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ABSTRACT
The multifractal detrended fluctuation algorithm is applied to a series of distances and elapsed times between consecutive earthquakes
recorded along the years 2000–2018 in the Canterbury region (New Zealand). The time evolution of several multifractal parameters (Hurst
exponent, Hölder central and maximum exponents, spectral amplitude, asymmetry, and complexity index) is analyzed. Peaks of multifractal
parameters, with statistical significance exceeding 95%, are associated with three earthquakes of notable magnitude (equaling or exceeding
Mw = 5.7). Additionally, some other peaks are also associated with the swarm of earthquakes of moderate magnitude. Possible shortcomings
created by this assignment to mainshocks or swarms can be removed by comparing the results corresponding to elapsed times and interevent
distances between consecutive events. Additionally, the Buishand test, which is used to verify the statistical significance of the detected peaks,
also discriminates between mainshocks of notable seismic magnitude and swarms of earthquakes with moderate magnitude. The obtained
results, based on the multifractal structure of the seismic activity, could also represent some advances in predicting, with sufficient time,
forthcoming mainshocks of high magnitude and mitigate their destructive effects.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0010103

I. INTRODUCTION

Since the publication of Mandelbrot’s book (Mandelbrot,
1983), numerous studies have been devoted to characterize the self-
similar (or scale-invariant) properties of a wide variety of natural
phenomena by using the concepts of fractal geometry and frac-
tal dimension (Enescu et al., 2005). The framework to characterize
such non-linear dynamic systems seems to be better described by
multifractals (Hirabayashi et al., 1992). In the case of the seismic
activity of Earth, several studies ascertain that the temporal and
spatial (epicentral and hypocentral distribution) behavior, as well

as the energy distribution of earthquakes, has multifractal proper-
ties. For instance, the multifractal structure of the spatial distribu-
tions of earthquakes has been characterized in different areas of
Earth, such as the Kanto region in Japan (Hirata and Imoto, 1991),
Italy (Godano et al., 1996), the Himalayan region (Roy and Mon-
dal, 2012), Iran (Zamani and Agh-Atabai, 2011), California, and
Greece (Hirabayashi et al., 1992). Time distribution of events has
also been analyzed by means of multifractal techniques in regions
such as Romania (Enescu et al., 2005), central Italy (Telesca and
Lapenna, 2006), and west India (Aggarwal et al., 2015), among
others. In the first case (Enescu et al., 2005), whereas the time
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distribution of seismicity at short scale (minutes–hours) depicted
a heterogeneous multifractal pattern, possibly caused by the after-
shocks, at large scale, the time distribution of magnitudes changed
toward monofractality. Conversely, in the second case (Telesca and
Lapenna, 2006), the analysis of the elapsed times between consec-
utive seismic events permitted detection of a loss of multifractality
along the aftershock sequences of every mainshock. In the third
case (Aggarwal et al., 2015), the authors of the research observed
an increase in the seismic magnitude multifractality along the after-
shock sequences. More recently, Lana et al. (2020) have analyzed the
mono/multifractal behavior of distances between consecutive after-
shocks of a high magnitude mainshock, taking the seismic crisis of
Landers, Northridge, and Hector mines in Southern California as the
database.

Nowadays, it is absolutely accepted by researchers on Earth sci-
ences that the tectonic stresses, generated by displacements of plate
tectonics due to large-scale convective phenomena in Earth’s man-
tle, are the cause of seismic activity. Very detailed analyses should
be necessary for a better understanding of these complex non-linear
mechanisms, being relevant for the application of the fractal theory
(Turcotte, 1997), to improve the knowledge of this physical problem.
The possibility of detecting changes on fractal parameters, assim-
ilated to warnings of high magnitude earthquakes, is also another
question to be carefully considered.

The multifractal detrended fluctuation (MF-DF) algorithm
is widely used to characterize multifractal scaling properties of
non-stationary time series (Kantelhardt et al., 2002). Nevertheless,
depending on the analyzed problem, other algorithms and theo-
ries should be convenient or necessary. Two examples could illus-
trate these facts. From the point of view of seismology, when the
spatial distribution of hypocenters is analyzed, processes proposed
by Turcotte (1997) and Goltz (1997) would be appropriate. Other
examples could be the analyses of turbulent data and Brownian
signals, which should be better analyzed by means of wavelet the-
ory (Muzy et al., 1991; 1994). In this paper, we apply the MF-
DF algorithm to analyze the degree of complexity associated with
the seismicity generated at the Canterbury region (New Zealand)
along the years 2000–2018. In particular, we focus our analysis on
two time series: the interevent hypocentral distance, ∆δ(t), and the
interevent time, ∆τ(t), series, defined, respectively, as distances and
time intervals between two consecutive seismic events. Whereas
∆δ(t) describes the spatial trajectory of consecutive earthquake
hypocenters, ∆τ(t) measures the waiting time between two consec-
utive earthquakes. In both cases, the evolution of these series would
depend on the tectonic stress release in previous earthquakes and
the specific state of stress on the rupture points (hypocenters). At the
same time, this stress release could notably depend on the magnitude
of recent earthquakes. Consequently, the quantities of both time
series could be notably different along a time interval of very mod-
erate earthquake magnitude (background seismicity), close in time
to a high magnitude earthquake (main event) with a high increase
in tectonic stress, and after a main event (aftershock interval) with a
restructuration of crustal Earth strain and tectonic stress close to the
mainshock domain.

An illustrative example of the non-linear complexity of the seis-
mic activity could be the analyses based on the self-organized crit-
icality (SOC) algorithms proposed by Bak et al. (1988; 1990) and
applied by Scholz (1991), Correig et al. (1997), Turcotte et al. (2003),

and Monterrubio et al. (2015), among others, to, respectively, ana-
lyze the mechanism of earthquakes and faults, rock fractures at
micro- and macro-scales, and aftershock series.

As mentioned before, one the main objectives of this paper is
to quantify the complexity of the seismic activity in a tectonic region
of New Zealand by analyzing changes in the multifractal spectrum
parameters along the series ∆δ(t) and ∆τ(t). Additionally, bear-
ing in mind that the state of tectonic stresses and seismicity rates
could notably change before an imminent mainshock of outstand-
ing magnitude, ∆δ(t) and ∆τ(t) series are analyzed by means of the
MF-DF algorithm with the aim of detecting possible warnings of
forthcoming mainshocks. Concepts of multifractal theory were also
applied years ago with the aim of analyzing the spatial distribution
of hypocenters within tectonic domains of high magnitude main-
shocks (Turcotte, 1997; Goltz, 1997). The algorithms used by these
authors were different from the MF-DF used in this paper, given
that the spatial density of hypocenters (a three dimensional problem)
was analyzed instead of the ∆δ(t) and ∆τ(t) series (a one dimen-
sional problem). Nevertheless, the same kind of multifractal param-
eters was successfully determined, being verified as the multifractal
structure of the hypocenter’s spatial density.

II. DATABASE OF THE CANTERBURY SEQUENCE
From 2000 to 2018, a total of 15 889 events (Mw > 1) were

recorded in the Canterbury region (New Zealand). This is a region
with high seismic activity because plate boundary deformation cre-
ates a south-easterly advancing one, with the repetitive structural
pattern governed by the propagation of northeast-striking thrust
assemblages (Campbell et al., 2012). In 2010, the Canterbury earth-
quake, also known as the Darfield earthquake (Quigley et al., 2012),
struck the south island of New Zealand with a moment magni-
tude of Mw = 7.2 at 4:35 a.m. local time on September 4. This
event is the largest registered during the period 2000–2018. Addi-
tionally, three large events of magnitudes Mw = 6.2, Mw = 6.0, and
Mw = 5.9 occurred in 2011 (February 22, July 13, and December
23, respectively). During 2010 and 2012, 28 events of magnitude
5 < Mw < 5.9 also shook this region. Figure 1 depicts the spa-
tial distribution of seismicity in agreement with the seismic cata-
log obtained from GeoNet (GNS Science–Earthquake Commission,
New Zealand; https://www.geonet.org.nz). The first event of the
database was recorded on February 1, 2000, UTC 09:31:31.009, while
the last event was detected on May 19, 2018, UTC 16:23:54.674, thus
encompassing 6682 days of seismic activity. At the present study,
the seismic activity analysis has been constrained from February 1,
2000 to February 22, 2016, covering [Figs. 1(a) and 1(b)] the square
perimeter defined by coordinate intervals 171.8○ E−172.9○ E and
42.0○ S−43.6○ S.

Before the multifractal analysis, events equaling or exceed-
ing Mc, the magnitude of catalog completeness (Popandopou-
los et al., 2016) has been selected from the database. The
frequency–magnitude distribution and Mc are computed by apply-
ing the Gutenberg–Richter law (Gutenberg and Richter, 1944),

log10N(≥Mw) = a − bMw, (1)

with N being the cumulative number of earthquakes greater than a
given magnitude Mw and parameters a and b depending on regional
characteristics such as seismicity and stress field (Evernden, 1970;
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FIG. 1. (a) Spatial distribution of the seismic activity in Canterbury (New Zealand) up to February 22, 2016 and (b) distribution of faults with the average recurrence interval
less than 2000 years (red lines) and greater than 2000 years or undefined (black lines) (Stirling and Zúñiga, 2017). The rectangle specifies the Canterbury area (42.0○

S–43.6○ S; 171.8○ E–172.9○ E) analyzed in this paper.
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Ozturk, 2012). Definitively, the dataset used in this analysis con-
sists of 9889 events with magnitudes larger than Mc = 2.5, fulfilling
Eq. (1).

The evolution of the elapsed time and distances between con-
secutive earthquakes (exceeding Mc = 2.5), posteriorly analyzed in
terms of multifractality, is described in Figs. 2(a) and 2(b). These
evolutions are notably conditioned by the aftershock process after a
mainshock. The elapsed time evolution is characterized by an evi-
dent increasing trend, up to the activation of a mainshock, and a
sharp decrease immediately after. This sudden decrease has to be
generated by the aftershock process following a mainshock, which is
characterized by a high concentration of moderate and low magni-
tude earthquakes along the tectonic fault associated with the men-
tioned mainshock. From physics and geologic points of view, the
spatial rearrangement and dissipation of tectonic stresses cumulated
before the mainshock would be the cause of this aftershock activity.
A relatively similar evolution is detected for the distances between
consecutive events. Whereas the spatial distribution of consecutive

FIG. 2. (a) Evolution of the elapsed times and (b) distances between consecutive
events. Red arrows correspond to the three mainshocks analyzed.

earthquakes before a mainshock (basically background seismicity)
depends on the spatial distribution of tectonic stress and geological
faults, the seismic activity is notably concentrated on aftershocks,
much more numerous along several months that the background
earthquakes of the whole tectonic region are expected to be much
more extended than the aftershock area.

III. MULTIFRACTAL THEORY
A. MF-DF algorithm

The multifractal properties of nonstationary series are ana-
lyzed by means of the multifractal detrended fluctuation, MF-DF,
analysis (Koscielny-Bunde et al., 1998; Talkner and Weber, 2000;
Kantelhardt et al., 2002; and Shadkhoo and Jafari, 2009). The MF-
DF methodology is described in detail by Kantelhardt et al. (2002).
Assuming that {xk} is a time series of length N, a brief overview of
the algorithm steps is given below:

First step: Computation of the “profile” of the series:

Y(i) = ∑
i
k=1 xk − ⟨x⟩, i = 1, . . . , N (2)

⟨x⟩ is the average value of the series.
Second step: Division of the profile Y(i) into Ns = int(N/s)

non-overlapping segments of equal length s. Given that the
length N of the series is often not a multiple of the consid-
ered segment lengths, a short part at the end of the profile may
remain. To not disregard this part of the series, the same proce-
dure is repeated starting from the opposite end. Consequently,
2 Ns segments are obtained.

Third step: Computation of the local variance F2(s, ν) for
every segment ν of length s by using a four order least-square
polynomial fitting to obtain the differences between “profile”
segments (first step) and the corresponding polynomial.

Fourth step: Computation of the q-order fluctuation func-
tion:

F(s)q = [
1

2Ns
∑

2Ns

1 ln[F2
(s, ν)]

q/2
]

1/qν
, q ≠ 0, q ∈ R, (3)

F(s)0 =
1

4Ns
∑

2Ns

1 ln[F2
(s, ν)], q = 0. (4)

Given that it is necessary to repeat steps 2, 3, and 4 for
several scales s, in agreement with (Kantelhardt et al., 2002), it
is convenient that these scales vary within (m + 2, N/4), with
m = 4 the chosen polynomial order (third step).

Fifth step: The q-order fluctuation function is expected to
fit a power-law dependence on the segment length s:

F(s)q ≈ sh(q), (5)

and h(q), the generalized Hurst exponent, can be well deter-
mined by a linear regression of ln{F(S)q} vs ln(S).

In the case of non-stationary series, such as fractal Brownian
signals, the exponent h(q = 2) will be larger than 1.0 and will satisfy

AIP Advances 10, 115109 (2020); doi: 10.1063/5.0010103 10, 115109-4

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

h(2) =H + 1, where H is the well-known Hurst exponent (Movahed
and Hermanis, 2008). For stationary time series, the value h(q = 2)
is identical to the Hurst exponent. H > 0.5 indicates persistence in
long-range correlation; H = 0.5 manifests the random character of
the series, while H < 0.5 reflects anti-persistence. In the case of mul-
tifractal series, if positive values of q are considered, the segments
ν with large variance (i.e., large deviations from the corresponding
polynomial fit) will dominate the Fq(s) average. Thus, for positive
values of q, h(q) corresponds to the scaling behavior of the seg-
ments with large fluctuations. For negative values of q, the segments
ν with small variance F2(s, ν) will dominate the Fq(s) average, and
h(q) then describes the scaling behavior of the segments with small
fluctuations (Movahed and Hermanis, 2008; Burgueño et al., 2014).

B. The singularity spectrum
The singularity spectrum, f(α), is related to the generalized

Hurst exponent h(q) by means of the Legendre transform (Kantel-
hardt et al., 2002) as follows:

α = h(q) + q
dh(q)

dq
← Legendre→ f (α) = q{α − h(q)} + 1, (6)

where α is the singularity strength or Hölder exponent and f(α)
denotes the dimension of the subset of the series. The multifractal
scaling exponent, also known as the mass exponent, is

τ(q) = qh(q) − 1, (7)

and the Hölder exponent is defined as

α(q) = dτ(q)/dq. (8)

The function f(α) describes the subset dimension of the series
characterized by the same singularity strength α, with the singularity
strength with the maximum spectrum designed as α0. Small values
of α0 mean that the underlying process loses the fine-structure, that
is, it becomes more regular in appearance; conversely, a large value
of α0 ensures higher complexity. The shape of f(α) may be fitted to a
quadratic function around the position α0,

f (α) = A(α − α0)
2
+ B(α − α0) + C. (9)

The coefficient B manifests the asymmetry of the spectrum,
being null for a symmetric spectrum. A right-skewed spectrum, B
> 0, indicates a fine structure, while left-skewed shapes, B < 0,
point to a smooth structure. The width of the spectrum, W, can be
obtained by extrapolating the fitted curve f(α) to zero or, in other
words, extrapolating the multifractal spectrum to q → ±∞. The
spectral amplitude is defined as

W = αmax − αmin, (10)

with f(αmax) = f(αmin) = 0 and αmax (q → −∞) being larger than
αmin (q → +∞). Given that q has been chosen ranging within the
(−15, +15) interval, αmax and αmin have been obtained by numeri-
cally extrapolating Eq. (9) to f(α) = 0. The wider the range of pos-
sible fractal exponents α is, the stronger the multifractality would
be. In other words, the wider the range of α is, the more complex
the structure of the physical process (Burgueño et al., 2014) will be.
A signal with a high value of α0, a wide range of fractal exponents,

and a right-skewed shape is more complex than a signal with oppo-
site characteristics (Shimizu et al., 1982). The spectral width will be
null for pure monofractal series, and h(q) will be independent of q.
Therefore, there will be a unique value of α and f(α), with α being the
Hurst exponent and f(α) being equal to 1.

The complexity index (CI) was proposed by (Shimizu et al.,
1982) to quantify the degree of complexity, considering the param-
eters α0, B, and W. The definition of this complexity index is based
on the standardized values of α0, B, and W,

Z = Z(α0) + Z(B) + Z(W), (11)

where z(α0), z(B), and z(W) are the corresponding standardized
quantities. This standardized process is carried out taking into
account the α0, B, and W samples obtained for every moving win-
dow used to analyze the time evolution of the multifractality. Con-
sequently, a sample of α0, B and W is obtained for every one of
the three multifractal parameters, being quantified for their corre-
sponding averages and standard deviations. Finally, CI is defined as

CI = (Z − ⟨Z⟩)/σ(Z), (12)
where ⟨Z⟩ is the mean value and σ(Z) is its standard deviation. Val-
ues of Z ≥ 0 indicate high complexity, and those of Z < 0 indicate low
complexity.

Given that the empiric samples of the multifractal spectrum f(α)
sometimes do not fit well the quadratic function given by Eq. (9),
the parameter B could be submitted to some uncertainties. With the
aim of avoiding these computational uncertainties, the asymmetry
of the multifractal spectra in terms of B has been substituted in this
paper by the quotient (αmax − α0)/(α0− αmin), with this mathematical
expression being an alternative version of the asymmetry. In agree-
ment with the new definition, a quotient close to 1.0 implies a high
symmetry. Conversely, quotients notably higher than 1.0 and lesser
than 1.0 will imply right and left asymmetry, respectively.

IV. METHODOLOGY
The MF-DF algorithm is applied to quantify the complexity of

the seismicity detected in the Canterbury region (New Zealand) dur-
ing the period 2000–2018 and, more specifically, to analyze the mul-
tifractal behavior when a large event occurs. In this way, if changes in
the evolution of some multifractal parameters occur close to a main-
shock, they could be assumed as possible warnings of a forthcoming
event. The multifractal spectrum f(α) is computed for the series of
interevent hypocenter distances ∆δ(t) and interevent times ∆τ(t),
for pairs of consecutive earthquakes. Both series describe the spa-
tial and time behavior of seismicity since they give a measure of the
degree of spatial and time earthquake correlation. A series of 9884
events (equaling or exceeding Mc = 2.5) is analyzed, by consider-
ing moving windows with a length of 1000 events (a long enough
segment data for a right application of the MF-DF algorithm) and a
shift of two events between consecutive windows. The total number
of windows, Nw, required to cover all the events can be reduced to
4000, and the process described in Sec. III is used to compute f(α)
and all the multifractal parameters for every moving window.

The window length is defined as an equal number of events,
instead of equal time length, because the seismic activity, as
expected, is not homogeneously distributed in time. It is worth men-
tioning that in the case of the first event (Darfield mainshock), given
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that a large enough number of events before the mainshock are not
available, the accuracy of multifractal parameter determination is
not sufficient to derive reliable results. Something similar occurs
with the last event of Mw 5.7, given that the number of aftershocks
with a magnitude larger than 2.5 suddenly decreases. In order to
quantify the statistical significance of possible changes in the values
of H(q = 2), α0, W, αmax, and CI for the interevent ∆δ(t) and ∆τ(t)
series, Buishand’s test (Buishand, 1982) is applied. This homogeneity
test is able to statistically determine with a certain percentage of con-
fidence if a series may be considered homogeneous along the time
or, conversely, if a sharp change (a maximum for instance) or a time
trend is detected. An example of successful application to climatic
temperature series can be found in (Martínez et al., 2010).

The computational process of Buishand’s test can be described
very briefly as follows:

Residuals of the original data series {x} are obtained by com-
puting

X∗(k) = ∑
k
i=1 x(i) − ⟨x⟩. (13)

If the original series is homogeneous, {X∗} will depict fluctu-
ations around zero. On the contrary, a minimum or a maximum
value of X∗(k) will be associated with positive or negative changes
on {x} close to the critical point k of the series. The parameter R of
Buishand’s test is defined as

R = {max(X∗(k)) −min(X∗(k))}/σ(x), (14)

for 1 ≤ k ≤N, with σ(x) the sample standard deviation of the original
series. Tables of the parameter R/N1/2 for different percentages of
the statistical significance of the detected sharp changes on {x} can
be found in (Buishand, 1982; Wijngaard et al., 2003).

V. RESULTS
The analysis of the multifractal behavior of the seismicity is

focused on the evolution of parameters H(q = 2), α0, W, αmax, and
CI, the last one including the contribution of α0, W, and the asym-
metry quantified by the quotient (αmax − α0)/(α0 − αmin), instead of
parameter B. The evolution of these parameters along the 2000–2018
period is investigated for ∆δ(t) and ∆τ(t) series. Figure 3 shows
some examples of multifractal spectra for three mowing windows
including segments of consecutive 1000 elapsed times. The first
example is characterized by a relevant symmetry, with signs of a
left shift; and the second one again depicts quite similar charac-
teristics but at the same time a notable increase on the spectral
amplitude. The third example is characterized by notable symmetry
with signs of a moderate right shift and remarkable small spectral
amplitude. This last example also shows shortcomings sometimes
appearing in the quantification of the multifractal parameters. In
this last example, spectral amplitudes for the right side depart from
a second order polynomial evolution, and in these cases, the asym-
metry and spectral amplitudes are better quantified by taking into
account extreme (αmax − α0) and (αmin − α0) values extrapolated to
q tending to ±∞. These shortcomings could generate uncertainties
or computational errors on the values of several multifractal param-
eters. Consequently, some of the relatively small oscillations in the
parameters along the moving windows could not only depend on the
complexities of the physical mechanism but would be generated by

FIG. 3. Three examples of multifractal spectra F(α–α0) for segments of elapsed
times δτ(t) characterized by different spectral amplitudes and asymmetries.
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the just mentioned shortcomings. The numerous multifractal com-
putations applied to the elapsed time and interevent distance series
have also shown that sometimes, parameter q [Eqs. (3)–(5)] has not
been possibly expanded up to ±15, being then again necessary for
the just mentioned extrapolation to ±∞. Despite these shortcom-
ings, the multifractal parameter maxima are well established and
detected.

Figures 4–7 show the evolution of H, α0, W, and αmax, respec-
tively, for the set of moving windows. In every one of these figures,
the upper plot shows the results for ∆δ(t) series and the lower plot,

those for ∆τ(t) series. Vertical dashed lines indicate the first window
including each one of the largest events detected (mainshocks of Mw
= 6.2, 6.0, and 5.9).

Bearing in mind that the windows length is 1000 elements and
the window shift is two elements, for a better interpretation of every
parameter evolution, it has to be remembered that a mainshock is
included along 500 moving windows. An example, available for the
other figures, of the set of moving windows including a mainshock
is shown in Fig. 4. Then, the maximum of the multifractal parameter
is detected when the last earthquakes previous to the mainshock and

FIG. 4. Evolution of the Hurst expo-
nent, H(q = 2), and series of distances
Δδ(t) (upper panel) and elapsed times
Δτ(t) (lower panel) between consecutive
events. Every one of the three red rect-
angles delimits the 500 moving windows’
interval, containing the same mainshock
detected by the multifractal analysis for
the first (at the beginning) and last time
(at the end of the rectangle).
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FIG. 5. Evolution of the central Hölder
exponent α0 and series of distances
Δδ(t) (upper panel) and elapsed times
Δτ(t) (lower panel) between consecutive
events.

a good part of aftershocks are included in the moving window. Con-
sequently, these maxima would be correlated with the activation of
the mainshock and its aftershock series, but they would not consti-
tute a direct warning of a forthcoming high magnitude earthquake.
These peaks are systematically more outstanding for ∆τ(t) than for
∆δ(t) series. This fact would reveal that the interevent time series
have a more complex behavior than the interevent distance series
close to and just after a large earthquake. Arrows point to peaks not
related to any of the three largest events occurred in the analyzed

period, thus indicating possible false detections of mainshocks. It is
worthy mentioning that, as it can be observed in Fig. 4, the evolu-
tion of the Hurst exponent, H(q = 2), indicates a notable increase in
persistence (long memory), especially for the ∆τ(t) series, when the
activation of a mainshock is approaching. It is also relevant that only
a few short periods of anti-persistence (short memory) are detected.
A similar behavior to that observed for these four parameters, is also
obtained for the complexity index, CI (Fig. 8). Forthcoming main-
shocks of notable magnitude are accompanied by clear increases in
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FIG. 6. Evolution of the multifractal
amplitude, W, and series of distances
Δδ(t) (upper panel) and elapsed times
Δτ(t) (lower panel) between consecutive
events.

the complexity index for both series and especially for ∆τ(t). Given
that the parameter CI would represent a synthesis of the complex-
ity degree of the evolution of elapsed time and distances between
consecutive shocks, it could probably constitute the most relevant
warning element to detect immediate earthquakes.

As mentioned before, some of the maxima detected for the
multifractal parameters (indicated by arrows in the Figures) are not
related to any of the four largest events included in the analyzed
period and could then be interpreted as possible false detections
of mainshocks. These peaks of multifractal parameters could be

attributable to earthquake swarms, defined by space-temporal clus-
ters of earthquakes with moderate magnitude, affecting a reduced
domain and activated along a relatively short time. The three pos-
sible swarms are detected between the consecutive mainshocks of
magnitudes Mw 6.2 and 6.0, 6.0, and 5.9 and after this mainshock
magnitude are characterized by an almost equal magnitude range
(Mw = 4.0–5.6, 4.0–5.8, and 4.4–5.5, respectively), areas of ∼12
× 23 km2, 16 × 40 km2, and 32 × 72 km2 and depths ranging
from 2.5 km–11.0 km, 4.5 km–10.5 km, and 4.5 km–18.5 km. Their
lengths vary from 1 day to 11 days–36 days. To compare the main
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FIG. 7. Evolution of the maximum Hölder
exponent, αmax, and series of distances
Δδ(t) (upper panel) and elapsed times
Δτ(t) (lower panel) between consecutive
events.

characteristics of the three mainshocks and swarms, both detected by
the multifractal parameters, their details are summarized in Table I.
Swarms used to be characterized by a short interval of moderate
magnitudes along days, weeks, or even a few months and spatially
distributed in areas with more extension than those corresponding
to mainshocks and their aftershock series. Consequently, swarms
and mainshocks are easily distinguished when seismic catalogs are
analyzed a posteriori. A different question is the possibility of dis-
tinguishing mainshocks and swarms by means of the multifrac-
tal analysis, especially if a future objective is the predictability of
mainshocks.

The assumed wrong detections appear at least one time for
every multifractal parameter, being remarkable that the effects of
the three swarms are observed more times for the parameters W,
αmax, and CI corresponding to Δδ(t) than for those related to Δτ(t)
series. Consequently, it could be concluded that interevent time

series, Δτ(t), would be less sensitive to swarm interference and it
would be then the most convenient series to be analyzed, in order
to reduce the possible detection of wrong earthquakes. Neverthe-
less, two peaks appearing in Δτ(t) plots for parameters H and W,
before the mainshock of magnitude Mw 6.2, must be also consid-
ered. Given that these peaks are not observed in the rest of the
plots and possible associated swarms have not been detected in the
seismic catalog, they could be the consequence of some computa-
tional irregularity concerning Eq. (3) for high positive or negative
values of q.

To assess whether a multifractal peak is associated with a main-
shock or with a wrong detection due to the effects of a swarm,
Buishand’s homogeneity test becomes a very useful discriminat-
ing factor. According to Buishand’s test, significant peaks must be
characterized by sharp minima of the Buishand parameter R/N1/2,
with N being the number of samples analyzed (number of moving
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FIG. 8. Evolution of the complexity index,
CI, and series of distances Δδ(t) (upper
panel) and elapsed times Δτ(t) (lower
panel) between consecutive events.

windows) and R being the parameter quantified by Eq. (14). For all
the multifractal parameters, peaks linked to the triggering of a main-
shock have been found to be characterized by statistical significances
equaling or exceeding 95% probability. Conversely, peaks associated
with swarms have not reached such a high significance. As an exam-
ple, Fig. 9 illustrates the evolution of the Buishand parameter for the
complexity index, CI, and both time series. For the interevent dis-
tance series, only the swarm detected between mainshocks of Mw
6.2 and 6.0 is associated with a high significance (notably the neg-
ative Buishand parameter), which then leads to a detection of a
false mainshock. By contrast, for the interevent time series, swarms
are not linked to statistically significant minima of R/N1/2. Conse-
quently, the results derived for the CI would permit detection of,
with notable certainty, the mainshocks of magnitude Mw 6.2 and
6.0 since they are associated with deep minima of the Buishand

parameter, and, with less certainty, the Mw 5.9 mainshock (lower
statistical significance). Beside this, a comparison of Buishand’s test
results for both time series would permit removal of the possibility of
false mainshock detections. Two swarms would not be linked to sta-
tistically significant minima of the Buishand parameter for any of the
time series. Although the analysis of interevent distance series would
lead to an erroneous detection of the third swarm as a mainshock,
the lack of the corresponding minimum of the Buishand parameter
for the interevent time series would permit discarding this wrong
detection.

As a summary, the MF-DF analysis confirming multifractal
behavior of ∆δ(t) and ∆τ(t) series is an appropriate methodology
to quantify the complexity characterizing the seismicity of this New
Zealand seismic active region. The results indicate that events with
high magnitude are related to increases in H, α0, αmax, W, and CI,
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TABLE I. (a) Magnitude, MW, latitude, longitude, hypocentral depth, h, origin time, t0, and date of the three mainshocks
identified by the multifractal parameters and (b) magnitude interval, δMW, covered area, S, focal depth interval, δh, and
length for the three swarms detected.

MW Lat (S) (deg) Long (E) (deg) h (km) t0 (h:m:s) Date

MAINSHOCKS
5.9 43.52 172.75 7.5 02:18:03.15 12/23/2011
6.0 43.57 172.74 6.9 02:20:49.26 06/13/2011
6.2 43.58 162.78 5.4 23:51:42.32 02/21/2011

δMW S (km2) δh (km) Length (days)

SWARMS
4.0–5.6 12 × 23 2.5–11.0 1
4.0–5.8 16 × 40 4.5–10.5 11
4.4–5.5 32 × 72 4.5–18.5 36

with the multifractal parameters reaching peaks with statistical sig-
nificance close to or exceeding 95%, in agreement with Buishand’s
test. According to the evolution of multifractal parameters shown
in Figs. 4–8, ∆τ(t) would be the most suitable series to detect high
magnitude events, given that higher peaks of the parameters are

more frequently reached for ∆τ(t) than for ∆δ(t). This different
behavior for both series could be explained bearing in mind that
close to the activation of a mainshock, specially at the beginning
of the aftershock series, the elapsed time ∆τ(t) between consecu-
tive events is notably shortened. Conversely, although the spatial

FIG. 9. Evolution of Buishand’s test
applied to the complexity index, CI, for
the series of distances Δδ(t) (upper
panel) and elapsed times Δτ(t) (lower
panel) between consecutive events.
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density of hypocenters also increases, the distance between two con-
secutive events is not necessarily shortened, given that the previous
(precursors) and posterior (aftershocks) seismic activity related to
the mainshock event of high magnitude remains confined all along
the area delimited by the high magnitude earthquake. Additionally,
a lesser possibility of misleading detections of swarms as mainshocks
has been found for ∆τ(t) than for ∆δ(t) series.

VI. CONCLUSIONS
The MF-DF algorithm offers the possibility of analyzing the

evolution of several multifractal parameters along periods of back-
ground seismicity, close to a mainshock and along the subsequent
aftershock period. Consequently, the obtained results permit to con-
firm the multifractal structure of the tectonic processes generating
the seismic activity on Earth, characterized by a notable degree of
complexity and non-linearity, with some of these questions also
quantified years ago by geologists and geophysicists from other
points of view to those proposed in this paper.

With respect to the detection of large peaks related to swarms
instead of mainshocks, the results obtained suggest that a compar-
ison of statistically significant peaks derived from Δτ(t) and Δδ(t)
series, together with the application of Buishand’s test, can distin-
guish between these two different kinds of earthquakes. In fact, the
assumed detected swarms and mainshocks by means of multifractal
analyses are absolutely coincident with the real episodes when the
seismic catalog is revised a posteriori.

Another question to bear in mind is the high number of sec-
ondary maximum and minimum multifractal parameters along the
moving window process. Despite the comparison between Δτ(t) and
Δδ(t), as well as the application of Buishand’s test, permitted to
detect and confirm swarms and mainshocks characterized by the
main peaks, it should not be forgotten that these oscillations on
the parameters could be consequence of a not absolute accomplish-
ment of two relevant properties concerning multifractal structures
of time series. One of them is the different long-range correlations
of short and long time; the other is a broad density of probability
for the empiric data analyzed. Additionally, the fact that the partial
accomplishment of these two constraints could contribute to some
incomplete multifractal spectra, with some of them shown in Fig. 3,
should not be discarded, where sometimes the empiric multifractal
spectrum cannot be expanded within the same range of positive and
negative parameters q.

The detection of statistically significant peaks of these parame-
ters close to a mainshock could also be a starting point for further
research on warnings of high magnitude earthquakes. Given that
the multifractal parameter peaks are detected after the mainshocks,
except for some swarms, two questions should be considered for
future analyses addressed to detect useful warnings of mainshocks.
First, peaks achieved by the multifractal parameters of Δτ(t) and
Δδ(t) series have to be generated by the activation of a mainshock
(a sliding on a previous tectonic fault or Earth’s crust rupture, gen-
erating a new fault) and the high seismic activity (redistribution of
tectonic stresses) at the beginning of the aftershock process. Second,
strategies for detecting forthcoming mainshocks of notable magni-
tude would be based on the analysis of increasing statistically signif-
icant trends on the multifractal parameters before the detection of a
maximum. In this way, the detected fluctuations of these parameters,

with a relevant number of small secondary maxima and minima,
would not mask the evolution toward a high magnitude event. The
authors of this paper recognize that the evolution of some multifrac-
tal parameters before a mainshock, despite confirming the multifrac-
tal structure, does not facilitate this strategy. Some examples could
be, for instance, the sudden increase detected on the multifractal
amplitude, W, the maximum Hölder exponent, αmax, or the com-
plexity index, CI. Nevertheless, the evolution of the Hurst exponent
and the Hölder central exponent, α0, would facilitate the detection
of time trends associated with a forthcoming mainshock.

A first overview of Figs. 2(a) and 2(b) could lead to the wrong
decision that plotting the time evolution of these two parameters
would be sufficient to detect the imminent triggering of a main-
shock of high magnitude. Despite notable sharp changes being quite
coincident with a mainshock, two shortcomings have to be under-
lined. First, these changes are more probably due to the mentioned
aftershock episodes than the main event. Second, the almost flat evo-
lution or linear increase of these parameters before the mainshock
is very different when the evolution is analyzed step by step. At a
more detailed time scale, it is characterized by strong oscillations,
with flat or linear increasing tendencies, making the algorithm for
short-time prevention of triggering of high magnitude earthquakes
very complex.

In short, the multifractal analysis permits achieving two results.
First, a better description of the complexity, nonlinearity, and
persistence/randomness characteristics of the seismic activity along
background seismicity (low magnitude earthquakes), swarms of
earthquakes with moderate magnitude, and mainshocks of high
magnitude and their associated aftershocks can be achieved. Second,
advances on the detection of multifractal parameters characteris-
tics, which would permit establishment of warnings of forthcoming
mainshocks of high magnitude, can be achieved.
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