
 

VOLUME XX, 2017 1 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number 

Analysis of Smartphone Triaxial Accelerometry 
for Monitoring Sleep-Disordered Breathing and 
Sleep Position at Home 

IGNASI FERRER-LLUIS1,2,3, YOLANDA CASTILLO-ESCARIO1,2,3, 
JOSEP MARIA MONTSERRAT4,5, AND RAIMON JANÉ1,2,3, (Senior Member, IEEE) 
1Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain 
2Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain 
3Department of Automatic Control, Universitat Politècnica de Catalunya-Barcelona Tech, 08028 Barcelona, Spain 
4Sleep Lab, Pneumology Service, Hospital Clínic de Barcelona, 08036 Barcelona, Spain 
5Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 28029 Barcelona, Spain 

Corresponding author: Ignasi Ferrer-Lluis (iferrer@ibecbarcelona.eu) 

This work was supported in part by the "La Caixa'' Foundation (ID 100010434) under fellowship codes LCF/BQ/DI17/11620029 and 

LCF/BQ/DE18/11670019; in part by the European Union's Horizon 2020 Research and Innovation Program under the Marie 
Sklodowska-Curie Grant number 713673; in part by the CERCA Program/Generalitat de Catalunya, in part by the Secretaria 

d'Universitats i Recerca de la Generalitat de Catalunya under grant GRC 2017 SGR 01770; in part by the Spanish Ministry of Science, 

Innovation and Universities under grant RTI2018-098472-B-I00 MCIU/AEI/FEDER, UE;  and in part by the Instituto de Salud Carlos 

III under grant FIS PI17/01068.  

ABSTRACT Obstructive sleep apnea (OSA) is a sleep disorder in which repetitive upper airway 

obstructive events occur during sleep. These events can induce hypoxia, which is a risk factor for multiple 

cardiovascular and cerebrovascular diseases. OSA is also known to be position-dependent in some patients, 

which is referred to as positional OSA (pOSA). Screening for pOSA is necessary in order to design more 

personalized and effective treatment strategies. In this article, we propose analyzing accelerometry signals, 

recorded with a smartphone, to detect and monitor OSA at home. Our objectives were to: (1) develop an 

algorithm for detecting thoracic movement associated with disordered breathing events; (2) compare the 

performance of smartphones as OSA monitoring tools with a type 3 portable sleep monitor; and (3) explore 

the feasibility of using smartphone accelerometry to retrieve reliable patient sleep position data and assess 

pOSA. Accelerometry signals were collected through simultaneous overnight acquisition using both 

devices with 13 subjects. The smartphone tool showed a high degree of concordance compared to the 

portable device and succeeded in estimating the apnea-hypopnea index (AHI) and classifying the severity 

level in most subjects. To assess the agreement between the two systems, an event-by-event comparison 

was performed, which found a sensitivity of 90% and a positive predictive value of 80%. It was also 

possible to identify pOSA by determining the ratio of events occurring in a specific position versus the time 

spent in that position during the night. These novel results suggest that smartphones are promising mHealth 

tools for OSA and pOSA monitoring at home. 

INDEX TERMS accelerometry, biomedical signal processing, mHealth, monitoring, sleep apnea, sleep 

position, smartphone 

I. INTRODUCTION 

Because of its critical role in human health, sleep is one of 

the most important aspects of daily life. Low-quality or 

disturbed sleep is associated with multiple health 

complications, such as mental disorders [1]–[3], and is also a 

known risk factor for other health disorders, including 

increased cardiovascular and cerebrovascular morbidity and 

mortality [4]–[6]. 

Obstructive sleep apnea (OSA) is one of the most common 

diseases affecting sleep quality. OSA is characterized by the 

occurrence of obstructive events in which a partial or total 

occlusion of the upper airway is produced, which results in a 

disordered breathing pattern. This disordered breathing 
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induces the appearance of hypoxic events and microarousals, 

which are a known risk factor for multiple cardiovascular 

diseases [7]. 

One of the major problems with OSA is that most patients 

remain undiagnosed and untreated [8], [9]. This issue, along 

with the high prevalence of OSA, which is estimated to affect 

between 9% and 38% of the overall population [10], makes 

OSA a substantial public health burden.  
The gold-standard technique for diagnosing OSA is 

nocturnal polysomnography (PSG). PSG tests consist of 

recording multiple physiological signals while the patient is 

asleep in a hospital sleep lab. Assessing these physiological 

signals determines the patient’s sleep performance and yields 

a sleep score index. The most common score index is the 

apnea/hypopnea index (AHI), which provides information 

about the number of apneas and hypopneas per hour of sleep. 

According to the American Academy of Sleep Medicine 

(AASM), apneas are defined as ≥90% flow reductions for 

≥10 seconds [11] and hypopneas are defined as ≥30% flow 

reductions for ≥10 seconds which are associated with an 

oxygen desaturation of ≥3% or an arousal [11]. The AHI 

classifies patients into four different categories: healthy (AHI 

< 5); mild OSA (5 ≤ AHI < 15); moderate OSA (15 ≤ AHI < 

30) and severe OSA (AHI ≥ 30). 

However, PSG has some important limitations, such as the 

high cost of the diagnostic test. This is because PSG tests 

require a lot of equipment for full-night data acquisition as 

well as qualified medical staff to analyze the signals and 

diagnose the patient. Moreover, OSA diagnosis is usually 

performed with a one-night sleep assessment, which does not 

account for the variability of sleep performance in the 

patient. The reproducibility of PSG tests with regard to a 

patient’s regular sleep performance is also low because the 

patient is not sleeping in his or her regular bed at home, but 

rather in a hospital sleep lab. The equipment the patient must 

be connected to in order to collect data, such as masks or 

electrodes, also reduces sleep comfort. All these limitations 

affect sleep performance assessment and diagnose of OSA. 

There are multiple treatments for OSA [12] with different 

degrees of clinical impact. The most invasive methods 

consist of surgery to modify the air pathway and resolve the 

cause of the obstruction. Less invasive therapies include 

devices which aim to unblock the air pathways by regulating 

air pressure, such as continuous positive air pressure (CPAP) 

machines. The least invasive methods are based on 

behavioral therapy, including weight control with specific 

diet strategies and sleep positional therapy. The detection and 

monitoring of positional OSA (pOSA) provides clinical 

information which is highly relevant when choosing the best 

treatment strategy for each patient, since less invasive 

treatments are preferred. 

To address the low diagnosis ratio of OSA and provide 

solutions to the limitations associated with PSG, new 

diagnosis and monitoring strategies are being developed. 

These strategies are usually based on mobile health 

(mHealth) technologies and aim to develop portable systems 

that can be used at home. In recent years, some approaches 

have attempted to assess sleep quality through applications 

that use questionnaires to assess sleep performance [13], [14] 

or evaluate and improve treatment adherence [15]. In 

addition, multiple studies have used actigraphy, a technique 

based on accelerometry which infers sleep stages and sleep 

performance by assessing how much a patient moves while 

sleeping [16]–[18]. Some studies have used accelerometry to 

estimate respiratory or flow signals [19]–[22], which could 

be used to assess OSA. Other studies have used audio signals 

to characterize breathing and snoring and to estimate OSA 

severity [23]–[26] and some approaches have also explored 

the use of pulse oximetry to estimate OSA severity [27], [28]. 

Smartphones have recently been proposed as potentially 

effective tools in the development of mHealth applications. 

First, smartphones are globally available, so applications that 

make use of them can easily reach most of the population. 

Second, they already include multiple embedded sensors 

which can be used as diagnostic tools, and additional external 

sensors can be incorporated to add to their potential. Some 

studies have already considered using smartphones to detect 

and monitor sleep apnea [29]–[31], including previous works 

by our group. These studies make use of multiple 

combinations of different signals to screen and monitor OSA 

at home, taking advantage of the multiple alternatives that 

smartphones provide. Nevertheless, although multiple 

different mHealth approaches have been proposed to 

improve the diagnosis and monitoring of sleep apnea at 

home, still more validation studies are needed to assess the 

clinical feasibility of this kind of system [32].  

In this paper, we propose a smartphone mHealth system 

based on smartphone accelerometry which can detect and 

monitor OSA at home. We have tested our system by means 

of overnight data acquisition sessions using the smartphone’s 

accelerometer to assess respiration and disordered breathing. 

Accelerometry was also used to obtain sleep position data 

and assess pOSA. The assessment of pOSA is of particular 

interest, as most of the mHealth applications being developed 

today do not provide positional assessment to help clinicians 

determine the best personalized treatment strategies. The 

objectives of this paper are: (1) to develop an algorithm for 

detecting thoracic movement associated with disordered 

breathing events; (2) to compare the performance of 

smartphones as OSA monitor tools with the performance of a 

type 3 portable sleep monitor; and (3) to explore the 

feasibility of smartphone accelerometry in retrieving reliable 

patient sleep position data and assessing pOSA.  

II. MATERIALS AND METHODS 

A. HOME DATABASE ACQUISITION PROTOCOL 

The data acquisition protocol and all the experiments were 

approved by the ethics committee of Hospital Clínic of 

Barcelona. Two different devices were used simultaneously 
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to record multiple signals during overnight data acquisition. 

The first device, a Samsung S5 SM-G900F Android 6.0.1 

smartphone, was used as the test device. It recorded 

accelerometric data with its embedded MPU-6500 triaxial 

accelerometer sensor at a sampling frequency of 200 Hz 

using the Sensor Logger application. The second device, the 

Apnealink™ Air from ResMed, was used as the reference 

device. It recorded thoracic effort with a chest band at a 

sampling frequency of 10 Hz; pulse oximetry with a wired 

finger clip at a sampling frequency of 1 Hz; and airflow with 

a nasal cannula at a sampling frequency of 100 Hz.  

The smartphone device was placed over the sternum based 

on the configuration proposed by Nakano et al. [25], which 

Siqueira et al. [33] found to be the best location for assessing 

respiration using triaxial accelerometry when the subject is 

lying down. The Apnealink device was also placed over the 

sternum, below the smartphone, based on that described in 

the Apnealink guidelines. This device placement 

configuration had already been tested successfully in 

previous studies by our group [30], [31], [34], [35]. 

This data acquisition protocol was used to compile the 

database used in this paper to analyze sleep-disordered 

breathing and pOSA. The same database was used by 

Castillo-Escario et al. [30] in a previous study by our group. 

The database is composed of 13 different subjects, eight men 

and five women, with an average age of 48 [24-83] and an 

average BMI of 27 [20 – 34], containing three healthy, three 

mild, four moderate and three severe OSA subjects as 

detected by the manually reviewed Apnealink events. 

B. SIGNAL PREPROCESSING 

The smartphone triaxial accelerometry information was 

stored in .txt files which were loaded into the MATLAB® 

programming environment (r2019b, Mathworks Inc.) to be 

processed and analyzed using custom algorithms.  

The Apnealink signals were automatically analyzed by 

their proprietary software to extract information regarding 

apneas, hypopneas and desaturations (≥3%). These signals 

were also manually scored and validated by sleep experts 

from Hospital Clínic of Barcelona to verify the sleep events 

of each subject. These sleep experts followed the same 

criteria for sleep scoring as those used for PSG. Signals were 

then exported to .edf format for further analysis. 

The signals from the two devices were manually 

synchronized with the beginning and ending timestamps of 

the files. The smartphone accelerometry signals were 

analyzed to detect artifacts linked to the subjects’ body 

movements or position changes. These artifacts were 

automatically detected with a custom-made algorithm which 

analyzed six-second windows overlapped sample by sample. 

For each window it calculated the amplitude of the signal by 

retrieving the difference between the maximum value and the 

minimum value for each of the triaxial accelerometry 

channels separately. If the amplitude of the signal on any of 

the channels was greater than 2 (m/s2), the sample belonging 

to the central value of the window was labelled as an artifact. 

Then, artifact regions closer than three seconds were merged 

and artifacts greater than one second were kept. These 

artifact regions were excluded from our study. 

The artifacts from the Apnealink device consisted 

principally of nasal cannula and pulse oximeter malfunctions 

leading to a loss of signal or a low signal. Those regions were 

also excluded from analysis. The final valid duration for each 

subject ranged from four to five hours of sleep. 

C. HOME EVENT DETECTION 

1) ALGORITHM FOR DETECTING RESPIRATORY 
EVENTS THROUGH ACCELEROMETRY  

The automatic event detector we propose in this section 

aims to retrieve abnormal respiratory behavior which could 

be linked to disordered breathing and OSA. To retrieve these 

events, angular variations were calculated from triaxial 

accelerometry signals as follows: 

1. Each of the signals of the raw triaxial accelerometry 

was cut into different segments to discard the artifact 

regions. 

2. Each of the signals was lowpass filtered at a cutoff 

frequency of 0.8 Hz with an 8th order Butterworth 

filter to remove high frequency noise and keep 

frequencies associated with respiration. To avoid filter 

edge effects, the signal segments were value padded 

at the edges.  

3. Triaxial accelerometry filtered signals were used to 

calculate the angular variation in relation to the unity 

gravity vector [0 0 1]. 

4. The angle variation vector was bandpass filtered at the 

frequency range of 0.1Hz–0.8Hz to remove the 

baseline and keep frequencies associated with 

respiration. 

5. Local maxima and minima values were calculated 

upon the angle variation signal. Then the upper and 

lower envelopes were retrieved from them and used to 

calculate the total amplitude signal, which represents 

the angle variation amplitude.  

6. Two signals (coefficients 1 and 2) were extracted 

from the total amplitude signal. These coefficients 

were used to detect lower amplitude regions, 

associated with lower angle variations, which would 

indicate disordered breathing. The coefficient 1 signal 

evaluates angle variability amplitude versus its 

previous performance, and the coefficient 2 signal 

evaluates the angle variability amplitude versus its 

posterior performance. To calculate both coefficients, 

a window of 45 seconds (one and a half standard 30s-

epoch window used in clinical environment) was 

used, overlapped sample by sample. Within this 

window, and for each coefficient signal, each value of 

the angle variation amplitude was compared to the 

maximum value of the window. This process allowed 

us to retrieve the percentage of reduction of the angle 
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variation at each time compared to the previous and 

posterior behavior. This approach was chosen to 

mimic the flow reduction assessment established by 

the AASM for sleep scoring [11], in which a local 

reduction in flow must occur at a specific time point. 

7. Raw events were then detected when both coefficients 

scored a reduction of at least 70%. This threshold was 

also established according to the AASM hypopnea 

criteria for flow reduction. 

8. Next, the events were expanded to the left by the 

coefficient 1 signal to determine the event start time 

according to the 70% reduction rule. The events were 

also expanded to the right by coefficient 2 to 

determine the end time. Then, overlapping events or 

events closer than two seconds apart were merged. 

This two-second threshold was chosen to allow the 

events separated by less than a fast respiration to be 

merged. In addition, events shorter than 10 seconds 

were discarded, again, as recommended by the 

AASM, and the remaining events were kept as 

possible disordered breathing candidates. 

9. Finally, events that were not followed by a 

desaturation detected by the Apnealink pulse oximeter 

were discarded, as is done in the clinical praxis and in 

the AASM guidelines for sleep scoring for 

hypopneas. 

An example of the event detection algorithm can be seen in 

Fig. 1, where the raw events detected have been processed to 

obtain the final events by means of the procedure explained 

in this section. 

2) HOME EVENT COMPARISON 

To compare the performance of the smartphone in detecting 

events linked to disordered breathing and OSA, two different 

types of comparisons were made: a general subject 

performance comparison and an event-to-event comparison. 

The general subject event performance comparison aims to 

verify that the information extracted for each subject 

regarding their overall sleep performance score is in 

concordance with the commercial reference device 

Apnealink. To this end, the AHI was estimated from the 

smartphone automatic event detector and compared to the 

manually reviewed Apnealink AHI. Additionally, the AHI 

from both devices were used to stratify the subjects into the 

different patient severity categories used in the clinical 

environment. The classifications from the two devices were 

then compared. Finally, the concordance correlation 

coefficient [36] between the AHI from both devices was 

calculated with the following formula:  

 

( )
2

2 2

2 xy

c

x y x y


 =

 + + −
 (1) 

where σxy is the covariance of xn and yn, σx
2 and σy

2 are the 

variances of xn and yn, and x̅ and y̅ are the means of xn and 

yn, respectively. In our study, xn corresponds to a vector 

containing the AHI from Apnealink and yn to a vector 

containing the AHI estimated from the smartphone. 

 

 
Figure 1. Explanation of the algorithm for sleep-disordered breathing event detection. Angular variation signal (1 and 2) is obtained from triaxial 
accelerometry and the maxima (blue dots) and minima (purple dots) angle variations, and the upper and lower envelopes (blue and purple lines) are 
calculated. Coefficient signals (3) are calculated from the total amplitude obtained from the upper and lower envelopes. Each coefficient can determine 
reductions in angle variation compared to anterior (blue line) and posterior (red line) performance. Raw event detection corresponds to a reduction of 
at least 70% of the amplitude (grey line) in both coefficients simultaneously, and events are displayed with yellow boxes in (1) and with yellow lines in 
(3). Raw events are then expanded according to the right and left coefficients independently, merged if their distance is below 2s and discarded if they 
are shorter than 10s. These modified events are depicted by green boxes in (2) and modifications are shown as green lines in (3).
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The event-to-event comparison aims to check that the 

events found by the automatic event detector through 

smartphone accelerometry agree with the events recorded by 

the reference device. We did this to determine whether the 

events recorded by the two systems occurred at the same 

time position, meaning that both systems were detecting the 

same abnormal behavior at the same time. This type of 

comparison allowed us to determine the true positive (TP) 

matches when two events completely or partially overlapped; 

the false positive (FP) matches when an event was found by 

the smartphone automatic event detector but not by the 

reference device; and the false negative (FN) matches when 

an event was found by the reference device but not by the 

smartphone test device.  

From the TP, FP and FN values, it was possible to 

calculate the sensitivity (Se) and positive predictive value 

(PPV) of the comparison with the following formulas: 

 (%) 100
( )

TP
Se

TP FN
=

+
 (2) 

 (%) 100
( )

TP
PPV

TP FP
=

+
 (3) 

Specificity (Sp) and negative predictive value (NPV) 

could not be calculated because they rely on information 

provided by true negative (TN) matches. These TN matches 

could not be calculated because there was no option to match 

and count events not happening in both systems. 

Finally, from all the apneas and hypopneas detected with 

the reference device, the ratio of how many of those events 

were also found with the smartphone (SmP) system was 

calculated using the following formulas: 

 

 
 events matching an apnea

 system apnea count

SmP
%Apn 100

Reference
=   (4) 

 
 events matching a hypopnea

 system hypopnea count

SmP
%Hpn 100

Reference
=   (5) 

D. POSITION DETECTION 

To detect sleep position, each of the three signals belonging 

to the triaxial accelerometry was filtered separately with an 

8th order Butterworth low-pass filter at a cutoff frequency of 

0.01 Hz. This was done to remove high-frequency activity 

and maintain the baseline of each signal, which contains 

information on the acceleration caused by gravity. 

Afterwards, the components of each of the accelerometry 

axes were used to retrieve the supine, left, right, prone and 

standing positions. Since the cartesian system for triaxial 

accelerometry moves in accordance with the subject’s sleep 

position, and since the placement and orientation of the 

phone is known, it is possible to determine the subject’s 

orientation by assessing the magnitude and sign of each of 

the three channels in each sample.  

The position is retrieved for each sample according to the 

following formula: 

  

Supine:        Z  >  X  , Y    and  Z > 0

Prone: Z  >  X  , Y    and  Z < 0

X

          

Right:         

Left:             

Standing:     

 >  Y  , Z    and  X < 0

X  >  Y  , Z    and  X > 0

Y  >  X  , Z  

  

  

  

  

 

 (6) 

where X, Y and Z are the values of the triaxial accelerometry 

of each sample from the triaxial accelerometry vectors. 

An additional database was acquired to validate the 

determination of sleep position obtained through smartphone 

triaxial accelerometry, since we could not retrieve position 

from the Apnealink. This database consisted of six different 

subjects (five men and one woman) with an average age of 

56 [38-74] who underwent a PSG test in the sleep lab at 

Hospital Clínic of Barcelona. The sleep position was 

obtained from each PSG test and then synchronized and 

compared to that determined by smartphone accelerometry. 

The standing position was not used in this study because it is 

not associated with a sleep position. Two different 

comparisons were made to validate smartphone position 

detection. The first comparison was the sleep position 

assessment for each of the subjects, which determined the 

percentage of position agreement by means of the following 

formula: 

   

N
H SmP

i i

i=1

i [Pos =Pos ]

%Agree = 100
N




 (7) 

 

where H

iPos is the position vector from the hospital, 

SmP

iPos is the position vector obtained from smartphone 

accelerometry and N is the total number of samples of the 

overlapped regions from both signals. 

The second comparison was the overall position 

assessment when specifying each PSG position. To calculate 

it, the PSG position from all the subjects together was used as 

the reference, and the percentage of occurrence of each 

smartphone position for each of the positions of the PSG was 

calculated according to the following formula: 
HLeftN

HLeft SmPLeft

i i
SmP i=1

HLeft

i [Pos =Pos ]

%(Pos  & Pos ) =100×
N

H

Left Left


 (8) 

 

where PosH

Left is the position vector containing all hospital-left 

positions. 
SmPPosLeft  is the position vector containing all 

smartphone-left positions. 
HLeft

iPos refers to each position in 

the PosH

Left vector. 
SmPLeft

iPos refers to each position in the 

SmPPosLeft vector and HLeftN is the total number of samples in the 

PosH

Left vector. This formula is used for all 16 possible 

position combinations, e.g.
H-SmPPos  & PosH

Right Supine . 
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E. HOME EVENT-BY-POSITION STUDY 

To assess pOSA, three different variables were required: the 

percentage of time spent in each sleep position; the 

percentage of events occurring in each position; and the ratio 

of occurrence of an event linked to the time spent in each 

position, which is the variable that explains the prevalence of 

events happening in a specific position. 

The percentage of time spent in each sleep position was 

retrieved from the smartphone accelerometry position 

detection data with the following formula: 

 

 
time spen

e

t in one position
% 100

total sleep tim
Pos =   (9) 

 

The percentage of events occurring in each position was 

also retrieved from the smartphone accelerometry position 

detection data by linking each event to its position of 

occurrence with the following formula: 

 

 
pos

number of events in a certain position
%Event =100×

total number of events
(10) 

 

 

And the ratio of occurrence of an event linked to the time 

spent in each position was retrieved with the following 

formula: 

 

 
pos

%

%Event
Event Position

Pos
Ratio − =  (11) 

 

These variables were calculated for all the subjects with an 

AHI >5. Healthy subjects were excluded because they had a 

very low number of events, and were therefore not good 

candidates for pOSA assessment. 

Finally, to assess the performance of the smartphone 

device in detecting events in a certain sleep position, we 

calculated the Se and PPV of the event detection for each 

position. For this purpose, all the events used in the event-by-

event comparison of the smartphone event detector were 

labelled with their position. Then, all the events were 

grouped by position rather than by patient to retrieve the Se 

and PPV of the smartphone detector data in different sleep 

positions. 

III. RESULTS 

A. HOME EVENT DETECTION PERFORMANCE 

Fig. 2 shows a five-minute time sample of the alignment 

between the events obtained from the reference device and 

the events retrieved with the automatic event detector based 

on smartphone accelerometry when the subject was sleeping 

in the supine position. Both devices detected almost the same 

number of events, with similar start and end times. The only 

significant differences between the two systems are the start 

time of the first event, and the FP event detected by the 

smartphone system. 

To evaluate the smartphone system’s potential to detect 

events in agreement with the reference device, an event-to-

event comparison was performed. 

 

Figure 2. Comparison between the disordered-breathing events obtained from the smartphone accelerometry and the events from the reference device 
in supine position in a 5-minute window. Flow (1) and thoracic effort (2) signals from the Apnealink reference device are shown together with the 
events manually validated by the Hospital Clínic sleep lab experts (red boxes). Angle variation signal (3) is shown together with the automatic events 
(green boxes) detected from smartphone accelerometry linked to disordered breathing. The information provided by the oxygen saturation signal (4) 
from the Apnealink device when desaturation event information was present (grey boxes) was needed to detect both event subsets. 
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TABLE I 

SMARTPHONE VS APNEALINK EVENT-BY-EVENT COMPARISON AND AHI ESTIMATION 

 Apneas + Hypopneas Apneas Hypopneas AHI Assessment 

Subject TP FP FN Se (%) PPV (%) Nº Events Events found Se (%) Nº Events Events found Se (%) AHI Apnealink AHI Smartphone 

1 80 16 13 86 83 54 48 89 39 32 82 20 19 

2 85 23 12 88 79 2 2 100 95 83 87 23 25 

3 22 14 9 71 61 5 3 60 26 19 73 6 7 

4 163 16 12 93 91 153 144 94 22 19 86 34 26 

5 2 9 1 67 18 0 0 - 3 2 67 1 2 

6 4 7 1 80 36 0 0 - 5 4 80 1 3 

7 107 46 29 79 70 18 18 100 118 89 75 26 29 

8 100 19 4 96 84 13 13 100 91 87 96 21 24 

9 33 11 1 97 75 4 4 100 30 29 97 9 11 

10 14 8 1 93 64 0 0 - 15 14 93 4 6 

11 223 41 26 90 84 156 132 85 93 91 98 51 49 

12 287 13 5 98 96 265 261 98 27 26 96 68 54 

13 23 60 18 56 28 10 4 40 31 19 61 8 16 

Total/mean 1143 283 132 90 80 680 629 93 595 514 86 21 21 

 

This comparison determined the number of TP, FP and FN 

event detections as well as the Se and PPV between the two 

systems. The results from this comparison can be seen in 

Table I, which shows that the smartphone automatic detector 

performed very well overall with a Se of 90% and a PPV of 

80%. Similar values were found for each of the subjects in 

the database, except for the subjects with few events, for 

whom the influence of a mislabeled event is more heavily 

penalized. The data in this table also show that the 

smartphone system is more sensitive to apneas (93%) than to 

hypopneas (86%). 

In addition to the event-to-event comparison, we 

calculated the AHI for each of the subjects. The AHI values 

were retrieved from both devices at the same time to 

compare the performance of the automatic event detector 

according to the clinical standard. The AHI values from the 

reference device and the AHI values estimated from the 

automatic disordered-breathing event detector can be seen in 

Table I and a graphic representation is shown in Fig. 3. 

Additionally, the concordance correlation coefficient was 

calculated to assess the similarity between the AHI retrieved 

from the two systems. This coefficient provides information 

about how similar the paired AHI values are for each subject 

in the database. The value obtained for the concordance 

correlation coefficient is 0.96, which indicates a high 

correlation and similarity. 

Finally, from the AHI obtained from the reference device, 

each of the subjects in the database was classified according 

to the four different AHI severity categories: healthy, mild, 

moderate and severe. The same procedure was performed 

with the AHI estimated from the automatic disordered-

breathing event detector. The confusion matrix was then 

calculated from both classifications to determine the 

agreement found between the two devices for the 

classification of all the subjects from the database. The 

results of this classification can be seen in Table II and show 

that the classification was satisfactory for 10 of the 13 

subjects in the database, and in two of the misclassified 

subjects, the AHI values were very close to the threshold 

values for AHI classification. 

 

 

 
Figure 3. Comparison between the manually reviewed AHI obtained 
from the Apnealink commercial reference device and the AHI estimated 
from the automatic disordered-breathing event detector through 
accelerometry. The concordance correlation coefficient between both 
AHI is 0.96. The black line represents the x=y line indicating exact value 
matching. 

 

 
TABLE II 

SMARTPHONE VS APNEALINK SUBJECT CLASSIFICATION 

  Smartphone 

 Classification Healthy Mild Moderate Severe 

Apnealink 

Healthy 2 1   

Mild  2 1  

Moderate   4  

Severe   1 2 
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B. SLEEP POSITION ASSESSMENT 

Sleep positions were obtained by means of smartphone 

accelerometry and were compared with the positions from 

hospital PSG for six different subjects. This was done by 

calculating the percentage of agreement between the position 

obtained from the two devices for all six subjects. This 

percentage of agreement was calculated sample by sample 

from the overlapping time between the two signals during the 

overnight tests. The average position agreement for the six 

subjects was 97%, ranging from 90% to 100% agreement. 

An example of the comparison between the two positions can 

be seen in Fig. 4, showing that the position obtained through 

smartphone accelerometry matched the position from 

hospital PSG. In addition, the positions from the hospital data 

included some artifacts which were not present in the 

positions retrieved from the smartphone accelerometry 

signals. 

The overall performance of agreement, separated by PSG 

position, was also calculated to assess the accuracy of the 

smartphone’s ability to detect each position compared to the 

PSG reference. In this comparison, the position given by the 

PSG for all six subjects was used as a reference and we 

calculated the percentage of agreement with the positions 

obtained from the accelerometry signals for all six subjects. 

The results of this comparison can be found in Table III in 

the form of a confusion matrix with the percentage of 

agreement. The total amount of time spent in each position is 

also provided. The agreement was very good for almost all 

positions, with very good results for the detection of supine 

and left positions. However, the detection of the prone 

position was not satisfactory, but as shown in Fig. 4, some of 

the PSG prone positions could be artifacts.  

 
Figure 4. Example of the correlation between the position obtained from 
hospital PSG and the position calculated from the smartphones’ 
accelerometry signals for one of the subjects tested. The smartphone 
position (1 - orange) is slightly shifted upwards to allow for better 
comparison with the PSG position (1 - blue). The raw triaxial 
accelerometry signal used to retrieve the smartphone’s position is 
shown in (2). The percentage of position agreement in this subject was 
95%. 

 

TABLE III 

SMARTPHONE VS PSG POSITION PERCENTAGE OF AGREEMENT 

  Smartphone Accelerometry 
Total 

Minutes 
 Position Right Supine Left Prone 

Hospital 

PSG 

Right 87 13 0 0 387 

Supine 0 100 0 0 2156 

Left 0 6 94 0 9 

Prone 100 0 0 0 36 

C. HOME pOSA PERFORMANCE 

The separate results of the pOSA assessment for each 

device can be seen in Table IV for the Apnealink device and 

in Table V for the smartphone device. 

Using the pOSA ratio of the supine position, it is possible 

to determine that six of the ten non-healthy subjects assessed 

by the Apnealink device were suspected to have pOSA, since 

their coefficient was over 1, indicating that more events 

occurred in the supine position than the time spent sleeping 

in that position. A remarkable result of the pOSA assessment 

from the Apnealink device can be found in subject 4, whose 

pOSA ratio indicates that this subject is 2.5 times more likely 

to experience apneas or hypopneas in the supine position. 

Other ratio coefficients over 1 can be found for the right and 

left positions, although these ratios might be influenced by 

the low percentage of time spent in each position. 

The pOSA assessment performed by the smartphone 

device shown in Table V together with the pOSA ratio of the 

supine position suggests that four of the ten non-healthy 

subjects may have pOSA, since their coefficients were higher 

than 1. Although fewer pOSA subjects were detected with 

smartphone accelerometric signals than with the Apnealink 

device, the overall assessment of pOSA is satisfactory, as the 

misclassified values were very close to the threshold value 1, 

which indicates that the presence of events is based on the 

time slept in each position. It is noteworthy that the 

assessment of pOSA for the subject 4 was also detected by 

means of the smartphone system. 

In addition to the pOSA assessment for each of the devices 

separately, the information from the event-by-event 

comparison in Table I was linked to the sleep position 

obtained through smartphone accelerometry. The results of 

this comparison are shown in Table VI. The overall Se and 

PPV for all of the different sleep positions were good, 

although there is a clear differential performance between the 

supine and the right and left positions. The Se is higher in the 

lateral positions, with very similar values, compared to the Se 

in the supine position. The opposite occurs with the PPV, 

which had a higher value in the supine position and was 

reduced in the left and right positions. 

The same differential behavior was observed when 

comparing the sensitivity to apnea and hypopnea values by 

position. Apneas were better detected with the smartphone in 

the supine position, while hypopneas were better detected in 

the lateral positions. Finally, the prone position could not be 

assessed due to the low number of events that occurred in 

that position. 
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TABLE IV 

APNEALINK EVENTS VS SMARTPHONE POSITION: POSITIONAL OSA ESTIMATION 

Subjects 
Patient sleep position (%) Event occurrence by position (%) Ratio event occurrence by position (pOSA) OSA 

severity 
Right Supine Left Prone Right Supine Left Prone Right Supine Left Prone 

1 38 61 0 1 14 86 0 0 0.4 1.4 - 0 ** 

2 0 89 11 0 0 86 14 0 - 1.0 1.3 - ** 

3 7 53 40 0 13 48 39 0 1.9 0.9 1.0 - * 

4 64 36 0 0 9 91 0 0 0.1 2.5 - - *** 

7 44 56 0 0 26 74 0 0 0.6 1.3 - - ** 

8 76 24 0 0 61 39 0 0 0.8 1.6 - - ** 

9 24 33 43 0 18 41 41 0 0.8 1.2 1 - * 

11 34 44 22 0 30 52 18 0 0.9 1.2 1 - *** 

12 0 100 0 0 0 100 0 0 - 1.0 - - *** 

13 2 98 0 0 5 95 0 0 2.5 1.0 - - * 

 
TABLE V 

SMARTPHONE EVENTS VS SMARTPHONE POSITION: POSITIONAL OSA ESTIMATION 

Subjects 
Patient sleep position (%) Event occurrence by position (%) Ratio event occurrence by position (pOSA) OSA 

severity 
Right Supine Left Prone Right Supine Left Prone Right Supine Left Prone 

1 38 61 0 1 11 89 0 0 0.3 1.5 - 0 ** 

2 0 89 11 0 0 84 16 0 - 0.9 1.5 - ** 

3 7 53 40 0 19 42 39 0 2.7 0.8 1.0 - * 

4 64 36 0 0 12 88 0 0 0.2 2.4 - - *** 

7 44 56 0 0 38 62 0 0 0.9 1.1 - - ** 

8 76 24 0 0 61 39 0 0 0.8 1.6 - - ** 

9 24 33 43 0 16 34 50 0 0.7 1.0 1.2 - * 

11 34 44 22 0 38 38 24 0 1.1 0.9 1.1 - *** 

12 0 100 0 0 0 100 0 0 - 1.0 - - *** 

13 2 98 0 0 5 95 0 0 2.5 1.0 - - * 

 

TABLE VI 

APNEALINK VS SMARTPHONE EVENT-TO-EVENT DETECTOR POSITIONAL OSA PERFORMANCE 

Position 

Apneas + Hypopneas Apneas Hypopneas 

TP FP FN Se (%) PPV (%) Nº Events 
Events 

found 
Se (%) Nº Events 

Events 

found 
Se (%) 

Supine 863 183 112 89 83 631 587 93 344 276 80 

Left 79 30 5 94 72 10 8 80 74 71 96 

Right 201 68 15 93 75 39 34 87 177 167 94 

Prone 0 2 0 - 0 0 0 - 0 0 - 

 

IV. DISCUSSION 

A. ACCELEROMETRY: SLEEP-DISORDERED 
BREATHING ASSESSMENT 

Accelerometry is a technique used in multiple applications 

for sleep performance assessment. Most of these applications 

are based on actigraphy, which consists of analyzing 

movement to estimate rest and activity cycles. However, 

accelerometry can be used to determine movement of any 

kind, extending its potential use beyond that of actigraphy. In 

this line of action, Bates et al. [19] estimated the flow 

waveform and respiratory rate through triaxial accelerometry. 

Recently, several other studies have followed in the same 

vein, using triaxial accelerometry to derive respiration data 

and assess sleep apnea [21], [37]. Studies published by our 

group have also shown that smartphone accelerometers are 

effective tools with great potential to assess respiration and to 

monitor sleep apnea at home [22], [31], [34]. 

In this work we proposed using accelerometry to 

automatically detect disordered breathing linked to OSA. We 

detected disordered breathing by determining the times when 

reductions in local chest angular variation amplitude 

occurred, indicating that the respiration pattern had changed, 

and ventilation might be reduced for that specific time. 

According to the AASM, apneas and hypopneas are events in 

which respiration is completely or partially reduced [11], 

which indicates that the events we found with our automatic 

event detector should correspond to an apnea or hypopnea 

episode. 

We assessed our sleep-disordered breathing detector in 13 

different subjects. We are aware our sample size (13 

subjects) does not allow to extract general gender- or age-

related conclusions. Nevertheless, we consider this limitation 

to be beyond the scope of this work, as we do not intend to 

perform a population study, but rather a proof-of-concept 

study of the feasibility to use smartphones as OSA screening 

and monitoring tools. 
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To assess the disordered-sleep events identified with our 

automatic detector, two different comparisons were made 

against data from an Apnealink device. Apnealink device is 

not the gold-standard technique for sleep apnea diagnosis, 

which is PSG. This implies that the smartphone device will 

be, at maximum, as good as the Apnealink device, which is a 

limitation of the study. Nevertheless, the Apnealink events 

we used in this study were manually validated by sleep 

experts, which has been reported to increase the agreement 

with PSG [38]. Also, the Apnealink has been reported to 

have a good agreement with PSG [39]. For the first 

comparison, and to determine overall sleep performance, the 

AHI was calculated for each subject from the events found 

by each device. As the results in Fig. 3 show, the AHI values 

from the two devices agree and their correlation coefficient is 

0.96, indicating a high degree of correlation and similarity. A 

subject-by-subject review shows that the AHI is correctly 

estimated for almost all subjects. There were three cases in 

which the AHI estimation was not as good as the others, but 

the reason for this over- or underestimation of the AHI is 

linked to the detection of event start and end times. In some 

cases, the automatic algorithm defined an event which 

encompassed two different events on the reference device 

and vice versa. Since the AHI is calculated from the total 

number of events, when this happened, the AHI showed 

greater differences compared to the behavior of most of the 

subjects in the database. However, as shown in Table II, 

almost all of the subjects in the database were correctly 

classified into the different categories used in the clinical 

environment for sleep apnea assessment, which indicates that 

the estimation of overall sleep performance as determined in 

the clinical environment was accurate. 

Even though the determination of overall sleep 

performance was successful, we still had to ascertain whether 

both devices were detecting the same events at the same time 

position. This is because the AHI considers the total number 

of events that happened while sleeping, but it does not 

pinpoint when those events occurred. It is possible that two 

identical AHI values from the same subject on the same night 

were calculated from events happening at different points in 

time, which would mean that the performance of the two 

devices did not coincide, even though the result would be the 

same. To address this issue, we performed an event-by-event 

comparison, the results of which are shown in Table I. 

Almost all of the events found with the Apnealink reference 

device were also found with the automatic smartphone 

disordered-breathing detector at the same time position (Se = 

90%). In addition, the PPV was 80%, indicating that an event 

found with the smartphone system was very likely to also be 

found with Apnealink, so the smartphone device events 

agreed with those recorded by Apnealink. The Se and PPV 

values are also consistent across all the subjects in the 

database, except for those with very few events, in which the 

influence of FP or FN is higher in the Se and PPV 

calculation. Despite these good results, there are differences 

between the two methods, which can be explained by the 

limitations of each system. In a recent study conducted by 

our group, Castillo-Escario et al. [30] demonstrated the 

potential of smartphone audio in the detection of oral and 

nasal breathing. These findings exposed a limitation of the 

Apnealink device, which assesses airflow only by means of a 

nasal canula. Therefore, if the subject breathes only through 

the mouth during a specific time of the night, it could lead to 

false positive detections of events. On the other hand, the 

resolution of the smartphone accelerometer and their 

behavior in characterizing respiration may also affect 

detection accuracy. Nevertheless, despite the limitations of 

the two systems, the results obtained were very satisfactory. 

Pulse oximetry was needed to determine which of the 

events detected through accelerometry affected blood 

oxygenation. This step was taken to mimic clinical praxis 

and to be able to discard the events recorded by the 

accelerometry detector which did not produce oxygen 

desaturation. According to the AASM guidelines for 

hypopnea and apnea [11], pulse oximetry is a commonly 

used tool to detect hypopneas, but it is not necessary to detect 

apneas, even though apneas, by their definition, are more 

likely to produce oxygen desaturation. Although the use of 

pulse oximetry could lead the smartphone accelerometry to 

fail to detect apneas not followed by desaturation, according 

to the results shown in Table I, the accelerometry detector 

has a greater sensitivity to apneas (Se = 93%) than 

hypopneas (Se = 86%). This may be because the definition of 

hypopnea is more controversial than that of apnea [40], and 

apneas are expected to produce more acute symptoms than 

hypopneas with regard to ventilation efficiency. 

Nevertheless, sensitivity to both types of events is very high, 

and we proved that accelerometry-based assessment from a 

smartphone device can reproduce event detection behavior 

that is very similar to that of the Apnealink commercial 

portable device used in the clinical environment. 

B. ACCELEROMETRY: HOSPITAL PATIENT SLEEP 
POSITION MONITORING 

The detection of a subject’s sleep position provides important 

information that is invaluable in sleep studies. The gold-

standard PSG test records sleep position, and clinicians use 

this information to understand how the patient moves while 

sleeping to recommend the most suitable course of treatment 

based on his or her sleep score. Since PSG tests usually 

include video recording, the position information provided 

by the polysomnograph can be compared with the video to 

corroborate the patient’s movement in the event of 

uncertainty. 

In this work, we proposed a smartphone-based position 

detector using accelerometry. Position was obtained by 

determining which of the triaxial channels of the 

accelerometry was better aligned with gravity, which allowed 

the device to detect five different positions: standing, supine, 

prone, left and right. Among these positions, the standing 

position was not used because only sleep positions were of 

interest. To validate the detection of the sleep position, the 

smartphone accelerometry data were compared to the 

positions obtained from six PSG tests in which smartphones 
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and PSG were recorded simultaneously. As shown in Fig. 4, 

the method proposed here was in very close alignment with 

the positions yielded by the PSG test, and this behavior was 

common in all six records, as the average position alignment 

was 97%, ranging from 90% to 100% agreement between the 

two devices. In parallel, the information in Table III makes it 

possible to compare the agreement between the smartphone 

accelerometry positions and the PSG positions in each sleep 

position. The supine position was extremely well detected, 

with an agreement of 100% in over 35 hours of supine 

position testing. Similarly, the left (94%) and right (87%) 

positions also achieved high agreement values. The prone 

position assessment was not as good as that for the other 

sleep positions for two main reasons: there were only around 

30 minutes to be tested, so errors heavily affected the 

percentage of agreement; and some PSG prone positions 

were noisy. These noisy episodes can be seen in Fig. 4, 

which shows that the accelerometry signal was perfectly 

steady, indicating an appropriate sleep position, which could 

mean that the PSG position sensor moved, leading to a 

misdetection of the position. Therefore, we would need more 

time in prone position to validate the resolution of the 

smartphone to discriminate between prone and lateral 

positions. Nevertheless, position detection through 

smartphone accelerometry was satisfactory and the 

comparison with PSG demonstrated that is possible to 

retrieve sleep position data with smartphone accelerometers, 

which opens up the possibilities for the detection and 

monitoring of pOSA at home. Furthermore, the smartphone 

device was able to retrieve sleep position data in a simple and 

non-invasive way, which is better for the patient.  

C. ACCELEROMETRY: pOSA ASSESSMENT 

The detection and monitoring of pOSA is of great interest for 

clinical sleep apnea assessment. Among all the possible 

treatments for sleep apnea [12], positional treatment is one of 

the least invasive methods for improving sleep quality. 

Recent studies shown that PSG tests could lead to an 

overestimation of OSA severity [41], with extreme 

differences in pOSA patients, whereas the benefit of 

positional treatment helps to reduce the AHI index by six 

points in average while keeping a high satisfaction with the 

treatment [42]. These findings indicate that a solution 

including non-invasive methods is required to improve the 

detection, monitoring and treatment of OSA patients, and 

especially those who suffer from pOSA. 

In this work, we attempted to combine the information 

from our method for detecting sleep-disordered breathing 

events, which are associated with apneas and hypopneas, 

with sleep position data. Sleep-disordered breathing and 

sleep position data were both obtained from the 

accelerometry of a smartphone placed over the sternum, 

which allowed us to non-invasively assess sleep performance 

and position. To detect pOSA, we calculated the percentage 

of time a subject slept in each position and compared it to the 

percentage of events a subject experienced in each position. 

This allowed us to calculate a ratio which indicates whether a 

subject was more likely to experience episodes in a specific 

position, and we used the supine position to determine the 

existence of pOSA. To assess our pOSA performance, the 

events obtained from the Apnealink device were also 

associated with sleep position, and the event occurrence by 

position ratio coefficients were obtained for both devices. 

Since the smartphone pOSA is assessed vs the Apnealink 

device, the potential to detect pOSA from smartphone 

accelerometry is limited to the potential of Apnealink to 

detect pOSA. The results of the pOSA assessment can be 

found in Table IV for Apnealink and in Table V for the 

smartphone detector. Healthy subjects were excluded 

because they had a very low number of events, and were 

therefore unsuitable candidates for pOSA assessment. 

The results of the pOSA assessment showed that, 

according to the Apnealink device, six of the ten non-healthy 

subjects in the database may suffer from pOSA because their 

ratio was over 1, whereas the smartphone determined that 

there were four out of ten. Differences between the two 

systems in detecting pOSA can be explained by how the 

threshold for the event occurrence by position ratio is chosen. 

Values over 1 indeed reveal a higher percentage of events in 

that position than time spent in it, but greater values may be 

required to unquestionably establish the likelihood of more 

events in a certain position. In our study, subject 1, with an 

Apnealink pOSA ratio of 1.4 and smartphone pOSA of 1.5; 

subject 4, with ratio values of 2.5 and 2.4; and subject 8, with 

ratio values of 1.6 and 1.6, might be pOSA patients. These 

three subjects would surely benefit from positional treatment 

since they showed an event occurrence of at least 40% 

greater than regular performance, with the extreme case of 

subject 4 who experienced around 150% more events while 

sleeping in the supine position. Therefore, the detection of 

pOSA performed in this study would provide relevant 

clinical information to doctors who could then choose the 

best treatment option for each specific need.  

Because the pOSA assessment described in this article 

depends on the agreement between the events detected by 

Apnealink and those detected by the smartphone sleep-

disordered breathing detector, an event-to-event comparison 

of the two devices was also conducted in relation to sleep 

position. The results of this comparison can be seen in Table 

VI, which shows the Se and PPV calculations for each of the 

different sleep positions. The data indicate that the 

smartphone device performed very well in detecting apneas 

in all positions, with extremely good results in the supine 

position (93%). The lower values in the lateral positions are 

explained by the fact that there were very few apneas in these 

positions, and the influence of a missed event is higher. In 

parallel, hypopneas were also very well detected in all 

positions, especially in the lateral positions. The smartphone 

device had higher Se values in the lateral positions when 

compared to the supine position, whereas the PPV value was 

higher in the supine position compared to the lateral. This 

indicates that the smartphone devices detect more events in 

the lateral position than in the supine position. This 

differential behavior could be explained by the limitations of 
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the two devices described previously. Further analysis would 

be required to better understand the physiological factors 

involved and their prevalence in the different sleep positions. 

Even so, the Se and PPV values obtained in each position 

separately were satisfactory, indicating that smartphone 

accelerometry is a powerful tool for screening and 

monitoring pOSA at home.  

V. CONCLUSION 

In this work, we aimed to assess sleep-disordered breathing, 

which is associated with apneas and hypopneas, and to obtain 

sleep position data. In addition, we linked these two types of 

information in order to assess positional OSA. The detection 

of pOSA is of great interest to the medical community, 

because it allows more suitable treatment strategies to be 

devised for each patient. The most common OSA treatment 

in use today is CPAP, but detecting pOSA indicates which 

patients might derive greater benefits from positional 

treatment, one of the least invasive treatments for OSA.  

To accomplish these goals, our first objective was to 

develop an algorithm for detecting thoracic movement 

associated with disordered breathing events. To this end, we 

assessed the angle variations obtained from the triaxial 

accelerometry of a smartphone placed over the sternum. 

These angle variations allowed us to determine abnormal 

breathing patterns that produced lower angle variations, 

which indicated that the breathing pattern was altered. 

To verify the events found, our second objective was to 

compare the performance of smartphones as OSA monitoring 

tools with the performance of a type 3 portable sleep 

monitor, specifically, the Apnealink device. The events 

found by the Apnealink device were manually reviewed by 

sleep experts from hospital Clinic, which has been reported 

to increase the agreement with PSG. This comparison 

allowed us to assess two main aspects: the overall sleep 

performance with the calculation of the AHI and the event-

to-event agreement between the two devices. Our results 

showed that the smartphone performed very well in obtaining 

the AHI and the event-to-event agreement demonstrated that 

both devices were capable of finding the same events 

occurring at the same times. 

Our third objective was to explore the feasibility of 

smartphone accelerometry to retrieve reliable patient sleep 

position data and assess pOSA. Position was also retrieved 

from the smartphone accelerometry and was corroborated 

against PSG with very good alignment. Afterwards, the 

events from both devices were associated with their 

corresponding sleep positions and the ratio between the 

percentage of occurrence of an event in a specific position 

versus the percentage of time spent sleeping in that position 

was calculated. This ratio was used to detect patients who 

experienced more events in the supine position than the time 

spent sleeping in the supine position and allowed us to assess 

pOSA. 

These results showed that smartphones are promising 

mHealth tools and that accelerometry is a feasible technique 

for the assessment of OSA and pOSA. 
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