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Nongravitational interaction between dark matter and dark energy has been considered in a spatially flat
Friedmann-Lemaître-Robertson-Walker (FLRW) universe. The interaction rate is assumed to be linear in
the energy densities of dark matter and dark energy and it is also proportional to the Hubble rate of the
FLRW universe. This kind of interaction model leads to an autonomous linear dynamical system, and
depending on the coupling parameters, could be solved analytically by calculating the exponential of the
matrix, defining the system. We show here that such interaction rate has a very deep connection with some
well-known cosmological theories. We then investigate the theoretical bounds on the coupling parameters
of the interaction rate in order that the energy densities of the dark sector remain positive throughout the
evolution of the universe and asymptotically converge to zero at very late times. Our analyses also point out
that such linear interacting model may encounter with finite time future singularities depending on the
coupling parameters as well as the dark energy state parameter.
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I. INTRODUCTION

According to recent observations [1], our Universe is
currently expanding with an acceleration and this accel-
erating phase cannot be described by normal matter within
the context of the general theory of relativity (GR). A
possible approach to explain this accelerating phase of the
universe within this context, i.e., within GR, is to consider
some exotic matter (characterized by negative pressure),
dubbed as dark energy (DE). This dark energy occupies
around 68% of the total energy budget of our Universe, and
this is the largest sector of our Universe [1]. However, the
origin, nature and dynamics of DE are absolutely unknown
even after a series of observational missions running since
the last twenty years. The second largest component of our
Universe is dark matter (DM) which takes nearly 28% of
the total energy density of the universe, and similar to the
DE sector, this sector is also not very well understood.
Thus, the dynamics of our Universe is mainly driven by DE
and DM, the understanding of which has been the central
issue for modern cosmology at present.
In order to understand the dynamics of our Universe,

mainly the dynamics of the dark sector, usually two
different approaches are considered. The first approach

is very simple in which DM and DE are independently
conserved, that means both DE and DM enjoy their
independent evolution. The second approach is a bit
complicated but offers a wider picture (compared to the
former proposal) where DM and DE might be interacting
nongravitationally with each other. Observations from
many sources have already reported that a simplest cos-
mological model, namely the Λ-cold dark matter (ΛCDM),
where Λ and CDM are independently conserved, is an
excellent cosmological model explaining the late acceler-
ating phase. However, in the present work, we are inter-
ested in the second approach for several reasons that we are
going to describe below. If we consider the ΛCDM picture
of the universe, then we are unable to explain a biggest
mystery of the universe, namely, the cosmological constant
problem [2]. The theory of interaction may play a very
crucial role to offer a satisfactory problem to the cosmo-
logical constant problem. In [3] the author showed that a
coupled system between gravity and a scalar field with
exponential potential could give rise to a cosmological
constant term that becomes time-dependent. When the DE
era began, a new problem in the name of cosmic coinci-
dence problem appeared. The interaction in the dark sector
again played a crucial role to explain this phenomenon
[4–9]. The explanations for both cosmological constant and
coincidence problems influenced the scientific community
to investigate interacting cosmological models, and con-
sequently, the models in this class soon got massive
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attention due to having their far reaching activities [10–58]
(see also two review articles on interacting DE models
[59,60]). In particular, an interaction or coupling in the dark
sector may naturally push a quintessence DE, characterized
by its equation of state, wDE ¼ pDE=ρDE > −1 to enter the
phantom DE phase, wDE ¼ pDE=ρDE < −1 [61–63]. Here,
pDE and ρDE are respectively the pressure and energy
density of DE. The remarkable point with such phantom
crossing is that the crossing of wDE ¼ −1 actually needs
some scalar field models with negative kinetic term which
automatically invites instabilities both at classical and
quantum levels. But, in interacting models with the choice
of suitable interaction between DE and DM, the instability
problem can be relieved. Later, in the beginning of the
year 2016, other observational evidences reported that
the estimation of the Hubble constant, H0, as well as, the
amplitude of the matter power spectrum σ8 (within the
minimal ΛCDM cosmology) return different values in
different observational missions that are many sigmas apart
from one another. Surprisingly, DE-DM interaction again
proved its potential nature by offering a possible solution to
the H0 tension [34,37,64–67] and the σ8 tension [66,68–
70]. Certainly, based on the aforementioned limitations of
the noninteracting cosmologies and the solutions coming
from the interacting models, it is clear that interacting
cosmologies should be investigated more elaborately in
light of the above issues.
However, the first and probably the most important

question in the context of interaction cosmologies is related
to the energy exchange rate between the dark sectors, that
means the interaction function. Since there is no globally
accepted theory yet that could justify the choice of the
interaction function, hence, to start with it is assumed that
the interaction function maybe involve the energy densities
of the dark components ranging from the simple linear to
the complicated nonlinear ones. Due to such diverse
choices of the interaction function one could explore a
cluster of interesting possibilities as a result. However, as
we will show in this work, while dealing with any
interaction function, we have to be very careful because
depending on the coupling parameter of interaction rate
which quantifies the interaction rate in every aspect
(whether the interaction rate is mild or not and the direction
of energy flow it allows), the associated cosmological
parameters could be unrealistic. Thus, in the present work,
we show how any interaction rate can be treated leading to
physically viable cosmological scenarios. We start with a
simple interaction model which is linearly related to the
energy densities of DM and DE as well as the Hubble rate
of the Friedmann-Lemaître-Robertson-Walker universe and
then discuss the theoretical bounds on this scenario and the
physical consequences. The same analysis can be done for
any interaction model irrespective of its linear or nonlinear
functional form and consequently the bounds on such
scenarios can also be imposed. The work has been

organized in the following way: In Sec. II, we discuss
the field equations of any interaction model and then
introduce our model and provide its justifications. In
Sec. III, we perform a dynamical system analysis of the
original interaction model and its subcases and give the
bounds on the coupling parameters for realistic interaction
scenarios. In Sec. IV, we deal with future singularities,
showing that for some values of the coupling parameters
and the dark energy equation of state, our universe evolves
to a big rip singularity. Finally, in Sec V, we conclude the
main findings of the present article.

II. INTERACTING DARK ENERGY:
MODEL AND JUSTIFICATION

In the large scale, our Universe is almost homogeneous
and isotropic. The geometric configuration of this
homogeneous and isotropic universe is characterized by
the Friedmann-Lemaître-Robertson-Walker (FLRW) line
element

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − Kr2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
;

where ðt; r; θ;ϕÞ are the comoving coordinates; aðtÞ is the
expansion scale factor of the universe; K is the curvature
scalar of the universewhich represents a closed, open and a
flat universe, respectively for its three distinct values,
namely, K ¼ 1, −1 and 0. Concerning the gravitational
sector of our Universe, we assume that it is described by
GR and the matter distribution is minimally coupled to
gravity. Precisely, we consider that the total energy density
of our Universe is given by, ρtot¼ρrþρbþρcþρx, where ρi
is the energy density of the ith fluid in which i ¼ r, b, c, x,
respectively stands for radiation, baryons, pressure-less
DM (also known as cold DM, abbreviated as CDM) and
DE. The total pressure contributed due to the above
components is therefore given by, ptot ¼prþpbþ
pcþpx, where the notations follow same argument as
described above. Lastly, we consider that the dark fluids of
the universe namely CDM and DE are interacting non-
gravitationally with each other, which means that there is a
continuous flow of energy and momentum between these
sectors. Since other components do not interact with each
other, hence, they obey their own conservation equations.
Therefore, focusing on the interacting dark sector,

one can write down the conservation equations of CDM
and DE as (

_ρc þ 3Hρc ¼ −Q
_ρx þ 3Hð1þ wxÞρx ¼ Q;

ð1Þ

where −1 ≤ wx ¼ px=ρx < −1=3 (nonphantom fluid), is
the constant equation-of-state (EoS) parameter of the DE
fluid and the quantity Q appearing in the above two
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equations, is the energy transfer function that determines
the rate of energy flow between the fluids as well as the
direction of energy flow depending on its sign.
The conservation equations for the noninteracting radi-

ation and baryonic matter are respectively

_ρr þ 4Hρr ¼ 0; and _ρb þ 3Hρb ¼ 0; ð2Þ

and introducing the time variable N ≡ − lnð1þ zÞ ¼
lnða=a0Þ which is only the number of e-folds starting at
the present time, taking into account that _N ¼ H, one gets

ρ0r þ 4ρr ¼ 0; and ρ0b þ 3ρb ¼ 0; ð3Þ

where the prime is the derivative with respect the time N.
The solutions have the simple form

ρr ¼ ρr;eqe−4ðN−NeqÞ; and ρb ¼ ρb;0e−3N; ð4Þ

where ρr;eq is the value of the radiation energy density at the
matter-radiation equality and ρb;0 is the present value of
baryonic energy density.
Once again, in terms of the time N the system of

equations in (1) becomes(
ρ0c þ 3ρc ¼ − Q

H

ρ0x þ 3ð1þ wxÞρx ¼ Q
H :

ð5Þ

Note that, the Hubble parameter H can be found from the
following equation

H2ðNÞ ¼ 1

3M2
pl

ðρc þ ρx þ ρr;eqe−4ðN−NeqÞ þ ρb;0e−3NÞ

−
K

a20e
2N ; ð6Þ

where a0 is the present value of the scale factor. Hence,
once the evolution of ρc and ρx are determined either
analytically or numerically for some given interaction rate
Q, the expansion rate of the universe can be determined and
the modified cosmological parameters can be studied in
terms of their evolution with time. Thus, as one can realize,
the expansion rate of the universe is highly influenced by
the interaction function. That means the expansion rate is
dependent on the choice of Q.
In almost all works, the choice of the interaction function

is motivated from the phenomenological ground. If we
look at the conservation equations in (5), one can realize
that the interaction rate might be the function of the energy
densities of the dark sectors, namely, ρc and ρx. Therefore,
using that ground as a basis, an infinite number of
interaction rates can be produced by hand and can be
investigated. However, some recent investigations show
that one could justify the choice of the interaction rates

from some field theoretical point of view [71–76]. In
particular, in [76], the authors have explicitly shown
that some very well-known linear and nonlinear interac-
tion models can be deduced from scalar field theory.
Interestingly, in this work we shall show that the inter-
action rates can also be motivated from other well known
cosmological backgrounds. We begin our discussions with
a simplest interaction model of the form

Q ¼ 3Hðμρc þ νρxÞ; ð7Þ

where μ and ν are dimensionless coupling parameters. As
one can see from (7), this interaction rate recovers some
well known interaction rates as special cases. For instance,
one can recover Q ¼ 3Hμρc under the assumption of
ν ¼ 0. Similarly, the model Q ¼ 3Hνρx is obtained when
μ¼0. Lastly, for μ¼ν¼λ, one recoversQ ¼ 3Hλðρc þ ρxÞ.
One could further notice that for ν ¼ −μ, the interaction
function becomes Q ¼ 3Hμðρc − ρxÞ, which has a sign
changeable feature. Let us now try to justify the interaction
rate (7) using the available theories in the next paragraphs.
One of the possible justifications of the interaction rate

(7) may appear using the teleparallel gravity (TG), based in
the Weitzenböck spacetime [77], which is equivalent to
general relativity (GR) [78,79] (see also [80] which trans-
lates the early papers of Einstein about teleparalellism).
Effectively, in TG to obtain the field equations the scalar
torsion quantity T is used, which for the flat FLRW space-
time is given by T ¼ −6H2 [81]. Additionally, in TG the
total stress tensor satisfies the conservation equation
∇αTα

β ¼ 0 (see for instance [78]), where ∇ denotes the
usual Levi-Civita derivative. Therefore, in this framework
and following [14] we consider the conservation equations
in presence of an interaction as ∇αTα

β;A ¼ Qβ;A with A ¼ c,
x, and

Qβ;c ¼ −Qβ;x ¼
ffiffiffiffiffiffiffiffiffi
T =6

p
ðμ̄Tα

α;cuβ;c þ ν̄Tα
α;xuβ;xÞ ð8Þ

where for a perfect fluid Tα
β;A ¼ PAδ

α
β þ ðρA þ PAÞuαAuβ;A

in which uαA ¼ dxαffiffiffiffiffiffiffi
−ds2

p being the four-velocity of the fluid.

Then, since at the background level

Q ¼ Q0;c ¼ −Q0;x ¼
Hffiffiffi
6

p ðμ̄ρc þ ν̄ð3wx − 1ÞρxÞ; ð9Þ

and ∇αTα
β;A ¼ −_ρA − 3HðρA þ PAÞ, to recover our energy

density transfer and the system (5), one only has to choose

μ ¼ μ̄
3
ffiffi
6

p and ν ¼ ð3wx−1Þν̄
3
ffiffi
6

p .

On the other hand, following the notation of [14]
the perturbed four-velocity of the B-fluid is given by
uαB ¼ ð1 − ϕ; 1a ∂ivBÞ, where ϕ is the Newtonian potential,
vB is the particular velocity and B ¼ r, b, c, x. This means
that at the background level the four-velocity, in the
comoving system, becomes uαB ¼ ð1; 0; 0; 0Þ for any

UNDERSTANDING THE PHENOMENOLOGY OF INTERACTING … PHYS. REV. D 101, 123506 (2020)

123506-3



fluid which is the consequence of the isotropy at the
background level. Therefore, at the background level the
scalar uα;BTα

β;Bu
β becomes ρB, and one can also choose

the energy transfer function

Qβ;c ¼−Qβ;x ¼ 3
ffiffiffiffiffiffiffiffiffi
T =6

p
ðμuα;cTα

γ;cu
γ
cuβ;cþνuα;xTα

γ;xu
γ
xuβ;xÞ:
ð10Þ

Following this way, and now working in the framework
of GR, we can consider, for example, the scalar∇αuαc which
for the flat FLRW metric leads to 3H, and thus one may
consider

Qβ;c ¼ −Qβ;x ¼ ∇ηu
η
cðμuα;cTα

γ;cu
γ
cuβ;c þ νuα;xTα

γ;xu
γ
xuβ;xÞ;

ð11Þ

or

Qβ;c ¼ −Qβ;x ¼
1

3
∇ηu

η
cðμ̄Tα

α;cuβ;c þ ν̄Tα
α;xuβ;xÞ: ð12Þ

In addition, in GR one could use the Carminati-
McLenaghan invariants [82]

R2 ≡ 1

4
Rν

μR
μ
ν ; and R3 ≡ −

1

8
Rν

μR
μ
γR

γ
ν; ð13Þ

whose values for the synchronous comoving observers in
the flat FLRW space-time are given by R2 ¼ 3

4
_H2 and

R3 ¼ − 3
8
_H3. Thus, in such coordinates, one finds that,

_H ¼ −2R3

R2
, and consequently, the scalar curvature, namely

R, takes the relation H2 ¼ R3

R2
þ R

12
. Following this, one can

replace ∇ηu
η
c by the following scalar a

R≡ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3

R2

þ R
12

s
; ð14Þ

in the Eqs. (11) and (12). Finally, going beyond GR one
can use a mimetic gravity, based on a mimetic field, namely
φ, satisfying ∇αφ∇αφ ¼ −1 (see [83,84] for a detailed
description of this theory). Thus, in mimetic gravity the
scalar χ ¼ −∇α∇αφ in the flat FLRW space-time becomes
3H. Thus, one can see that the present interaction model
can be justified using various well-known cosmological
theories.
Let us note that although the interaction rate (7) is

already existing in the list of some well-known linear
interaction rates, however, below we shall show why we
should reconsider the same model.
To conclude this section we note that the system of first

order differential equations given in (5) depicts a two
dimensional autonomous dynamical system, which could

be solved once one has the values of the corresponding
energy densities at present time.

III. DYNAMICAL SYSTEM ANALYSIS

In this section we shall perform a detailed dynamical
analysis of the interaction model (7) as well as the simple
cases of (7) aiming to provide with the bounds on the
coupling parameters of this interaction model. Let us start
our analysis with the general interaction model (7) for
which the dynamical system becomes

X0 ¼ AX ð15Þ

where prime, as already mentioned earlier, denotes the
differentiation with respect to N and

A¼
�−3ðμþ1Þ −3ν

3μ −3ð1þwx−νÞ

�
; X¼

�
ρc

ρx

�
: ð16Þ

Since we are dealing with a non-degenerate linear
dynamical system, the only fixed point is the origin,
and its stability is deduced using the trace-determinant
criterion. Physically, we want that the origin is an attractor,
because in the contrary case we will have future singular
solutions, so we have to impose the condition TrA¼
−3ð2þμ−νþwxÞ<0 and DetA ¼ 9ðμþ 1Þð1þ wx − νÞþ
9 μν > 0. These lead to the allowed region in the plane of
parameters ðμ; νÞ determined by the linear inequalities(

ν < 2þ μþ wx;

ν < ð1þ wxÞðμþ 1Þ; ð17Þ

which involves the EoS of DE along with the coupling
parameters. In particular, if the DE is assumed to be the
vacuum energy characterized by wx ¼ −1, the above
domain becomes

D ¼ fðμ; νÞ∶μ > ν − 1; ν < 0g: ð18Þ

However, the condition that the origin is an attractor is
not enough, because if the origin is an attractor focus, the
orbits will round around (0,0), and thus, the energy
densities will be negative, which has no physical sense.
For this reason we have to demand that the discriminant
Δ ¼ ðTrAÞ2 − 4DetA has to be positive, that means,

Δ ¼ 9ððwx − μ − νÞ2 − 4 μνÞ > 0: ð19Þ

In addition, if we want that the energy densities must
be positive all the time, then we also need to demand that
the eigenvectors of A, namely v⃗� ¼ ðv�;1; v�;2Þ, have to
stay in the first quadrant, i.e., they have to satisfy
v�;1v�;2 ≥ 0. Effectively, since the system is autonomous,
the orbits never cross, then with this condition, the orbits
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feλþNv⃗þgN∈R and feλ−Nv⃗−gN∈R define a sector in the first
quadrant, and all solution with initial conditions in this
sector defines an orbit inside it.
Denoting the eigenvalues of the matrix A by λ� ¼

ðTrA� ffiffiffiffi
Δ

p Þ=2, the corresponding eigenvectors are given
by as follows:
(1) For ν ≠ 0:

v⃗� ¼
�
1;−

μþ 1þ λ�=3
ν

�
; ð20Þ

and thus, the condition v�;1v�;2 ≥ 0, becomes

μþ 1þ λ�=3
ν

≤ 0: ð21Þ

Then, to have positive energy densities all the
time, the initial condition ðρc;0; ρx;0Þ has to satisfy

min

�
−
μþ1þλþ=3

ν
;−

μþ1þ λ−=3
ν

�

≤
ρ0;x
ρ0;c

≤max

�
−
μþ1þλþ=3

ν
;−

μþ1þλ−=3
ν

�
:

ð22Þ

(2) For ν ¼ 0: The eigenvalues are λþ ¼ −3ð1þ wxÞ
and λ− ¼ −3ðμþ 1Þ, and the corresponding eigen-
vectors are given by

v⃗þ ¼ ð0; 1Þ; v⃗− ¼
�
1;

μ

wx − μ

�
; ð23Þ

and thus, the condition v�;1v�;2 ≥ 0, becomes
wx ≤ μ ≤ 0.
Then, the condition to have positive energy

densities all the time is

ρx;0
ρc;0

≥
μ

wx − μ
: ð24Þ

Taking into account that ρx;0ρc;0
¼ Ωx;0

Ωc;0
, and as we will

see, if one disregards the energy of the radiation at the
present time one has Ωc;0 ≅ 0.262 and Ωx;0 ≅ 0.69,
hence, the condition (24) becomes μ ≥ 0.72wx,
which means that the parameter μ is constrained to
satisfy

0.72wx ≤ μ ≤ 0: ð25Þ

On the other hand, to know the value of the effective EoS
parameter and thus, to know if the Universe accelerates or
decelerates, we need to calculate explicitly the solutions of
(15) which is given by XðNÞ ¼ eANX0, X0 being the current
value of X with

eAN ¼ B

�
eλþN 0

0 eλ−N

�
B−1; ð26Þ

where, λ� are once again the eigenvalues and the matrix B
is set up with the eigenvectors of A, v⃗�, i.e.,

B ¼
�
vþ;1 v−;1
vþ;2 v−;2

�
: ð27Þ

Thus, when ν ≠ 0, since DetB ¼
ffiffiffi
Δ

p
3ν , we will have

B¼
�

1 1

vþ;2 v−;2

�
; B−1¼ 3νffiffiffiffi

Δ
p

�
v−;2 −1
−vþ;2 1

�
; ð28Þ

and consequently,

eAN ¼ 3νffiffiffiffi
Δ

p
 

eλþNv−;2−eλ−Nvþ;2 eλ−N −eλþN

vþ;2v−;2ðeλþN −eλ−NÞ eλ−Nv−;2−eλþNvþ;2

!
:

ð29Þ

This could be written in terms of the discriminant as
follows

eAN ¼ e−
3
2
ð2þwx−νþμÞNffiffiffiffi

Δ
p

" ffiffiffiffi
Δ

p
coshð

ffiffiffi
Δ

p
N

2
Þ −6νsinhð

ffiffiffi
Δ

p
N

2
Þ

6 μsinhð
ffiffiffi
Δ

p
N

2
Þ −

ffiffiffiffi
Δ

p
coshð

ffiffiffi
Δ

p
N

2
Þ

�

þ3ðwx−ν−μÞsinh
� ffiffiffiffi

Δ
p

N
2

�
Id

#
; ð30Þ

where Id denotes the identity matrix.
Finally, about the initial conditions it is useful to

introduce the variables ρ̄i ¼ ρi
3H2

0
M2

pl
with i ¼ r, b, c, x.

Then, in the flat case K ¼ 0, the initial conditions are Ωi;0.
We could choose the central value of Ωm;0 ¼ 0.31 for the
total matter (baryonic and dark) sector of the universe.
Using the observational estimation of Ωb;0h2 ¼ 0.0221
and Ωc;0h2 ¼ 0.1206 we see that the percent of baryonic
matter is approximately the 15.5% of the total matter, so
ρ̄b;0 ¼ Ωb;0 ¼ 0.048 and ρ̄c;0 ¼ Ωc;0 ¼ 0.262. Since, at the
present time, the energy density of radiation is negligible
compared to other energy densities, one can approximately
take ρ̄x;0 ¼ Ωx;0 ¼ 1 −Ωb;0 − Ωc;0 ≅ 0.69.
To obtain the evolution of the energy density of radia-

tion we take, for example, the redshift at the matter
radiation-equality equal to its central value zeq ¼ 3411
for the PlanckTTþ lowE likelihood [85], for which Neq ¼
−8.135, and thus, from the matter-radiation equality,

ρ̄r;eq≡ ρ̄rðNeqÞ¼ ρ̄bðNeqÞþ ρ̄cðNeqÞ¼ ρ̄b;0e−3Neqþ ρ̄cðNeqÞ;
ð31Þ
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once the parameters μ, ν and wx, are fixed, one obtains
ρ̄rðNeqÞ ¼ ρ̄r;eqe−4ðN−NeqÞ. And when the initial conditions
are obtained one can easily calculate ρ̄iðNÞ and also the
effective equation of state (EoS) parameter defined by

weffðNÞ ¼ ρtot
ptot

¼ wxρ̄xðNÞþ1
3
ρ̄rðNÞ

ρ̄totðNÞ .

A. Special cases

In this section we consider the special cases emerging
from the original interaction (7). For example, one of the
simplest cases that one may consider the case with ν ¼ 0
in (7) which returns, Q ¼ 3Hμρc. Similarly, one could
equally consider another case with μ ¼ 0, equivalently, the
interaction rate becomesQ ¼ 3Hνρx. The equality μ ¼ ν is
also interesting. The solutions for all the cases are trivial,
however, there is something that needs to be clarified in
this article for future works. In what follows, we describe
the solutions for each model as well as the bounds on the

coupling parameters for which one obtains viable cosmo-
logical solutions.
(1) For the interaction rate, Q ¼ 3Hμρc, the condition

(25) requires 0.72wx ≤ μ ≤ 0, and the solution,
which is non-singular and positive, is given by

ρ̄cðNÞ ¼ Ωc;0e−3ð1þμÞN; and

ρ̄xðNÞ ¼ Ωx;0e−3ð1þwxÞN

−
μΩc;0

μ − wx
ðe−3ð1þμÞN − e−3ð1þwxÞNÞ: ð32Þ

Finally, with this quantities one easily has the total
pressure and energy density, so we have completely
determined the effective EoS parameter weffðNÞ. It is
easy to see that weffðNÞ → wx when N → ∞. To
understand the evolution of various components in
terms of their energy densities in Fig. 1, we display
them for a specific choice of the coupling parameter,
μ constrained in the region 0.72wx ≤ μ ≤ 0 and
for a particular choice of the EoS of DE, wx. As
one can see, all the energy densities remain positive
for this choice of the coupling parameter. In Fig. 2,
we also show the evolution of the effective EoS, weff
for the same value of μ and wx used to draw Fig. 1.
To be precise, in the left panel of Fig. 2, we show the
evolution of weff for a wide region where N ∈
½−10; 60� and in the right panel of Fig. 2 we show
the evolution of weff from the epoch of matter-
radiation equality to present time. One can clearly
visualize from Fig. 2, that weff crosses from positive
(in the early phase of the universe) to negative values
(at present time) and then asymptotically converges
to wx ¼ −0.95.

(2) For the second case with μ ¼ 0, equivalently for the
interaction rate Q ¼ 3Hνρx, working in the same
way as above, one obtains λþ ¼ −3ð1þ wx − νÞ and
λ− ¼ −3, and thus,

FIG. 1. The evolution of the density parameters namely,Ωr (red
curve), Ωb (green curve), Ωc (blue curve) and Ωx (grey curve) for
the interaction rate (7) with ν ¼ 0, μ ¼ 0.1wx, wx ¼ −0.95 has
been shown in this picture.

FIG. 2. We show the evolution of the effective EoS of DE for the interaction scenario with ν ¼ 0, μ ¼ 0.1wx, wx ¼ −0.95. In the left
panel we see the asymptotic evolution of weff for the region N ∈ ½−10; 60�, and in the right panel we only show its evolution from the
matter-radiation equality to the present time, that means for N ∈ ½−10; 0�. One can notice that the effective equation of state parameter
converges to wx ¼ −0.95.

PAN, DE HARO, YANG, and AMORÓS PHYS. REV. D 101, 123506 (2020)

123506-6



vþ ¼
�
1;
wx − ν

ν

�
v− ¼ ð1; 0Þ: ð33Þ

In that case the condition v�;1v�;2 ≥ 0 and ρx;0
ρc;0

≤
wx−ν
ν requires 0.27wx ≤ ν ≤ 0, and the solution is

given by

ρ̄xðNÞ¼Ωx;0e−3ð1þwx−νÞN and

ρ̄cðNÞ¼Ωc;0e−3Nþ
νΩx;0

wx−ν
ðe−3ð1þwx−νÞN −e−3NÞ:

ð34Þ
Finally, a simple calculation shows that

lim
N→∞

weffðNÞ≡ weff;∞ ¼ wx − ν ≥ wx; ð35Þ

but this does not mean that the universe could
decelerate once again. Effectively, at the present

time we have weff;0 ≅ wxΩx;0 because the radiation is
negligible. Then, since nowadays our universe is
accelerating, hence, weff;0 has to be less than −1=3
and taking a typical value of the density parameter
for DE as Ωx;0 ≅ 0.69, this means that −1 ≤ wx <
0.483, and thus,

weff;∞<ð1−0.27Þwx

¼0.73wx<−0.73×0.483≅−0.35<−1=3; ð36Þ

meaning that the universe accelerates at late times.
Similarly, for this special case too, we have calcu-
lated the density parameters of different cosmic
fluids as well as the effective EoS of the total fluid.
In Fig. 3, we show the density parameters for a
specific choice of the coupling parameter, ν satisfy-
ing the constraint 0.72wx ≤ ν ≤ 0 and for a particu-
lar choice of the EoS of DE, wx ¼ −0.95.
Additionally, in Fig. 4, we depict the evolution of
the effective EoS, weff for the same value of ν and wx
used to draw Fig. 3. In the left panel of Fig. 4, we
describe the evolution of weff for N ∈ ½−10; 60�
while in the right panel of Fig. 4 we show the
evolution of weff from the epoch of matter-radiation
equality to present time. A clear transition of weff
from its positive values to negative values are found
from Fig. 4.

Remark 1: Wewould like remark that to obtain a viable
cosmological scenario driven by the linear interaction
models prescribed above, one needs to impose the con-
dition 0.27wx ≤ ν ðor μÞ ≤ 0. However, sometimes this
condition is somehow overlooked and due to arbitrary
choice of the coupling parameters, the energy densities of
the dark sector do not remain positive throughout the
evolution of the universe. Sometimes a negative sign is
considered in the interaction rate which leads to additional
confusions. Thus, we would like to clarify this point in our

FIG. 3. The evolution of the density parameters namely,Ωr (red
curve), Ωb (green curve), Ωc (blue curve) and Ωx (grey curve) for
the interaction rate (7) with μ ¼ 0, ν ¼ 0.1wx, and wx ¼ −0.95
has been displayed.

FIG. 4. We display the evolution of the effective EoS of DE for the interaction rate (7) with μ ¼ 0, ν ¼ 0.1wx, wx ¼ −0.95. In the left
panel we see the asymptotic evolution of weff for the region N ∈ ½−10; 60�, and in the right panel we only show its evolution from the
matter-radiation equality to the present time, that means for N ∈ ½−10; 0�. One can notice that the effective equation of state parameter
converges to wx − ν ¼ −0.855 in an asymptotic manner.
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notation. For instance, let us select the interaction rate
Q ¼ −ξHρx, which in our notation implies, ξ ¼ −3ν. Now,
since 0.27wx ≤ ν ≤ 0, hence, we need to choose positive
values of ξ. The energy densities become positive for times
previous to the present time, but as we can see from (34) the
energy density of the dark matter becomes negative at late
times. Alternatively, if we select Q ¼ αHρc which in our
notation μ ¼ α=3. Again we need to choose α < 0 because
for positive values of α, the energy density of the dark
energy ρx becomes negative at early times, meaning that no
viable cosmic scenario for these parameters.
(3) Another theoretically interesting case might be the

one when the coupling parameters are equal, that
means μ ¼ ν. In this situation the trace is given by
TrA ¼ −3ð2þ wxÞ, and it is negative because we
are considering non-phantom fluids. The determi-
nant is given by DetA ¼ 9ð1þ wx þ μwxÞ, and it is
positive when μ < −1 − 1

wx
. For the discriminant one

has Δ ¼ 9wxðwx − 4μÞ, meaning that it is positive
for μ > wx=4. So, for the moment we have

wx=4 < μ < −ðwx þ 1Þ=wx. Now we deal with the
condition (21). Since

λ� ¼ −
3ð2þ wxÞ

2
� 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2μ − wxÞ2 − 4μ2

q
; ð37Þ

the constraint (21) becomes

1

2μ
ð2μ − wx �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2μ − wxÞ2 − 4μ2

q
Þ ≤ 0; ð38Þ

which is satisfied only for wx=2≤μ≤0. Then, to-
gether with wx=4< μ<−ðwxþ1Þ=wx, we will have

wx=4 < μ ≤ 0: ð39Þ

Finally, the condition (22) becomes

−
1

2μ

�
2μ−wx−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2μ−wxÞ2−4μ2

q �

≤
ρx;0
ρc;0

≤−
1

2μ

�
2μ−wxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2μ−wxÞ2−4μ2

q �
:

ð40Þ

Now since ρx;0
ρc;0

¼ Ωx;0

Ωc;0
≅ 2.63 we obtain the following

bound

0.18wx ≤ μ ≤ 0 ⇒ −0.18 ≤ μ ≤ 0; ð41Þ

because as already mentioned, we are dealing with non-
phantom fields, i.e., −1 ≤ wx < −1=3. For this interaction
model we have similarly shown the modified density
parameters in Fig. 5 and the effective equation of state
parameter in Fig. 6 taking the choices μ ¼ nu ¼ 0.1wx with
wx ¼ −0.95. Finally, we have considered a noninteracting
scenario of the universe, equivalently, μ ¼ ν ¼ 0 and
shown the density parameters as well as the effective

FIG. 5. The evolution of the density parameters, namely, Ωr
(red curve), Ωb (green curve), Ωc (blue curve), and Ωx (grey
curve) for the interaction rate (7) with μ ¼ ν ¼ 0.1wx and wx ¼
−0.95 has been shown.

FIG. 6. We display the evolution of the effective EoS of DE for the interaction rate (7) with μ ¼ ν ¼ 0.1wx, wx ¼ −0.95. In the left
panel we show the asymptotic evolution of weff for the region N ∈ ½−10; 60�, and in the right panel we only show its evolution from the
matter-radiation equality to the present time, that means for N ∈ ½−10; 0�.
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equation of state in Figs. 7 and 8, respectively, taking a
specific value of wx ¼ −0.95. The Figs. 7 and 8 are
motivated to present a comparison between various inter-
acting scenarios with the non-interacting one.
It is well known that in the noninteracting case the

perturbations grow in a matter-dominated regime, i.e.,
when weff ¼ 0 and the physical scales reenter the
Hubble horizon k2 ≫ a2H2 [86] (see also [87] where the
authors, using a matrix approach, show that, in the non-
interacting case, the dominant perturbations become con-
stant in the super-horizon scales during the radiation era,
and for an interacting case, see [88], where the authors,
following the same analysis as in [87], arrive at the same
conclusion). So, a matter-dominated state is necessary after
the radiation domination and before the present time.
Although this is a topic that deserves future investigations,
we hope that the same will happen in the interacting case
for values of the parameters μ and ν close to zero. For this
reason, comparing the different effective equation of state
parameters studied here, we see that the best case is when
μ ¼ 0 and ν ¼ 0.1wx with wx ¼ −0.95.

In fact, studies in [14] agree that interacting models may
lead to early time instabilities where the instabilities of the
perturbations are only considered in superhorizon scales
and extrapolated (see for instance Eqs. (63)–(75) of [14]) to
subhorizon scales. However, why one can extrapolate from
superhorizon to subhorizon scales, is not clear, and hence,
the instability problem in this context does not seem
to be conclusive and this deserves further investigations.
Moreover, when obtaining perturbations many orders
greater than the background, it has not been realized that
the linear approximation only holds for perturbations less
or the same order of the background. More interesting are
the conclusions of [89], where the authors state the
difficulty of the study of subhorizon perturbations because
it is impossible, in this regime, to find analytic solutions,
and the only conclusion is that the perturbations grow
slower than in the noninteracting case. The understanding
of early time instabilities appearing in the interacting
DE-DM theories is therefore a key topic that deserves
serious attention. Such instabilities are highly model
dependent since it can be avoided with the proper choice
of the interaction function [88]. So, one may argue that the
instabilities appearing in such theories point toward the
insufficiencies of the phenomenological parametrizations
of the interaction functions. Although the linear interaction
model is the most simplest and convenient choice to
proceed with, however, one may consider suitable para-
metrizations of the interaction functions beyond the linear
parametrizations with an aim to investigate the evolution of
the interacting universe at the level of perturbations.

IV. FUTURE SINGULARITIES

In this section we demonstrate that the interaction
scenarios may lead to finite time singularities. In particular,
we find that our present linear interacting model may also
lead to finite time future singularities. Effectively, if one
takes DetA ¼ 9ðμþ 1Þð1þ wx − νÞ þ 9 μν < 0, the ori-
gin becomes a saddle point, and thus, at very late times, the

FIG. 8. We display the evolution of the effective EoS of DE for the noninteraction scenario that means with μ ¼ ν ¼ 0, and
wx ¼ −0.95. In the left panel we show the asymptotic evolution of weff for the regionN ∈ ½−10; 60�, and in the right panel we only show
its evolution from the matter-radiation equality to the present time, that means for N ∈ ½−10; 0�.

FIG. 7. We show the evolution of the density parameters,
namely,Ωr (red curve),Ωb (green curve),Ωc (blue curve), andΩx
(grey curve) for the non-interacting case μ ¼ ν ¼ 0, with
wx ¼ −0.95.
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total energy density diverges, meaning that the universe
will enter in a phantom dominated phase finishing in a big
rip singularity. To show that, we choose for example, μ ¼ 0
which implies 1þ wx − ν < 0 and this restriction together
with the condition ρx;0

ρc;0
≤ wx−ν

ν leads to the constraint

maxð0.27wx; 1þ wxÞ < ν < 0;

which implies that wx < −1, that means, effectively ρx
must be a phantom fluid. Thus, at late times, the solution
(34) becomes

ρ̄xðNÞ ∼Ωx;0e−3ð1þwx−νÞN ρ̄xðNÞ → ∞; and

ρ̄cðNÞ ∼ ν

wx − ν
ρ̄xðNÞρ̄xðNÞ → ∞;

and weff;∞ ¼ wx − ν < −1, which means that, at late times,
the universe enters into a phase dominated by the phan-
tom fluid.
Finally, at very late times, the Raychaudhuri equation for

K ¼ 0 universe becomes

_H ¼ −
1

2M2
pl

ð1þ weff;∞Þρtot ¼ −
3

2
ð1þ weff;∞ÞH2;

whose solution is given by

1

H0

−
1

H
¼ −

3

2
ð1þ weff;∞Þðt − t0Þ

⇔ HðtÞ ¼ 2

3ð1þ weff;∞Þ
1

t − ts
;

with ts ¼ t0 − 2
3H0ð1þweff;∞Þ > t0. This means that the uni-

verse has a finite time cosmic singularity in the future,
where the total energy density and pressure diverge, i.e., the
model has a big rip singularity.
On the other hand, when DetA > 0 and TrA > 0, both

the eigenvalues are positive, and the origin of coordinates is
a repeller, which means that one also obtains a big rip
singularity at late times. In order to ensure that the energy
densities of the fluids were always positive, one has to
impose that origin was not a focus, because if so, at early
times the orbits would oscillate around the origin leading to
negative energies. To prevent this behavior, one has to
impose that the discriminant Δ ¼ ðTrAÞ2 − 4DetA was
positive, i.e., the origin was a node. In addition, as we
have already explained in Sec. III, for a node, to guarantee
the positive values of the energy densities, both the orbits
following the respective eigenvectors of the matrix A,
(XþðNÞ ¼ eλþNvþ and X−ðNÞ ¼ eλ−Nv− being once again
λþ and λ− the eigenvalues of the matrix A and, vþ ¼
ðv1;þ; v2;þÞ and v− ¼ ðv1;−; v2;−Þ their corresponding
eigenvectors) must belong to the first quadrant, that is,
the condition v1;�v2;� > 0 must be satisfied. As a

consequence, all orbits with an initial condition defined
in this region must remain in this region of the first
quadrant, which ensures that the energy densities were
always positive.
All these conditions lead to the following constraints that

the parameters μ and ν need to satisfy:

8>><
>>:

2þ μ − νþ wx < 0

ð1þ μÞð1þ wxÞ − ν > 0

ðwx − μ − νÞ2 − 4 μν > 0;

ð42Þ

where the first equation implies that TrA > 0, the second
implies DetA > 0 and the third ensures Δ > 0. Moreover,
as we know, the eigenvalues of A are given by λ� ¼
ðTrA� ffiffiffiffi

Δ
p Þ=2 and the corresponding eigenvectors can be

classified for ν ≠ 0 and ν ¼ 0 as follows:
(1) For ν ≠ 0, the eigenvectors are given by

v� ¼
�
1;−

μþ 1þ λ�=3
ν

�
: ð43Þ

(2) For ν ¼ 0, the eigenvalues are λþ ¼ −3ð1þ wxÞ and
λ− ¼ −3ð1þ μÞ, which implies that wx < −1 (phan-
tom fluid) and also μ < −1. The eigenvectors are
then given by

vþ ¼ ð0; 1Þ; v− ¼
�
1;

μ

wx − μ

�
: ð44Þ

Now, the condition v1;�v2;� > 0 gives

(
μþ1þλ�=3

ν > 0 for ν ≠ 0

wx ≤ μ < 0 for ν ¼ 0.
ð45Þ

Thus, in order that the initial condition was in the region
defined by the orbits XþðNÞ and X−ðNÞ, and thus, the
energy densities were always positive, we get the following
restrictions:

minðv2;þ;v2;−Þ≤
ρx;0
ρc;0

≤maxðv2;þ;v2;−Þ; for ν≠ 0; ð46Þ

and

ρx;0
ρc;0

>
μ

wx − μ
; for ν ¼ 0: ð47Þ

Then, considering the simple case ν ¼ 0, and taking into
account that ρx;0=ρc;0 ¼ Ωx;0=Ωc;0, and using, once again,
the following observational values at present time, namely,
Ωc;0 ≅ 0.262 andΩx;0 ≅ 0.69, from (47) we deduce that the
parameter μ must satisfy the condition
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0.72wx < μ < 0; ð48Þ

and from (42) we conclude that, to have a future big rip
singularity, the value of the parameter μ has to satisfy

0.72wx < μ < −1; with wx < −1.38: ð49Þ

With the analysis presented above, it is clear that the
linear interaction models may encounter with finite time
future singularities (here the big rip singularity) depending
on the model parameters, in particular, for some specific
regions of the coupling parameter(s) of the interaction
function and the dark energy equation of state. Similar to
the early time instability problems in the interaction
models, as discussed in Sec. III, one can clearly understand
that the appearance of finite time future singularities is also
related to the choice of interaction function. Since one can
construct a number of phenomenological parametrizations
of the interaction functions, thus, it is possible to have an
interaction model with no finite time singularities in the
future. In this connection, we refer to an appealing
interacting DE-DM theories where DE acts as a scalar
field and the mass of the DM particles has a direct
dependence on the scalar field itself [90,91]. In such
theories, if the potential and kinetic term of the scalar
are well behaved, no future singularity will appear.

V. CONCLUSIONS

The theory of nongravitational interaction between DM
and DE is one of the fantastic areas of modern cosmology
and this is the main theme of this work. Existing articles
demand that interacting DE models are one of the prom-
ising cosmological models that could explain many theo-
retical and observational issues related to the evolution of
the universe. Being recognized for its ability to soften the
cosmological constant problem it came into the limelight
for providing with a possible solution to the cosmic
coincidence problem. Now, if we concentrate on the recent
investigations focused on the tensions in the cosmological
parameters arising from local and global measurements,
this area has taken a serious role. The readers have already
witnessed how the tensions in both H0 and σ8 can be
alleviated/solved if an interaction in the dark sector is
considered. Therefore, there are enough reasons to select
the interacting models as the theme of the present work. In
the present article we consider an interacting cosmic
scenario between DM and DE driven by a simple inter-
action rate which is linear in the energy densities of DM and
DE. Here, DM has been taken to be pressureless and DE
has a constant barotropic equation of state. By performing a
systematic dynamical analysis we show explicitly that the
inclusion of an interaction in the background may lead to
unphysical behaviour in terms of negative energy densities.

To obtain viable cosmic scenarios, one needs to impose
additional conditions on the parameter space consisting of
the coupling parameters of the interaction rates as well as
the DE equation of state. Although the linear interaction
models have been investigated widely in the past due to
their simplest mathematical structure, but the current article
raises some important points that are essential to under-
stand the actual parameter space of the underlying cosmo-
logical model.
It is important to mention that the linear interaction

models can also lead to finite time future cosmic singu-
larities depending on the model parameters. In particular,
we find that for the present interaction model our universe
may encounter with a big rip singularity for some specific
values of the model parameters. Although the present study
focuses on the linear interacting models, but the same can
be performed with the nonlinear interaction models.
Moreover, we here focus on the simplest case in which
DE has a constant barotropic state parameter, however, one
could extend the case with dynamical state parameter. In
connection with the present interaction model we would
like to emphasize on a broad class of interacting DM-DE
theories in which DE acts as a scalar field and DM particle
has a mass which is directly dependent on the scalar field
itself [90,91]. This class of interaction theories are very
appealing for their far reaching possibilities. In particular,
concerning the singularity problem that we faced with the
present interaction model can be avoided in the aforemen-
tioned theories if the potential and kinetic term of the scalar
are well behaved. Thus, it will be interesting to perform a
dynamical system analysis of the above interaction models
following the similar approach as in the present article, in
order to look for viable scenarios both from theoretical and
observational grounds. Such investigations will be very
enchanting and we believe that, other investigators includ-
ing us, might be interested to explore the deeper physical
insights with such models.

ACKNOWLEDGMENTS

The authors thank the referees for their useful comments
that helped us to improve the quality of discussion of this
article. S. P. has been supported by the Mathematical
Research Impact-Centric Support Scheme (MATRICS),
File No. MTR/2018/000940, given by the Science and
Engineering Research Board (SERB), Govt. of India. The
investigation of J.dH. has been supported by MINECO
(Spain) Grant No. MTM2017-84214-C2-1-P, and in part by
the Catalan Government Grant No. 2017-SGR-247. W. Y.
was supported by the National Natural Science Foundation
of China under Grants No. 11705079 and No. 11647153.
The investigation of J. A. has been supported by MINECO
(Spain) Grant No. MTM2015-69135-P, and by the Catalan
Government Grant No. 2017-SGR-932.

UNDERSTANDING THE PHENOMENOLOGY OF INTERACTING … PHYS. REV. D 101, 123506 (2020)

123506-11



[1] N. Aghanim et al. (Planck Collaboration), Planck 2018
results. VI. Cosmological parameters, arXiv:1807.06209.

[2] S. Weinberg, The cosmological constant problem, Rev.
Mod. Phys. 61, 1 (1989).

[3] C. Wetterich, The cosmon model for an asymptotically
vanishing time dependent cosmological ’constant’, Astron.
Astrophys. 301, 321 (1995).

[4] L. Amendola, Coupled quintessence, Phys. Rev. D 62,
043511 (2000).

[5] L. Amendola and C. Quercellini, Tracking and coupled
dark energy as seen by WMAP, Phys. Rev. D 68, 023514
(2003).

[6] R. G. Cai and A. Wang, Cosmology with interaction
between phantom dark energy and dark matter and the
coincidence problem, J. Cosmol. Astropart. Phys. 03 (2005)
002.

[7] D. Pavón and W. Zimdahl, Holographic dark energy and
cosmic coincidence, Phys. Lett. B 628, 206 (2005).

[8] S. del Campo, R. Herrera, and D. Pavón, Toward a solution
of the coincidence problem, Phys. Rev. D 78, 021302
(2008).

[9] S. del Campo, R. Herrera, and D. Pavón, Interacting models
may be key to solve the cosmic coincidence problem, J.
Cosmol. Astropart. Phys. 01 (2009) 020.

[10] A. P. Billyard and A. A. Coley, Interactions in scalar field
cosmology, Phys. Rev. D 61, 083503 (2000).

[11] J. D. Barrow and T. Clifton, Cosmologies with energy
exchange, Phys. Rev. D 73, 103520 (2006).

[12] L. Amendola, G. Camargo Campos, and R. Rosenfeld,
Consequences of dark matter-dark energy interaction on
cosmological parameters derived from SNIa data, Phys.
Rev. D 75, 083506 (2007).

[13] J. H. He and B. Wang, Effects of the interaction between
dark energy and dark matter on cosmological parameters,
J. Cosmol. Astropart. Phys. 06 (2008) 010.

[14] J. Väliviita, E. Majerotto, and R. Maartens, Instability in
interacting dark energy and dark matter fluids, J. Cosmol.
Astropart. Phys. 07 (2008) 020.

[15] M. B. Gavela, D. Hernandez, L. Lopez Honorez, O. Mena,
and S. Rigolin, Dark coupling, J. Cosmol. Astropart. Phys.
07 (2009) 034.

[16] E. Majerotto, J. Väliviita, and R. Maartens, Adiabatic initial
conditions for perturbations in interacting dark energy
models, Mon. Not. R. Astron. Soc. 402, 2344 (2010).

[17] T. Clemson, K. Koyama, G. B. Zhao, R. Maartens, and J.
Väliviita, Interacting dark energy–Constraints and degen-
eracies, Phys. Rev. D 85, 043007 (2012).

[18] S. Pan and S. Chakraborty, Will there be again a transition
from acceleration to deceleration in course of the dark
energy evolution of the universe?, Eur. Phys. J. C 73, 2575
(2013).

[19] W. Yang and L. Xu, Cosmological constraints on interacting
dark energy with redshift-space distortion after Planck data,
Phys. Rev. D 89, 083517 (2014).

[20] W. Yang and L. Xu, Testing coupled dark energy with large
scale structure observation, J. Cosmol. Astropart. Phys. 08
(2014) 034.

[21] R. C. Nunes and E. M. Barboza, Dark matter-dark energy
interaction for a time-dependent EoS parameter, Gen.
Relativ. Gravit. 46, 1820 (2014).

[22] V. Salvatelli, N. Said, M. Bruni, A. Melchiorri, and D.
Wands, Indications of a Late-Time Interaction in the Dark
Sector, Phys. Rev. Lett. 113, 181301 (2014).

[23] S. Pan, S. Bhattacharya, and S. Chakraborty, An analytic
model for interacting dark energy and its observational
constraints, Mon. Not. R. Astron. Soc. 452, 3038 (2015).

[24] M. Shahalam, S. D. Pathak, M. M. Verma, M. Y. Khlopov,
and R. Myrzakulov, Dynamics of interacting quintessence,
Eur. Phys. J. C 75, 395 (2015).

[25] N. Tamanini, Phenomenological models of dark energy
interacting with dark matter, Phys. Rev. D 92, 043524
(2015).

[26] R. C. Nunes, S. Pan, and E. N. Saridakis, New constraints on
interacting dark energy from cosmic chronometers, Phys.
Rev. D 94, 023508 (2016).

[27] C. Caprini and N. Tamanini, Constraining early and
interacting dark energy with gravitational wave standard
sirens: The potential of the eLISA mission, J. Cosmol.
Astropart. Phys. 10 (2016) 006.

[28] S. Kumar and R. C. Nunes, Probing the interaction between
dark matter and dark energy in the presence of massive
neutrinos, Phys. Rev. D 94, 123511 (2016).

[29] W. Yang, H. Li, Y. Wu, and J. Lu, Cosmological constraints
on coupled dark energy, J. Cosmol. Astropart. Phys. 10
(2016) 007.

[30] S. Pan and G. S. Sharov, A model with interaction of dark
components and recent observational data, Mon. Not. R.
Astron. Soc. 472, 4736 (2017).

[31] C. van de Bruck, J. Mifsud, and J. Morrice, Testing coupled
dark energy models with their cosmological background
evolution, Phys. Rev. D 95, 043513 (2017).

[32] R. Erdem, Is it possible to obtain cosmic accelerated
expansion through energy transfer between different energy
densities?, Phys. Dark Universe 15, 57 (2017).

[33] G. S. Sharov, S. Bhattacharya, S. Pan, R. C. Nunes, and S.
Chakraborty, A new interacting two fluid model and its
consequences, Mon. Not. R. Astron. Soc. 466, 3497 (2017).

[34] S. Kumar and R. C. Nunes, Echo of interactions in the dark
sector, Phys. Rev. D 96, 103511 (2017).

[35] M. Shahalam, S. D. Pathak, S. Li, R. Myrzakulov, and A.
Wang, Dynamics of coupled phantom and tachyon fields,
Eur. Phys. J. C 77, 686 (2017).

[36] R. G. Cai, N. Tamanini, and T. Yang, Reconstructing the
dark sector interaction with LISA, J. Cosmol. Astropart.
Phys. 05 (2017) 031.

[37] E. Di Valentino, A. Melchiorri, and O. Mena, Can interact-
ing dark energy solve the H0 tension?, Phys. Rev. D 96,
043503 (2017).

[38] W. Yang, N. Banerjee, and S. Pan, Constraining a dark
matter and dark energy interaction scenario with a dynami-
cal equation of state, Phys. Rev. D 95, 123527 (2017).

[39] J. Mifsud and C. Van De Bruck, Probing the imprints of
generalized interacting dark energy on the growth of
perturbations, J. Cosmol. Astropart. Phys. 11 (2017) 001.

[40] W. Yang, S. Pan, and D. F. Mota, Novel approach toward the
large-scale stable interacting dark-energy models and their
astronomical bounds, Phys. Rev. D 96, 123508 (2017).

[41] W. Yang, S. Pan, and J. D. Barrow, Large-scale stability and
astronomical constraints for coupled dark-energy models,
Phys. Rev. D 97, 043529 (2018).

PAN, DE HARO, YANG, and AMORÓS PHYS. REV. D 101, 123506 (2020)

123506-12

https://arXiv.org/abs/1807.06209
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/PhysRevD.62.043511
https://doi.org/10.1103/PhysRevD.62.043511
https://doi.org/10.1103/PhysRevD.68.023514
https://doi.org/10.1103/PhysRevD.68.023514
https://doi.org/10.1088/1475-7516/2005/03/002
https://doi.org/10.1088/1475-7516/2005/03/002
https://doi.org/10.1016/j.physletb.2005.08.134
https://doi.org/10.1103/PhysRevD.78.021302
https://doi.org/10.1103/PhysRevD.78.021302
https://doi.org/10.1088/1475-7516/2009/01/020
https://doi.org/10.1088/1475-7516/2009/01/020
https://doi.org/10.1103/PhysRevD.61.083503
https://doi.org/10.1103/PhysRevD.73.103520
https://doi.org/10.1103/PhysRevD.75.083506
https://doi.org/10.1103/PhysRevD.75.083506
https://doi.org/10.1088/1475-7516/2008/06/010
https://doi.org/10.1088/1475-7516/2008/07/020
https://doi.org/10.1088/1475-7516/2008/07/020
https://doi.org/10.1088/1475-7516/2009/07/034
https://doi.org/10.1088/1475-7516/2009/07/034
https://doi.org/10.1111/j.1365-2966.2009.16140.x
https://doi.org/10.1103/PhysRevD.85.043007
https://doi.org/10.1140/epjc/s10052-013-2575-7
https://doi.org/10.1140/epjc/s10052-013-2575-7
https://doi.org/10.1103/PhysRevD.89.083517
https://doi.org/10.1088/1475-7516/2014/08/034
https://doi.org/10.1088/1475-7516/2014/08/034
https://doi.org/10.1007/s10714-014-1820-1
https://doi.org/10.1007/s10714-014-1820-1
https://doi.org/10.1103/PhysRevLett.113.181301
https://doi.org/10.1093/mnras/stv1495
https://doi.org/10.1140/epjc/s10052-015-3608-1
https://doi.org/10.1103/PhysRevD.92.043524
https://doi.org/10.1103/PhysRevD.92.043524
https://doi.org/10.1103/PhysRevD.94.023508
https://doi.org/10.1103/PhysRevD.94.023508
https://doi.org/10.1088/1475-7516/2016/10/006
https://doi.org/10.1088/1475-7516/2016/10/006
https://doi.org/10.1103/PhysRevD.94.123511
https://doi.org/10.1088/1475-7516/2016/10/007
https://doi.org/10.1088/1475-7516/2016/10/007
https://doi.org/10.1093/mnras/stx2278
https://doi.org/10.1093/mnras/stx2278
https://doi.org/10.1103/PhysRevD.95.043513
https://doi.org/10.1016/j.dark.2016.12.001
https://doi.org/10.1093/mnras/stw3358
https://doi.org/10.1103/PhysRevD.96.103511
https://doi.org/10.1140/epjc/s10052-017-5255-1
https://doi.org/10.1088/1475-7516/2017/05/031
https://doi.org/10.1088/1475-7516/2017/05/031
https://doi.org/10.1103/PhysRevD.96.043503
https://doi.org/10.1103/PhysRevD.96.043503
https://doi.org/10.1103/PhysRevD.95.123527
https://doi.org/10.1088/1475-7516/2017/11/001
https://doi.org/10.1103/PhysRevD.96.123508
https://doi.org/10.1103/PhysRevD.97.043529


[42] S. Pan, A. Mukherjee, and N. Banerjee, Astronomical
bounds on a cosmological model allowing a general interac-
tion in the dark sector, Mon. Not. R. Astron. Soc. 477, 1189
(2018).

[43] W. Yang, S. Pan, R. Herrera, and S. Chakraborty, Large-
scale (in) stability analysis of an exactly solved coupled
dark-energy model, Phys. Rev. D 98, 043517 (2018).

[44] W. Yang, S. Pan, and A. Paliathanasis, Cosmological
constraints on an exponential interaction in the dark sector,
Mon. Not. R. Astron. Soc. 482, 1007 (2019).

[45] W. Yang, S. Pan, L. Xu, and D. F. Mota, Effects of
anisotropic stress in interacting dark matter C dark energy
scenarios, Mon. Not. R. Astron. Soc. 482, 1858 (2019).

[46] R. von Marttens, L. Casarini, D. F. Mota, and W. Zimdahl,
Cosmological constraints on parametrized interacting dark
energy, Phys. Dark Universe 23, 100248 (2019).

[47] W. Yang, N. Banerjee, A. Paliathanasis, and S. Pan,
Reconstructing the dark matter and dark energy interaction
scenarios from observations, Phys. Dark Universe 26,
100383 (2019).

[48] A. Paliathanasis, S. Pan, and W. Yang, Dynamics of non-
linear interacting dark energy models, Int. J. Mod. Phys. D
28, 1950161 (2019).

[49] S. Pan, W. Yang, C. Singha, and E. N. Saridakis, Observa-
tional constraints on sign-changeable interaction models
and alleviation of the H0 tension, Phys. Rev. D 100, 083539
(2019).

[50] W. Yang, S. Pan, E. Di Valentino, B. Wang, and A. Wang,
Forecasting interacting vacuum-energy models using gravi-
tational waves, arXiv:1904.11980.

[51] W. Yang, S. Vagnozzi, E. Di Valentino, R. C. Nunes, S. Pan,
and D. F. Mota, Listening to the sound of dark sector
interactions with gravitational wave standard sirens,
J. Cosmol. Astropart. Phys. 07 (2019) 037.

[52] W. Yang, O. Mena, S. Pan, and E. Di Valentino, Dark sectors
with dynamical coupling, Phys. Rev. D 100, 083509 (2019).

[53] S. Pan, W. Yang, E. Di Valentino, E. N. Saridakis, and S.
Chakraborty, Interacting scenarios with dynamical dark
energy: Observational constraints and alleviation of the
H0 tension, Phys. Rev. D 100, 103520 (2019).

[54] J. D. Barrow and G. Kittou, Non-linear interactions in
cosmologies with energy exchange, Eur. Phys. J. C 80,
120 (2020).

[55] W. Yang, S. Pan, R. C. Nunes, and D. F. Mota, Dark calling
dark: Interaction in the dark sector in presence of neutrino
properties after Planck CMB final release, J. Cosmol.
Astropart. Phys. 04 (2020) 008.

[56] E. Di Valentino, A. Melchiorri, O. Mena, and S. Vagnozzi,
Non-minimal dark sector physics and cosmological ten-
sions, Phys. Rev. D 101, 063502 (2020).

[57] R. von Marttens, L. Lombriser, M. Kunz, V. Marra, L.
Casarini, and J. Alcaniz, Dark degeneracy I: Dynamical or
interacting dark energy?, Phys. Dark Universe 28, 100490
(2020).

[58] G. Papagiannopoulos, P. Tsiapi, S. Basilakos, and A.
Paliathanasis, Dynamics and cosmological evolution in
Λ-varying cosmology, Eur. Phys. J. C 80, 55 (2020).

[59] Y. L. Bolotin, A. Kostenko, O. A. Lemets, and D. A.
Yerokhin, Cosmological evolution with interaction between

dark energy and dark matter, Int. J. Mod. Phys. D 24,
1530007 (2015).

[60] B. Wang, E. Abdalla, F. Atrio-Barandela, and D. Pavón,
Dark matter and dark energy interactions: Theoretical
challenges, cosmological implications and observational
signatures, Rep. Prog. Phys. 79, 096901 (2016).

[61] B. Wang, Y. G. Gong, and E. Abdalla, Transition of the dark
energy equation of state in an interacting holographic dark
energy model, Phys. Lett. B 624, 141 (2005).

[62] H. M. Sadjadi and M. Honardoost, Thermodynamics second
law and omega ¼ −1 crossing(s) in interacting holographic
dark energy model, Phys. Lett. B 647, 231 (2007).

[63] S. Pan and S. Chakraborty, A cosmographic analysis of
holographic dark energy models, Int. J. Mod. Phys. D 23,
1450092 (2014).

[64] W. Yang, S. Pan, E. Di Valentino, R. C. Nunes, S. Vagnozzi,
and D. F. Mota, Tale of stable interacting dark energy,
observational signatures, and the H0 tension, J. Cosmol.
Astropart. Phys. 09 (2018) 019.

[65] W. Yang, A. Mukherjee, E. Di Valentino, and S. Pan,
Interacting dark energy with time varying equation of state
and the H0 tension, Phys. Rev. D 98, 123527 (2018).

[66] S. Kumar, R. C. Nunes, and S. K. Yadav, Dark sector
interaction: A remedy of the tensions between CMB and
LSS data, Eur. Phys. J. C 79, 576 (2019).

[67] E. Di Valentino, A. Melchiorri, O. Mena, and S. Vagnozzi,
Interacting dark energy after the latest Planck, DES, and H0

measurements: An excellent solution to the H0 and cosmic
shear tensions, arXiv:1908.04281.

[68] C. Van De Bruck and J. Mifsud, Searching for dark matter—
dark energy interactions: Going beyond the conformal case,
Phys. Rev. D 97, 023506 (2018).

[69] A. Pourtsidou and T. Tram, Reconciling CMB and structure
growth measurements with dark energy interactions, Phys.
Rev. D 94, 043518 (2016).

[70] R. An, C. Feng, and B. Wang, Relieving the tension between
weak lensing and cosmic microwave background with
interacting dark matter and dark energy models, J. Cosmol.
Astropart. Phys. 02 (2018) 038.

[71] C. van de Bruck and J. Morrice, Disformal couplings and
the dark sector of the universe, J. Cosmol. Astropart. Phys.
04 (2015) 036.

[72] C. G. Böehmer, N. Tamanini, and M. Wright, Interacting
quintessence from a variational approach Part I: Algebraic
couplings, Phys. Rev. D 91, 123002 (2015).

[73] C. G. Böehmer, N. Tamanini, and M. Wright, Interacting
quintessence from a variational approach Part II: Derivative
couplings, Phys. Rev. D 91, 123003 (2015).

[74] J. Gleyzes, D. Langlois, M. Mancarella, and F. Vernizzi,
Effective theory of interacting dark energy, J. Cosmol.
Astropart. Phys. 08 (2015) 054.

[75] G. D’Amico, T. Hamill, and Nemanja Kaloper, Quantum
field theory of interacting dark matter/dark energy: Dark
monodromies, Phys. Rev. D 94, 103526 (2016).

[76] S. Pan, G. S. Sharov, and W. Yang, Field theoretic inter-
pretations of interacting dark energy scenarios and recent
observations, arXiv:2001.03120.

[77] R.Weitzenböck, Invarianten Theorie (Noordhoff,Groningen,
1923).

UNDERSTANDING THE PHENOMENOLOGY OF INTERACTING … PHYS. REV. D 101, 123506 (2020)

123506-13

https://doi.org/10.1093/mnras/sty755
https://doi.org/10.1093/mnras/sty755
https://doi.org/10.1103/PhysRevD.98.043517
https://doi.org/10.1093/mnras/sty2780
https://doi.org/10.1093/mnras/sty2789
https://doi.org/10.1016/j.dark.2018.10.007
https://doi.org/10.1016/j.dark.2019.100383
https://doi.org/10.1016/j.dark.2019.100383
https://doi.org/10.1142/S021827181950161X
https://doi.org/10.1142/S021827181950161X
https://doi.org/10.1103/PhysRevD.100.083539
https://doi.org/10.1103/PhysRevD.100.083539
https://arXiv.org/abs/1904.11980
https://doi.org/10.1088/1475-7516/2019/07/037
https://doi.org/10.1103/PhysRevD.100.083509
https://doi.org/10.1103/PhysRevD.100.103520
https://doi.org/10.1140/epjc/s10052-020-7642-2
https://doi.org/10.1140/epjc/s10052-020-7642-2
https://doi.org/10.1088/1475-7516/2020/04/008
https://doi.org/10.1088/1475-7516/2020/04/008
https://doi.org/10.1103/PhysRevD.101.063502
https://doi.org/10.1016/j.dark.2020.100490
https://doi.org/10.1016/j.dark.2020.100490
https://doi.org/10.1140/epjc/s10052-019-7600-z
https://doi.org/10.1142/S0218271815300074
https://doi.org/10.1142/S0218271815300074
https://doi.org/10.1088/0034-4885/79/9/096901
https://doi.org/10.1016/j.physletb.2005.08.008
https://doi.org/10.1016/j.physletb.2007.02.016
https://doi.org/10.1142/S0218271814500928
https://doi.org/10.1142/S0218271814500928
https://doi.org/10.1088/1475-7516/2018/09/019
https://doi.org/10.1088/1475-7516/2018/09/019
https://doi.org/10.1103/PhysRevD.98.123527
https://doi.org/10.1140/epjc/s10052-019-7087-7
https://arXiv.org/abs/1908.04281
https://doi.org/10.1103/PhysRevD.97.023506
https://doi.org/10.1103/PhysRevD.94.043518
https://doi.org/10.1103/PhysRevD.94.043518
https://doi.org/10.1088/1475-7516/2018/02/038
https://doi.org/10.1088/1475-7516/2018/02/038
https://doi.org/10.1088/1475-7516/2015/04/036
https://doi.org/10.1088/1475-7516/2015/04/036
https://doi.org/10.1103/PhysRevD.91.123002
https://doi.org/10.1103/PhysRevD.91.123003
https://doi.org/10.1088/1475-7516/2015/08/054
https://doi.org/10.1088/1475-7516/2015/08/054
https://doi.org/10.1103/PhysRevD.94.103526
https://arXiv.org/abs/2001.03120


[78] V. C. de Andrade, L. C. T. Guillen, and J. G. Pereira, Tele-
parallel gravity: An Overview, arXiv:gr-qc/0011087.

[79] B. Li, T. P. Sotiriou, and J. D. Barrow, fðTÞ Gravity
and local Lorentz invariance, Phys. Rev. D 83, 064035
(2011).

[80] A. Unzicker and T. Case, Translation of Einstein’s attempt
of a unified field theory with teleparallelism, arXiv:physics/
0503046.

[81] J. de Haro and J. Amorós, Non-Singular Models of Uni-
verses in Teleparallel Theories, Phys. Rev. Lett. 110,
071104 (2013).

[82] J. Carminati and R. G. McLenaghan, Algebraic invariants of
the Riemann tensor in a four-dimensional Lorentzian space,
J. Math. Phys. (N.Y.) 32, 3135 (1991).

[83] A. H. Chamseddine, V. Mukhanov, and A. Vikman,
Cosmology with mimetic matter, J. Cosmol. Astropart.
Phys. 06 (2014) 017.

[84] A. H. Chamseddine and V. Mukhanov, Mimetic dark matter,
J. High Energy Phys. 11 (2013) 135.

[85] P. A. R. Ade et al. (Planck Collaboration), Planck 2015
results. XIII. Cosmological parameters, Astron. Astrophys.
594, A13 (2016).

[86] V. Mukhanov, Physical Foundations of Cosmology
(Cambridge University Press, Cambridge, England, 2005).

[87] M. Doran, C.M. Mueller, G. Schaefer, and C. Wetterich,
Gauge-invariant initial conditions and early time perturbations
in quintessence Universes, Phys. Rev. D 68, 063505 (2003).

[88] Y.-H. Li and X. Zhang, Large-scale stable interacting dark
energy model: Cosmological perturbations and observatio-
nal constraints, Phys. Rev. D 89, 083009 (2014).

[89] G. Olivares, F. Atrio-Barandela, and D. Pavon, Matter
density perturbations in interacting quintessence models,
Phys. Rev. D 74, 043521 (2006).

[90] C. Wetterich, Cosmologies with variable Newton’s
Constant’, Nucl. Phys. B302, 645 (1988).

[91] A. Pourtsidou, C. Skordis, and E. Copeland, Models of dark
matter coupled to dark energy, Phys. Rev. D 88, 083505
(2013).

PAN, DE HARO, YANG, and AMORÓS PHYS. REV. D 101, 123506 (2020)

123506-14

https://arXiv.org/abs/gr-qc/0011087
https://doi.org/10.1103/PhysRevD.83.064035
https://doi.org/10.1103/PhysRevD.83.064035
https://arXiv.org/abs/physics/0503046
https://arXiv.org/abs/physics/0503046
https://doi.org/10.1103/PhysRevLett.110.071104
https://doi.org/10.1103/PhysRevLett.110.071104
https://doi.org/10.1063/1.529470
https://doi.org/10.1088/1475-7516/2014/06/017
https://doi.org/10.1088/1475-7516/2014/06/017
https://doi.org/10.1007/JHEP11(2013)135
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1103/PhysRevD.68.063505
https://doi.org/10.1103/PhysRevD.89.083009
https://doi.org/10.1103/PhysRevD.74.043521
https://doi.org/10.1016/0550-3213(88)90192-7
https://doi.org/10.1103/PhysRevD.88.083505
https://doi.org/10.1103/PhysRevD.88.083505

