Simulation of Browian Particles in a channel
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We study the behavior of ions with Brownian motion in the stationary state along a channel and
the influence of external applied potentials and shapes of the channel. Our goal is to implement a
1-dimensional model that captures these effects by means of an effective potential and a diffusion
coefficient. The method could be used as a tool to reduce the calculation cost of modeling these
systems, which otherwise should be modeled in three dimensions.

I. INTRODUCTION

Tonic channels are small structures situated along the
cell membranes that allow the exchange of charged parti-
cles between its two sides. They are crucial in some phys-
iological processes, such as muscular contraction, liber-
ation of neurotransmitters and regulation of genetic ex-
pression, among others.

We perform simulations of an open channel, so par-
ticles can freely enter or leave from both sides of the
membrane. We consider that the concentration of ions
outside of the channel remains constant despite the flux
of ions. The membrane is modeled as a capacitor, with a
voltage difference which does not depend on the flux of
charges and remains constant.

Finally, we will consider that the particles do not in-
teract with each other and move as Brownian particles,
following the dynamics given by a Langevin equation.
As the Reynolds number values associated to such small
scales imply that the inertia is negligible, the problem can
be formulated as a set of first order stochastic differential
equations for the particle positions[I].

II. 1-DIMENSIONAL MODEL

We consider here the one dimensional dynamics in the
x direction of the particles. Following the analysis done
in [I], we have modeled the dynamics of the particles with
a Langevin equation.
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Here v is a friction coefficient and £(t) is a Gaussian white
noise with zero mean and correlation given by
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In order to implement numerically the evolution of the
particles, a temporal step At is considered and an explicit
Euler algorithm is used to calculate the new position of
a particle at time ¢t + At of the form:

z(t + At) = x(t) + flz(t)|At + V2D Aty

with f(x) = f% d‘gff), D= % and Y a gaussian ran-

dom number with zero mean and unit variance.
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FIG. 1. Particle concentration vs position in steady state

for different values of the boundary conditions pi, p2 in the
case of null external potential. Top: p1 = p2 = 10; middle:
p1 =1, p2 = 10; bottom: p1 = 10,p2 = 1.

Finally, in order to perform our simulations, bound-
ary conditions have been also implemented following the
model developed in [I].

All simulations have been done using Matlab code and
averaging on a single realization over a fixed temporal
window in the steady state. The numerical values of the
parameters chosen are: length of the channel L = 4, ther-
mal energy kpT = 25, friction coefficient v = 1000 and
temporal step At = 1074,

We begin considering the simplest case in which any force
is applied to the channel. The results are shown in FIG.
where the black line represents the exact 1-D theoret-
ical solution given by the Fokker-Planck equation for the
concentration p(z,t). In FIG. [[[top) the values of the
concentration on both sides are the same and fixed to
the value p; = pa = 10. As expected, the concentration
in steady state is almost constant along the channel, with
the value fixed by the boundary conditions.

We have also checked the symmetry of the problem
applying, as shown shown in FIG. [I| (middle and bottom),
different fixed values of the concentration in each side
of the channel. As expected for this particular case, in
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FIG. 2. Particle concentration vs position in steady state in
the case where there is a constant external field, in addition
to a potential barrier. Boundary conditions are fixed to the
values: Top: p1 = 10, p2 = 1.; bottom: p; = 10, p2 = 10.

the absence of a potential barrier, the final steady state
concentration is close to a straight line connecting the
fixed values at the boundary.

We have also considered the case where a constant ex-
ternal field is applied in addition to a potential barrier in
the middle of the channel using the approach in [I]. The
result is shown in FIG. Plwhere the black line is the exact
theoretical solution given by the Fokker-Plank equation
in one dimension. In this case, the constant force term
pushes the particles towards the left side, but they are
trapped due to the barrier, and so the resulting flow is
reduced.

It is interesting to compare both simulations , for in-
stance FIG. [2] (bottom) and FIG. [1| (top), where bound-
ary conditions are the same, but we do not have a po-
tential barrier in the last case. Notice that in this last
case no external constant force is considered, but under
an external constant field the steady state concentration
is in fact the same. In consequence, we can compare
both simulation and understand what is the effect of the
potential barrier. The straight line of the steady state
solutions from FIG. [1| (top) disappears and the potential
barrier induces an increase of the particle concentration
at the side where the particles arrive due to the constant
external applied field.

III. 3-DIMENSIONAL MODEL

In our simulations, we had modeled a cylindrical chan-
nel with variable radius depending on the longitudinal
coordinate x. The dynamics of the particles are given by
a Langevin equation, where the longitudinal coordinate
behaves exactly as before, and the other coordinates are

considered in diffusion. That is, the external force act-
ing on the particles is exclusively in the x direction. We
consider that the boundary conditions behave as the 1-D
model, neglecting the fact that the number of entering
particles depends on the surface of the channel, since all
the results are proportional to it.

If a particle leaves the channel through a lateral wall
and not through any of the open boundaries, we sim-
ulate the bouncing of the particle supposing a rectilin-
ear trajectory between the current and previous posi-
tion. We assume that the bouncing against the wall of
the channel is like the bouncing against a plane wall tan-
gent to the surface of the channel in the impact point.
We first calculate the point of collision with a nonlin-
ear equation solver and make a symmetrical reflection
of the rest of the trajectory with this plane wall. To
do so, we have parametrized the surface in cylindrical
coordinates surface(x,0) = [r(z),0,x] with two tan-
gential vectors [r/(z),0,1] and [0,1,0], so the normal
vector to the surface is the vectorial product of them,
normal = [—1,0,7'(z)], that written in Cartesian co-
ordinates is normal = [r'(z), —y/r(z),—z/r(z)]. From
this, we calculate the new position of the particle reflect-
ing the remaining part of the trajectory with respect to
the defined plane. If the time step is small enough, the
probability that the particle goes out from another lat-
eral wall in the same time step is negligible, so we can
implement a quite simple algorithm. Otherwise we would
have to perform a loop in the number of collisions of each
particle.

For the entering particles through the boundaries, we
calculate the x coordinate as in the 1-dimensional case,
but we have to determine the y and z coordinates in such
a way that the particle falls into the channel boundaries.
In cylindrical coordinates we choose the radius and the
angle of the position of the entering particle. The angle
can be easily obtained with a uniform probability density
in (0, 27), multiplying 27 by a uniform random number in
(0,1). However, the generation of the radius has to take
into account that the probability density function must
satisfy: f(r) oc 2mr. Thus, we define the distribution
function:

_ 0, r2
F(r)—C’/Or—gr = @

We have applied the normalization condition that
F(r(z)) = 1. Then, we can obtain a radius by gener-
ating a uniform random number y € (0, 1) and inverting
the distribution function:

Fry=x=r=F"'(x)=r(z) VX

This is a very powerful method that allow us to gener-
ate random numbers of any distribution given by F(r)[2].
We have chosen a radius r(x) = 1—(1—rpyin) exp(—(z—
2)?), so it is smooth enough to perform well in later 1-D
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FIG. 3. Particle density vs position x in stationary state with
positive and negative force of |f| = 8kgT/(yL). Blue(- -)
curve with a minimum radius of 0.5. Green(-o-) curve with
a minimum radius of 0.1. Both curve with the same particle
density at both boundaries of 20. The red(-+-) curve with a
minimum radius of 0.25, with different boundary conditions at
each side, one with density 10 and the other with density 30,
and force heading from the low density into the high density.
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FIG. 4. Particle density vs position in stationary state for a
positive force f = 8kpT/(vL), equal density at both bound-
aries of value 20 and different sizes of the minimum radius.

effective models. The position of the minimum radius
is located at the middle of the channel (z = 2), and
the minimum radius is a depends on the simulation we
perform.

The force is a few orders of magnitude around the value
of kgT/(vL) because, otherwise, the force would be so
big that the random perturbations of the Brownian move-
ment would not have any effect, or so small that the force
would not be noticeable, compared to the diffusive term,
so the movement of each particle would be a random un-
biased path.

In FIG. [3] we can observe that the boundary condi-
tions are satisfactorily fulfilled, since the density of par-
ticles in the extremes of the channel in stationary state
remains close to the density of particles outside in all
cases. The solution is symmetric with respect to the force
and boundary conditions, which means that an opposite
force and exchanging the densities of the source leads to
a symmetric solution.

The value of the minimum radius has a big impact in
the profile of the density of particles. On one hand, a
big radius is not noticed by the particles. On the other
hand, if the constraint is too small, it is difficult for the
particles to cross the constraint, and they tend to accu-
mulate before it. After the narrowing, there is a smaller
density of particles, as the average time that particles
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FIG. 5. Particle density vs position x in stationary state with
positive force f = 8kpT/(vL), minimum radius of 0.25 and
different magnitudes of the dragging force.

remain in this region is small because of the action of
the force. In FIG. [l we can see that the smaller the
minimum radius gets, the higher is the maximum before
and lower is the minimum after the constraint, because
it takes longer for the particles to go through the hole.
Surprisingly, the change in the profile is quite abrupt
when we change from a value of the minimum radius of
Tmin = 0.25 to ryin = 0.5, making that the steady state
solution for ryi, > 0.5 is almost a constant; that is, the
system does not see the narrowing in steady state.

We can also study how different magnitudes of the
force affect the particle density in the stationary state.
In FIG. |5| we see that, for forces smaller than 1k,T/(vL)
, the difference with a random movement (f = 0) is al-
most negligible, and the densities are proportional to the
square of the radius, since the movement is driven by
the diffusion motion. For intermediate forces, there is
an accumulation before the constraint, as the particles
tend to go to the right and bounce back until they find
the way out to the other side of the narrowing. As the
force grows, the particles tend to go to the right with
more probability, so they find the way out faster. This
provokes a smaller accumulation of particles before the
narrowing, and a bigger density after it. In the high
forces limit, the presence of the constrain is less relevant,
and the system behaves in a similar way to a cylindrical
channel without any narrowing.

IV. 1-DIMENSIONAL EFFECTIVE MODEL:
THE FICK-JACOBS EQUATION

Our goal in this section is to derive an effective sim-
ulation in one dimension which reproduces the behavior
of the system in three dimensions, specially when the
channel presents a narrowing. In order to do so, we
want to simulate the system with an equation similar
to a Langevin equation, but the equation from section
IT is not enough because it does not take into consider-
ation the narrowing of the channel. A priori one may
think that it would be enough to add a potential bar-
rier proportional to the narrowing of the channel, but
a more detailed analysis shows us that this is not the
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FIG. 6. Stationary state for different values of the minimum
radius of the channel, under the same conditions as FIG.
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FIG. 7. Stationary state for different values of the drift force,
under the same conditions as FIG. [

case. The correct implementation, the validity of which
depends on how abrupt is the narrowing of the channel,
is derived from the Fick-Jacobs equation. We can rewrite
this equation as an effective Fokker-Planck equation in 1
dimension [3-5].

We start from this effective Fokker-Planck equation in
1 dimension:

OP(z,t) 0 0
= g M@ P, t) + 55 D(a)Pa,t)

We assume that the diffusion depends on the position, as
well, and that this dependence is of the form: D(z) =

1 — S(z)
WiEETIEE and w(r) = L/ =
is the effective radius of the channel. After some manip-
ulation we get to the following result:

Dy - g(x), where g(z)* =

dIn(S(z))

1 = ~2g(2)g/ (WRT+g(w)* (Fa) +T

+g(x)E(t)

&(t) is a random number with the same autocorrelation
as in the simple 1-dimensional model (section I). This
equation resembles a Langevin equation, but we get some
extra terms, depending on g, which we will have to imple-
ment in order to get the same results as for the 3d case.
We have done simulations with the same parameters as
in the previous section. The results can be seen in FIG.
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In FIG. [6] we see that, for a radius greater or equal to
R=0.1, the results are quite similar to the 3d case, al-
though for R=0.05 the peak which appears before x=2
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FIG. 8. Comparison of the stationary state for different mod-
els. We have taken p1 = p2 = 20, f = 8kpT/(vL), int he left
we have 7mn = 0.8 and in the right 7y, = 0.05

is quite larger. This is consistent with the fact that the
approximation we have used is only valid for not very
abrupt changes in the radius of the channel. In FIG.
we can observe similar results as in FIG. p| as well. In
order to get a more precise idea of the accuracy of this
model with respect to the 3d model, we have performed
three simulations, using in first place the 3-dimensional
model, in second place the effective 1-dimensional dy-
namics derived from Fick-Jacobs equation, and in third
place the dynamics in 1-dimension by just adding a po-
tential barrier, proportional to the narrowing of the chan-
nel. The results are shown in FIG. We see that this
method does not behave properly for very abrupt nar-
rowings, and even the simple 1-dimensional model with
a potential barrier works better. However, for intermedi-
ate radii, the effective dynamics seem to work better for
low densities but worse for big densities. In any case, the
fluctuations in the solution make it hard to extract any
reliable conclusion.

V. CONCLUSIONS

We have simulated the transport of ion through an

ionic channel using different models. When modeling
these problem we must take into account the three di-
mensions of the system. If we model these dynamics us-
ing a Langevin equation we obtain the expected results,
in terms of the behavior of the system when a narrowing
of the channel is present or when an external electric field
is applied.
However, we can simplify the problem to a 1-dimensional
case via the Fick-Jacobs equation, which reproduces the
existence of narrowings in the channel. This model re-
quires some approximations which, as we have seen from
our simulations, become imprecise when the narrowing
is very abrupt (FIG. . For intermediate radius, the ef-
fective dynamics no reliable conclusions can be extracted
from our simulations. A much more accurate simulation
should be carried out in order to determine the validity
of the model, with probably much more iterations than
the 60 million we have carried out.
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