xi − xj‖2) (5.1)

The value of the γ parameter will determine the performance of the dimension reduction
methods which use that function, i.e., kernel PCA, kernel SPCA and kernel LSR-
PCA. Nonetheless, its optimal value will vary for each of this methods because each
method has its own eigenvalue problem and thus, they find its own matrix of projection.
Therefore, we have seen that we will need to compute an optimal γ for each kernel
method, γKPCA, γKSPCA and γKLSR−PCA.

In addition, the object that will give us the accuracy (or error) for each one of the
values of γ is a machine learning model. Therefore, our estimation object should be
a combination between a kernel dimension reduction method and a machine learning
model. The Python class that can combine these two objects in one is called Pipeline.
Pipeline is available at the Scikit-learn Python’s library. It is a powerful tool that
can assemble several steps that can be cross-validated together while setting different
parameters [28].

Finally, the function that finds the optimized parameters of an estimator, by a cross-
validated grid-search over a parameter grid is the Scikit-learn’s class, GridSearchCV.
The estimator will be the object built using the pipeline. The parameter grid given is
an array containing 40 different values from 10−3 to 102 in a logarithmic scale.

5.2 Implementation of the methods

This section will give an overview of the way that all the methods explained above have
been implemented in order to compare their performance.

The advantage of using Python’s libraries is that some of these methods are already
implemented as Python classes. This is the case of PCA, PLS or kernel PCA, which are
available at Scikit-learn’s decomposition and Scikit-learn’s cross decomposition pack-
ages [28].

Regarding the other methods, both SPCA and LSR-PCA were implemented using
our own code, based on Algorithms 2 and 3, respectively. Finally, as for kernel SPCA
and kernel LSR-PCA, they were also implemented using our own code. However, they
have been written in a Scikit-learn-like interface, so that the GridSearchCV class rec-
ognized them as valid methods.

39

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

Chapter 6

Computational examples

In this chapter we will apply LSR-PCA to a set of visualization, classification and
regression problems. We will compare LSR-PCA with Principal Component Analysis
(PCA) [2], Partial Least Squares Regression (PLS) [4], and Supervised PCA (SPCA) [3]
and show that LSR-PCA is a competitive dimension reduction method for the select
problems. We will also apply the kernel formulation of LSR-PCA to a few problems to
show its efficacy on non-linear problems.

The data sets used in this thesis are taken from the UCI Machine Learning Reposi-
tory [29] and the Scikit-learn’s datasets Python’s package [28]. The description of each
data set is shown in Table 6.1.

As we mentioned before, for data sets used for classification and regression, we
randomly split the data into 70% training and 30% test data sets. The errors from the
machine learning models are averaged over 50 random splits of the data.

6.1 Comparing linear methods

6.1.1 Visualization

For visualization, we chose two data sets from the UCI machine learning repository:
the wine and sonar data sets. The descriptions of these data sets are shown in Table
6.1. For both examples, we used only the first two principal components from each
dimension reduction method. The input data from the data sets are then projected
onto the two principal directions and plotted in Figures 6.1 and 6.2. The training data
is represented by filled circles and the test data is represented by hollow circles.

The Wine data set [29] projected on the leading two principal directions are plotted
in Figure 6.1. The input data to the Wine data set consists of 13 attributes tabulated
for three types of wines (no. of classes). As shown in Figure 6.1, both PCA and PLS
show small regions of overlap; both SPCA and LSR-PCA show complete separation of
the three classes of wine, but the gaps between the three classes are slightly wider in
LSR-PCA than SPCA.

40

CHAPTER 6. COMPUTATIONAL EXAMPLES

Data set No. of Instances No. of Features Problem Type
Automobile 205 26 Regression
Boston House Prices 506 13 Regression
Breast Cancer 569 30 Classification
Diabetes 442 10 Regression
Iris 150 4 Classification
Mice Protein Expression 1080 82 Classification
Moons 500 2 Classification
Parkinsons 197 23 Classification
Sonar 208 60 Classification
Soybean 307 35 Classification
Wine 178 13 Classification
Yacht Hydrodynamics 308 7 Regression

Table 6.1: Description of the data sets used to analyse the classification and regression
problems.

(a) PCA (b) PLS (c) SPCA (d) LSR-PCA

Figure 6.1: 2-dimensional projection of the leading components of the Wine data set.
Training data is represented by filled markers. Test data is represented by hollow
markers. From [6].

In the second visualization example, we use the sonar data set [29]. The data set
consists of 208 measurements of sonar signals bouncing off a metal cylinder and rocks at
different angles and conditions. Each measurement results in 60 real numbers ranging
between 0 and 1. Figure 6.2 shows that all four methods show some overlap between
the two classes. However, the overlap in the LSR-PCA is the least out of the four
methods.

6.1.2 Classification

In this section, we will present the results for classification problems. We chose the
following data sets: Iris, Mice Protein Expression, Soybean and Wine data sets.

The implementation of SPCA and LSR-PCA required a kernel over the target values,
Ky. For the classification problems, we chose k(y, y

′
) to be the Kronecker-Delta kernel,

41

CHAPTER 6. COMPUTATIONAL EXAMPLES

(a) PCA (b) PLS (c) SPCA (d) LSR-PCA

Figure 6.2: 2-dimensional projection of the leading components of the Sonar data set.
Training data is represented by filled markers. Test data is represented by hollow
markers. From [6].

δy,y′ :

δy,y′ :=

{
1 if y = y

′

0 if y 6= y
′ (6.1)

After the input training data has been projected to the leading principal directions, we
apply k-Nearest Neighbor (KNN) model to predict the class for the test data. The test
error is computed using the zero-one-loss function, L0−1:

L0−1(y, ŷ) = I{ŷj 6= yj} (6.2)

where yj is the observed class label, ŷj is the predicted class label corresponding to the
jth row of the data, and I(x) is the indicator function.

The first example is the Iris data set [29]. This data set contains 3 classes of 50
instances each, where each class refers to a type of iris plant. In this example, see
Figure 6.3a, LSR-PCA out performs the other three methods. Next, we have the Mice
Protein Expression data set [29], which consists of the expression levels of 77 protein
modifications that produced detectable signals in the nuclear fraction of cortex of mice.
The aim is to identify subsets of proteins that are discriminant between the classes.
LSR-PCA reaches the 0% rate in less dimensions than the other methods in this case,
see Figure 6.3b. The third example is the Soybean data set [29]. The data set contains
35 properties and characteristics that classify 19 classes of soybeans. The performance
of LSR-PCA in this example, see Figure 6.3c, is slightly similar to the other methods
until the 14th component, where starts performing slightly better. The last classification
example is the Wine data set [29], already described in the previous section. In this
example, see Figure 6.3d, LSR-PCA has a better performance than the other three
methods.

6.1.3 Regression

Next we show the performance of LSR-PCA in regression problems. For this study, we
selected the Automobile, Boston House Prices, the Diabetes, and the Yatch Hydrody-
namics data sets. The properties of the data sets are described in Table 6.1.

42

CHAPTER 6. COMPUTATIONAL EXAMPLES

(a) Iris (b) Mice protein expression

(c) Soybean (d) Wine

Figure 6.3: Classification zero-one loss error computed by the methods PCA, PLS,
Supervised PCA (SPCA) and Least Squares Regression PCA (LSR-PCA). From [6].

For regression problems, we chose k(y, y
′
) to be the squared exponential kernel over

Y :

k(y, y
′
) = exp

(
−‖yi − yj‖

2

2

)
. (6.3)

where y and y
′

are 1 × l row vectors of the n × l target matrix Y . For the regression
examples, after the input data is projected onto the selected principal components,
linear regression was applied to fit the training data. The error of the linear regression
model is measured using the mean squared error:

MSE(x, y) =
1

n

n−1∑
j=0

(ŷj − yj)2 , (6.4)

where xj is the jth sample of data, yj is the true response to xj, and ŷj is the predicted
response for input xj.

Looking at the results in figures 6.4 we first have a look at the Diabetes data set [28],
which contains 10 different measurements obtained for each of 442 patients. In this ex-
ample, see Figure 6.4a, all 4 methods perform comparably from the 4 component. Then

43

CHAPTER 6. COMPUTATIONAL EXAMPLES

(a) Diabetes (b) Automobile

(c) Boston House Prices (d) Yacht Hydrodynamics

Figure 6.4: Regression mean square errors computed by the methods PCA, PLS, Su-
pervised PCA (SPCA) and Least Squares Regression PCA (LSR-PCA). From [6].

we see the Automobile data set [29]. This data set consists in 26 different properties
from different cars to predict the level of security. Figure 6.4b shows that LSR-PCA
performs slightly better than PCA and and SPCA, but slightly worse than PLS. A sim-
ilar performance can be seen at the Boston House Prices data set [28], see Figure 6.4c,
where both PLS and LSR-PCA perform comparably and slightly better than PCA and
SPCA. Each sample of the Boston House Prices data set describes a Boston suburb or
town. The fourth regression example is the Yacht Hydrodynamics data set [29], which
contains the prediction of residual resistance of sailing yachts at the initial design stage.
This is used to evaluate the ship’s performance and for estimating the required propul-
sive power. As we can observe in Figure 6.4d, LSR-PCA clearly out performs the other
three methods.

6.2 Comparing kernel methods

Lastly, we assess the efficacy of the kernel formulation of LSR-PCA (KLSR-PCA),
compared to kernel PCA [26] and kernel SPCA [3]. First, we will take a look at the
2-dimensional projection of the moons data set from the Scikit-learn machine learning

44

CHAPTER 6. COMPUTATIONAL EXAMPLES

(a) Moons (b) KPCA (c) KSPCA (d) KLSR-PCA

Figure 6.5: 6.5a: Original form of the Moons data set. 6.5b, 6.5c, 6.5d: 2-dimensional
projection of the leading components of the Moons data set by KPCA, KSPCA and
KLSR-PCA. Training data is represented with filled markers. Test data is represented
with hollow markers. From [6].

library. This is a simple toy data set that makes two interleaving half circles and it is
very useful to visualize the performance of classification algorithms. Then, we applied
KLSR-PCA to the Diabetes, Parkinsons, Breast Cancer and Sonar data sets, which
are described in Table 6.1. We used an squared exponential kernel for the input data
matrix:

k(x, x
′
) = exp

(
−‖xi − xj‖

2

2σ2

)
, (6.5)

where the length-scale hyperparameter, σ was selected using a 5-fold cross validation
scheme, explained in section 5.1.1. Figure 6.5 shows the 2-dimensional projection by
three different kernel dimension reduction methods: KPCA, KSPCA and our method,
KLSR-PCA. For this example, for the selection of the length-scale hyperparameter, σ,
we used support vector machine with a linear kernel as the classification method in
order to enforce the linear separability of the kernel transformed input data. We found
that while all three kernel methods showed linear separation of the two classes, KSPCA
and KLSR-PCA provided separations of the two class with a larger distance.

In the next four examples, we compared the classification and regression errors
using the three kernel dimensional reductions methods. In the regression example,
the Diabetes data set, see Figure 6.6a, KPCA and KSPCA performed better than
KLSR-PCA for the first six dimensions, but all three kernel methods show comparable
performance as the dimensions increase further. A similar trend can be seen in the next
two classification examples, the Parkinsons [29] and Breast Cancer [29] data sets, see
Figures 6.6b and 6.6c, respectively. The Parkinsons data set is composed of a range
of biomedical voice measurements from 31 people, 23 with Parkinson’s disease. The
main aim of the data is to discriminate healthy people from those with the disease. As
for the Breast Cancer data set, its features are computed from a digitized image of a
fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell
nuclei present in the image. Lastly, in the sonar data set, see Figure 6.6d, KLSR-PCA
performed the best out of all three for the first fifteen dimensions, and then it shows
comparable performance to KPCA for the remaining subsequent dimensions.

45

CHAPTER 6. COMPUTATIONAL EXAMPLES

(a) Diabetes (b) Parkinsons

(c) Breast Cancer (d) Sonar

Figure 6.6: Classification and Regression errors computed by the methods Kernel PCA,
Kernel SPCA, Kernel Regression PCA. From [6].

46

Chapter 7

Conclusion

This thesis was devoted to the introduction of a new supervised dimensionality re-
duction method, the Least Squares Regression Principal Component Analysis (LSR-
PCA) [6], a method that finds a set of principal components which are relevant for
both the input and output variables by revealing how the input data contributes lin-
early to building a kernel-transformed target data. We showed how the method can be
solved in closed-form. In addition, we developed a kernel formulation for LSR-PCA [6]
for input data that are non-linearly correlated.

Furthermore, we have described in detail some of the existing state-of-the-art di-
mension reduction methods, Principal Component Analysis [15], Partial Least Squares
Regression [4] and Supervised PCA [3], which represent different categories of promi-
nent methods of unsupervised and supervised dimension reduction.

Our computational examples in different classes of learning problems, visualization,
classification and regression, showed that LSR-PCA performed well compared to the
aforementioned existing dimension reduction methods.

In 1997, David Wolpert and William Macready coined the term “no free lunch”
(NFL) theorem in their paper No Free Lunch Theorems for Optimization [30]. In their
paper, the first theorem states that “any two optimization algorithms are equivalent
when their performance is averaged across all possible problems” [31]. In the spirit of
the “no free lunch” theorem in machine learning, we believe that there is not a single
dimension-reduction method that can out-perform all other methods in every learning
problem. We have shown in our examples that LSR-PCA should be one of the candidate
dimension reduction methods when it comes to picking the best dimension-reduction
methods for a learning problem.

To conclude, we would like to state that as of June 29, 2020, we are in preparation of
a paper which will introduce LSR-PCA in theory and will gather all the computational
examples presented in this thesis.

47

Bibliography

[1] Shlens, J., “A tutorial on principal component analysis,” 2014.

[2] F.R.S., K. P., “Liii. on lines and planes of closest fit to systems of points in space,”
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Sci-
ence, vol. 2, no. 11, pp. 559–572, 1901.

[3] Barshan, E., Ghodsi, A., Azimifar, Z., and Zolghadri Jahromi, M., “Supervised
principal component analysis: Visualization, classification and regression on sub-
spaces and submanifolds,” Pattern Recogn., vol. 44, pp. 1357–1371, July 2011.

[4] Geladi, P. and Kowalski, B. R., “Partial least-squares regression: a tutorial,” An-
alytica chimica acta, vol. 185, pp. 1–17, 1986.

[5] Bair, E., Hastie, T., Paul, D., and Tibshirani, R., “Prediction by supervised princi-
pal components,” Journal of the American Statistical Association, vol. 101, no. 473,
pp. 119–137, 2006.

[6] Pascual, H. and Yee, X., “Least squares regression principal component analysis:
a supervised dimensionality reduction method,” 2020. Unpublished manuscript.

[7] Géron, A., Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, 2019.

[8] Kohavi, R. et al., “A study of cross-validation and bootstrap for accuracy esti-
mation and model selection,” in Ijcai, vol. 14, pp. 1137–1145, Montreal, Canada,
1995.

[9] McLachlan, G. J., Do, K.-A., and Ambroise, C., Analyzing microarray gene ex-
pression data, vol. 422. John Wiley & Sons, 2005.

[10] Gupta, P., “Cross-validation in machine learning.” https://

towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f,
2017. Accessed: 2020-03-04.

[11] Celisse, A. et al., “Optimal cross-validation in density estimation with the l̂{2}-
loss,” The Annals of Statistics, vol. 42, no. 5, pp. 1879–1910, 2014.

48

https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f
https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f

BIBLIOGRAPHY

[12] Imandoust, S. B. and Bolandraftar, M., “Application of k-nearest neighbor (knn)
approach for predicting economic events: Theoretical background,” International
Journal of Engineering Research and Applications, vol. 3, no. 5, pp. 605–610, 2013.

[13] Brownlee, J., “Linear regression for machine learning.” https://

machinelearningmastery.com/linear-regression-for-machine-learning/,
2016. Accessed: 2020-02-14.

[14] Gandhi, R., “Introduction to machine learning algo-
rithms: Linear regression.” https://towardsdatascience.com/

introduction-to-machine-learning-algorithms-linear-regression-14c4e325882a,
May 2018. Accessed: 2020-02-14.

[15] Jolliffe, I., Principal Component Analysis. Springer Verlag, 1986.

[16] Ghojogh, B. and Crowley, M., “Unsupervised and supervised principal component
analysis: Tutorial,” arXiv preprint arXiv:1906.03148, 2019.

[17] Boyd, S., Boyd, S. P., and Vandenberghe, L., Convex optimization. Cambridge
university press, 2004.

[18] Wold, H., “Soft modelling by latent variables: The non-linear iterative partial
least squares (nipals) approach,” Journal of Applied Probability, vol. 12, no. S1,
p. 117–142, 1975.

[19] Ng, K. S., “A simple explanation of partial least squares,” The Australian National
University, Canberra, 2013.

[20] Rosipal, R. and Clancy, D., “Kernel partial least squares for nonlinear regression
and discrimination,” 2002.

[21] Höskuldsson, A., “Pls regression methods,” Journal of chemometrics, vol. 2, no. 3,
pp. 211–228, 1988.

[22] Hein, M. and Bousquet, O., “Kernels, associated structures and generalizations,”
2004.

[23] Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B., “Measuring statistical de-
pendence with hilbert-schmidt norms,” in International conference on algorithmic
learning theory, pp. 63–77, Springer, 2005.

[24] Raschka, S., Linear, P., Gaussian, R., and LLE, L.-L. E., “Kernel tricks and non-
linear dimensionality reduction via rbf kernel pca,” Blog, September, 2014.

[25] Tiuplin, A., “A tutorial on kernel principal component
analysis.” https://atiulpin.wordpress.com/2015/04/02/

a-tutorial-on-kernel-principal-component-analysis/, 2015. Accessed:
2020-05-25.

49

https://machinelearningmastery.com/linear-regression-for-machine-learning/
https://machinelearningmastery.com/linear-regression-for-machine-learning/
https://towardsdatascience.com/introduction-to-machine-learning-algorithms-linear-regression-14c4e325882a
https://towardsdatascience.com/introduction-to-machine-learning-algorithms-linear-regression-14c4e325882a
https://atiulpin.wordpress.com/2015/04/02/a-tutorial-on-kernel-principal-component-analysis/
https://atiulpin.wordpress.com/2015/04/02/a-tutorial-on-kernel-principal-component-analysis/

BIBLIOGRAPHY

[26] Schölkopf, B., Smola, A., and Müller, K.-R., “Kernel principal component anal-
ysis,” in Artificial Neural Networks — ICANN’97 (Gerstner, W., Germond, A.,
Hasler, M., and Nicoud, J.-D., eds.), (Berlin, Heidelberg), pp. 583–588, Springer
Berlin Heidelberg, 1997.

[27] Alperin, J. L., Local representation theory: Modular representations as an intro-
duction to the local representation theory of finite groups, vol. 11. Cambridge
University Press, 1993.

[28] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E., “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[29] Dua, D. and Graff, C., “UCI machine learning repository,” 2017.

[30] Wolpert, D. H. and Macready, W. G., “No free lunch theorems for optimization,”
IEEE transactions on evolutionary computation, vol. 1, no. 1, pp. 67–82, 1997.

[31] Wolpert, D. H. and Macready, W. G., “Coevolutionary free lunches,” IEEE Trans-
actions on evolutionary computation, vol. 9, no. 6, pp. 721–735, 2005.

50

	Abstract
	Acknowledgements
	Introduction
	Theoretical Background
	Supervised and Unsupervised Learning
	Supervised learning
	Unsupervised learning

	Cross Validation
	Non-exhaustive methods
	Exhaustive methods

	K-Nearest Neighbors
	Linear Regression

	Related works
	Principal Component Analysis
	PCA Intuitive goal
	PCA Using Eigen-Decomposition

	Partial Least Squares Regression
	PLS Using Eigen-Decomposition

	Supervised Principal Component Analysis
	Hilbert-Schmidt Independence Criterion
	SPCA Derivation
	SPCA Connection to PCA

	Least Squares Regression Principal Component Analysis
	LSR-PCA Formulation
	LSR-PCA Derivation
	LSR-PCA Connection to PCA

	Non-linear transformation methods
	Kernels and Hilbert Space
	Kernel Principal Component Analysis
	Kernel Supervised Principal Component Analysis
	Kernel Least Squares Regression Principal Component Analysis

	Code implementation
	Dimension reduction routine
	Hyperparameter optimal search

	Implementation of the methods

	Computational examples
	Comparing linear methods
	Visualization
	Classification
	Regression

	Comparing kernel methods

	Conclusion

