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ABSTRACT 

Dynamic network operations can produce power fluctuations of the established connections in filterless optical 

networks. In addition, the gridless nature of filterless networks make that some (un)intentional effects such as 

transponders laser drift might disrupt the proper operation of lightpaths. To overcome these issues, we present a 

monitoring system exploiting data analytics and cost-effective optical spectrum analyzers to achieve smart 

filterless network operation. Experimental measurements are used to validate the proposed data analytics-based 

approaches, as well as to find the optimal resolution to achieve maximum performance with minimum cost. 
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1. INTRODUCTION 

Filterless optical networks (FON) have recently attracted significant attention as a cost-effective metro solution to 

interconnect 100G coherent-based nodes in a drop and waste network architecture [1]. Note that, since the 

operating lightpaths do not pass filtering nodes, FONs can be considered as a kind of gridless network where 

frequency slots are not rigidly defined, which could drive to a better use of spectrum resources. However, filterless 

networks suffer from some limitations [2] in contrast with spectrum switched optical networks (SSON) that can 

seriously affect proper lightpaths’ operation. On the one hand, optical power fluctuations produced by 

provisioning, i.e., set-up and teardown, as well as re-configuration operations can be critical since a cascade of 

amplifiers may be traversed with no wavelength selective switches that could provide equalization and control of 

power levels. On the other hand, (un)intentional laser drift of a tunable transponder (Tp) can disrupt proper 

operation of a neighboring lightpath, in contrast to SSON, where laser drift effects are much more moderate. 

In view of the above, cost-effective approaches to monitor FONs are needed to allow network operators to take 

prompt actions in case of improper operation of a device in their domain. Most of the current monitoring systems 

rely on the capabilities of coherent receivers to collect measurements [3]. With the development of cost-effective 

optical spectrum analyzers (OSAs) with sub-GHz resolution [4] deployable in the optical nodes, a new horizon 

has been seen for the development of monitoring and data analytics (MDA) platforms that can benefit from the 

optical spectrum captured by OSAs [5]. Due to the broadcast nature of FONs, just one OSA per fiber is enough to 

capture the aggregated spectrum. Since OSA resolution is related to its cost, a target OSA resolution should be 

studied to achieve remarkable cost savings. 

In this paper, we propose to use OSAs to enable smooth operation of filterless optical networks. Specifically, two 

use cases are detailed. First, smooth operation (i.e. setup and teardown of lighpaths during provisioning or 

reconfiguration) consists in tuning signal power levels to prepare the network before the operation is carried out, 

based on monitored data, and performing a fine tunning of signal power levels after the operation. Second, a 

surveillance system that continuously scan the whole C-band aiming at monitoring the healthiness of the active 

lightpaths and detecting failure ahead of having a service disrupted is presented. Experimental results are provided 

to show how power fluctuates as a result of network operations in filterless optical networks, as well as to find the 

most appropriate OSA resolution to achieve target accuracy at minimum cost is performed. 

2. SMOOTH FILTERLESS NETWORK OPERATION 

Power level of a lightpath is a key parameter determining its Quality of Transmission (QoT), which also has a 

significant impact on the overall performance of the network. In particular, two conditions must be satisfied: i) the 

signal of every individual lightpath should arrive to the receiver with a power level enough to satisfy the receive 

sensitivity and, ii) both individual channels’, as well as the total power level injected into a fibre strand should not 

exceed a certain level in order not to signify the impact of nonlinearities or, in an extreme case, make the 

photodiode of the receiver unusable. These issues become more critical in the context of filterless optical networks, 

where optical signals propagate far beyond their receiver point. 

In addition, dynamic changes as a result of network operation affect the power levels of the active lightpaths. 

Therefore, monitoring the power levels of different lightpaths becomes essential to keep the abovementioned 

phenomenon under control. The power level of individual channels can be measured in the receiver side. However, 

such measurements are available just at the local node and do not provide any insight on the power fluctuations in 

the other portion of the operating amplification band (e.g., C-band). As already mentioned, just one OSA per 

filterless segment is enough to capture the aggregated spectrum and measure the power level of all the active  
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Fig. 1. A filterless optical network segment. 

channels at the end of the segment (as shown in Fig. 1). However, such measurement does not reveal meaningful 

information on the power level of the channels arriving at intermediate nodes. 

Aiming at solving that issue, we propose to collect the power levels measured by the receivers, as well as the ones 

measured by the single OSA of the segment in the MDA system allowing the overall monitoring of power 

fluctuations in the network. In addition, a Machine Learning (ML) algorithm can perform a network-wide analysis 

providing guidelines on the power fluctuations and their possible impact on the performance of the network 

avoiding undesired events to happen. The outputs of the ML algorithm can be then used to perform component re-

tuning in a network operations phase or to execute periodical component power level adjustment. 

Among network devices, the transmitters and the optical amplifiers, including Erbium Doped Fiber Amplifiers 

(EDFA), are the ones that mainly contribute to power level fluctuations. The level of their contributions and the 

impact they may have on the overall performance depend on their characteristics, as well as the network 

configuration. For instance, while the launch power is the only parameter to be tuned at the transmitter side, the 

gain and the tilt are among the reconfigurable parameters of the amplifiers. In the context of filterless metro 

networks, transmission power can be configured in the typical range between -10dBm to 0dBm, and amplifiers 

are typically configured in gain-mode to compensate for span and splitter/coupler loss, with large flexibility in 

gain configuration and limited flexibility in tilt (few dBs). Actual reconfiguration time is in the order of few 

milliseconds, which could increase to few seconds considering the whole control system.  

In view of that, an enhanced network operation procedure that includes power-related parameter adjustment is 

proposed. The procedure consists of prior and posterior to the network operation power-aware stages to prepare 

and adjust the network to assure a smooth operation if a detrimental effect is anticipated in the network. 

1. Preparation Phase: this phase estimates whether the requested network operation, i.e., the actual set-

up/teardown of a lightpath or a network re-configuration, may have a harmful impact of the network healthiness. 

It analyzes the impact of the specific operation by considering the network configuration, as well as the currently 

established lightpaths and the target of the operation itself. 

2. Network operation: the actual set-up, teardown, or re-configuration. 

3. Fine Tuning Phase: This phase observes the post-operation status of the network by monitoring the power 

level, analyzes the fluctuations in different locations, and implements fine tuning of network devices. 

To implement the proposed smooth network operation, we assume the 

control architecture depicted in Fig. 2; a SDN controller is in charge of 

configuring the network devices, including power levels. The network is 

continuously monitored, and measured power levels are stored in the MDA 

controller. Finally, the optional planning tool reflects the fact that a system 

to compute network-wide power levels based on monitored data is needed. 

Fig. 4 shows also the proposed workflow that implements smooth network 

operations. The workflow starts after a new request arrives at the SDN 

controller (labeled 1). In this case, the SDN controller issues a request to the 

planning tool to find the optimal use of resources for the incoming operation 

request, as well as to compute optimal power levels to be implemented in the 

network in advance (2). Such computation needs from monitoring data that 

the planning tool retrieves from the MDA controller (3). The results are 
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Fig. 2: Proposed workflow 

replied to the SDN controller (4), which first implements the recommended power levels, and then the network 

operation itself (5). The continuous network monitoring might trigger the posterior tuning phase. A ML algorithm 

running in the MDA controller analyzes measured power levels and might decide to fine tune some of the network 

devices to maximize network performance. This decision is notified to the SDN controller as a recommended 

action (6), which eventually reconfigures the network devices (7). 

3. REAL-TIME SPECTRUM SURVEILLANCE 

The example in Fig. 1 illustrate a network were five lightpaths has been established following the smooth operation 

procedure explained in the previous section. Let us imagine now that Tp of lightpath R3->R4 (signal 4) experiences 

a problem where its central frequency (CF) drifts to the right; in this case, lightpath R5->R6 (signal 5) will be 

affected since the spectrum of signal 4 overlaps it, even though the spatial route of the two lightpaths do not 

intersect. As a result, a surveillance method should be considered to detect laser drifts, while determining whether 

a drift will impact a neighboring lightpath. Our proposal has an advantage while exploited for FONs, which is the 
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small number of OSAs required for real-time network spectrum monitoring; note that in a similar SSON, one OSA 

per link (five in total) would be required. In this work, we propose to use one single OSA installed in the last span, 

where all signals in the FON can be acquired. Captured spectrum needs to be analyzed real-time so active lightpaths 

in the FON are monitored and prompt actions are taken before a properly operating lightpath becomes affected by 

a failed Tp. Therefore, we assume the distributed hierarchical MDA architecture in [5], which includes 

computation capabilities close to the network nodes. 

Note that the frequency range of a signal might not be exactly determined and slightly change along lightpaths’ 

lifetime. Therefore, an algorithm examining the captured optical spectrum cannot select a frequency range in the 

whole C-Band acquired by an OSA and focus on analyzing it in the hope that the whole spectrum of a target 

lightpath and only of such lightpath is confined within that frequency range. In consequence, in the next section, 

we propose algorithms that periodically scan the whole C-band and rely on an ordered list of lightpaths, including 

relaxed frequency ranges for each one, obtained from the SDN controller; the scan process is intended to ensure 

that signals in the network and lightpaths in the list match in terms of frequency ranges. Any found difference (i.e., 

signals not in the list and lightpaths not in the FON), as well as detected anomalous signal CF shifts that might end 

in impacting neighboring lightpaths are reported to the SDN controller. Analyzing the current signals’ spectrum 

allocation and lightpaths information from the controller, we thus aim at checking whether each signal is confined 

within the frequency range allocated to a lightpath (normal signals); conversely, three anomalies can be identified 

(Fig. 3a), namely: i) a signal is partially out of the spectrum allocated to a lightpath (outOfRange); ii) a signal is in 

a spectrum range no allocated to any lightpath (unknown); and iii) no signal has been detected in the spectrum 

allocated to a lightpath (missing). The detection of any of these anomalies triggers a notification with critical 

severity level to the controller, whereas normal signals need to be tracked afterwards to predict a potential anomaly. 
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Fig. 3. Signal classification example (a) and anomaly prediction (b) 

 

The proposed data analytics procedure starts when a new C-band scan is acquired by the OSA, which generates 

an ordered list of frequency-power pairs. The first step is to detect the allocated spectrum to each signal; by using 

the derivative of the power w.r.t. the frequency [6], the sharp power rising at the left frequency edge followed by 

the power falling at the right frequency edge of each signal in the spectrum can be detected. Next, the algorithm 

in Table 1 is used to classify the set of identified signals S w.r.t to the list of lightpaths P. 

After some initializations (lines 1-2), the algorithm iterates on the signals to find the lightpaths where the allocated 

spectrum includes part of their range (lines 3-4); if no lightpath is found, the signal is classified as unknown (line 

5), whereas it is classified as normal if the allocated spectrum of just one lightpath totally overlaps the signal (lines 

6-8). Otherwise, signals are classified as outOfRange and assigned to the first overlapping lightpath (lines 9-15). 

Finally, the set of missing lightpaths (if any) are obtained and 

the classification results eventually returned (lines 16-17). 

Non- normal signals trigger notifications to the controller and 

they can be discarded for further analysis. The next step focuses 

on tracking normal signals to predict any possible violation of 

their spectrum allocation that could impact on neighboring 

signals. In this step, the optical spectrum of each signal is 

analyzed to find relevant points, such as the CF and the left and 

right frequencies (LF/RF) computed at -3dBs [6]; the relevant 

points are used to track the evolution of the signal with time and 

to predict whether it is likely to exceed the spectrum allocation 

within a given future time window. An example of this 

procedure is illustrated in Fig. 3b, where signal s2 is gradually 

approaching neighboring signal s1. In this case, the prediction 

of s2 LF at time t2 states that it will exceed its spectrum 

allocation and thus, a notification with warning severity level is 

triggered towards the controller before an outOfRange anomaly 

is detected (actually at time t3) 

Table 1 Signal Classification Procedure 

INPUT S, P 

OUTPUT N, O, M, U 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
 17: 

N=O=M=U=S’←Ø 
ID←getAllIds(P) 
for each s∊S do 

P’←findOverlaps(P, s) 
if P’≠ Ø then U←U U {s} 
else if |P’|==1 and totalOverlap(s,P’) then 

N←N U {<P’.getId(), s>} 
ID←ID \ {P’.getId()} 

else s.I← P’.getId() 
S’← S’ U {s} 

if S’≠ Ø then 
for each s∊S do 

I←{s.I} ∩ ID 
O ← O U {<I.first,s>} 
ID←ID \ I.first 

if ID≠ Ø then M←M ∪ ID 
return N, O, M, U 

 



4. EXPERIMENTAL RESULTS AND CONCLUSIONS 
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Fig. 4. Power variations in operation Fig. 5.Overlap impact and detection Fig. 6. OSA resolution 

An optical network composed of two 80 km long G.652 optical links and three EDFAs configured in gain-mode 

has been considered for the experimental measurements of power variations due to the setup and teardown of 

optical connections (Fig. 4). In a first experiment, we observe how the power level of a lightpath fluctuates when 

other lightpaths are sequentially established (Fig. 4a). Specifically, the power level of the lightpath in the extreme 

right side of C-band (196.1 THz) suffers from increasing power loss when more lightpaths are established on its 

left side (up to 6dB for 5 new established lightpaths). This motivates the proposed adaptive power adjustment 

before new lighpaths are set-up in order to avoid that the power level goes below the receiver sensitivity. In a 

second experiment, we observe how network reconfiguration operations affect the power level of the lightpaths 

(Fig. 4b). To evaluate those effects, we start from a scenario with 43 lightpaths allocated in a contiguous C-band 

portion (line). To emulate network reconfiguration, 33 lightpaths are torn down, remaining 10 (markers), either in 

the left or right side of the spectrum. As illustrated, the power level of the remaining lightpaths experiences up to 

1.5 dB increase right after massive torn down, which shows the need of real-time adjustments to avoid detrimental 

effects thus, smoothening network operations. 

To validate real-time spectrum surveillance, we setup another experimental test-bed where two neighboring 100 

Gb/s signals (s1 and s2) were launched. While s2 was considered to operate properly, s1 is forced to move toward 

the neighboring one at 1 GHz steps from an initial 6 GHz spacing between signals, simulating a laser drift failure. 

Fig. 5a shows how pre-FEC BER degradation increases when overlap increases. The signal classification algorithm 

perfectly identifies both signals and matches them to two existing lightpaths (s2 as normal and s1 as outOfRange) 

Nonetheless, it is worth studying the accuracy of signals’ detection vs. OSA resolution. To that end, we emulated 

5000 different lightpath frequency ranges for every spectrum capture with no overlap. The accuracy on LF and RF 

computation vs. OSA resolution are reported in Fig. 5b and the results of the CF computation for three OSA 

resolutions are reported in Fig. 6a, where the inner table inside Fig. 6a details the mean squared error (MSE) for 

each OSA resolution. It is clear that the finer the OSA resolution the lower the error in points computation, which 

impacts on signal identification. Fig. 6b shows the results of the detection for different OSA resolutions; with 300 

MHz and 600 MHZ OSA resolution, the overlap is perfectly detected; the inner graph inside Fig. 6b shows how 

the sudden change in LF of signal s2 allows detecting the overlap. When OSA resolution is up to 2.1 GHz, 1 GHz 

of effective overlap is needed to detect it, whereas the overlap is not detected for coarser resolutions. Therefore, 

1.2 GHz OSA resolution can be identified as the coarsest one for accurate signal tracking and overlap detection. 
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