A compromise Archive Platform for Monitoring
Infrastructures

Carlos Garcia Calatrava*T, Fernando Cucchietti*, Yolanda Becerra*!
*Barcelona Supercomputing Center, Barcelona, Spain
TUniversitat Politécnica de Catalunya, Barcelona, Spain
E-mail: {carlos.garcia, fernando.cucchietti, yolanda.becerra} @bsc.es

Keywords—Big Data, Stream processing, Polyglot Persistence,
Monitoring, Archival, IoT.

I. EXTENDED ABSTRACT

The great advancement in the technological field has led to
an explosion in the amount of generated data. Many different
sectors have understood the opportunity that acquiring, storing,
and analyzing further information means, which has led to a
broad proliferation of measurement devices. Those sensors’
typical job is to monitor the state of the enterprise ecosystem,
which can range from a traditional factory, to a commercial
mall, or even to the largest experiment on Earth[1].

Big enterprises (BEs) are building their own big data
architectures, usually made out of a combination of several
state-of-the-art technologies. Finding new interesting data to
measure, store and analyze, has become a daily process in the
industrial field.

However, small and medium-sized enterprises (SMEs) usu-
ally lack the resources needed to build those data handling
architectures, not just in terms of hardware resources, but also
in terms of contracting personnel who can master all those
rapidly evolving technologies.

Our research tries to adapt two world-wide-used technolo-
gies into a single but elastic and moldable one, by tuning
them, to offer an alternative and efficient solution for this very
specific, but common, scenario.

A. Introduction: A historical approach

From one-size-fits-all to one-size-for-each

Traditionally, databases have been considered a passive
asset: OLTP systems ingested structured data, in order to facil-
itate daily operations, and the relational model was considered,
de facto, the standard model.

As soon as hardware evolved, organizations realized the
real potential of data and several different technologies
emerged, improving the handling and storage of the data in
a wide range of scenarios.

In not many years, databases moved from one-size-fits-
all[2] to one-size-for-each, where each scenario had a very
specific and efficient data model, and each data model had
a plethora of different databases to choose from. For ex-
ample, Graph databases enabled the full potential of social

networks and key-value databases became crucial in huge
online marketplaces[3].

Polyglot Persistence

Alongside the increasing amount of new Data Analysis
and Machine Learning algorithms, BEs encountered a new
problem: Systems were evolving and, sometimes, choosing
one single data model was not enough. Thus, BEs started to
put in practice polyglot persistence[4]: Multiple data storage
technologies were incorporated, chosen based on the way
data was used by individual applications. Hence, applications
started to benefit from different data models at the same time.

B. Monitoring Infrastructures and archive databases

In this research, we understand as Monitoring Infrastructure
a set of devices, usually called sensors, where each supervises
the state of a specific asset alongside time. The global reporting
of those sensors is able to describe the state of the whole
system, at a given point in time. Archive databases are meant
to store the data that a Monitoring Infrastructure produces. The
data obtained during this process is crucial for performing tasks
such as predictive maintenance or forecasting.

Unlike BEs, SMEs are hardly ever able to implement Poly-
glot Persistence: Having an expert in each database technology
is difficult. Moreover, some companies cannot afford to keep
the historical data forever, not just in a single data model, as it
becomes huge. Thus, they usually implement a sliding window
technique, where only a fixed amount of data is kept: As new
data is stored, the oldest data is removed. This generates two
main problems: Firstly, data is stored just in a single data
model, and analyzing it becomes really slow. Secondly, data
is being discarded, so important information is lost.

Finally, for preventing data loss, databases are commonly
replicated in different machines, which ends ups in an impres-
sive consumption of hardware resources.

C. Soft Goals

The resulting platform should meet the following soft
requirements:

e Allow the ingestion, in real time, of monitoring data

Use as few different technologies as possible, while
enabling fast analysis

e Minimize the amount of storage needed

D. Proposed solution

The platform was built with just two different well-known
big data technologies. Also, a Java/Python API is provided in
order to interact with the platform.

Apache Kafka

Apache Kafka is a distributed streaming platform, used for
building real-time data pipelines and streaming apps[5].

In this scenario, Kafka helps in two different actions:
It facilitates the stream data ingestion and, also, thanks to
a specifically designed Java consumer, compacts and re-
structures the data before sending it to the database.

MongoDB

MongoDB is the most popular NoSQL database[6]. It
follows a schema-less design: Data Architects define a basic
schema, but altering it or adding new fields does not enforce
any global-schema modification, which allows a great flexibil-
ity. Hence, each record is, theoretically, schema-independent
from the other ones.

In this platform, MongoDB was tuned for handling a
columnar schema-full data model, apart from the standard
document schema-less data model. Thanks to this modification,
MongoDB behaves like a Polyglot Persistence system itself,
but just using a single database technology.

This not only reduces the number of used technologies
and needed experts, but also allows Polyglot Persistence Intra
Communication: In traditional polyglot persistence systems,
each data-model is held in a different technology, making
the communication between them fairly difficult. By placing
different data models under the same logical database, it is
even possible to perform queries that benefit from different
data models at the same time.

Furthermore, it also tackles the problem of database repli-
cation. Although both data models are in the very same logical
database, they can be placed in different physical databases,
by sharding. Thus, a data model can serve as a replica for the
other one, and vice-versa: If a machine fails, its data can be
recovered from its sibling database.

E. Experiment design

In the scope of this extended abstract, the experiment set
up consisted in feeding the archiving platform with a 4-month
pseudo-streaming factory simulation, that incorporates 3000
different sensors, producing data every 30 seconds. More than
1000 Million records were generated. The system was limited
to 4 GB of RAM, and data was stored in a traditional HDD
using the ZSTD compression technique.

The performance metrics were obtained in independent
executions, by clearing RAM and cache. Each execution was
performed 3 times, keeping the AVG.

The executions consisted in running three common queries.
Each query asked for the data of 10 random sensors, either for
500 random timestamps or for a 3-month time range. Also, this
3-month time-sequential query was divided into two different
queries: The first one obtained the RAW values, and the other
one resampled them, obtaining the mean value per sensor and
hour.

Fig. 1. Query execution time comparison for single vs multi-schema database.

F. Evaluation

As seen in Figure 1, by adding a columnar schema-
full storage to the database, time-sequential queries reduce
their execution time drastically, as this model captures the
relationship between same-sensor measurements.

However, for Random Access queries, the document
schema-less design continues being preferred, as it captures
the relationship between same-time measurements.

Finally, regarding the disk consumption, the document
schema-less design consumed 15.8GB (2-replica + arbiter),
while the double schema design needed 12.8GB.

G. Conclusion and future work

The built Archiving Platform keeps a compromise between
needed resources and efficiency, while providing an easy-to-
use APIL It has shown to speed up querying while reducing
disk usage, in comparison to traditional schema-less designs.

As future work, it will be important to implement queries
that benefit from both data models at the same time, and to add
an automatic data recovery mechanism between data models,
thus allowing a fully functional replica set.

REFERENCES

[1] P. Golonka et al., “Future archiver for cern scada systems,” in ICALEPCS
'17.

[2] M. Stonebraker, “Technical perspective: One size fits all: An idea whose
time has come and gone,” 2008.

[3] (2020) Amazon key-value usage website.
https://aws.amazon.com/en/nosql/key-value/

[4] M. Fowler and P. Safalage. (2012) The future is polyglot
persistence. [Online]. Available: https://martinfowler.com/articles/nosql-
intro-original.pdf

[5] (2020) Apache kafka
https://kafka.apache.org/

[6] (2020) Database engines website. [Online]. Available: https://db-
engines.com/en/ranking

[Online]. Available:

website. [Online]. Available:

Carlos Garcia Calatrava received his BSc de-
gree in Informatics Engineering from the Facul-
tat d’Informatica de Barcelona (FIB), Universitat
Politecnica de Catalunya (UPC), Spain, in 2016. Two
years later, he completed his MSc degree in Innova-
tion and Research in Informatics from the very same
university. Regarding his professional background,
Carlos has worked in the European Organization for
Nuclear Research (CERN, Switzerland) and in the
National Institute of Informatics (NII, Japan), among
others. Currently, he is working at CASE-BSC, while
pursuing a PhD in Computer Architecture.

