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We study clusters of the type ANBM with N ≤ M ≤ 3 in a two-dimensional mixture of A and
B bosons, with attractive AB and equally repulsive AA and BB interactions. In order to check
universal aspects of the problem, we choose two very different models: dipolar bosons in a bilayer
geometry and particles interacting via separable Gaussian potentials. We find that all the considered
clusters are bound and that their energies are universal functions of the scattering lengths aAB and
aAA = aBB, for sufficiently large attraction-to-repulsion ratios aAB/aBB. When aAB/aBB decreases
below ≈ 10, the dimer-dimer interaction changes from attractive to repulsive and the population-
balanced AABB and AAABBB clusters break into AB dimers. Calculating the AAABBB hexamer
energy just below this threshold, we find an effective three-dimer repulsion which may have important
implications for the many-body problem, particularly for observing liquid and supersolid states of
dipolar dimers in the bilayer geometry. The population-imbalanced ABB trimer, ABBB tetramer,
and AABBB pentamer remain bound beyond the dimer-dimer threshold. In the dipolar model, they
break up at aAB ≈ 2aBB where the atom-dimer interaction switches to repulsion.

Recent experiments on dilute quantum droplets in
dipolar bosonic gases [1–4] and in Bose-Bose mixtures [5–
7] with competing interactions have exposed the im-
portant role of beyond-mean-field effects in weakly-
interacting systems. A natural strategy to boost these
effects and enhance exotic behaviors is to make the in-
teractions stronger while keeping the attraction-repulsion
balance for mechanical stability. The most straightfor-
ward way of getting into this regime is to increase the gas
parameter na3s. However, this leads to enhanced three-
body losses which results in very short lifetimes (as it
has been observed in experiments [1–7]). Nevertheless,
this regime is achievable in reduced geometries. It has
been shown that a one-dimensional Bose-Bose mixture
with strongly-attractive interspecies interaction becomes
dimerized and, by increasing the intraspecies repulsion,
the dimer-dimer interaction can be tuned from attractive
to repulsive [8]. Then, an effective three-dimer repulsion
has been found in this system and predicted to stabilize
a liquid phase of attractive dimers [9].

In two dimensions, a particularly interesting realiza-
tion of such a strongly-interacting, tunable, and long-
lived Bose-Bose mixture is a system of dipolar bosons
confined to a bilayer geometry [10–12]. When the dipoles
are oriented perpendicularly to the plane, there is a com-
peting effect between repulsive intralayer and partially
attractive interlayer interactions, interesting from the
viewpoint of liquid formation. In addition, the quasi-
long range character of the dipolar interaction can pro-
duce the rotonization of its spectrum and a supersolid
behavior [13–21], formation of a crystal phase [22, 23],
and a pair superfluid [24–26] (see also lattice calcula-
tions of Ref. [27]). A peculiar feature of bilayer model

is the vanishing Born integral for the interlayer interac-
tion,

∫
VAB(ρ)d2ρ = 0 [28], which has led to controversial

claims about the existence of a two-body bound state [29]
till it has finally been established that this bound state
always exists, although its energy can be exponentially
small [30–34], consistently with Ref. [35]. Interestingly,
a similar controversy seems to continue at the few-body
level; it has been claimed [36] that the repulsive dipolar
tails will never allow for three- or four-body bound states
in this geometry.

In this Rapid Communication, we investigate few-body
bound states in a two-dimensional mass-balanced mix-
ture of A and B bosons with two types of interactions
characterized by the two-dimensional scattering lengths
aAB and aAA = aBB. The first case corresponds to the
bilayer of dipoles discussed above and, in the second,
we model the interactions by non-local (separable) finite-
range Gaussian potentials. By using the diffusion Monte
Carlo (DMC) technique in the first case, and the Stochas-
tic Variational Method (SVM) in the second, we find that
for sufficiently weak BB repulsion compared to the AB
attraction, aAB � aBB, all clusters of the type ANBM
with 1 ≤ N ≤M ≤ 3 are bound. We then locate thresh-
olds for their unbinding with decreasing aAB/aBB. By
looking at the AAABBB hexamer energy close to the
corresponding threshold, we discover an effective three-
dimer repulsion, which can stabilize interesting many-
body phases.
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The Hamiltonian of our system is given by

Ĥ =− ~2

2m

N∑
i=1

∇2
i −

~2

2m

M∑
α=1

∇2
α

+
∑
i<j

V̂AA(rij) +
∑
α<β

V̂BB(rαβ) +
∑
i,α

V̂AB(riα) ,

(1)

where the two-dimensional vectors ri and rα denote par-
ticle positions of species A and B containing, respectively,
N andM atoms, V̂AB and V̂AA = V̂BB are the interspecies
and intraspecies interaction potentials, and m is the mass
of each particle. For the bilayer setup, we have VAA(r) =
VBB(r) = d2/r3 and VAB(r) = d2(r2 − 2h2)/(r2 + h2)5/2

where d is the dipole moment and h is the distance be-
tween the layers. Dipoles are aligned perpendicularly to
the layers and there is no interlayer tunneling. The po-
tential VBB(r) is purely repulsive and is characterized by
the h-independent scattering length aBB = e2γr0 [37],
where γ ≈ 0.577 is the Euler constant and r0 = md2/~2
is the dipolar length. The interlayer potential VAB(r)
always supports at least one dimer state. Its energy re-
ported in the inset of Fig. 1 diverges for h → 0 and
exponentially vanishes in the opposite limit [30–33]. The
scattering length aAB, which is a function of r0 and h,
is ∼ aBB ∼ r0 for h ∼ r0, and exponentially large for
h � r0. In the following, we parametrize the system by
specifying aBB and aAB rather than h and r0.

In the more academic case of Gaussian interactions,
we use V̂AB(riα)ψ(riα) =

∫
VAB(riα, r

′
iα)ψ(r′iα)d2r′iα

and similarly for VAA and VBB, where Vσσ′(r, r′) =
Cσσ′Gξ(r)Gξ(r

′), Gξ(r) = (2πξ2)−1 exp(−r2/2ξ2), and
ξ is the characteristic range of the potential. An ad-
vantage of this non-local potential is that the two-
body problem can be solved analytically, giving C−1σσ′ =
m

4π~2

[
2 ln 2ξ

aσσ′
− γ
]
. In the following, we vary the ratio

aAB/aBB, with aBB = 1.4ξ fixed. Note that the available
ratio is limited to aAB/aBB > 1.1.

In order to calculate the energies of the different few-
body clusters, we employ two numerical techniques. In
the dipolar case we use the diffusion Monte Carlo (DMC)
method [38], which leads to the exact ground-state energy
of the system, within a statistical error. This stochastic
technique solves the Schrödinger equation in imaginary
time using a trial wave function for importance sampling.
We choose it to be

ΨT (r1, . . . , rN+M ) =

N∏
i<j

fAA(rij)

M∏
α<β

fBB(rαβ)

×

[
N∏
i=1

M∑
α=1

fAB(riα) +

M∏
α=1

N∑
i=1

fAB(riα)

]
.

The interspecies correlations are described by the dimer
wave function fAB(r), calculated numerically, and the
intraspecies Jastrow factors are chosen as the zero-
energy two-body scattering solution, fAA(r) = fBB(r) =

K0(2
√
r0/r), with K0 the modified Bessel function.

In the Gaussian model, we use the stochastic vari-
ational method (SVM) [39] where the wave function
is expanded in a correlated Gaussian basis Ψ(η) =∑
i ci Ŝ exp

(
− 1

2η
TAiη

)
, where η is the vector of N +

M−1 particle coordinates in the center-of-mass reference
frame, the matrices Ai are real, symmetric, and positive
definite. Ŝ is the symmetrization operator, relevant for
our Bose-Bose mixture, and the index i sums over the ba-
sis functions (with ≈ 3000 functions). The Schrödinger
equation is then reduced to a generalized eigenvalue prob-
lem, giving the expansion coefficients {ci} and the corre-
sponding energy. The basis is optimized to the system at
hand in a stochastic way, where elements of the matrices
Ai are chosen randomly taking at each step the element
that gives the lowest energy. Our SVM implementation
closely follows Ref. [40].

We first discuss the limit of very large aAB (large
dimer size) when the interaction range and the in-
traspecies interactions can be neglected. In this case,
the problem can be treated in the zero-range approxi-
mation giving for the ABB trimer EaBB=0

ABB = 2.39EAB

[41–43] and for the tetramers EaBB=0
ABBB = 4.1EAB and

EaBB=0
AABB = 10.6EAB [41]. Here, we find that the other

ANBM clusters (with 1 ≤ N ≤ M ≤ 3) are also
bound in absence of the intraspecies repulsion. Using
the method of Ref. [44], we calculate their binding ener-
gies (and also update the energies of smaller clusters):
EaBB=0

ABB /EAB = 2.3896(1), EaBB=0
ABBB /EAB = 4.1364(2),

EaBB=0
AABB /EAB = 10.690(2), EaBB=0

AABBB/EAB = 28.282(5),

and EaBB=0
AAABBB/EAB = 104.01(5).
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FIG. 1. Energies of ANBM clusters in units of the dimer
energy EAB (reported in the inset in units of ~2/ma2BB) for
Gaussian (curves) and dipolar (symbols) potentials as a func-
tion of the scattering length ratio aAB/aBB. The arrows show
the positions of the thresholds for binding in the dipolar case.

The intraspecies repulsion shifts the cluster energies
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upwards as has been seen for the ABB trimer [45, 46]
and for the ABBB tetramer [46]. In Fig. 1, we report the
energies of these and bigger clusters for both the dipolar
and Gaussian interactions. Note that, even for the weak-
est BB repulsion shown in this figure (aAB/aBB = 200),
the clusters are significantly less bound compared to the
case of no BB repulsion. This happens since the small
parameter that controls the weakness of the intraspecies
interaction relative to the interspecies one is actually
λ = 1/ ln(aAB/aBB) � 1. By contrast, effective-range

corrections contain powers of r0
√
mE/~ or ξ

√
mE/~ for

dipolar or Gaussian interactions, respectively, which are
exponentially small in terms of λ. This explains why the
two interaction models lead to almost indistinguishable
results for large aAB/aBB.

We find that for sufficiently strong intraspecies repul-
sion (smaller aAB/aBB) the trimer and all higher clus-
ters get unbound. In Fig. 1, the thresholds for bind-
ing in the dipolar model are shown by arrows. We find
that the tetramer threshold is located at aAB/aBB ≈ 10
(h/r0 ≈ 1.1) and the trimer threshold, corresponding
to the atom-dimer zero crossing, occurs in the regime
where all relevant length scales (scattering lengths, dimer
sizes, interaction ranges) are comparable to one an-
other; aAB/aBB ≈ 2 (h/r0 ≈ 0.8) for the dipolar
model. The positions of the threshold and differences
between the results of the two models are better visi-
ble in Fig. 2 where we plot the cluster energies in units
of ~2/ma2BB. The threshold values are obtained by fit-
ting the energy results to the function EANBM−NEAB =
E0 exp{−1/[c1(aAB−acAB)+c2(aAB−acAB)2]}, for aAB >
acAB, where acAB, E0, c1, c2 are free parameters.

Our numerical calculations for larger clusters indicate
that, depending on whether they are balanced (M = N)
or not, their unbinding thresholds coincide, respectively,
with the tetramer or with the trimer ones. To understand
these results note that close to these thresholds the clus-
ters are much larger than the dimer. Treating there the
latter as an elementary boson D, the AABBB pentamer
and the ABBB tetramer can be thought of as weakly
bound DDB or DBB “trimers” characterized by a large
aDB value and repulsive DD and BB interactions (the DD
interaction is repulsive since we are above the tetramer
AABB threshold). In the limit aDB →∞ the DD and BB
interactions can be neglected and the binding energies of
the DDB and DBB composite trimers are asymptotically
fractions of EABB − EAB [42]. The ABB trimer, ABBB
tetramer, and AABBB pentamer thresholds are there-
fore the same [see Fig. 2 (a,b,c)]. In the same reason-
ing, close to the AABB tetramer crossing, the hexamer
AAABBB is a weakly-bound DDD state which splits into
three dimers when the dimer-dimer attraction changes to
repulsion resulting in the same threshold value.

In the above discussion we have integrated out the in-
ternal degrees of freedom of the dimers, replacing them
by elementary point-like bosons. In fact, the DD zero
crossing that we observe for aAB ≈ 10aBB is a nonpertur-
bative phenomenon resulting from a competition between
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FIG. 2. Binding energies of the few-body clusters EANBM −
NEAB, in units of ~2/ma2BB, versus aAB/aBB, for Gaussian
(curves) and dipolar (symbols) potentials.

strong repulsive and attractive interatomic forces among
four individual atoms. These interactions are strong since
the corresponding scattering lengths are comparable to
the typical atomic de Broglie wave lengths ∼ 1/aAB.
We emphasize that this cancellation is achieved only for
two dimers. For three dimers it is incomplete and there
is a residual effective three-dimer force of range ∼ aAB

(distance, where the dimers start touching one another).
In the many-body problem, this higher-order force may
compete with the dimer-dimer interaction (if it is not
completely zero) or even become dominant. In principle,
one can also discuss higher-order effects of this type at
the DB zero crossing in a DB mixture, but they are ex-
pected to be subleading since the DD and BB interactions
remain finite. In the remainder of this Rapid Commu-
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nication we thus concentrate on the population-balanced
case.

In order to characterize the effective three-dimer in-
teraction, we follow the method developed previously in
one dimension [9]. Namely, we analyze the behavior of
the hexamer energy just below the tetramer threshold.
If the tetramer binding energy EDD = EAABB − 2EAB

is much smaller than EAB, the dimer-dimer interaction
can be considered point-like and the relative DD wave
function can be approximated by φ(r) ∝ K0(κr), where

κ =
√
−2mEDD/~2 is the inverse size of the tetramer.

Similarly, the AAABBB hexamer under these conditions
reduces to the well-studied problem of three point-like
bosons [41, 47–52], according to which the ground state
hexamer binding energy EDDD = EAAABBB − 3EAB

should satisfy [51, 52]

EDDD/|EDD| = −16.5226874. (2)

We expect the ratio EDDD/|EDD| to reach the zero-range
limit (2) as we approach the dimer-dimer zero crossing,
i.e., as κaAB → 0. In Fig. 3, we plot EDDD/|EDD| versus
κaAB and indeed see a tendency towards the value (2) al-
though the effects of the finite size of the dimers and their
internal degrees of freedom, that we have neglected in the
zero-range model, are obviously important. The fact that
the hexamer energy lies above the limit (2) points to an
effective three-dimer repulsive force. We note again that
the values of the ratio EDDD/|EDD| obtained for Gaus-
sian and dipolar potentials are quite close to each other
for all values of aAB suggesting a certain universality of
this problem and a relative unimportance of the long-
range interaction tails.

In order to quantify the three-dimer interaction ob-
served in Fig. 3, we extend the model of three point-like
dimers by requiring that the three-dimer wave function
vanishes at a hyperradius ρ0. For three dimers, with
coordinates r1, r2, and r3, the hyperradius is defined

as ρ =
√
x2 + y2, where x = (2r3 − r1 − r2)/

√
3 and

y = r1 − r2 are the Jacobi coordinates. Clearly, for
this minimalistic model EDDD/|EDD| is a function of the
ratio κρ0, relating the three- and two-dimer interaction
strengths. Given the isotropic form of the three-body
constraint in the hyperradial space, a natural way of
solving this problem is to use the adiabatic hyperspher-
ical method. Kartavtsev and Malykh [52] discussed this
method in detail and applied it to the ρ0 = 0 limit of our
problem, i.e., the case of no three-body interaction. The
only modification of their procedure, to account for finite
ρ0, is to set the hyperradial channel functions to zero at
ρ = ρ0. In this way, we obtain the ratio EDDD/|EDD| as
a function of κρ0. We then treat ρ0 as a constant (in-
dependent of EDD) determined by fitting the DMC and
SVM data in κaAB < 0.4 range. By minimizing χ2 we
obtain ρ0 = 0.13aAB.

The inclusion of the three-body hard-core constraint,
even corresponding to numerically very small κρ0, leads
to a spectacular deviation from Eq. (2). This inter-
esting effect is due to an enhancement of the three-
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FIG. 3. The hexamer-to-tetramer binding energy ratio
EDDD/|EDD| as a function of κaAB. The solid line is the re-
sult of the zero-range model with the hard-core hyperradius
constraint at ρ0 = 0.13aAB.

dimer interaction by strong two-dimer correlations. In-
deed, in the absence of two-body interactions, the three-
body scattering in two dimensions is equivalent to the
four-dimensional two-body scattering on a short-range
potential. The corresponding hyperradial wave func-
tion for ρ larger that the support of the potential, but
smaller than the de Broglie wave length, is proportional
to 1 − ρ20/ρ

2. The same scattering effect in the first
Born approximation (and the same mean-field interac-
tion shift) is attained by using the three-body potential
V3(r1, r2, r3) = 3π2(~2ρ20/m)δ(r1−r2)δ(r2−r3). Naively,
we expect the leading small-ρ0 correction to Eq. (2) to
behave as (κρ0)2 as if the three dimers without two-
body interactions were externally confined to a surface
∼ 1/κ2. However, in our case two-dimer correlations are
strong and the three-dimer wave function is logarithmi-
cally enhanced at short hyperradii [52]. More precisely,
by using arguments of Ref. [52] one can show that the hy-
perradial wave function at distances ρ� 1/κ behaves as
ln3(κρ) − ρ20 ln6(κρ0)ρ−2 ln−3(κρ) and the leading-order
correction to Eq. (2) behaves as ∼ (κρ0)2 ln6(κρ0), repre-
senting a noticeable enhancement compared to the case
of no two-body interaction.

Promising candidates for observing the predicted clus-
ter states are bosonic dipolar molecules characterized by
large and tunable dipolar lengths which, at large electric
fields, tend to r0 = 5 × 10−6m for 87Rb133Cs [53, 54],
r0 = 2 × 10−5m for 23Na87Rb [55, 56] and r0 = 6 ×
10−5m for 7Li133Cs [57]. Fermionic 87Rb40K [58, 59]
and 23Na40K [60–62] molecules (r0 = 7 × 10−7m and
r0 = 7× 10−6, respectively) could be turned into bosons
by choosing another isotope of K. The interlayer dis-
tance, fixed by the laser wavelength, has typical values of
h ≈ (2− 5)× 10−7m, which is thus sufficient for observ-
ing the few-body bound states that we predict for ratios
h/r0 > 0.8.

A subject of further work is to generalize these find-
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ings to the many-body problem when a new scale (den-
sity n) comes into play. It is important to understand
how the two- and three-body effects correlate with each
other as one passes through the dimer-dimer zero cross-
ing. Although we find no qualitative difference between
the dipolar and Gaussian models in our few-body re-
sults, the long-range tails will be important when the
quantity nr0 becomes comparable to the inverse healing
length (which is where the dipolar condensate becomes
rotonized). For bilayer dipoles the relevant region of pa-
rameters is close to the dimer-dimer zero crossing, which
we predict to be at h/r0 ≈ 1.1. Finally, it is instructive
to consider a simpler model of elementary bosons with
(possibly exotic) finite-range interactions and investigate
whether finite-range effects can in general be absorbed
into an effective three-body interaction. Systematic cal-
culations of the trimer-to-dimer binding energy ratio (see
[48]) could then serve as a tool for characterizing this ef-
fective force.

To summarize, we have studied few-body clusters
ANBM with N ≤M ≤ 3 in a two-dimensional Bose-Bose
mixture using different (long-range dipolar and short-
range Gaussian) intraspecies repulsion and interspecies
attraction models. In both cases, the intraspecies scat-
tering length aAA = aBB is of the order of the potential
ranges, whereas we tune aAB by adjusting the AB at-

tractive potential (or the interlayer distance in the bi-
layer setup). We find that for aAB � aBB all con-
sidered clusters are (weakly) bound and their energies
are independent of the interaction model. As the ra-
tio aAB/aBB decreases, the increasing intraspecies repul-
sion pushes the clusters upwards in energy and eventu-
ally breaks them up into N dimers and M − N free B
atoms. In the population balanced case (N = M) this
happens at aAB/aBB ≈ 10 where the dimer-dimer attrac-
tion changes to repulsion. By studying the AAABBB
hexamer near the dimer-dimer zero crossing we find that
it very much behaves like a system of three point-like par-
ticles (dimers) characterized by an effective three-dimer
repulsion. A dipolar system in a bilayer geometry can
thus exhibit the tunability and mechanical stability nec-
essary for observing dilute liquids and supersolid phases.
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