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Abstract. We present a novel approach to parallelize the SpMV ker-
nel included in LASs (Linear Algebra routines on OmpSs) library, after
a deep review and analysis of several well-known approaches. LASs is
based on OmpSs, a task-based runtime that extends OpenMP directives,
providing more flexibility to apply new strategies. Based on tasking and
nesting, with the aim of improving the workload imbalance inherent to
the SpMV operation, we present a strategy especially useful for highly
imbalanced input matrices. In this approach, the number of created tasks
is dynamically decided in order to maximize the use of the resources of
the platform. Throughout this paper, SpMV behavior depending on the
selected strategy (state of the art and proposed strategies) is deeply an-
alyzed, setting in this way the base for a future auto-tunable code that is
able to select the most suitable approach depending on the input matrix.
The experiments of this work were carried out for a set of 12 matrices
from the Suite Sparse Matrix Collection, all of them with different char-
acteristics regarding their sparsity. The experiments of this work were
performed on a node of Marenostrum 4 supercomputer (with two sock-
ets Intel Xeon, 24 cores each) and on a node of Dibona cluster (using one
ARM ThunderX2 socket with 32 cores). Our tests show that, for Intel
Xeon, the best parallelization strategy reduces the execution time of the
reference MKL multi-threaded version up to 67%. On ARM ThunderX2,
the reduction is up to 56% with respect to the OmpSs parallel reference.
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1 Introduction

Sparse linear algebra is key in many scientific and engineering applications. One
of the most representative and used operations is the sparse matrix-vector prod-
uct (SpMV), defined as

y := αAx+ βy, (1)

where α and β are scalars, x and y are dense vectors and, A is a sparse matrix.
The sparse nature of the input matrix makes this operation highly unbalanced,
due to the non-uniform pattern when accessing the elements of the matrix. How-
ever, several storage formats have been proposed in order to palliate this effect.

The relevance of SpMV kernel is shown in the wide range of vendors and
open-source libraries [9, 3, 6, 1], and the large number of applications that make
use of it. A few of these reference sparse linear algebra libraries are MUMPS [4],
that implements a parallel sparse direct solver, SuperLU [12], a general purpose
library for the direct solution of systems of linear equations, MAGMA-Sparse [5],
that provides sparse linear algebra solutions for heterogeneous architectures,
cuSparse [1], which contains a set of basic sparse linear algebra subroutines
developed by Nvidia, PETSC [6], a suite of data structures and routines for the
solution of partial differential equations, FenicS [3], an open-source computing
platform for solving partial differential equations, or HPCG [9], a benchmark
project that aims to create a new metric for ranking HPC systems.

In this work, we focus on the sparse matrix-vector kernel (kdspmv) in LASs 5,
a linear algebra library based on OmpSs [2, 24, 23]. Given that LASs is imple-
mented in OmpSs, the analyzed strategies are implemented with this program-
ming model throughout this work, although other programming models can be
used to this end and benefit from those approaches. OmpSs is an open-source
programming model [10] that has the following advantages in contrast to other
runtimes: i) The model presents efficient management of the threads based on
the use of queues, without the need of dealing with the overhead found in others
models, such as the fork-join model used in OpenMP. ii) OmpSs is specifically
designed for the use of tasks, making it a good choice for the study of task-based
approaches. iii) It allows the user to have deeper control of the thread scheduling.
iv) It provides us with tighter control and better knowledge about the taskloop
implementation necessary to improve the proposed optimizations of the code,
especially for nesting. iv) OmpSs is especially well integrated with the tools
used for performance evaluation Extrae and Paraver. Extrae [13] is a dynamic
instrumentation package to trace programs which generates trace files that can
be later visualized with Paraver. Thanks to the its integration with OmpSs more
information can be retrieved for those implementations in comparison to other
programming models.

We propose and analyze different strategies in order to parallelize the SpMV
kernel included in LASs library [18, 19, 17], which implements the general SpMV
(see Equation 1) and operates on an input matrix stored in CSR format [11]. The
main challenge we target through the parallelization of this kernel is balancing

5 https://pm.bsc.es/gitlab/pvalero/lass/
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the computations among the cores in order to attain good performance. Four
different parallel approaches based on OmpSs features are proposed and analyzed
to tackle sparsity and achieve a balanced workload distribution.

2 State of the art

Sparse matrices are present in a wide variety of applications used in very differ-
ent fields such as graph analytics or economics. All these applications require the
resolution of large-scale linear systems, usually done through iterative methods,
and/or eigenvalue problems, whose most relevant component is the SpMV. For
this reason, improving the portability of this kernel and increasing the perfor-
mance delivered by making good use of the underlying resources is key for the
mentioned applications.

Big efforts have been carried out by the scientific community in order to in-
crease SpMV performance. An important part of the optimization of scientific
codes consists of using the appropriate format to represent matrices in mem-
ory [21, 20, 8, 25]. Following different approaches, cache performance, data local-
ity and, consequently, the overall performance of SpMV, has been proven to be
affected substantially. Some of the most common formats for sparse matrices are
Coordinate format (COO), Compressed Row Storage (CRS), Compressed Col-
umn Storage (CCS) [11] or ELLPACK-R [15]. Among these options, CSR is the
most widely used and the de facto standard due to the fact that no assumptions
on the sparsity structure of the matrix are made.

There exist several works that target the parallelization of SpMV on multi-
core CPU, GPU, and MIC (many integrated cores). In [14] different scheduling
strategies for particular matrices are explored for both architectures, multi-core
CPU (SPARC64 IXfx and Intel Xeon Ivy Bridge-EP) and MIC (Knights Corner).
Following the same type of comparison, but focused on analyzing the impact
of using a hybrid MPI/OpenMP approach to make better exploitation of the
hardware resources, [26] presents the results on the Knights Corner. Halfway
between applying new parallelization algorithms and choosing an appropriate
storage format, in [27] the authors propose the Blocked Compressed Common
Coordinate (BCCOO) storage format and improve load balancing through a
matrix-based segmented sum/scan algorithm on AMD FirePro W8000, GeForce
Titan X, and Nvidia Tesla K20.

The analysis of the bibliography regarding SpMV shows that works in this
area mostly focus on studying and proposing new storage formats that exploit
better the features of specific hardware or application. On the contrary, in this
work, we focus on CSR format, the most wide-used format for sparse matrices,
and target algorithms that can be easily implemented and tuned on a multi-core
CPU.
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3 Parallelizing SpMV

Parallelizing SpMV is key to solve nowadays problems in a wide spectrum of
engineering and scientific operations. For this reason, we explore four different
approaches based on OmpSs, that aim to increase the performance attained by
SpMV thanks to making better use of the platform resources. In this section,
we present these approaches and provide a small schema and pseudo-code to
illustrate each case.

3.1 One task per row

One task per row is a simple and straight-forward approach in which one task per
row is created (see the pseudo-code and schema in Figure 1). Given that each task
deals with a different row, there are no dependencies. However, numerous tasks
are created, as many as rows are in the matrix; and, these tasks are usually
very small due to the low amount of non-zeros per row, thus introducing a
non-negligible overhead for the runtime. In addition, the workload unbalance is
inherent to this approach since the number of computations performed by each
task depends on the number of non-zero elements.

for ( r = 0 ; r < nRows ; r++){
s va l = 0 . 0 ;
#pragma oss task . . .
{

for ( c = 0 ; c < nCols ; c++) {
va l = VAL A[ROWA[ r ]+c ] ;
c o l = COL A[ROWA[ r ]+c ] ;
s va l += val ∗ X[ co l ]∗ALPHA;

}
Y[ r ] = sva l + Y[ r ] ∗ BETA;

}
}

Fig. 1: Pseudo-code and schema for one task per row approach.

3.2 Blocking

Blocking implementation consists of splitting the matrix into smaller blocks and
creating one task per block. With this strategy we ensure the reuse of the same
entries of the array y within the task, thus improving data locality. Nevertheless,
blocking the matrix requires a preprocessing in order to create the blocks in
CSR format, which may add an overhead to the total run time. Moreover, all
the blocks that comprise the same rows in the matrix update the same positions
of the array y, turning into data dependencies. An additional question to take
into account with this approach is the changes required in the code in order to
apply blocking, since restructuring the matrix and dealing with the new data
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dependencies make the programming difficult. Moreover, the block size to be
used when blocking the matrix needs to be calculated in advance, requiring a
previous analysis to determine it.

This approach is based on the code developed in [28], where an improved
version of the conjugate gradient method is presented.

3.3 Taskloop

Keeping the use of coarser tasks, we propose the use of taskloop. In this case,
each task will perform the matrix-vector multiplication on a fixed number of
rows. The taskloop construct is used to distribute the rows in different tasks
and the clause grainsize is used to determine the number of rows processed by
each task. The main advantage of this approach is its simplicity, although the
grainsize needs to be determined to maximize the use of the cores. However, it
is important to note that the number of non-zeros may be highly unbalanced
depending on the matrix. In our case, the grainsize is set in order to create one
chunk per core, thus it is calculated as #rows/#cores. In this way, we ensure
that all cores are used and the overhead due to tasks creation is minimum. Thus,
it can be used as a baseline.

#pragma oss task loop
g r a i n s i z e (nRows / #cor e s )

for ( r = 0 ; r < nRows ; r++){
s va l = 0 . 0 ;
for ( c = 0 ; c < nCols ; c++) {

va l = VAL A[ROWA[ r ]+c ] ;
c o l = COL A[ROWA[ r ]+c ] ;
s va l += val ∗ X[ co l ]∗ALPHA;

}
Y[ r ] = sva l + Y[ r ] ∗ BETA;

}

Fig. 2: Pseudo-code and schema for taskloop approach.

3.4 Grouping

Finally, aiming to keep using coarse tasks but trying to adapt to the different
amount of non-zero elements per row, we propose to apply the grouping approach
of Valero-Lara et al. [16, 22]. In this case, we create groups of rows according
to a limit (given by the architecture, e.g. L1 size, L2 size, ...) and each group
is processed by a different task. The main drawback of this approach is that it
requires extra calculations in order to create the groups and this makes the code
less readable. Also, using this approach one core is busy computing the next
group and creating tasks.
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4 Performance analysis

In this section, we present performance results for all the presented approaches
in order to show the benefits/drawbacks of each one.

We have used a set of 12 characteristic matrices obtained from the SuiteS-
parse Matrix Collection [7] (formerly the University of Florida Sparse Matrix
Collection)6.

Although we analyze all the matrices of our test set, we pay particular at-
tention at the in-2004 matrix as the main test case, due to its characteristics.
The in-2004 matrix is a non-symmetric square matrix with 1,382,908 rows and
16,917,053 non-zero elements. Additionally, as reported in Table 1, it has rows
with no elements (minimum 0) and other rows with quite a few elements (max-
imum 7753). These features made us consider this matrix as an “extreme” test
case in which sparsity in unevenly present.

A graphical representation of the in-2004 example matrix is shown in the last
column of Table 1.

Performance results

We have run our tests on Marenostrum 4 and Dibona clusters; we have used a
single node of Marenostrum 4 Supercomputer, featuring two sockets Intel Xeon
Platinum 8160 CPU with 24 cores each at 2.10GHz for a total of 48 cores per
node. Regarding memory hierarchy, each core has 32KB L1 and 1MB L2 caches,
and 33MB L3 cache shared among the 24 cores per socket. Regarding Dibona,
each node presents two sockets ARM Thunder X2 (ARMv8 NEON) CPU with
32 cores each running at 2.0GHz for a total of 64 cores per node. In this case,
only one socket has been considered for our tests. The memory hierarchy char-
acteristics for this platform are 32KB of L1 cache, 256KB L2 cache, and 32MB
L3 cache.

All tests are compiled with mcxx 2.3.0 (with GCC 6.4.0 or Intel icc 17.0.4 if
available) and OmpSs-2 2018.06 (nanos6 2.4); for those tests that use MKL func-
tions, MKL 2017.4 is used. Each test is run 20 times given the short time required
for the computation on SpMV; from this measurements, the first repetition is
discarded and only used as a warm-up phase. The reported values are calcu-
lated as the median of the remaining 19 repetitions, which measure exclusively
the computation of the SpMV, leaving outside the initialization of the operands.
Moreover, in each repetition cache memory is flashed to avoid data reuse between
consecutive tests. In order to palliate possible NUMA effects on the overall exe-
cution time, affinity is set via taskset and numactl −−interleave = all is used
to spread across the sockets.

Figure 3-Left graphically illustrates execution time for single-threaded MKL
(mkl dcsrmv), and the multi-threaded one (mkl sparse d mv) as reference. The

6 Input matrices from the UFMC are: cant, conf5 4-8x8-05, consph, cop20k A, eu-
2005, Ga41As41H72, in-2004, mac econ fwd500, mpi1, pdb1HYS, Si41Ge41H72,
webbase1-M
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single-threaded MKL routine implements SpMV as described in Equation 1 on a
sparse matrix stored in CSR format, however, the multi-threaded MKL routine
performs the same operation in parallel, but it requires the use of specific MKL
structures to deal with the CSR matrix. Note that the order of the matrices in
the x differs from 1, showing decreasing performance to ease the reading of the
plots.

Table 1: Set of matrices used in SpMV tests. Information provided for each
matrix: matrix ID, name in the SuiteSparse Matrix Collection, domain, number
of rows (and columns), number of non-zero elements, maximum non-zeros per
row, minimum non-zeros per row, average non-zeros per row, image of the matrix.

ID Name Domain #rows NNZ Max. Min. Avg. Matrix

m1 cant FEM Cantilever 62,451 2,034,917 40 1 32

m2 conf5 4-8x8-05 Quantum chromody-
namics

49,152 1,916,928 39 39 39

m3 consph FEM concentric
spheres

83,334 3,046,907 66 1 36

m4 cop20k A Accelerator cavity
design

121,192 1,362,087 24 0 11

m5 eu-2005 Small web crawl of
.eu domain

862,664 19,235,140 6,985 0 22

m6 Ga41As41H72 Real-space pseudo
potential method

268,296 9,378,286 472 1 34

m7 in-2004 Small web crawl of
.in domain

1,382,908 16,917,053 7,753 0 12

m8 mac econ fwd500 Macroeconomic
model

206,500 1,273,389 44 1 6

m9 mip1 Optimiation problem 66,463 5,209,641 713 1 78

m10 pdb1HYS Protein data bank
1HYS

36,417 2,190,591 184 1 60

m11 Si41Ge41H72 Real-space pseudo
potential method

185,639 7,598,452 531 1 40

m12 webbase1-M Web connectivity
matrix

1,000,005 3,105,536 4,700 1 3
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Fig. 3: Execution time for SpMV with different approaches on Intel Xeon: one-
task-per-row, grouping, blocking and taskloop (Left). Execution time for 1, 2, 4,
8, and 16 chunks per core (Right).

Performance results show that the reference single-threaded MKL routine
and the one-task-per-row approach, provide longer execution times.

For the one-task-per-row approach, this behavior was already predicted when
presenting this strategy since many tasks are created (as many as rows) and its
granularity is too fine, introducing a relevant overhead.

According to these results the best options to parallelize SpMV are grouping,
multi-threaded MKL, blocking and taskloop strategies. Grouping (with a limit
equal to 25% of L2 cache, being this the best limit tested) provides the worst
performance among these three options. MKL multi-threaded presents a behavior
similar to Grouping, although it performs better for very unbalanced matrices
(m4, m5, m7, and m12), being slower than taskloop on all the tested matrices.

Blocking seems the best option in terms of execution time in some of the
cases. However, execution time is considerably high for those matrices that have
a highly unbalanced number of non-zeros per row (m4, m5, m7, and m12) and,
more important, the preprocessing time needed to block the input matrix as
CSR subblocks makes it unfeasible since this preprocessing requires an execution
time between 2 and 3 orders of magnitude greater than the SpMV execution
time. Finally, taskloop provides good results in all cases and, besides, eases the
parallelization of SpMV thanks to its simplicity, facilitating the maintainability
of the code.

In the light of the presented performance results, we consider the taskloop
approach the most suitable one in order to parallelize SpMV. This selection is
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Fig. 4: Traces for SpMV when applying taskloop with 1 (first) and 4 chunks
(second) per core, taskloop + nesting with th = 25% L2 (third) and th = avg
nnz per chunk (fourth) optimizations to taskloop approach.
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based on several reasons such as i) the fact that it is the easiest approach since
it only requires using the taskloop construct, ii) it is also easily optimizable
because, although it requires a previous analysis, testing different grain sizes
on the platform is enough to attain a reasonable behavior, iii) it follows the
OpenMP standard, so portability is ensured even if OmpSs is not available on
other platforms.

Figure 4 (first) contains the trace of the execution of SpMV (using in-2004
as an input) based on the taskloop strategy when a grainsize of #rows/#cores
is used. Axis y shows the 48 cores executing the kernel (on Intel Xeon platform)
and axis x is time. The trace shows that the taskloop construct maximizes the
use of resources, using all the available cores in the platform. However, due to the
static partitioning of the iterations made by taskloop and the unbalanced nature
of the created chunks, the total execution time for a few tasks is well above the
average task execution time (∼ 24, 000µs vs. 8, 000µs). In this scenario, and
given the good use of the resources made by the taskloop construct, we consider
exploring other alternatives that could potentially palliate the imbalance among
tasks and thus reduce the overall execution time.

5 Optimizing the taskloop implementation

In this section, we present two approaches to improve the load balance of SpMV
when using the taskloop construct to distribute the computations among the
cores. First, we focus on the straight-forward use of the taskloop construct and
the grainsize clause, performing an analysis in order to find the most suitable
grainsize. As an alternative to this approach, we present a more sophisticated
strategy where two levels of parallelism are created depending on a few features
either of the architecture or the input matrix.

5.1 Taskloop grainsize selection

As mentioned before, although the taskloop strategy provides high performance,
it is essential to determine the grainsize used to create the tasks. To find this
number, and keeping in mind that we want to maximize the use of the resources,
we tested different configurations that distribute the number of rows evenly
(independently of the number of non-zero elements in each row). In addition,
it is necessary to create enough tasks to “feed” all the available cores, for this
reason, we analyzed the performance of the SpMV when creating #cores∗factor
tasks, with factor equal to 1, 2, 4, 8 and 16, and #cores equal to 48. This formula
computes the size of the grainsize of the taskloop clause and then the number
of tasks as well. Figure 3-Right graphically illustrates the execution time for all
the matrices of the test set (Table 1) using different factors. We can see that,
even the matrices are very different among them in terms of number of non-
zero elements and sparsity, results show that almost all matrices present the
same behavior, finding the minimum execution time when a factor of 4 is used.
Note that this is not the case for eu-2005 and webbase-1M matrices. For these
matrices a factor of 8 provides lower execution times.
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5.2 Taskloop + nesting

Finally, we present taskloop + nesting as an alternative to create tasks with a
more regular number of non-zero elements, thus trying to mimic the behavior
of grouping but reducing the overhead introduced by the thread in charge of
creating the groups.

In this scenario, first we need to replace the taskloop construct used to create
the chunks by a task construct. This change allows us to know the first and
last row that is processed in a specific chunk and, consequently, the number of
non-zeros of the chunk can easily be calculated. Despite this change, we set the
number of rows to be processed by a task to #rows/#cores, which mimics the
behavior of setting the grainsize clause for the first level taskloop to the same
number. Then, a second level of parallelism is created in order to balance the
workload among the created tasks when necessary. The idea is subdividing those
tasks created at the first level that have a huge number of non-zeros into smaller
tasks that can be balanced better. To this end, every time a task is created at
the first level we check if the number of non-zeros of the chunk being processed
is greater than a threshold th. This idea is presented in Figure 5.

nChunks = get num chunks (nRows ) ;
for ( nc = 0 ; nc < nChunks ; nc++){

#pragma oss task
{

nnzT = number o f non zeros in chunk ( nc ) ;
i n i t r ow = g e t i n i t r ow ( nc ) ;
end row = get end row ( nc ) ;
#pragma oss task loop

num tasks (nnzT/th )
i f (nnzT > th )

for ( r = in i t r ow ; r < end row ; r++){
s va l = 0 . 0 ;
for ( c = 0 ; c < nCols ; c++){

va l = VAL A[ROWA[ r ]+c ] ;
c o l = COL A[ROWA[ r ]+c ] ;
s va l += val ∗ X[ co l ] ∗ ALPHA;

}
Y[ r ] = sva l + Y[ r ] ∗ BETA;

}
}// End of pragma

}

Fig. 5: Pseudo-code and schema for taskloop + nesting approach.

To set the threshold value we have followed two different strategies, one
focused on the architecture features and one that takes into account the sparsity
of the matrix. In the first case, we set the threshold to a specific value that
depends on the L2 cache size, more specifically, we perform the tests setting
the threshold to 25% and 50% of L2 capacity. For the second case, we calculate
the average number of non-zeros per chunk, this is the total amount of non-
zero elements in the matrix divided by the number of cores of the platform. In
both cases, if the number of non-zero elements of the chunk is greater than the
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threshold th, the task is split in as many tasks as necessary, each of them in
charge of th elements.

To make a deeper analysis, Figure 4 shows the traces for the following strate-
gies on in-2004 matrix: taskloop with 4 chunks per core, taskloop + nesting with
th=25% of L2 cache, and taskloop + nesting with th=average of nnz per chunk.
Axis y shows the 48 cores running SpMV kernel on Intel Xeon platform, while
axis x shows the execution time. All traces are in the same scale; this is, the
total time represented by axis x is the same in all cases.

After the analysis of the traces for in-2004 matrix, we can state that applying
nesting may be beneficial in order to compact the trace by splitting the most time
consuming tasks in smaller ones. In this specific case, the approach focused on
architecture features, setting the threshold to 25% of L2 cache, allows to compact
the trace by creating smaller tasks, which are scheduled in a more balanced way
and, consequently, help to reduce the overall execution time. However, setting
the threshold to the average number of non-zeros per row, generates similar
imbalance to that seen in taskloop.

We extend the analysis to all the matrices of the test set (see Figure 6). We
use the performance of the taskloop one chunk per core approach as a reference.
For well structured matrices, where the number of non-zero elements per row re-
mains almost constant, the taskloop 4 chunks per core approach is able to achieve
good performance; almost negligible overhead is introduced and workload is well
distributed thanks to the nature of the matrices (m1, m2, and m3). However,
for very unbalanced matrices (m5, m7, m9, and m12), using taskloop + nesting
based on L2 capacity is able to outperform the previous approach, achieving
about 60% faster executions with respect to the reference parallel implementa-
tion. Regarding the taskloop + nesting approach based on the average number
of non-zeros per chunk, we see that performance is similar to that attained in
the other nested approaches except for a few matrices (m6, m9, m11), where the
execution time is considerably increased. Figure 6 also includes the percentage
of improvement for taskloop 4 chunks per core and taskloop + nesting based on
L2 capacity (higher is better) with respect to the parallel reference code. Results
show that the gains when cache capacity is taken into account are relevant espe-
cially for very unbalanced matrices; however, for balanced matrices the taskloop
4 chunks per core approach provides better results.

When comparing these results with those obtained for ThunderX2 (Figure 7),
we observe a similar behavior. The only exceptions are m6, m9 and m11 matrices.
For those matrices, slightly higher performance is attained with taskloop with 4
chunks when Intel Xeon is used.

6 Conclusions and future work

Performance results show that making a static and homogeneous partition of the
rows by using taskloop is able to achieve a good result on well-balanced sparse
matrices. However, on other matrices where we find an important unbalanced
sparsity, the use of taskloop + nesting presents a much better behavior, achieving



Towards an Auto-tuned and Task-based SpMV (LASs Library) 13

Fig. 6: Execution time (left) and percentage gain (right) for SpMV when applying
optimizations to taskloop on Intel Xeon platform.

Fig. 7: Execution time (left) and percentage gain (right) for SpMV when applying
optimizations to taskloop on ThunderX2 platform.

an important time reduction in some cases. Both approaches are faster than the
multi-threaded MKL counterpart.

In this scenario, we plan as future work to combine both strategies via the
final clause in other to choose the most appropriate one, depending on the input
matrix with the aim of attaining higher performance in each case.
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