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Summary

Medical research frequently focuses on the relationship between quality of life and survival
time of subjects. Quality of life may be one of the most important factors that could be used
to predict survival, making it worth identifying factors that jointly affect survival and quality
of life. We propose a semiparametric joint model that consists of item response and survival
components, where these two components are linked through latent variables. Several
popular ordinal models are considered and compared in the item response component, while
the Cox proportional hazards model is used in the survival component. We estimate the
baseline hazard function and model parameters simultaneously, through a profile likelihood
approach. We illustrate the method using an example from a clinical study.

Key words: Joint model; Longitudinal study; Ordinal responses; Profile likelihood;
Semiparametric model; Stereotype model; Survival

1. Introduction

In clinical studies, quality of life (QOL) and the length of survival of patients are often
the main points of interest. Two interventions can have very similar survival outcomes but
substantially different effects on a patient’s quality of life. One can analyze the quality
of life and survival data using two separate models. Alternatively, one can jointly analyse
both of them if the two data components are likely to be related. Although methods for
separate analyses of the two data components are well established, joint analysis of the
two endpoints is of more recent provenance although it is being increasingly developed
(Henderson 2005). There are potential gains in power to be made by considering the two
endpoints simultaneously.

Survival time can refer to time to death and can also include other common events of
interest, such as time to recurrence of symptoms or time to infection with a disease. Staccato is
a multicenter clinical trial carried out by a research collaboration undertaken by Switzerland,
Australia and Thailand from January 2002 until November 2005 (Ananworanich & the
Staccato study group 2006). It is a randomized trial comparing continuous anti-retroviral
treatment to CD4-guided-interruption treatment for patients with Human Immunodeficiency
Virus (HIV) infection. Patients’ CD4 count (a measure of immune recovery) and viral load
were assessed every four weeks for an initial screening period of 12 weeks. Recruitment
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2 JOINT MODELING OF SURVIVAL AND ORDERED DATA

into the trial occurred only if over the screening period, CD4 count remained above 350
cells per uL, HIV viral load remained below 50 copies per mL, and there was no evidence
of pre-existing drug resistance. Patients were then randomised to one of the two treatment
groups. One third of patients received anti-retroviral treatment continuously, and the rest
received treatment whenever their CD4 count dropped to 350 cells per pL or less. Patients
were classified as being symptomatic of HIV if they manifested any symptoms listed in
the classification system for HIV infection as specified by the U.S. Center for Disease
Control (CDC) (Castro ef al. 1993). Time taken for symptoms to progress to the different
levels of the classification system, CDC-B and CDC-C, was recorded. CDC-B consists
of symptomatic conditions in an HIV-infected adolescent or adult, including for example
bacillary angiomatosis, thrush, herpes zoster (shingles), and listeriosis, that are not included
among conditions listed in clinical Category C. On the other hand CDC-C includes the
clinical conditions indicative of AIDS, such as cervical cancer (invasive), cytomegalovirus
retinitis (with loss of vision), and lymphoma. Patients are placed in only one of the CDC
classes and remain in Category C when a condition in the CDC-C class occurs (Castro et al.
1993) regardless of whether the CDC-B symptoms occur.

For this study, we consider two approaches. Firstly, we consider progression to CDC-
B as the only survival endpoint, with patients in category CDC-C (five out of 354) right-
censored. This is reasonable for a single survival endpoint approach since patients did
not necessarily experience CDC-B conditions before a condition in CDC-C occurred.
Secondly, we use a competing risk approach with two mutually exclusive survival endpoints:
progression to CDC-B or CDC-C. In both approaches, patients with no progression time were
right-censored at the latest follow-up time recorded, and the impact of treatment on time to
symptom progression was the main focus. Patients were also asked to complete the Medical
Outcome Study HIV Health Survey (MOS-HIV) questionnaire (Wu et al. 1991, 1997) to
evaluate their quality of life (QOL) every 24 weeks beginning at the baseline visit and at
weeks 24, 48, 72, 96, 120 and 144 of follow-up. There are 32 questions on the MOS-HIV
questionnaire and each question has five response categories, corresponding to the following
ordinal rank: poor(1), fair(2), good(3), very good(4) and excellent(5). Instead of transforming
the ordinal categorical scale into a continuous measure, we use an ordinal model directly to
model the QOL. This paper proposes a method to jointly model longitudinal quality of life
and time to progress to CDC-B or CDC-C.

The joint model not only allows investigation into both the quality of life and survival
components, but also incorporates all information simultaneously with valid and efficient
inference. Tsiatis & Davidian (2004) reviewed various methods for analysing joint models.
Hogan & Laird (1997), Xu & Zeger (2001) and Hsu ef al. (2006) among others used the
joint model to make more efficient inference on the survival model by incorporating the
longitudinal data as auxiliary information. Recently, Wu ez al. (2012) conducted a simulation
study on joint modeling of longitudinal and survival data, and demonstrated that Bayesian
methods have a similar performance to likelihood methods. Qiu, Stein & Elston (2013)
developed a discrete survival model incorporating longitudinal measurements. Furthermore,
Tsiatis & Davidian (2001), Song, Davidian & Tsiatis (2002) and Song & Wang (2008)
proposed analysis of the joint model from a semi-parametric perspective, in the sense that no
parametric density function is assumed for random effects. Wulfsohn & Tsiatis (1997) and
Hsieh, Tseng & Wang (2006) developed joint models with no parametric assumptions on the
baseline hazard function in the Cox model (Cox 1972) and used the method of nonparametric
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PREEDALIKIT ET AL. 3

MLE to estimate the baseline hazard function. All of the foregoing techniques model the
survival component jointly with continuous longitudinal responses. This paper focuses on
modelling the survival component jointly with ordered categorical responses that should not
be treated as continuous.

In the past there has been little research into joint models for categorical longitudinal
outcomes (Rizopoulos 2012, pp.142). In the last few years, such joint models have gradually
received more attention in the literature. For ordered categorical responses, Wang, Douglas &
Anderson (2002) used a proportional odds model (McCullagh 1980) and the Cox model to
jointly model ordinal and survival data, using a partial likelihood approach. Li e al. (2010)
proposed a likelihood approach to model a partial proportional odds model (Peterson &
Harrell 1990) and a cause-specific hazards model. He & Luo (2013) developed a joint model
combining a multilevel item response model with a Cox model using a Bayesian approach.
Njagi et al. (2013) studied the joint analysis of time-to-event data with various types of
responses, including continuous, binary and count. However there is lack of literature on the
comparison of various ordinal response models in this area.

Liu & Agresti (2005) reviewed many ordinal response models. Currently, a proportional
odds model is the most popular. Such a model is parsimonious, with no need to assign
scores to the response categories. However the model entails making a strong assumption
about the odds ratios and consequently may be inadequate for some data. Alternatively, a
partial proportional odds model does not involve the strong assumption, but contains more
parameters than the proportional odds model, especially when there are many response
categories. In this paper, we propose the use of an ordered stereotype model (Anderson 1984),
which is more general than the proportional odds model. Unlike the partial proportional odds
model, the ordered stereotype model still achieves the same level of model parsimony as does
the proportional odds model. The survival component is jointly modelled with the ordered
stereotype model. We also discuss and compare use of the proportional odds and partial
proportional odds models in place of the ordered stereotype model for the item response
component. In this paper the survival component is based on a Cox proportional hazards
model, which treats the baseline hazard, h(t), as an unspecified discrete function. The Cox
model is a product of this unspecified baseline hazard and an exponential term involving
covariates.

The ordinal responses from the questionnaire are sets of repeated observations over time
and over different questions for each subject. There are several methods for dealing with
repeated ordered categorical data (Liu & Agresti 2005). One approach adds subject-level
terms to the model. Because they are unobserved, they are often considered to be random
effects. An alternative approach, explored in this paper, allows the subject level terms to come
from a finite mixture with i components or groups. However, group memberships are latent
variables and unknown. Similar ideas of grouping have been explored by Titterington, Smith
& Makov (1985), Woodruff & Hanson (1996), and Pickles & Croudace (2010). Note that
the latent variables are a link between the ordinal response model and the Cox proportional
hazards model. We use the EM algorithm to estimate the parameters of the finite mixture.
In order to estimate all parameters and the baseline hazards simultaneously, we propose a
method combining use of the EM algorithm and profile likelihood.

The outline of the remainder of this paper is as follows. Section 2 describes the structure
of the joint model. Section 3 presents an EM algorithm for estimating the model parameters.
The baseline hazard is iteratively estimated together with other parameters in the EM steps.
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4 JOINT MODELING OF SURVIVAL AND ORDERED DATA

In section 4 we apply the method to the data from the Staccato study. A simulation study in
section 5 is used to evaluate the performance of parameter estimators in the survival model
when a wrong ordinal response model is fitted. The paper concludes with a discussion in
section 6.

2. Model Structure

This section presents the full likelihood function for the three options which we consider
for an ordinal response model linked by a latent variable to the Cox proportional hazards
model.

2.1. Ordinal Response Models

Let Y., be the ordered categorical response from 1 (poor) to L (excellent) on item

(or question) j for subject ¢ at the m!* protocol-specified time point, where i = 1,2,...,n,
q J ) p P p

j=12,....,J and m=1,2,..., M. In total, there are J items in the questionnaire,
collected at times £1,ta,...,tn/.

A stereotype model

Given that subject ¢ belongs to group r, a stereotype model can be written as
Pr(Yijm = €| 6,)
Pr(Yijm =1/6,)

:a£+¢é(bj+07’)7 r=1,...,R, (D

where a, is a response level intercept parameter with £ =2,..., L, b; is an item effect,
and 6, is associated with the discrete latent variable. To make the model identifiable we
impose the constraints a; = 0, by = 0, ¢1 = 0 and 6; = 0. The parameter 6,. can be referred
to as a group effect of the quality of life for patients in group r. However, the group
memberships are unknown. The {¢,} parameters can be regarded as unknown scores for the
outcome categories. Because ¢¢(b; + 6,) = (Ad.((b; + 0,)/A)) for any constant A # 0,
for identifiability, we need to impose a constraint on ¢,. To retain an ordinal structure
of Yijm, ¢¢ should increase monotonically as ¢ increases. Consequently we impose the
constraint 0 = ¢ < ¢ < ... < ¢, = 1 on the model. This stereotype model gives a way
of estimating how close adjacent response categories ¢ and £ + 1 are, based on how close ¢,
and ¢4 are. The model implies that when b; or 0, increases, the probability of a response
being in category ¢ relative to that of being in category ¢ = 1 increases. Given r, the odds of
response ¢ rather than 1 for item j are exp(¢yb;) times the odds of response ¢ rather than 1
for item 1.

A proportional odds model
Given that subject ¢ belongs to group r, a proportional odds model has the form

1 =ay—b; —0,, 2
o8 1-— Pr(}/ijm S é ‘ 97“) a / ( )

where/=1,...,.L—1,7=1,...,J,andr=1,..., Rwithay <ax <...<ap_1,b =
0, and 6; = 0. The minus signs make the sign of parameters b; or ¢, have the usual
interpretation, that is, for a larger value of b; or 6,., the probability of responding in a lower
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PREEDALIKIT ET AL. 5

category, relative to a higher category is reduced. Therefore a larger value of b; or 6, implies
that response in a higher category is more likely. One can motivate the model by thinking in
terms of an underlying continuous response (Anderson & Philips 1981). The ordinal response
is obtained by dividing the continuous response into L categories using cutpoints {ay}. If the
model holds, it does not matter how many ordered categories the response variable has. The
effects {b;} and {6, } are unchanged.

The descriptions of b; and 6, are different from those that are appropriate under
stereotype model in the sense that the odds ratios are given with respect to a cumulative
probability. For each binary collapsing response (< ¢, > ¢), Model (2) is simply a logit
model. This fact implies that the values of b; and 6, are the same for all L — 1 logit models
for all possible collapsings. This is called the proportional odds assumption. Thus, given r,
the odds of obtaining a response > ¢ for item j are exp(b;) times the odds of obtaining a
response > ¢ for item 1.

A partial proportional odds model

When the proportional odds structure is not appropriate, a partial proportional odds
model allows separate effects for each logit model for some predictors. For example, the
following model allows item effects to be different for different response levels:

Pr(ytijm S 14 | 97‘)
1—-Pr(Yijm <216,)

Zag—bjg—er, 621,...,.[/—1. (3)

Model (3) uses (L — 1) x (J — 1) parameters to describe item effects, {b;, }, and is therefore
not as parsimonious as Model (2), which has J — 1 parameters in {b;}. In comparison,
there are (L — 2) + (J — 1) parameters {¢y, b;} in the stereotype model (1), which is more
parsimonious than Model (3) but less parsimonious than Model (2). Moreover the stereotype
model is more general than the proportional odds model, because it does not assume the
proportional odds structure and uses the data to estimate the distances between response
categories through ¢,.

For each of Models, if we replace {6,,7 =1,..., R} by random effects {6;,7 =
1,...,n}, the model becomes a random effects model for repeated measurements. The
random effects in the model have subject-specific interpretations (Agresti 2013, Chapter
13).

Let y;m¢ be the binary outcome (*Yes” and “No”) on the response category £ for the ith
subject, j th jtem and m!" time point. If the response is on level £, then y;jm¢ = 1, otherwise
Yijme = 0. Under the local independence assumption, given that the latent variable §,. and the

responses {Yj,, } are treated as independent, the response probability of the it" individual
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6 JOINT MODELING OF SURVIVAL AND ORDERED DATA
becomes Pr(Y; |0,,a) = Hf\f:l H;.Izl Pr(Yijm | 6r, @), where a = (a,b, ¢) and

Pr()/ijm | 97'70) =

L ) Yijme

11 ( p(ar + felb; +6r)) ) for Model (1) )
so1 N+ explar + dr(by +0,))

L o L _ L Yijme

I1 ( explae —b; —6r) __explar—y = b; = 6r) > for Model (2) )
NI+ exp(ag —b; —6,) 1+exp(ag—1 —b; —0;)

L ijme

< exp(ae —bje—0r)  explar — b1y — ) )y ' for Model (3). (6)

o \1+exp(ag—bje—0r) 1+exp(ar—1 —bje—1)—0r) ‘

Each follow-up time point may have a different number of observations due to missing patient
responses.

2.2. The Cox Proportional Hazards Model

For the survival part of the joint model, we first consider the Cox proportional hazards
model that treats progression to CDC-B stage as the only survival endpoint. Let X be a
time-independent covariate, such as the treatment in this study (Continuous anti-retroviral
treatment: X = 1, or CD4-guided interruption treatment: X = 0). The hazard function for
the failure time of the i*" subject is of the form

[Pr (t< Ty < (t+AY|T; > t,X;,06,)

li
1m AL

At—0 } = h{t|X:, 0r)
= hg (t) exp(@réo + Xiél) (7)

where hg(t) is a positive-valued baseline hazard function and 7 is the time to the CDC-B
status for subject ¢. The latent variable 6,. is linked with the ordered stereotype model and J,
and 97 are the parameters for the exponential term. The model can be extended by linking the
grouping information only, whereby the exponential term becomes exp(n,. + X;01), where
7, is the effect associated with the rth group. Furthermore, the model can have additional
covariates besides X;.

When the competing risk approach is considered, the hazard function has the form
hok(t) exp(0,-0xo + X;dx1) forevent type k (k = 1, ..., K). For example, the Staccato study
has two types of events — CDC-B and CDC-C. Throughout the paper, we illustrate the
proposed method using the hazard function given by (7) for convenience, but we give results
for both approaches in the example section.

For the estimation of the baseline hazard function hg(t), we use the method of
nonparametric maximum likelihood described in Kalbfleisch & Prentice (2002, section 4.3)
and in van der Vaart (2000, p. 403). Let \; be the hazard at time ¢;, where t; < to < ... < t,.
Assume that the hazard is zero between adjacent times so that the survival time is discrete.
The baseline hazard function is ho(t) = A; if t =¢; and 0 otherwise. The corresponding
cumulative hazard function Hy(t;) = Z Ap is a step function with a jump at each failure

<i
time ¢;. Given this structure, semipazr}z;metric problem in (7) could be considered as a
parametric problem. The contribution of the ith subject to the likelihood of the survival part
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PREEDALIKIT ET AL. 7

becomes

Pr (Ti, D; | A, HT,J) = ()\i exp(0,-60 + Xiél))di X exp ( - Z Ap exp(0,-00 + Xiél)).
p<i

®)

This contribution is composed of parametric and nonparametric components whence the
model is called a semi-parametric model. The parametric part is the exponential function of
the unknown coefficients ( dy and ;) and the nonparametric component involves the baseline
hazard function. The variable d; is an indicator of an observed event for individual 7. If we
observe an event time for individual 7 then d; = 1, otherwise d; = 0.

2.3. The Full Likelihood Function

The joint model in this paper is a combination of a finite mixture model and a semi-
parametric model. The joint likelihood function is obtained by combining the probability
function from one of the three ordinal response models (4), (5), (6), and the semi-parametric
proportional hazards model (8), by assuming the two models to be independent given the
latent discrete random variables.

Let 7, be the unknown probability (r = 1,..., R) that a subject lies in group r, and ©
be all the unknown parameters of the joint model. The incomplete data likelihood function is
the product of the likelihoods for the individuals

n R
L®|Y,T,D) = H <Z Pr(Y;|0,,e)Pr (T}, D; | A, 9,.,5)7”.) . 9)

i=1 \r=1
Let Z;,- be a group membership indicator for individuals that Z;,. = 1 if the i*" individual
is from the 7*" group and 0 otherwise. The complete data likelihood can then be written as

n R -
Lely.1.0,2) =[] ( Pr (Y;|6,,a) Pr (T3, D; |,\,9T,5)7TT)Z”. (10)

i=1r=1

The complete data log likelihood becomes

n R
log(L(O|Y,T,D,Z)) = 3> Zi, log( Pr (Yi|6.a) Pr (T3, D; | A, 6,,8), )
i=1r=1
R

=33 7, tog(m) + 3.3 7, log<Pr (Y, |9T,a))

i=1 r= i=1r=1

—

n

R
+ 303 Zilog(Pr (11, Di | . 6,.6) ). (11)
1r=1
where Pr (Y;|6,,&) and Pr(T;,D;|,6,,8) are defined in (4), (5) or (6) and (8)
respectively.

-
Il

3. Parameter Estimation

To estimate all parameters and the baseline hazards simultaneously, we combine the
EM algorithm and the method of nonparametric maximum likelihood. We first write the

© 2014 Australian Statistical Publishing Association Inc.
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8 JOINT MODELING OF SURVIVAL AND ORDERED DATA

expectation of the complete data log likelihood given the observed data Y, T, D and the
current estimates ©®) as follows:

06,6 = B, [mg Pr(Y,T,D,Z|O) ’Y,T,D, e<t>]

n R
Ziy log(m,) + Z Z Zir log (Pr (Y| Hr,a))

1 i=1r=1

-
M=

=Ez[

i=1

i
2
[

M3
NE

£33 Zotog (Pr (1.1 |.6,.6)) | ¥.T.D, 0]

.
Il
-
I
-

r

M=
WE

{ [log(r,) + log (Pr(Y; | 6,,a)) + log (Pr(T}, D; | A, 0,.,6))]

©
I
-
<
Il
-

X Pr(Ziy = 1Y, T3, Di, e@)}

Pr(Zi, = 1|Y 4, Ty, Dy, ©®) log(,)

M=
] =

<

Sl

1

=

7

R
+ 33 " Pr(Ziy =1|Y4, Ty, Di, ©D)log (Pr(Y; |6, a))
i=1r=1
n R
+ 3> " Pr(Zip =1|Y:, T3, Di, ©D)log (Pr(T5, D; | A, 60,,8)).  (12)
=1 r=1

In the following sections (3.1, 3.2, and 3.3), we show the steps of implementing the EM
algorithm and the method of nonparametric maximum likelihood.

3.1. Baseline Hazard Estimation

Before starting the EM-step, we profile out the baseline hazard function hq(t). The third
part of equation (12) is composed of the baseline hazard function and can be separately
written by substituting from (8) as

n R
E(A,OJS) = ZZPT(ZZ‘T = 1|Y¢,Ti7 Di,e(t)>{di (]Og)\l + 60,00 + XZ(Sl)
i=1r=1
— 3" A exp(0,60 + Xiél)}. (13)
p<i

To apply profile likelihood function whereby the log likelihood (13) is maximized with
respect to A; holding (6, 9) fixed, we set

R

0 d
=—{(A,0,0) = Pr(Z;y = 1|Y;, Ty, D;, M)~
8Ai(m) ;r( I,,76)Ai
R
=3 Pr(Zy = 1Y}, T, D,,, 01) exp(6,50 + Xp61) = 0.
p>i r=1

© 2014 Australian Statistical Publishing Association Inc.
Prepared using anzsauth.cls



PREEDALIKIT ET AL. 9
This implies

R d:
> Pr(Z, =1IY:.T;, D;,0() 5

)

R
Z Z Pr(Zy, = 1|Y , Ty, D,, 01 exp(8,50 + X,01).

p>i r=1

R
Using ZPr(ZZ-T =1|Y;,T;, D;,0Y) = 1 we obtain
r=1

R
di
i - Z Z Pr(Zyr = 1|Y p, T), Dpve(t)) exp(0-00 + Xpd1)
v p>ir=1
~ d;

(14)

i =

Spsi Sory Pr(Zyr = 1Y, Ty, D, 0M) exp(6,00 + X,01)

The E- and M-steps are carried out iteratively with the baseline hazard replaced by its
nonparametric maximum likelihood estimate (14).

Note: The parametrization used for the baseline hazard function is consistent with the
standard one. If the observed time ¢; is a censoring time, then d; = 0 and as a result the
estimator 5\i in (14) is 0.

3.2. The E-step

In the E-step, we use the current parameter estimates ©(*) to find the expected values of

Z;, of the complete data log likelihood. The expected values of a Bernoulli distribution are
determined by the probability of success for individual 7 being in group r given the observed
data. Thus, using Bayes’ rule, we can compute

E|Zy|Y;:,T;,D;, ] = Pr(Z;; =1|Y;,T;, D;, ©Y)

Pr(Y,| Zir = 1, 80 Pr(T;, Dy| Zs = 1, W) Pr(Z;, = 1]0W)
Zg Pr(Yi| Ziy =1, 80)Pr(T;, D;| Ziy = 1, 81)) Pr(Z;; = 1]01)
D Pr (Y, 60, a®) Pr (T;, D; | A, 67,60)
SE A Pr (Y65 ,a®) Pr (T3, D; | X, 05,80

Consequently the posterior class membership probabilities for the " individual are
given by
i Pr (Y 169, a) Pr (T;, D; | A, 04, 60)
R t) t)
SE ) Pr(Y 109, a®) Pr (T3, D | X, 057, 60)
15)

Pr(Ziy = 1Y, T;, D;, ©0) =

3.3. The M-step

In the M-step, we maximize equation (12) with respect to 7, and © = (6, e, ). Due to
the fact that there is no relationship between 7, and ©, they can be estimated separately.
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10 JOINT MODELING OF SURVIVAL AND ORDERED DATA

1. It is straight forward to calculate the estimates of m,. These are:
1 n
™ = -3 Pr(Z,=1|Y,;T,D;0Y).
G 2 2Pz = 1] )

2. To estimate ©, we maximize the second and third parts of equation (12) numerically

with respect to ©. Note that © = (6, e, d) consists of parameters from one of the three
ordinal response models and the Cox model.
Throughout this process, the stereotype likelihood function is optimized iteratively. We
use an alternating algorithm (Greenland 1994) to estimate the parameters in this model
because of the complicating factor of the likelihood function being multiplicative in its
parameters. That is, {¢¢} and (b; + 0,) are alternately held fixed while the other is
estimated. We propose a two-step iterative method to estimate all parameters in both
models simultaneously, as follows:

(a) Update all parameters in © simultaneously with fixed ¢, and replacing \; with
/\Ai as given in (14). In this step, ¢y is treated as a known predictor.

(b) Treat the estimated © from the previous step as fixed. That is, we treat (b; + 6,.)
as a known predictor and estimate ¢, using maximum likelihood.

(c) Calculate \; by substituting the estimated parameters from the previous steps (2a
and 2b) into equation (14).

(d) Repeat the previous steps until a convergence criterion is met. We use the criterion
that there is a small change (< 107°) in each of the estimates in subsequent
iterations.

The estimated parameters from each M-step are substituted into each corresponding E-step.
We use the method described in McLachlan & Peel (2000, Section 2.15.3) to find a
variance estimate for the estimator é based on the observed information matrix from the
incomplete likelihood (9) with \; replaced by Xl(é) given by (14). Letw = (71,...,Tr—1)
be the vector of group probabilities, where 7g is dropped due to the constraint 7y + - - - +
mr = 1.Let Q = (6, m) be the combined vector of parameters. The information matrix I (€2)

is estimated by
n

AQ :ZS Z7TL7D17 ) (Y’i’ﬂ7Di;Q)T

=1

where Q = (O, #) is the MLE of Q = (6, 7), and
s(Yi,Ti, Di; )
R
= S Pr(Zi = 1\19,25,1)1,6)8Q log{Pr (Y:|6,,0) Pr (T, D; | A(©),0,,6) m},
r=1

where A(8) = (A1(8), ..., A.(O)). The terms Pr (Y;|6,,a) and Pr (T;, D; | X,0,,6) are

defined in (4), (5) or (6) and (8) respectively. The variance estimate for O is the (1,1)
component of the partitioned matrix

f(ﬂ)—l _ @(Q) _ < COV( (e))T CO/Y£ ;Ar) )

T Var(m
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TABLE 1
Summary of profile Akaike information criterion (pAIC).

Stereotype PO
Covariates in the survival part Ngr | Npar \ pAIC Npar \ pAIC

(a) QOL, trt 41 126764.2 38 119106.8
(b) QOL, trt, CD4 42 119005.5 39 119106.0
(c) QOL, trt, CD4, age, weight 45 116841.1 42 116537.2
(d) QOL, trt, CD4, age, sex 45 116611.0 42 116538.0
(e) QOL, trt, CD4, age 44 116594.8 41 116538.1
(f) QOL, trt, CD4, sex 44 116483.8 41 116537.6
(g) QOL, trt, age, sex 44 116480.8 41 116537.7
(h) QOL, trt, CD4 116468.3 40 116539.1
(i) QOL, trt 42 116466.3 39 116539.8
(j) QOL, trt, age 43 116465.3 40 116538.9
(k) QOL, trt, sex 43 116464.0 40 116537.2
(1) QOL, trt, CD4 44 115605.4 41 115539.2

U AR LLWLWLWLWWWLWWNN
IS
»

(m) QOL, trt 43 115603.4 40 115535.4
(n) QOL, trt 44 115205.2 41 115252.4
(0) QOL, trt 45 115217.8 42 115264.2

4. Application

In the analysis of data from the Staccato study, we fit various joint models where the
survival component contains different sets of covariates and a single survival endpoint. We
only consider proportional odds and stereotype models for the item response component.
Because the questionnaire has many questions, the partial proportional odds model (3)
would have 124 (= (L — 1) x (J — 1) = 4 x 31) item effect parameters. It is not feasible
to estimate this large a number of parameters from our data. However the partial proportional
odds model was included in our simulation study.

The covariates in the survival model involve the QOL score from an ordinal response
model, the treatment (trt), initial CD4 count (CD4), age, sex and weight. The number
of groups (R) associated with the latent variables varies as well. We use the profile
Akaike information criterion (pAIC) for model selection since the models contain nuisance
parameters {);}. Table 1 displays a summary of the profile Akaike information criterion for
each of the stereotype and proportional odds (PO) models. The number of groups for the
discrete latent variable in the model is represented by Ny, and the number of parameters is
Npar. The results are first ordered by Ny, and then by decreasing stereotype model pAIC
within each N, level. The model with the smallest pAIC is preferred.

From Table | we see that the model with a five-group QOL effect and treatment (Model
(n)) has the lowest pAIC and is therefore the preferred model for both the stereotype and
proportional odds options. The stereotype model is preferable to the proportional odds model
as it has a lower pAIC. For models with Ny, = 3, the stereotype model pAIC generally
increases as more covariates are added to a model containing QOL and treatment. For
Ny = 2, inclusion of CD4 reduced pAIC and the opposite was true for Ny, = 4. The
influence of IV, on the significance of additional covariates suggests that QOL grouping
may in part be related to and may be a proxy for the covariate effects on QOL scores.
Therefore, once the optimum number of QOL groups is found (Vg = 5 in this case),
additional covariates cease to provide any additional information. If our reasoning holds,
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12 JOINT MODELING OF SURVIVAL AND ORDERED DATA

TABLE 2

EM estimates from the selected model under the first approach.

| Parameter | Estimated value | Standard error |

a2 0.845 0.072
as 0.052 0.069
a4 -1.080 0.063
as -4.174 0.047
ba 2.606 0.121
b3 4.759 0.110
by 5.653 0.122
bs 3.152 0.124
be 0.186 0.114
br 2.951 0.115
bs 0.648 0.113
bg 5.085 0.112
b1o 0.456 0.122
b11 3.934 0.113
b12 1.786 0.115
b13 1.473 0.109
b14 1.793 0.112
bis 2.997 0.111
bis 3.861 0.112
bi7 2.217 0.109
b1s 2.416 0.110
b1g 1.938 0.112
bao 2.727 0.112
b21 2.570 0.111
boo 3.372 0.110
bos 2.329 0.109
bosg 1.496 0.109
bas 3.379 0.112
bae 2.650 0.108
bar 2.536 0.118
bosg 4.880 0.114
bag 6.289 0.120
b30 8.496 0.137
b31 4.696 0.181
b32 3.006 0.121
b2 0.000 0.113
b3 0.364 0.007
b4 0.569 0.015
do -0.172 0.012
o1 -0.943 0.008
02 3.790 0.051
03 7.251 0.439
04 5.427 0.015
05 2.233 0.092

then use of latent variables provides an efficient way of incorporating important covariate
information, some of which may not be available or possible to measure. For the proportional
odds option, there was generally no material difference between models with equal Ng,.,
suggesting that model choice is largely driven by QOL grouping.

Table 2 displays the estimated parameters and their standard errors for the selected
model. It includes effects of the treatment, and the quality of life where patients belong to
five different groups. Both treatment and quality of life are significant factors for describing

time of symptom progression to CDC-B. Since b; expresses the strength of the j* question,
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the higher the value of b;, the higher the probability that patients’ responses fall in a high
category in such questions. For example, if b; > bo, the probability that patients will respond
in a high category for question one is higher than for question two. Similarly, 6, serves as
a quality of life effect for group r; the greater the value of 6,., the higher the probability
that a patient in that group will respond in a high category. This also indicates that patients
who are in a group with a high value of # have a better quality of life. In the survival time
component, the regression coefficient &g is the effect of quality of life and d; corresponds
to the effect of the treatment on the hazard of symptom progression to CDC-B. A negative
value of &, suggests that better quality of life is associated with a reduced hazard of symptom
progression to CDC-B. The hazard of progression to CDC-B reduced multiplicatively by a
factor of (e%)% = 0.842% with a 95% confidence interval (0.822%", 0.862%") for patients
in QOL group r compared to QOL group 1 after controlling for the patients’ treatment.
Likewise, 01 corresponds to the effect of treatment. The hazard of progression to CDC-
B reduced multiplicatively by a factor of 0.389 (= e°') with a 95% confidence interval
(0.383, 0.396) for patients undergoing continuous anti-retroviral treatment compared to those
who underwent CD4-guided interruption treatment, after controlling for patients’ general
quality of life through 6,.. Therefore patients on continuous treatment have a lower hazard of
CDC-B progression than patients on CD4-guided treatment. By incorporating and controlling
for the effect of QOL in the Cox proportional hazards model, we have shown that treatment
has an effect on time to symptom progression over and above the improvement in QOL that
may be associated with it.

The cumulative hazard function is obtained from the calculation of (14) using the EM
algorithm. However, in most applications, we typically describe how long the study subjects
live rather than how quickly they die. Thus, the survival function has received more attention
than the baseline cumulative hazard function in terms of interpretation. The survival function,
S(t), can be derived from the cumulative hazard function H (t), by S(t) = exp(—H (t)).

The estimated baseline survival function is illustrated in Figure 1. It decreases sharply
for approximately the first 24 weeks. The graph significantly declines again from week 40 to
week 72. There are larger drops in the steps in the graph from week 72 to week 144 due to
the small number of patients still at risk, but many of these are censored during the follow-up
time. The initial steep decrease is because there is a high rate of progression to CDC-B in the
first 24 weeks. The progression rate then decreases and remains at about the same level for
the remainder of the follow-up period.

Parameter estimates for the selected model under the competing risk approach are given
in Table 3. Both treatment and quality of life are significant factors for describing time of
progression to CDC-B or to CDC-C. The regression coefficient d1 is the coefficient of quality
of life and §11 corresponds to the effect of the treatment on the hazard of symptom progression
to CDC-B. The results are similar to those found in Table 2. Similarly, the coefficients doq
and d2; correspond to the effects of quality of life and treatment on the hazard of progression
to CDC-C. The hazard of progression to CDC-C reduced multiplicatively by a factor of
(€920)r = (0.803%" with a 95% confidence interval (0.696%, 0.926%) for patients in QOL
group r compared to QOL group 1 after controlling for the patients’ treatment. Likewise,
the hazard of progression to CDC-C reduced multiplicatively by a factor of 0.749 (= e%!)
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Figure 1. Estimated survival function

with a 95% confidence interval (0.663, 0.846) for patients undergoing continuous anti-
retroviral treatment compared to those who underwent CD4-guided interruption treatment,
after controlling for patients’ general quality of life through 6,..

Notice that when the item response model (1) and the survival model (7) were fitted
separately, we obtained similar estimates of §; and ¢; . For example, cluster information based
on patients’ quality of life (QOL) outcomes was obtained from the item response model (1).
These clusters were then used in the survival model (7) to estimate dg and d1. The estimates
were 6o = —0.126 and §; = —0.958, compared to the joint modeling results 6o = —0.172
and &; = —0.943. Nonetheless separate modeling has many disadvantages including invalid
inferences and lack of model selection methods for joint models.

5. Simulations

We conducted a simulation study to investigate whether a wrong choice of ordinal
response model affected the performance of parameter estimators in the survival model.
Because the meaning of 6, was different for different models, we focused on the treatment
effect 41 in Model (7). Often a clinical researcher might be interested in the patient grouping
information. The simulation study also evaluated the proportion of times that patients were
allocated into correct groups for different ordinal models. In particular, when the fitted ordinal
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TABLE 3

EM estimates from the competing risks model.

[ Parameter | Estimated value | Standard error |

a2 0.845 0.027
as 0.053 0.045
a4 -1.077 0.065
as -4.170 0.115
bo 2.604 0.133
b3 4.756 0.139
by 5.650 0.144
bs 3.150 0.135
be 0.184 0.137
by 2.949 0.135
bs 0.645 0.136
bo 5.082 0.142
b1o 0.453 0.136
b11 3.931 0.137
b12 1.784 0.134
b1s 1.470 0.134
b14 1.791 0.134
b1s 2.995 0.135
bis 3.858 0.137
bi7 2.214 0.134
b1s 2.413 0.134
big 1.936 0.134
bao 2.724 0.134
bo1 2.568 0.134
bao 3.369 0.135
bas 2.326 0.134
boyg 1.494 0.134
bos 3.376 0.135
bag 2.647 0.133
bar 2.533 0.133
bog 4.878 0.141
bag 6.286 0.151
b3o 8.493 0.182
b31 4.693 0.141
b32 3.003 0.136
o2 0.000 0.112
b3 0.364 0.012
o 0.569 0.035
410 -0.173 0.064
o011 -0.928 0.088
d20 -0.220 0.073
021 -0.289 0.062
02 3.789 0.050
03 7.249 0.434
04 5.425 0.155
05 2.232 0.832

response model was incorrect, we evaluated the effect of this miss specification on the
proportion of times that patients were allocated into correct groups.

We took the true item response model to be the stereotype model (1), since, in terms of
model parsimony, the stereotype model was in the middle among the three models (1), (2),
and (3). We fixed n = 100, J = 6, M = 6, 69 = —0.2, and a, = O for all £ and let R, L, b;
and ¢; vary. Let b; be 0 or follow NV (0, 32) for all j and let §; be 0, —1, or —2. Table 4 gives

© 2014 Australian Statistical Publishing Association Inc.
Prepared using anzsauth.cls



16 JOINT MODELING OF SURVIVAL AND ORDERED DATA

TABLE 4

The setting of parameters in simulations

R L parameters
3 3 91:0,92:1,311(193:—1
¢1 = 0, ¢2 = 0.5, and ¢3 =1
3 5 01:0,92:1,311(3193:—1
b1 =0, o = 0.25, b3 = 0.5, ¢4 = 0.75, and ¢5 = 1
5 3 91:0,92:1,93:71,94:2,and95:72
¢1 =0, ¢2 = 0.5, and (;53 =1
5 5 61=0,0,=1,03=-1,0,=2,and 05 = -2
¢1 =0, ¢2 = 0.25, (]53 = 0.5, ¢4 = 0.75, and (]55 =1

the setting of parameters 6,. and ¢,. Because the main purpose of our simulation study was to
compare three ordinal models, we did not cover a wide range of scenarios on the censoring
and survival functions.

Samples were generated as follows:

1. Randomly assigned each individual to the continuous treatment using a Bernoulli(p =
0.3) random variable, otherwise assigned to the CD-4 guided treatment.

2. Allocated each patient to a cluster with m,, = 1/R forallr = 1,..., R.

3. Generated survival times from an exponential distribution with the rate exp(6,-do +
X 1(5 1 ) .

4. Independently, generated a censoring time from an exponential distribution with the
rate 0.2. Assigned to a subject a survival time or censoring time depending on which
of the generated time is smaller. For example, if the survival time was smaller than the
censoring time, then d; = 1 for the ith patient. Otherwise, d; = 0, i. e., the ith patient
was censored.

5. Generated item responses from the stereotype model.

For each case, we generated 100 data sets. To each dataset we fitted three different ordinal
response models jointly with the survival model.

Table 5 summarises the sample mean and the mean squared error for 61 over 100
simulations. All three ordinal response models gave similar estimates close to the true d1,
but the mean squared errors showed that the partial proportional odds model was the worst
among these three models. Therefore, if the true model is a stereotype model, but one uses a
(partial) proportional odd model, the treatment parameter estimator in the survival model is
still reliable, but suffers a loss of efficiency.

The posterior class membership probabilities (15) provide fuzzy clustering memberships
for subjects. That is, an individual might belong to the first cluster with probability 0.4 and
to the second cluster with probability 0.6. To compare the three ordinal response models, we
simply allocated subjects to the cluster with the highest probability and used the pairwise
grouping information between subjects to evaluate clustering performance. We calculated
the widely used Jaccard index (Ben-Hur, Elisseeff & Guyon 2002), originally proposed by
Jaccard (1901). Consider two sets A and B. The Jaccard index is (AN B)/(A U B) that
measures the similarity between two sets. Applying to the concept of measuring the similarity
of two clusterings C and C’, let N1, be the number of shared pairs in clusters C' and C”. Let
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Sample mean 81 and mean squared error (in brackets) over 100 simulations.

| R | L |6 | {b;} | Stereotype | PO | Partial PO |
313 0 | ~N(0,3%) | -0.005 (0.062) | -0.005(0.063) | -0.003 (0.062)
313 0 0 0.026 (0.046) 0.027 (0.047) 0.029 (0.047)
313 | -1| ~N(0,3%) | -0.969 (0.064) | -0.969 (0.064) | -0.978 (0.070)
303 -1 0 -1.010 (0.056) | -1.014 (0.055) | -1.027 (0.062)
3| 3| 2| ~N(0,32%) | 2.019(0.110) | -2.017 (0.111) | -2.085 (0.148)
313 -2 0 -1.984 (0.082) | -1.986 (0.082) | -2.036 (0.103)
315 0 | ~N(0,3%) | -0.006 (0.047) | -0.011(0.048) | -0.007 (0.048)
315 0 0 -0.010 (0.050) | -0.011 (0.048) 0.004 (0.057)
315 -1| ~N(0,3%) | -0.965(0.072) | -0.958 (0.070) | -0.985 (0.074)
3050 -1 0 -0.995 (0.064) | -0.990 (0.061) | -1.027 (0.067)
3| 5| 2| ~N(0,32%) | 2.010(0.131) | -2.004 (0.128) | -2.084 (0.150)
315 -2 0 -1.979 (0.094) | -1.967 (0.093) | -2.041 (0.139)
513 0 | ~N(0,3%) 0.009 (0.051) | 0.008 (0.050) | 0.011 (0.051)
513 0 0 0.037 (0.056) 0.041 (0.060) 0.048 (0.064)
513 -1 ~N(0,3%) | -0.948 (0.090) | -0.944 (0.087) | -0.972 (0.086)
s3] -1 0 -0.959 (0.088) | -0.958 (0.090) | -0.994 (0.090)
S| 3| 2| ~N(03%) | -1.894(0.112) | -1.893 (0.107) | -1.984 (0.138)
5131 -2 0 -1.918 (0.125) | -1.923 (0.127) | -1.999 (0.157)
515 0 | ~N(0,3%) 0.001 (0.063) | 0.004 (0.063) | 0.005 (0.074)
515 0 0 0.036 (0.069) 0.039 (0.069) 0.054 (0.079)
5151 -1 ~N(0,3%) | -0.996 (0.057) | -0.986 (0.059) | -1.033 (0.072)
505 -1 0 -0.900 (0.071) | -0.887 (0.073) | -0.957 (0.095)
S| 5| 2| ~N©32) | -1.977(0.113) | -1.961 (0.111) | -2.104 (0.142)
5|15 -2 0 -1.925 (0.133) | -1.903 (0.130) | -2.136 (0.145)

N7 be the number of pairs in cluster C but not in C”, and likewise let Ny; be the number of
pairs in cluster C’ but not in C'. Therefore the form of the Jaccard index can be written as

Je,c =

Ny

If the two clusters are similar, 7 (C, C") tends to 1.

~ Ni1 + Noi + Nig

Table 6 shows the average Jaccard index for 100 simulated datasets for each of the
cases. It is a measure of the similarity between the true clustering and the clustering fitted
by an ordinal model. For example, the clustering C represents the true grouping among the
subjects and the clustering C” is the grouping result fitted by a stereotype model based on
the posterior class membership probabilities (15). For the first case in Table 6, we calculated
J(C, ") for each simulated data set. The value 0.520 was the average J(C, C") over 100
datasets. It was not surprising that the stereotype model was the best for all cases, because
the true grouping information was based on the stereotype model. The grouping information
given by the partial proportional odds model was the worst. It confirmed that if the true model
was a stereotype model, a (partial) proportional odd model could result in different clusters of
patients. However the information was similar between the stereotype and proportional odds
models when the number of response categories was large (e. g., L = 5).

Notice that the similarity measure between the true clustering and the clustering fitted
by a model depends on the value of {6,.} and R. However the comparisons across different
number of clusters are meaningless. That is, we cannot compare the Jaccard index between
the one with R = 3 and the one with R = 5 (Meila 2007). This simulation study only focused
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18 JOINT MODELING OF SURVIVAL AND ORDERED DATA

TABLE 6

Jaccard Index Comparison.

| R | L |6 | {b} | Stereotype | PO | Partial PO |
313 0 | ~N(0,3% 0.520 | 0.368 0.327
313 0 0 0.493 | 0.358 0.328
313 -1 ~N(0,3?% 0.512 | 0.364 0.325
313 -1 0 0.493 | 0.355 0.325
3|13 2| ~N(0,3?% 0.509 | 0.372 0.325
313 -2 0 0.502 | 0.370 0.324
315 0 N(0,32) 0.459 | 0.394 0.326
315 0 0 0.453 | 0.383 0.326
315 -1 N(0,32%) 0.463 | 0.420 0.325
315 -1 0 0.450 | 0.391 0.325
315 -2 N(0,32) 0.457 | 0.406 0.323
315 -2 0 0.452 | 0.392 0.322
513 0 N(0,32) 0.416 | 0.262 0.191
513 0 0 0.412 | 0.263 0.193
5|13 -1 ~N(0,3?% 0.409 | 0.265 0.192
513 -1 0 0.426 | 0.269 0.191
5|13 | 2| ~N(0,3?% 0.429 | 0.270 0.190
513 -2 0 0.415 | 0.260 0.190
515 0 | ~N(0,3% 0.389 | 0.315 0.191
515 0 0 0.389 | 0.304 0.192
505 -1 ~N(0,3?%) 0394 | 0311 0.191
515 -1 0 0.391 | 0.301 0.189
5|15 2| ~N(0,3?% 0.389 | 0.316 0.190
515 -2 0 0.385 | 0.299 0.188

on comparing the performance across three ordinal models given scenarios, it did not focus
on investigating the performance for the stereotype model alone.

6. Discussion

Joint model approaches to the analysis of quality of life and survival data are appropriate
when these two endpoints are likely to be related. We consider a joint model using latent
variables to link the two components. We use a likelihood approach to estimate all parameters
in an ordinal response model and a Cox proportional hazards model simultaneously. Our
approach includes estimation of the baseline hazards. Simultaneous estimation has the
advantage of strong consistency (Gao, Manatunga & Chen 2007). We treat the baseline
hazard as a step function with no parametric form. Our model is thus semiparametric. We fit
it by the means of the EM algorithm.

An advantage of using discrete latent variables, instead of subject-level random effects,
is that this procedure allows us to classify patients into their most likely group. Each group is
composed of a set of individuals who are homogeneous with respect to their characteristics
or their attitudes as indicated by the quality of life survey. The similar idea of grouping a set
of individuals using discrete latent variables has also been proposed by Pledger & Arnold
(2014) for binary and count data. Since the number of groups is unknown, the profile Akaike
information criterion is used to provide information on the best choice of the number of
groups. For the Staccato study, the results showed that we could classify the patients by their

© 2014 Australian Statistical Publishing Association Inc.
Prepared using anzsauth.cls



PREEDALIKIT ET AL. 19

quality of life into five groups. The patients who were in a group with a high value of 6, had
a better quality of life.

We discuss the differences among stereotype, proportional odds, and partial proportional
odds models. The parameters in each model have their own meaning. On the basis of a
simulation study, we found that when the true model is a stereotype model, a wrong choice of
models does not severely affect parameter estimates in the survival model, although a wrong
choice might result in a loss of efficiency. In practice, researchers can fit different ordinal
models and choose the best one using an information criterion. In our example, we found the
stereotype model to have a better fit.

The data from Staccato study contain some missing responses on the QOL questionnaire.
For example, some patients might not answer all 32 questions at a given time point. In our
analysis, we excluded these missing responses, assuming missing at random. The joint model
approach has the capacity to gain information from both components effectively under the
assumption. In practice, the missing at random assumption might not hold. Future research
will investigate the impact of non—-random missingness on our joint model. In addition, further
work will be carried out to evaluate model fit for a joint model involving finite mixtures.
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