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Environments
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Abstract—Hybrid programming is a promising approach to
exploit clusters of multicore systems. Our focus is on the combina-
tion of MPI and tasking. This hybrid approach combines the low-
latency and high throughput of MPI with the flexibility of tasking
models and their inherent ability to handle load imbalance. How-
ever, combining tasking with standard MPI implementations can
be a challenge. The Task-Aware MPI library (TAMPI) eases the
development of applications combining tasking with MP1. TAMPI
enables developers to overlap computation and communication
phases by relying on the tasking data-flow execution model. Using
this approach, the original computation that was distributed
in many different MPI ranks is grouped together in fewer
MPI ranks, and split into several tasks per rank. Nevertheless,
programmers must be careful with task granularity. Too fine-
grained tasks introduce too much overhead, while too coarse-
grained tasks lead to lack of parallelism. An adequate granularity
may not always exist, especially in distributed environments
where the same amount of work is distributed among many more
cores. Worksharing tasks are a special kind of tasks, recently
proposed, that internally leverage worksharing techniques. By
doing so, a single worksharing task may run in several cores
concurrently. Nonetheless, the task management costs remain the
same than a regular task. In this work, we study the combination
of worksharing tasks and TAMPI on distributed environments
using two well known mini-apps: HPCCG and LULESH. Our
results show significant improvements using worksharing tasks
compared to regular tasks, and to other state-of-the-art alterna-
tives such as OpenMP worksharing.

I. INTRODUCTION

Hybrid programming combines two different programming
models to exploit inter-node and intra-node parallelism. This
is a promising approach to exploit modern HPC systems, but
effectively combining intra-node and inter-node parallelism
remains a challenging task, because it usually requires a
seamless integration of two different approaches in the same
application.

This paper focuses on the combination of message passing
(MPI]) and tasking to exploit inter-node and intra-node paral-
lelism, respectively. Our goal is to mix the low latency and
high throughput of MPI together with the flexible data-flow
execution model of tasks, and also to leverage the inherent
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ability of tasks to overlap computation and communication
phases, as well as to handle intra-node load imbalance.

We focus on tasking rather than other approaches because
of its ability to drive the execution based on the data-flow,
and the minimal effort required to add tasking to an already
written application. Also, tasking enables an incremental par-
allelization. Other approaches would require deeper changes
or even a complete refactor of applications.

However, such a combination present several challenges.
The use of MPI communications inside tasks can easily lead to
deadlocks. Additionally, communication overhead can increase
considerably due to the fact that tasks can be blocked waiting
for communications to complete. If this happens, all the
threads blocked will be idle while other tasks may be ready
to run, and are waiting for some thread to execute them. The
Task-Aware MPI library [1] is a library that simplifies the
interoperability between MPI and tasking models [2]. The
use of TAMPI guarantees the progress of MPI operations
inside tasks, ensuring a deadlock-free execution. Addition-
ally, with TAMPI, the programmer can leverage fine-grained
synchronization between tasks to overlap communication and
computation phases. This is achieved by releasing the cores
of tasks blocked on communications to make them available
to run other ready tasks.

In this hybrid approach, the computations in MPI ranks
that belong to the same node are grouped together into a
few ranks (usually one per NUMA node). The work on each
of these few ranks is then split into multiple tasks. This
parallelization strategy introduces another challenge related to
the task granularity. Finding the proper task granularity is a
concern in shared-memory environments [3] but its importance
might be even higher in distributed environments. Too fine-
grained tasks result in too much overhead, while too coarse-
grained tasks result in lack of parallelism. In distributed
environments, given that the number of cores is usually much
higher compared to shared-memory environments, it is easy
to incur a lack of parallelism, especially in strong scaling
scenarios.

The OmpSs-2 programming model [4] recently presented



a new type of task called worksharing task [5]. This is a
special kind of task that can be applied to for loops to
uncover additional parallelism. Worksharing tasks efficiently
exploit the fine-grained structured parallelism of for loops
dividing the iteration space into chunks, that can be executed
collaboratively by several cores, but creating only a single task.
Thus, the overhead is kept low while parallelism is increased.

In this work, we study the combination of worksharing
tasks and TAMPI in weak and strong scaling scenarios using
two well-known mini-apps such as LULESH and HPCCG.
Specifically, our contributions are (1) completely taskified and
distributed versions of LULESH and HPCCG, (2) versions of
LULESH and HPCCG using worksharing tasks and MPI, (3)
a thorough analysis of the different versions, and (4) an eval-
vation of the weak and strong scaling scenarios using a large
number of cores. Our results show significant improvements:
for LULESH reaching up to 1.3x speedup compared to the
best state-of-the-art version (pure MPI), and 3x compared to
regular tasks; and for HPCCG reaching up to 1.08x speedup
compared to the best state-of-the-art version (OpenMP+MPI),
and 1.33x speedup compared to regular tasks.

The rest of this document is structured as follows: Section II
contains background to understand this work; Section III
details the proposed solution; Section IV consists of an evalua-
tion and discussion of the proposal; Section V reviews the most
relevant related work; Section VI summarizes the work done
and provides concluding remarks; and, finally, Section VII
presents future work proposals.

II. BACKGROUND

In this Section we describe the worksharing tasks and the
TAMPI library to make our proposal comprehensible.

Worksharing tasks are a special kind of task that behaves
like a regular task in almost everything, but there is a key
difference that makes them very useful: regular tasks are
run by a single thread, while worksharing tasks may be
run collaboratively by several threads concurrently, while still
keeping the task management overhead as low as for a regular
task. In terms of OpenMP [6], it can be compared to a task
with a parallel for inside, but with no barrier at the
end of the construct. Thus, parallelism is increased, while the
overhead remains unchanged.

Worksharing tasks are only applicable to for loops. The
iteration space of the loop is partitioned into chunks and
each of the chunks can run in a different thread at the
same time. In consequence, the iterations of the loop must
be independent. A worksharing task will use up to as many
threads as cores available, at the point where the task is
scheduled for execution.

In summary, worksharing tasks preserve the main advantage
of using tasks (i.e. a data-flow execution with its consequent
flexibility), while keeping overhead low, and enabling suffi-
cient parallelism.

TAMPI is a library designed to improve the interoperability
between task-based programming models and MPI. Placing

MPI calls inside tasks may cause deadlocks due to the out-of-
order execution of tasks. This library implements a cooperation
mechanism between the tasking runtime and MPI library that
ensures a deadlock-free and efficient execution.

TAMPI provides two different modes: blocking and non-
blocking. In this paper, we only use the non-blocking mode.
This mode focuses on the use of non-blocking asynchronous
MPI operations inside tasks. When using TAMPI non-blocking
mode inside a task, the task binds its completion not only to
the execution of its body, but also to the completion of all
the MPI requests indicated. The task completion implies the
release of its dependences, as well as freeing its data structures.

TAMPI offers two methods to describe which requests a task
must wait for, both of them asynchronous and non-blocking:
TAMPI_Iwait for a single request, and TAMPI_Iwaitall
for multiple requests. So, a task that binds its completion to
one or more MPI requests using the mentioned methods will
not complete (and so release its dependences) until its body is
run and the MPI requests have completed. If a task completes
its body before one or more MPI requests finished, it will not
release its dependences, and so, the successors cannot become
ready for execution. However, the core that was running the
unfinished task can proceed to execute other ready tasks, thus
preventing the core to be idle waiting for the communication.

When the communication actually finishes, TAMPI notifies
the task-based runtime system that the task is actually com-
pleted. After that, the runtime can release the dependences, and
the successors become ready for execution. With this mecha-
nism, progress is ensured. The effects are not only deadlock-
free executions, but there are also possible improvements in
performance, because the CPU utilization tends to be better.

In normal MPI programs, the programmer can try to over-
lap communication and computation by placing non-blocking
communication calls as early as possible and the correspond-
ing waits as late as possible, and hope that the MPI library pro-
gresses the communication while the intervening computation
is being executed. By using tasks and TAMPI, the MPI calls
do not require such careful placing, available computation can
be discovered dynamically via the task dependency system,
and reliance on the MPI progress engine is reduced.

ITI. USING WORKSHARING TASKS (+TAMPI) IN
DISTRIBUTED ENVIRONMENTS

In Section I we stated the problems that we face when
combining tasking and message passing. In this section we
give an in-depth explanation of these problems. In addition,
we will discuss why the use of worksharing tasks and TAMPI
can solve, or minimize the negative impact of, such problems.

Task granularity is a serious concern inherent to the use
of tasks. The lower bound is determined by the runtime
ability to manage fine-grained tasks, while the upper bound
is determined by a function of the problem size and the
number of cores. Either of the edges is extremely harmful
for performance: at the lower edge there are too many fine-
grained tasks that introduce too much overhead, while at the
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Fig. 1. Typical granularity chart.

upper edge there are too few coarse-grained tasks that cannot
feed all the cores.

Figure 1 shows such a problem. In the figure, the x-axis
shows granularity, and the y-axis shows performance. There
are three different series representing different problem sizes.
The chart also contains coloured parts which represent differ-
ent chart (not application) phases. Phase 1 shows the scenario
where many fine-grained tasks introduce too much overhead,
Phase 2 shows the scenario reaching peak performance, and
Phase 3 shows the scenario where there are too few coarse-
grained tasks that cannot feed all the cores. Note that from
x=256 to x=1K, phases 1 and 3 are overlapped. This is because
it is Phase 1 for PS=16K, but Phase 3 for PS=128K and
PS=1M.

Problem size is a further factor to consider in the granularity
choice: the bigger the problem size is, the coarser grain we
can use without incurring in lack of parallelism. This fact can
also be seen in Figure 1. All of this is true in shared-memory
environments. However, a distributed environment aggravates
the task granularity problem. The reason is that we usually try
to solve the same problem faster by providing more resources.
Therefore, in a strong-scaling scenario, the overall problem
size remains constant, but it must be distributed amongst an
increasing number of cores. If we keep increasing the number
of cores while the problem size and the task granularity
remains the same, the performance will suffer due to lack
of parallelism. The problem size cannot be changed in this
scenario, because it is the problem we want to solve, so we
can only adjust the task granularity.

Of course, we can reduce the task granularity as we increase
the number of cores. Nonetheless, we will end up in the other
edge: too many fine-grained tasks that introduce too much
overhead. It is exactly at this point where worksharing tasks
can be a useful tool. Using worksharing tasks, a single task
can feed several cores (up to all the cores of a single MPI
process), but with an overhead similar to a regular task, which
can only feed a single core. Thus, coarser granularities can still
be used without incurring either a lack of parallelism or too
much overhead.

Communication overhead can be another important problem
when combining tasking and message passing. Even if we use
asynchronous MPI operations, there is always a point where
the data is actually needed. If data is not ready yet, given
that we include the communication operations inside the tasks,
they will have to wait for the data. This happens because the

task-based runtime system has no clue about whether a task
may need to wait for communications or not. For instance,
suppose there are two different tasks ready to run: task A
needs data from communication and task B does not. The
runtime chooses task A and data from the communication
is not ready yet, so the core is just waiting idle until the
data is ready. Meanwhile, task B could have been completed.
If this situation is sufficiently frequent, performance can be
negatively affected.

TAMPI prevents the previous situation from happening.
Properly annotating code with data dependences, and using
the appropriate TAMPI methods, a task that needs data from
a communication will not start until the data is available
because the dependences will prevent it from occurring. Thus,
in the previous situation, task B would have been executed
first, and then task A after the predecessors completed (i.e.
the communications finished). Overall, the CPU utilization
improves because the cores are no longer idle waiting for
communications to complete, but can run other ready tasks
instead. Compared to not using TAMPI, performance may
improve if cores were idle waiting for communications to
complete for sufficiently long.

IV. ANALYSIS AND EVALUATION OF APPLICATIONS

Our evaluation uses two well known mini-apps: High Per-
formance Computing Conjugate Gradients (HPCCG) [7]
and Livermore Unstructured Lagrangian Explicit Shock
Hydrodynamics (LULESH) [8]. Both of them are well
known proxy apps used to assess the performance of software
and hardware.

HPCCG is a simple conjugate gradient benchmark code for
a 3D chimney domain. It is part of the Mantevo project [9].
This mini-app presents very well structured parallelism, and
it is memory-bound.

LULESH solves the Sedov blast wave problem for one
material in three dimensions [10]. It is one of the five challenge
problems in the DARPA UHPC program. It is designed to
test different tuning techniques and programming models.
LULESH contains different phases and includes load imbal-
ance issues.

The reference versions for both apps are the pure MPI and
the OpenMP+MPI versions available in the public repositories
of each of them. Starting from these versions, we developed
two new versions using regular tasks and worksharing tasks.
We would like to clarify that the version using regular tasks
uses OmpSs-2, as does the worksharing tasks version. Also,
both of them make use of TAMPI, while the OpenMP+MPI
and the pure MPI versions do not.

Next we will detail the methodology followed in the eval-
uation. After that, we present, analyze and discuss the results
from the two mini-apps.

A. Methodology

As already introduced, our evaluation involves four different
versions. The names that appear in the legends of figures as
follows:



o MPI. The version using only MPI.

e OMP. The version using OpenMP worksharing loops and
MPL

o T. The version using regular tasks of OmpSs-2 and MPL
It includes TAMPI.

o TF. The version using worksharing tasks of OmpSs-2 and
MPIL. It includes TAMPL.

For each of the applications, we perform a granularity
analysis in a single NUMA node. This is because in the strong
and weak scaling experiments we use one MPI process per
NUMA node. The objective is to determine the best granularity
to be used in the weak and strong scaling scenarios.

It may happen that a single granularity does not fit all the
tasks. We support our analysis with execution traces. In the
traces, we show the weights of each task so that it is possible
to see if granularities are adequate for some tasks but not for
others. When this happens, we define a reference granularity
and then we apply multiplication factors for those tasks that
need it. For instance, suppose there are two tasks: task A and
task B. The granularity is 10 iterations. This granularity is
good for task A, but it is too fine for task B and we spend
as much time creating the task as executing it. Therefore, we
apply a multiplication factor of 2 for task B, so its granularity
is now 20 iterations. The points of the granularity analysis will
always refer to the reference granularity.

In addition, we motivate the decision of using worksharing
tasks rather than regular tasks using execution traces. For
obvious reasons, task granularity analysis does not apply to the
MPI version. The OMP version uses only worksharing loops
with static scheduling, so the granularity analysis does not
affect it either.

Once the optimal granularity is determined, we move for-
ward to our second analysis: scalability analysis in a dis-
tributed environment. This analysis incorporates two scenarios:
weak scaling and strong scaling. Weak scaling starts from 1
node and a given problem size. At each new point, the number
of nodes is increased and so is the problem size. Strong scaling
also starts from 1 node and a given problem size. However,
in this scenario, the problem size is fixed for all the points,
while the number of nodes is increased at each new point. As
a last remark, in this experiment, we use one MPI rank per
core for the pure MPI version, and one MPI rank per NUMA
node (to favour data locality) for the hybrid versions.

Regarding the execution environment, all the experiments
were carried out on Marenostrum 4. A node of Marenostrum
4 is composed of 2 sockets Intel Xeon Platinum 8160 2.1GHz
24-core and 96GB of main memory [11]. Regarding the
software, we used the Mercurium compiler [12] (v2.3.0), the
Nanos6 runtime [13] (2020-05-15), the gcc and gfortran com-
pilers (v7.2.0), and the Intel compilers (v17.0.4). Regarding
MPI, we used the Intel implementation (v17.0.4). We also use
the Intel implementation of OpenMP. Finally, we used Extrae
[14] (v3.7.1) to obtain the execution traces, and Paraver [15]
to visualize them.

Finally, we would like to highlight that each of the results
is an average of 5 executions. We did not observe any

significant variation between different executions (standard
deviation <5%), so we think 5 executions is sufficient.

B. LULESH

LULESH is a quite big and complex mini-app. It contains
two different main phases, one devoted to perform operations
over elements, and the other one devoted to perform operations
over nodes. There are several kernels, with very different
computational costs. This application has a high degree of
parallelism across all the execution, if correctly annotated with
data dependences. Also, by design, it presents load imbalance
problems. These two facts, that can be seen in Figure 2, make
LULESH a very suitable application for tasking.

Figure 2 shows an execution trace of LULESH. The execu-
tion trace shows what is being executed in each of the threads
(y-axis) over time (x-axis). The white color means that no
task is being executed, and each of the other colors represent
a different task type. In this trace, we show a single iteration
of the main loop: from the red tasks to the next red tasks,
which are already part of the next iteration. The cyan tasks
are the last tasks belonging to the first phase, and the purple
tasks mark the start of the second phase. The arrows on the top
of the trace show approximately the duration of each phase.

When using MPI, there are four type of communications in
the application. The position of each of the them is approxi-
mately indicated in Figure 2. At the beginning of an iteration,
there is a MPI_Allreduce. Then there are two more point-to-
point communications before the small orange tasks, and after
the cyan tasks. Finally, the fourth and last communication, also
point-to-point, can be found in the white space between the
green and the dark orange tasks.

The OpenMP+MPI implementation uses worksharing loops
(i.e. parallel for). Usually, there is a parallel for
per loop. In some cases, the developers use the nowait
clause that eliminates the implicit barrier at the end of a
worksharing loop. As a side effect, this means that static
scheduling is mandatory. Given that LULESH presents load
imbalance issues, the use of worksharing with static scheduling
may hinder performance. In contrast, tasks has an inherent
ability to deal with load imbalance.

Moving from OpenMP worksharing to tasks requires replac-
ing each of the worksharing loops by several tasks. The most
important consideration is to avoid the use of taskwait,
and rely on the data dependences to achieve lightweight
synchronization. Once we have the implementation with tasks
using data dependences, we need to determine how many
different granularities there should be in the mini-app. For
that purpose, we use execution traces.

The trace of Figure 2 is an execution using a large problem
size, which displays good behavior throughout. Figure 3 is
the same trace but using a smaller problem size. In this
case, to have the same number of tasks, they must be more
fine-grained. In fact, they are too fine-grained, and the task
management overhead becomes too much. Specifically, in
Figure 3 it is possible to see the white color dominating
the trace, meaning that most of the time the cores are idle.
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TABLE I
AVERAGE TASK TIME, AND MULTIPLICATION FACTOR, FOR EACH OF THE
TASK TYPES OF LULESH MINI-APP USING A SMALL PROBLEM SIZE

— Task type Average Factor
—— CalcLagrangeElements 22.25 us 16
— CalcVelocityAndPositionForNodes 46.07 us 4
————— check_eosv_vc 13.10 us 16
e ——— InitStressTermsForElems 13.98 us 24
p— UpdateVolumeForElems m 5.12 us 48
p—1 CalcHourglassControlForElems m 361.32us 1
e e 1 CalcTimeConstraintsForElems 81.99 us 2
CalcFBHourglassForceForElems m 61550 us 1
EvalEOSForElems m 24.98 us 16
Fig. 2. Execution trace of the LULESH T version using a single granularity CalcFBH_collect 17545 us 1
for all the tasks with a big problem size on 24 cores (1 NUMA socket) CalcMonotonicQRegionForElems m 1650 us 48
= IntegrateStressTermsForElems m 386.66 us 1
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Fig. 3. Execution trace of the LULESH T version using a single granularity
for all the tasks with a small problem size on 24 cores (1 NUMA socket)

Looking at the complete trace, it is possible to see the producer
core (core 0, purple color) creating tasks during the entire
execution. The consumers cores execute tasks faster than the
producer core can create them.

The scenario with a small problem size is important consid-
ering the strong scaling experiment. Given that we set a fixed
problem size and then we increase the number of processors,
at each new step the problem size per process will decrease,
ending up in scenarios such as the one in Figure 3 or with
even smaller problem sizes.

One possible solution to this problem is using different
granularities for different task types. Not all the task types
have the same weight, even with the same granularity. Thus,
for tasks with low weights, it may be better to use bigger
granularities. Around a hundred microseconds is the minimum
time we consider a task must last to be worth paying the
management costs. Table I presents the average time a task
of a given type requires to complete. In the table, each of the
tasks types has a small square with the same color the task
has in the execution trace of Figure 3. There are several task
types whose average time that does not reach this threshold.
Thus, we should change the granularity of several task types.

We increased the granularity of each task type to reach the
100 microsecond threshold. It is important to highlight that the
increment of the granularity is not always directly proportional
to the increment of time. That gave us the multiplication
factors shown in Table I for each of the task types.

When we implement this, there is a ~12x speedup in the
execution time. Figure 4 shows how an iteration looks like
using the listed factors. It is possible to see that the duration

Fig. 4. Execution trace of the LULESH T version using multiple granularities
for different task types with a small problem size on 24 cores (1 NUMA
socket)

of the iteration is ~440 ms in Figure 3 and ~36 ms in
Figure 4. Even so, there is still a lot of white color, meaning
cores are running no tasks. In some regions of the execution
trace this may be caused by dependences: tasks are waiting
for their predecessors to finish so they can start. However,
there are other regions where we know for sure there are no
dependences between tasks, for instance in the big region with
dark green tasks. Thus, we conclude that the problem is that
the thread creating tasks is not creating them fast enough. In
other words, we are creating too many tasks, so again we need
to increase the granularity.

Figure 5 shows the granularity chart using a problem size of
50 elements per dimension. In the x-axis we show the number
of created tasks/worksharing tasks per each of the different
task types. The y-axis shows the figure of merit (FOM) of the
mini-app. The T version reaches the peak performance with a
reference granularity of 48 tasks per type, and the TF version
reaches the peak performance using a reference granularity
of 24 worksharing tasks per type. Considering thata NUMA
node of the machine has 24 cores, there is 1 worksharing task
per core in the TF version, and 2 tasks per core in the T
version. A significant performance difference exists between
using regular tasks and worksharing tasks. Regarding the im-
plementation, the difference between the two versions is using
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a single worksharing task, rather than multiple tasks, in several
portions of code. All the methods listed previously, where we
apply a multiplication factor, use a single worksharing task,
except CalcVelocityAndPositionForNodes, CalcLagrangeEle-
ments, InitStressTermsForElems and CalcMonotonicQRegion-
ForElems. With such a simple change, the peak performance
shows a speedup of ~2.1x.

The main reason for such a big impact in performance is
the significant reduction in terms of the number of created
tasks. Fewer tasks means fewer overheads, and, usually, less
parallelism. Notwithstanding, thanks to the use of worksharing
tasks, creating fewer tasks does not affect parallelism. The
number of created tasks is reduced to such an extent that the
main thread is able to create enough work for ten iterations in
the time taken to execute five iterations. In other words, for
the regular tasks version, the main thread keeps creating tasks
during the whole execution, while using worksharing tasks it
requires only ~50% of the execution time. Additionally, this
means that the core devoted completely to creating tasks in
the regular tasks version, can contribute to running some of
the tasks in the worksharing tasks version.

Figure 6 shows an iteration of the TF version. In this case,
the granularity used is the optimal one based on Figure 5.
We can see there that an iteration takes ~12 ms to complete.
Even so, there are some problems that should be addressed.
In particular, there are some regions suffering a lack of
parallelism and others suffering load imbalance. Considering
that the granularity used causes the creation of only 1 task
per type per core, and that the introduction of multiplication
factors reduces the number of created tasks, this makes sense.
We can see that all the regions suffering a lack of parallelism
or load imbalance are using regular tasks. Thus, a logical step
forward is to replace those regular tasks by worksharing tasks.
By doing so, each of the worksharing tasks can be executed by
several cores, thus preventing lack of parallelism. Also, given
that worksharing tasks allow threads to move forward when
there is no remaining work, load imbalance should be also
improved.

As a consequence of replacing all the regular tasks by
worksharing tasks, it is likely that the optimal granularity
is lower than the one used previously. Thus, we repeated
the granularity analysis keeping the same problem size (50
elements per dimension), which is shown in Figure 7. The
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Fig. 6. Execution trace of the LULESH TF version using multiple granulari-
ties for different task types with a small problem size on 24 cores (1 NUMA
socket)
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peak performance in this new version occurs when using a
reference granularity of three worksharing tasks per task type.
This is because the fewer tasks created, the fewer overheads
are introduced. Worksharing tasks enables us to create a lower
amount of tasks per task type, while keeping enough work to
feed all the cores.

Figure 8 shows an iteration of the updated TF version (i.e.
using worksharing tasks wherever possible). The trace was
obtained using the optimal granularity: 3 worksharing task per
task type. Now an iteration only takes ~9 ms to complete.
So, to sum up, we started with a version where an iteration
required ~440 ms to complete, and ended up with a version
where an iteration requires only ~9 ms to complete.

After detailing the modifications done in the implementa-
tion, and selecting an adequate granularity, we are able to
move forward and perform the experiments in a distributed
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Fig. 8. Execution trace of the updated LULESH TF version (i.e. using
worksharing tasks wherever possible) using multiple granularities for different
task types on 24 cores (1 NUMA socket)
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Fig. 10. Results of the LULESH strong scaling experiment

environment. Figure 9 shows the results of the weak scaling
experiment, and Figure 10 shows the results of the strong
scaling experiment. This application restricts the number of
MPI processes used to be a cube of an integer number.
That introduces difficulties in the comparison between the
MPTI version and the rest because the total number of cores
used does not match. For this reason, we decided to use the
FOM/core instead of the raw FOM metric.

Figure 9 shows in the x-axis the number of total cores used
and in the y-axis the FOM per core of the application. For
this experiment, we used a problem size of 200 elements per
dimension per process. The OMP version is the worst across
all the different scenarios, while the TF is the best across all
the different scenarios. The MPI version begins close to the
TF version but then it falls. Regarding the T version, it is
in between the OMP and the MPI version until the last point
where it obtains almost the same performance than the MPI
version. Overall TF version is able to reach speedups of up to
~1.4x, ~1.9x, and ~1.3x compared to the T, OMP, and MP I
versions, respectively.

Figure 10 shows in the x-axis the number of total cores
used and in the y-axis the FOM per core of the application.
For this experiment, we used a problem size of 300 elements
per dimension. The TF and the MPI versions perform very
similarly across all the scenarios. Similarly, the T and the
OMP versions behave very much alike. However, there is a
significant difference between the two groups, reaching up to
~2.8x speedup.

The reason for the performance improvement of the TF
version compared to the T version is that the number of tasks is
drastically reduced. Consequently, there is a drastic reduction
of overhead. In addition, by creating fewer tasks, the creator

Fig. 11. Execution trace of the LULESH MPI version showing the time
performing computations

can finish the creation earlier. Therefore, the cores rarely have
to wait because the creator cannot create fast enough. Finally,
this fact also means that the creator can start running tasks
after finishing the creation.

Compared to the OMP version, the tasking versions intro-
duces two key advantages: (1) the flexibility given by the data-
flow execution model, and (2) the overlapping of computation
and communication phases given by the TAMPI library. The
OMP version is implemented using worksharing. At the end of
each worksharing loop there is a barrier, where all the threads
must wait until all of them have finished. This rigidness in
the synchronization may introduce a significant performance
penalty, especially if there is load imbalance, which is the
case here. Also, the communication in the OMP version is
always done outside parallel regions. Thus, when the data is
required, threads in this version are idle while waiting for
the communication to complete. In contrast, the T and the
TF versions are able to keep progressing running other ready
tasks.

Compared to the MP I version, the tasking versions introduce
the key advantage of the overlapping of computation and
communication phases. Figures 11 and 12 show the time
performing computations and communications respectively.
These figures evidence the amount of time that MPI version
wastes in communications. In contrast, the tasking versions
can keep progressing thanks to TAMPI. However, for the
T version this is not enough due to the task management
overheads. The TF version is able to reduce these overheads,
and so, is able to outperform the MPI version consistently in
the weak scaling experiment, reaching up to ~1.3x speedup
in the scenario with more cores. Regarding the strong scaling
experiment, the TF version is competitive with the pure MPI
version, and even obtains a slight speedup of 1.03x.

C. HPCCG

HPCCG is a simpler application compared to LULESH.
It contains a single phase relying on three different kernels:
ddot, waxpby and sparseMV. This application is very
well suited for OpenMP worksharing loops, given its fork-
join pattern shown in Figure 13. For each iteration, there is a
ddot kernel that can run in parallel. After that, it computes
the residual and the alpha, using at most two cores. This closes
the parallelism because alpha is required by the following
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Fig. 12. Execution trace of the LULESH MPI version showing the time
performing communications
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Fig. 13. Structure of the HPCCG application

tasks. Then, parallelism is open again to run the waxpby,
sparseMV, and ddot kernels. Following this comes the
compute of beta, which closes parallelism again because the
following tasks need beta. Finally, the waxpby kernels can
run in parallel again.

When using MPI, there are three different communica-
tions. There is an MPI_Allreduce after each of the two
ddot kernels, and one point to point communication before
the sparseMV. The result of the reductions is required to
compute beta, normr, and alpha. Thus, the overlapping of
computation and communication is only possible in the point
to point communication.

This structure is not well suited for tasks because it forces all
the cores to wait twice per iteration, as if there was a taskwait.
As a consequence, there is not much benefit from using data
dependences because there are implicit barriers imposed by
the application structure.

The reference OpenMP+MPI implementation simply uses a
parallel for in each of the three kernels. In the tasking
version we replaced each of the parallel for by a set
of tasks with the required data dependences. Even in an
application with a fork-join pattern is important to avoid the
use of taskwaits. A taskwait implies that no more tasks will be
created until all the already created tasks finish. If we use data
dependences, the tasks are already created, and so, as soon as
the data is ready, they can run. By using taskwait, when the
data is ready (all the previous tasks finished), it starts creating
tasks (one by one) again, increasing the overall waiting time.

We again start our analysis by determining how many
different granularities there should be in the mini-app. For that
purpose, we use the execution trace shown in Figure 14. The
execution trace shows what is being executed in each of the
threads (y-axis) over time (x-axis). The white color means no
task is being executed and each of the other colors represent a
different task type. In this trace, we show a single iteration of
the main loop: from the blue and green tasks to the next blue

Fig. 14. Execution trace of the HPCCG T version using a single granularity
for all the tasks with a big problem size on 24 cores (1 NUMA socket)

Fig. 15. Execution trace of the HPCCG T version using a single granularity
for all the tasks with a small problem size on 24 cores (1 NUMA socket)

and green tasks. Actually, in this application, the iterations are
overlapped. The green tasks and some of the blue tasks of the
beginning belong to the previous iteration, and the interleaved
dark red tasks and some other blue tasks belong to the iteration
we show. At the end, some of the blue tasks overlapped with
the pink tasks belong to the iteration we show, while the pink
tasks, some other blue tasks and the dark red tasks belong to
the next iteration.

The trace of Figure 14 shows very good behavior. The
execution was performed using a big problem size. In contrast,
Figure 15 was performed using a much smaller problem size.
It also shows a single iteration with the overlapping with the
previous and following iterations. In this case, to have the
same amount of tasks, they must be more fine-grained. In fact,
they are too fine-grained, and the task management overhead
becomes too much. Specifically, in Figure 15 it is possible to
see the white color dominating the trace, meaning that most
of the time the cores are idle. Looking at the complete trace,
it is possible to see core O creating tasks during the entire
execution. The other cores execute tasks faster than core 0
can creates them, and that is the reason to see so much white
color in the trace.

The scenario with a small problem size is important, consid-
ering the strong scaling experiment. Given that we set a fixed
problem size and then we increase the number of processors,
at each new step the problem size per process will decrease,
ending up in scenarios such as the one in Figure 15 or with
even smaller problem sizes.

We want to determine how many different granularities
we need in this mini-app. Looking at Figure 15 we see a



TABLE 11
AVERAGE TASK TIME FOR EACH OF THE TASK TYPES OF HPCCG
MINI-APP USING A SMALL PROBLEM SIZE

Task type Average  Factor \ Task type Average Factor
HPCSparseMV n 7925 us 1 ddot_xx m 4.45 us 4
ddot_xy m 3.73 us 4 waxpby_betam  6.25 us 4
waxpby_negative_beta 6.48 us 4

1 [

Fig. 16. Execution trace of the LULESH T version using multiple granularities
for different task types with a small problem size on 24 cores (1 NUMA
socket)

big difference between the pink tasks and the rest. Table II
presents the average time a task of a given type requires to
complete. Also, each task type has a small square with the
same color it has in the trace of Figure 15. Recall that around
100 microseconds is the minimum time we consider a task
must last to be worth paying the management costs. None
of the task types reaches the given threshold. Accordingly,
we should use a higher granularity. However, then, lack of
parallelism may appear. Apart from that, HPCSparseMV takes
much more time to complete than the rest. Consequently, we
apply a multiplication factor of 4 to all the task types except
HPCSparseMV as we show in Table II. We do this to balance
the different task times.

After that, there is a ~1.2x speedup in the execution time.
Figure 16 shows what an iteration looks like using the listed
factors. Still, there is a lot of white color, meaning cores are
running no tasks. This is caused by lack of parallelism: there
are not enough tasks to feed all the cores. In consequence, we
need to decrease the granularity. However, if we do so, task
management overheads may hinder performance. Worksharing
tasks offer us the possibility of keeping this granularity, but
not be affected by task management overheads, and increasing
parallelism due to its internal partitioning of work.

Figure 17 shows the granularity chart using a problem size
of 50 elements per dimension. In the x-axis we show the num-
ber of tasks/worksharing tasks created per each of the different
task types. The y-axis shows the figure of merit (FOM) of the
mini-app. The T version reaches its peak performance using a
reference granularity of 48 tasks per type, and the TF version
reaches the peak performance using a reference granularity of
1 worksharing task per type. Regarding the implementation,
we simply replaced all the regular tasks by worksharing tasks.
Figure 17 shows an interesting point. On the right part, when
more fine-grained tasks are created, regular tasks outperform
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Fig. 18. Granularity chart of HPCCG

worksharing tasks. The problem is that worksharing tasks
partition the loop iteration space into as many chunks as
cores. In this case, the tasks are already fine-grained, and
then they are partitioned even more. As a result, cores end
up running really small chunks (< 5 us). Worksharing tasks
contain an internal mechanism of synchronization which is
very lightweight, but not enough to perform well with such
small chunks.

Nevertheless, worksharing tasks offer a mechanism to mit-
igate this effect. A user can set the minimum chunksize. We
have selected a minimum chunksize based on the point where
the performance of the TF version starts to be worse than
the performance of the T version in Figure 17. We repeated
the granularity analysis, keeping the same problem size (50
elements per dimension), including this new version. The
results of the new analysis are shown in Figure 18. After
setting the minimum chunksize, both versions behave very
similarly in the right-most part, while the TF version keeps
very good performance in the left-most part.

In this mini-app, unlike LULESH, there is no big difference
in the peak performance between the T version and the TF
version using the optimal granularity. In HPCCG, there are
not so many tasks and the creator can create tasks rapidly
enough for the rest, which was the main issue in the LULESH.
Figure 19 shows an iteration of the TF version using the
optimal granularity. There, it can be seen the main problem
that HPCCG presents. In the left part, between the dark red
tasks and the blue tasks, there are two very small tasks. This
also happens in the right part between the red tasks and the
blue tasks. Those small tasks require the data computed by all
the previous ones, and the following tasks require the data



Fig. 19. Execution trace of the HPCCG TF version using a single granularity
for all the tasks on 24 cores (1 NUMA socket)
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Fig. 20. Results of the HPCCG weak scaling experiment

computed by those two small tasks. Basically, those tasks
close the parallelism and open it again, following a fork-join
pattern. Apart from that, there are still some other regions
with cores running no tasks. The cause is the dependences
between different tasks. The runtime requires some time to
release the dependences of a task and schedule the new
ready tasks. Again, with higher granularities, this effect would
be mitigated, but the low problem size prevents us from
increasing granularity.

After detailing the modifications done in the implementa-
tion, and selecting an adequate granularity, we are able to
move forward and perform the experiments in a distributed
environment. Figure 20 shows the results of the weak scaling
experiment using a problem size of 200*200%240 per process,
and Figure 21 shows the results of the strong scaling experi-
ment using a problem size of 200%¥200*3072.

In the weak scaling scenario shown in Figure 20 all the
versions perform very similarly. The T version stands out over
the rest, followed by the TF version. The reason for this is the
load imbalance introduced by the sparseMV kernel. Different
regions of the sparse matrix have different number of non-
zeros. Tasks deal better with load imbalance, and are able to
get computation and communication overlapping. Overall, it
gives the tasking versions a small boost in performance of up
to 1.14x and 1.08x for the T and the TF versions, respectively.
As a final remark, we were not able to scale to more cores
in this scenario because of some overflow problems in the
application indexes.

In the strong scaling scenario, all the versions perform very
similarly until 3072 cores. Then, the T version cannot scale as
much as OMP and TF. Regarding the MPI version, it cannot
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Fig. 21. Results of the HPCCG strong scaling experiment

scale further because the problem cannot be split in more MPI
processes. The TF version is competitive until 6144 cores,
where it stops scaling, while the OMP version keeps scaling
up until the end (12288 cores). With such a number of cores,
the problem size per process becomes very small and most
of it fits in cache. The OMP version is able to exploit data
locality thanks to the static scheduling of the worksharing
loops. However, the TF cannot do so because of two reasons:
worksharing tasks do not guarantee that the same core executes
always the same iterations, and the structures of the runtime
pollute the cache.

All in all, the TF version is able to keep very compet-
itive performance until a large number of cores compared
to OpenMP, in an application perfectly suited for the fork-
join execution. Compared to the T version, this experiment
evidences the problems of task granularity that regular tasks
suffer, and that worksharing tasks can mitigate, obtaining up
to 1.33x speedup.

V. RELATED WORK

“MPI+X” has become the dominant paradigm for hybrid
parallel programming. This approach is based on the Mes-
sage Passing Interface (MPI) plus a second approach/model
leveraging the system- or the node- level capabilities of the
HPC system. To improve interoperability in between these
two components (the MPI and the X), the HPC community
is actively exploring new opportunities and extensions. Some
of them have been already incorporated into the MPI standard:
levels of threading support (introduced in MPI 2.0 [16]),
matched-probe operations or inter-process shared memory
(both included in MPI 3.0 [17]). Some of these ideas have
not yet been included into the standard, but they have proven
their usability: InfiniBand GPU-to-GPU communication [18],
or the Endpoints [19] extensions. And finally some of them
directly impact on the X component: the collective offloading
at clusters [20], implemented in OmpSs, for instance.

Programming the X component may follow, intentionally
dismissing the data-parallelism, two different approaches: the
fork-join model or the tasking model. The fork-join model
efficiently manages the overhead of the computational phase
parallelization, but it also imposes very strong restrictions
with respect to the thread synchronization (in the join phase).
The tasking model (with dependences) allows the data-flow



execution by means of taskifying the computation and com-
munication phases and let the dependences to guide the
execution. However, it adds a non-negligible overhead that
directly impacts in the performance.

o In [5], the authors explore a new type of task directive
(directly applied to loops: worksharing tasks), leveraging
the benefits of the fork-join model with respect to the low
overhead, and removing the synchronization constraints
imposed by OpenMP parallel regions. However, the study
does not analyze any interoperability option to improve
the communication behaviour between MPI processes.

o In [21], [2], the authors turn inside out the interoperabil-
ity options between the OmpSs-2 programming model
and the MPI library. They extend the functionalities of
blocking and non-blocking services allowing the task-
based runtime system to context switch when a MPI
communication service is not ready yet. This approach
minimizes the number of cycles a CPU begins to idle
(when there are still other tasks to execute). However,
the study is completely based on the pure tasking model,
imposing overheads that make it impossible to work with
very fine granularities.

In this paper we carried out a study combining both ap-

proaches, leveraging the strengths, and minimizing the weak-
nesses, of each one.

VI. CONCLUDING REMARKS

Hybrid programming is a promising approach to exploit
large clusters. However, the combination of MPI with other
shared-memory programming models is not trivial due to
correctness (i.e., deadlocks) and performance issues, especially
when combining MPI with tasking. Nevertheless, tasks and its
data-flow execution model can offer key advantages such as
a natural overlap of computation and communication phases,
inherent tolerance to load imbalance and fine-grained synchro-
nizations.

In this paper, we have developed a hybrid version of
LULESH and HPCCG proxy applications to overcome the
correctness and performance issues described in the introduc-
tion by combining TAMPI with worksharing tasks. We have
fully taskified all computation and communication phases of
both applications using OmpSs-2 programming model and
TAMPI library. Moreover, after an in-depth analysis of task
granularities performed on both applications, we have used
OmpSs-2 worksharing tasks to overcome the task granularity
issues that naturally arise in some applications, but always
show up in strong scaling scenarios done at scale. Our re-
sults show significant improvements in LULESH, reaching
a speedup of up to 1.3x compared to the best of the other
state-of-the-art approaches, and 3x compared to regular tasks.
This difference is explained due to the better tolerance of
the data-flow execution model to cope with load imbalance,
as well as, the lower overhead of worksharing tasks and its
ability to feed a large number of cores. Regarding HPCCG,
an application with a very regular structure that is perfectly
addressed with a fork-join pattern, our implementation reaches

1.08x speedup compared to other state-of-the-art approaches,
and 1.33x speedup compared to regular tasks. In light of the
results, we conclude that the use of worksharing tasks and
TAMPI is a good approach to efficiently exploit large clusters.

VII. FUTURE WORK

As future work, we plan to try new applications and
benchmarks to check if they can benefit from our approach.

We also plan to introduce a new feature called taskloop for.
The taskloop directive, applied to a for loop, creates as many
tasks as indicated by the user through the num_tasks clause or
the grainsize clause. Given the similarity between regular tasks
and worksharing tasks, we believe that the taskloop directive
can be modified to create worksharing tasks instead of regular
tasks. Using this directive, users can apply blocking more
easily.

Finally, given the importance of properly handling data
locality in HPCCG, we plan to add new mechanisms to enable
worksharing tasks to exploit data locality better.
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