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A recursive multistep Adams-Bashforth method applied to the Molecular Dynamics simulations of N-
body systems interacting through pairwise force fields is introduced and analysed. Equations of motion
are obtained using a set of Cartesian coordinates solved by means of an Adams-Bashforth numerical
integration scheme of order s, which requires the iterative computation of function time derivatives. The
proposed algorithm has been implemented using a programming approach that makes it possible to re-
use a source code resulting in small codes, easy to maintain. Practical examples and benchmarks that
illustrate the performance of these implementations are included. The study of its performance gives
clues to evaluate its efficiency and precision. Numerical tests for a N-particle system are made on the
equilibrium configuration of liquid argon near its triple point at 86.5 K and 0.021 Å−3. In most cases, the
algorithms here presented outperform those implemented traditionally as the Gear corrector-predictor
or the Verlet family, leading to important savings in terms of total computation times and significantly
increasing the numerical precision obtained with standard algorithms.
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1. Introduction

Time-dependent simulation of N-body systems of any size is a challenging problem mainly because
the force field governing the underlying dynamics is related to interactions between all particles.
It is well known that unlike two-body problems, no general closed-form solution exists for the
three or higher N cases, as the resulting dynamical system is chaotic for most initial conditions,
so that numerical methods are required. For the microscopic case, the forces between N particles
are usually unknown and, therefore, choosing a reliable model for the interactions is crucial for
the success and efficiency of the numerical calculations. Further, the use of efficient integration
algorithms is relevant for the precision of the dynamical simulations in real time and also for their
performance in terms of computational costs.

The search for efficient integration algorithms applied to Molecular Dynamics (MD) simula-
tions has already a long history. After the seminal contributions by Verlet[1, 2], another classical
pioneering work was due to Beeman[3], who considered an Adams-Bashforth-Moulton predictor-
corrector procedure and compared it to an algorithm using the prescription of Rahman[4], but
only up to third order, because problems of storage prevented him to consider higher orders. In
the framework of the solution of ordinary differential equations, Gear[5] provided a comprehensive
treatise on a wide variety of methods and their applications to all sort of mathematical and physical
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problems, with particular interest due to his own proposal of a specific predictor-corrector routine
for simulations. Later on, Howe[6] focussed his attention on the comparison of a new two-pass
predictor-corrector integration algorithm and the Adams-Moulton family of algorithms, finding
ways to apply these algorithms to real-time inputs, such as in computer simulations.

Regarding the Adams-Bashforth and leapfrog-like algorithms, there is a contribution by
Durran[7] in a purely mathematical context, where the Asselin-filtered leapfrog scheme is compared
to the third-order Adams–Bashforth method in the framework of ordinary differential equations.
A more recent contribution by Rodriguez et al.[8] reported a semi-recursive procedure based on
velocity transformation between Cartesian and relative velocities in the context of macroscopic
multi-body systems.

The approach reported here has not been proposed before in the same terms. Ours is a novel con-
tribution based on the consideration of a recursive Adams-Bashforth predictor routine of variable
arbitrary order, explored here between orders 2 and 6, and the comparison of its performance to
the likes of the standard leapfrog Verlet algorithm (LFV) and the Gear predictor-corrector (GPC).
In order to establish the reliability of our proposal, we have considered the three algorithms and
applied them to MD simulations of liquid argon (Ar) at its triple point. Also, mechanical textbook
problems such as the motion of an object of mass m in a non-relativistic gravitational field and the
motion of the same mass attached to a totally flexible spring i.e. the simple harmonic oscillator are
used as benchmarks for the determination of the precision of the integration algorithms considered
in the present work.

2. Computational Methods

The natural, primary ensemble where MD simulations construct trajectories is the microcanonical
ensemble, that is, with the system kept at constant energy, volume and number of particles, fol-
lowing Newtonian dynamics. Newton’s equations of motion describe with all precision the motion
of massive classical particles in gravity fields, such as the one at the surface of Earth. So we can
use it as a textbook benchmark to refine our integration algorithms. In Newtonian dynamics, the
equations of motion of a system of N particles are given by:

r̈i = − 1

mi

~∇Vi(r) (1)

where mi and ri are the mass and the vector coordinates of the i-th particle and Vi(r) is the
interparticle potential. This system can be transformed into a system of two first-order ordinary
equations through the relationships

v̇i = − 1

mi

~∇Vi(r),

ṙi = vi. (2)

Numerical methods for the solution of ordinary differential equations given by Eq.2 are gen-
erally solved by algorithms falling within the multistep family with either a Runge-Kutta or an
Adams-Bashforth-Moulton formulation (see for instance Refs.[5, 9]). In the general case of multistep
methods (which include Adams-Bashforth, Adams-Moulton and backward differentiation formula,
as the main families) the solution of the equations of type y′(t) = f(t, y) consists of assuming that
initial values of the function y(t) and its first derivative y′(t) are known and that the following
values can be computed from linear combinations of y and y′:
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yn+s + as−1 · yn+s−1 + as−2 · yn+s−2 + · · ·+ a0 · yn = h [bs · f(tn+s, yn+s)+

+ bs−1 · f(tn+s−1, yn+s−1) + · · ·+
+ b0 · f(tn, yn)] , (3)

or, equivalently,

s∑
j=0

aj · yn+j = h
s∑
j=0

bj · f(tn+j , yn+j), (4)

where h ≡ t1 − t0, i.e. the (arbitrary) size of the grid in the abscissae axis. In the case of bs = 0
(explicit methods) the solution is directly computable, such as in the Adams-Bashforth family,
where as−1 = −1 and as−2 = ... = a0 = 0. The bj for j = 0, ...s− 1 can be obtained by polynomial
interpolation in order to find a polynomial acting as the function f(t, y) in a finite series of time
instants: p(tn+i) ≡ f(tn+i, yn+i), for i = 0, ..., s− 1. Using Lagrange formula, we get:

p(t) =
s−1∑
j=0

(−1)s−j−1f(tn+j , yn+j)

j! · (s− j − 1)!hs−1

s−1∏
i=0,i 6=j

(t− tn+i). (5)

Since p(t) is a good local approximation of the function f(t, y), we can use the relationship:

yn+s = yn+s−1 +

∫ tn+s

tn+s−1

dt p(t). (6)

Replacing f(t, y) by p(t), we get the coefficients bj as:

bs−j−1 =
(−1)j

j! · (s− j − 1)!

∫ 1

0
du

s−1∏
i=0,i 6=j

(u+ i), j = 0, ..., s− 1. (7)

Here we are assuming an error of the order hs. The particular recipes used in the present work
concern the recursive forms for positions and velocities. For a time instant ti, we provide the
following operative formulas for the recursive Adams-Bashforth (RAB) algorithm of order s, with
j < s:
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v(ti + dt) = v(ti) + dt ·
s−1∑
j=0

bs−j−1 · a(ti − j · dt)

= v(ti) + dt · [bs−1 · a(ti) + bs−2 · a(ti − dt) + · · ·
+b1 · a(ti − (s− 2)dt) + b0 · a(ti − (s− 1)dt)]

r(ti + dt) = r(ti) + dt ·
s−1∑
j=0

bs−j−1 · v(ti − j · dt)

= r(ti) + dt · [bs−1 · v(ti) + bs−2 · v(ti − dt) + · · ·
+b1 · v(ti − (s− 2)dt) + b0 · v(ti − (s− 1)dt)] . (8)

Note that here h ≡ dt i.e. the time step of the simulations and it is constant. For any integration
algorithm there are relevant questions to address such as its time-reversibility or its symplecticity,
as it is described in details in the conference book by Marsden et al.[10], aspects which, at the level
of detail reported in the present paper, can be only discussed in a general way. On the one hand
and on invariance under time-reversibility, we must note that RAB is initially designed to move the
system forward in time, since it is based in getting positions and velocities (see eq.8) from previous
instants, such as most of standard procedures. In this work we did not test time-reversibility of
the RAB algorithm (for instance by changing dt → −dt, what could become a topic for a future
study). On the other hand, RAB can be considered symplectic in a general sense, since it serves as
a numerical integration scheme for a Hamiltonian system. Nevertheless, concerning conservation
properties we must state that we have only checked energy conservation and observed (see results
from Table 4) a good stability at all orders (s = 2, ..., 6). Despite this fact, we believe we cannot
ensure symplecticity in a more strict way without a deeper analysis, which is out of the scope
of this work. As benchmarks for this method, we have considered the Gear predictor-corrector
algorithm[5] for some properties and also the well known and widely used LFV algorithm in all
cases, applied to a personal MD code and also used within a simulation package (NAMD). For
LFV latter the equations are:

v(tn +
dt

2
) = v(tn −

dt

2
) + dt · a(tn)

r(tn + dt) = r(tn) + dt · v(tn +
dt

2
), (9)

where the velocities at time tn − dt
2 are computed from

v(tn −
dt

2
) =

r(tn)− r(tn − dt)
dt

. (10)

About the characteristics of the simulations, we considered MD trajectories of 100 ps for liquid
Ar samples formed by 500 atoms at the triple point (86.5 K, particle density of 0.021 Å−3) and 1
atm of pressure and of 25 s for the classical mechanical systems (gravitational field and harmonic
oscillator). In the former case, the time step δt was taken of 2 fs and in the latter it was in the range
10−5 to 1 s. For the molecular dynamics simulations, periodic boundary conditions were taken in
all three directions of space. The force field for Ar was the standard Lennard-Jones 6-12 [11] with
parameters σ = 3.405 Å and ε = 119.8 K, as it was taken in the first numerical simulations of
liquid argon[1, 2, 12].
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3. Performance of leapfrog Verlet, Gear predictor-corrector and recursive
Adams-Bashforth algorithms for benchmark systems

The first step in the study of the performance of the different integration algorithms is the estab-
lishment of benchmarks able to validate their precision and efficiency. We have chosen two textbook
simple models such that we can compare our results to ”exact” ones, i.e. those derived from the
algebraic solutions of the differential equations. These are: (1) the problem of a given mass m
moving inside the (non-relativistic) gravitational field close to Earth’s surface and (2) the simple,
non-interacting classical harmonic oscillator. In the first case, equations 1 or 2 with r̈(t) = (0,−g)
(for g = 9.8 m/s2 for instance) should be solved and in the second case, the traditional Newton
equation for the Hooke’s law m·r̈y(t) = −k·y(t) for a mass m attached to a spring of elastic constant
k along the Y-axis gives us the solution for the position and velocity of the harmonic oscillator in
terms of pure harmonic terms, namely y(t) = y0 sin(ωt+φ0) and vy(t) = −y0ω ·cos(ωt+φ0), where

ω =
√

(k/m). Of course the solution of the first case is given by the typical parabolic trajectory
of coordinates: (x0 + v0x · t, y0 + v0y · t− 1

2gt
2) and velocity (v0x, v0y − gt).

Once remembered this, we can perform several comparisons on the precision and efficiency of each
algorithm concerning the size of time step (and correspondingly the conservation of such precision
during ”long” trajectories) as well as on the order taken for the Adams-Bashforth recursion. First,
let us consider the two algorithms and their accuracy as a function of the time step. We have
reported in Table 1 the results concerning the estimated errors found in the two benchmark systems
described above.

We considered the difference between the computed and algebraic values, as sketched above, as
the ”error” ε ≡ ytheoretical − ycalculated. Although the harmonic oscillator is more sensitive then the
gravitational field to these particular precision issues, in both cases the errors are large for long
time steps (δt = 1, 0.1 s), as expected. Errors are significantly smaller as time step size decreases, so
that for δt = 0.001 highest errors in the harmonic oscillator case are of the order of centimetres (see
Table 1). For the minimum time step considered (δt = 10−5 s), the magnitude of errors are very
similar in the case of the gravitational field. In the case of the harmonic oscillator, we found an error
for the leapfrog Verlet algorithm remarkably larger than for the recursive Adams-Bashforth, which
is in agreement with the fact that Verlet family of algorithms (due to the second order truncation
of Taylor series) is not well suited to the case of the harmonic oscillator. It has been shown that due
to the truncation, velocities are systematically underestimated whereas the turning points of the
period are overestimated (see more details in Refs.[13–15]). Our results show such drawbacks in a
plain and direct way, but more importantly, indicate that third order RAB algorithm gives better
stability and precision than LFV for the harmonic oscillator. As we will show below, taking higher
orders in the RAB algorithm do not improve significantly its accuracy. For the sake of comparison
another widely used algorithm, GPC, was also considered. We can observe that it shows the largest
errors, about twice those of the LFV.

As an alternative view, cumulative errors along long trajectories show a similar tendency, as
it is indicated by data reported in Table 2. As expected, the errors grow as the simulation time
progresses, in a very regular way in both cases, although we can observe that the RAB method
with s = 3 is able to maintain the error nearly constant, whereas LFV and GPC have a poorer
behavior and a tendency to larger errors, a consequence of the truncation indicated above.

As a final use of the benchmark mechanical models, we have compared the accuracy of the RAB
algorithm as a function of s through results reported in Table 3. We can observe that in both cases
order s = 2 gives worse performance than s = 3 but that including higher orders (s > 3) does not
produce a better agreement between computed and exact results. For this reason we decided to
use s = 3 in the previous testing of time step values (Tables 1 and 2).
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4. Performance of leapfrog Verlet, Gear predictor-corrector and recursive
Adams-Bashforth algorithms for liquid argon

After characterisation of the RAB algorithm using the two benchmark cases, we have applied the
acquired knowledge to a N-body interacting system well known in the literature, namely the case of
liquid argon, that has been studied for decades and that will work as a third testing case. The most
relevant difference with the trivial benchmarks employed above is that the N-body system does not
have an exact solution. Instead, we have considered experimental information on total (internal)
energy of argon[16, 17], on its microscopic structure[18] and on its diffusion coefficient[19]. The
main parts of the code we have used are reported in Figure 1.

The first comparison we can do is on the values for the total energy of the system. The numbers
are reported in Table 4. As expected, the force field employed in the present work gives values very
close for all the algorithms studied, but showing some differences with experimental data, between
0.5 and 3.8 kJ/mol. This is an indication of the reliability of the model concerning thermodynamics
of the system. Better results were obtained by Barker et al.[20] using three force fields different
to the one considered here, including quantum corrections. However, the reliability of potential
models has already been established and it is not the goal of the present work. Furthermore, we
should point our that the thermodynamic conditions are not the same for the simulation and the
experiments and that, as shown by Gosman et al.[17], slight changes in the temperature or pressure
of the samples can lead to sensible changes of the total energy of the system. Besides, no significant
energy drift has been observed in any simulation with the RAB integrator, with averaged values
and standard deviations of the order of less than 1% in each case for trajectories of the order of
100 ps, as reported in Table 4.

Concerning the microscopic structure of liquid argon, we have computed argon-argon radial
distribution functions (rdf) g(r), shown in Figure 2. They are an excellent match of the experimental
rdf at 85 K, reported in Ref.[18], what forced us to focus on their first and second maxima and also
the first minimum of the rdf in order to find out the tiny differences between the benchmark LFV
algorithm and the family of RAB with variable order s. We also included the value reported by
one of most employed simulation packages, namely the NAMD code[21] for the sake of comparison.
It is well know that NAMD employs a standard LFV algorithm. In the version we employed here,
the force field included in the package was CHARMM36[22]. As expected, results of LFV and the
NAMD package are almost an exact match. The results of Figure 2 indicate that:

(1) In all cases the height of the selected maxima and minimum shows a deviation between 0.8
and 3.5 %;

(2) The position r of the first maximum (labelled ’A’ in Fig. 2) is fairly well reproduced (perfect
match around 3.7 Å), but the agreement becomes worse at larger r, for points ’B’ and ’C’ of
Fig. 2, with deviations of about 2% in both cases. This might be a drawback of the potential
model but also it can be related with the more difficult determination of the experimental
rdf at large distances, which is correlated with the regions of low momenta in the primary
structure factors determined experimentally, prior to be Fourier-transformed to obtain the
rdf;

(3) The computed rdf closest to the experiment is the one obtained with RAB with s = 3.
Furthermore, the increase of order in the RAB algorithm does not produce enhancement of
the agreement with experimental position of the highlighted features, being the worse overall
agreement for the case s = 2.

We have also checked the performance of the two classes of algorithms (LFV, RAB family) on
dynamical properties of liquid argon, including the results produced by a standard MD package such
as NAMD. Again the results of LFV and the NAMD package are extremely close. In particular, we
explored argon self-diffusion coefficients, obtained from the well-known long time slopes of the mean
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square displacements of argon atoms (Einstein’s formula), argon velocity autocorrelation functions
C(t) =< ~v(0) · ~v(t) > and argon spectral densities S(ω), computed as the Fourier transforms of
C(t)[23]:

Si(ω) =

∫ ∞
0

dt C(t) cos(ωt). (11)

The reported diffusion coefficients DAr are reported in Table 5. There we can observe how,
for this particular property, LFV gives a better agreement with experimental data than RAB,
although again the order of the algorithm able to produce (slightly) better results is s = 3. The
performance of the algorithms considered in this work is compared again for the argon velocity
autocorrelation functions and the corresponding spectral densities S(ω) of argon, computed as
the Fourier transform for the former. The results are reported in Figure 3. There we can observe
remarkable agreement between LFV and RAB. In this particular property we highlighted the first
minimum (point ’A’ of Figure 3, related to backscattering) and the region labelled ’B’, where C(t)
shows a change of behavior including local maximum and minimum features. Assuming LFV as
the benchmark (since it is the standard algorithm most employed in literature, including its use
in popular MD simulation packages such as GROMACS[24], LAMMPS[25] or NAMD[21]), again
the closest RAB order is s = 3 (point ’A’) or, in this particular case, s = 6 for both points ’A’ and
’B’. In the case of S(ω), only the maximum is closely explored (see inset at right side of Figure
3), giving a very close agreement of all cases with the results obtained with the LFV algorithm,
but perhaps with the best agreement obtained for s = 2. Here we should point out that the single
maximum appearing in the spectral densities is due to restricted translations of argon atoms inside
the cage formed by their nearest neighbors, as it has been shown before after some debate, for the
case of liquid water[26–28].

Our final comparison concerns the CPU time per time step of the simulations. The results are
reported in Table 6. We performed the velocity checks in a single-node CPU in all cases. The
results indicate a performance of LFV slightly better than RAB, as expected due to the larger
number of calculations required in the latter case. However, the difference is not large and it tends
to increase in a quasi-linear fashion with the order s of the RAB algorithm. GPC is the slowest
algorithm at all, with CPU times about 52 % longer than the former. The comparison to the CPU
time obtained with a parallel calculation using the NAMD package with 8 nodes, indicates that
the time is largely reduced in a factor 45 when compared to the benchmark case of the RAB of
order s = 3, what cannot be charged on the performance of the algorithm but to the superior
computational architecture.

5. Conclusions

We have introduced a new prescription in the so-called Adams-Bashforth predictor algorithm orig-
inally introduced as a solver of ordinary differential equations in order to be employed in standard
MD simulations of N-body systems. This method should be adapted in most simulations using pair-
wise potentials, but we should keep in mind that other multidimensional methods able to explore
rare events in classical dynamics such as transition path sampling[29] can use a wide variety of
algorithms to generate new configurations around stable states in the phase space whose dynamics
may be also based on recursive or semi-recursive classical algorithms such as those presented here.

We have considered a simple formulation very easy to implement in all sort of MD codes,
described by Eq. 8, with order s between 2 and 6. After its comparison with two standard algorithms
widely used in MD such as leapfrog Verlet and Gear predictor-corrector, we have first established
that RAB is more exact when applied to the macroscopical problems of the single mass point inside
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a non-relativistic gravitational field and of the simple harmonic oscillator. In order to evaluate its
performance for a N-body microscopic problem typical of MD simulations, we analysed the case of
liquid argon at its triple point. Our results indicate that the optimal order of calculation is s = 3
and that in such case the radial distribution function of argon matches very well the experimental
values, whereas diffusion coefficient and the spectral density of argon are in excellent agreement
with results from leapfrog Verlet. No significant energy drift has been observed in any simulation
with the RAB integrator. In summary, we have found that the performance of RAB in terms of
CPU time matches that of leapfrog Verlet, being both algorithms more than 50% faster than Gear
predictor-corrector.

Due to the simplicity of the proposed algorithm, it would be straightforward for the teams re-
sponsible of the maintenance of large simulation packages to replace the actual standard leapfrog
algorithms included in most academic simulation free access packages (LAMMPS, NAMD, GRO-
MACS) by the RAB integrator of order s = 3 in order to gain further precision without significant
loss of performance. For this purpose, we have provided the core parts of the code employed in the
present work in Figure 1. A further relevant test for the algorithm RAB reported in the present
work would be its use combined with an Embedded Atom Model potential as those proposed by
Mishin and coworkers to model metal-metal interactions such as in copper[30], nickel-aluminium[31]
or cobalt[32] to cite a few, which can easily run in a LAMMPS environment.
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Tables

Table 1. Comparison of the efficiency of simulation time steps (δt) for benchmark models (point mass in a gravitational field and

simple harmonic oscillator) for the tested algorithms (leapfrog Verlet, Gear predictor-corrector and recursive Adams-Bashforth

with s = 3). Errors (ε) are defined as the difference between exact and computed positions (see Section 4).

Model δt (s) εLFV (m) εGPC (m) εRAB (m)
1 5.4×10−4 − 0.392

0.1 4.7×10−6 − 0.048
0.01 7.4×10−7 − 0.00049

Gravitational field 0.001 7.2×10−8 − 4.9×10−6

0.0001 6.9×10−9 − 4.8×10−8

0.00001 5.3×10−9 − 5.7×10−9

1 > 10 > 10 > 10
0.1 > 10 > 10 > 10
0.01 1.1 2.1 0.6

Harmonic oscillator 0.001 0.01 0.02 0.006
0.0001 1.1×10−4 2.1×10−4 6×10−5

0.00001 1.1×10−6 2.1×10−6 6×10−7

Table 2. Precision of the algorithms (LFV, GPC, RAB) as a function of the time length of a trajectory. Errors (ε) are defined

as in Table 1. Time step of 10−5 s.

Model Time length (s) εLFV (m) εGPC (m) εRAB (m)
5 6.3×10−9 − 6.6×10−9

10 2.5×10−8 − 2.5×10−8

Gravitational field 15 5.5×10−8 − 5.5×10−8

20 9.6×10−8 − 9.7×10−8

25 1.5×10−7 − 1.5×10−7

5 8.5×10−7 1.7×10−6 4.8×10−7

10 1.7×10−6 1.7×10−6 3.4×10−7

Harmonic oscillator 15 2.5×10−6 5.1×10−6 4.9×10−7

20 3.4×10−6 6.8 ×10−6 4.9×10−7

25 4.2×10−6 8.5×10−6 4.9×10−7

Table 3. Precision of the RAB algorithm as a function of the order s. Errors (ε) are defined as in Tables 1 and 2. Time step
of 10−5 s.

Model s ε (m)
2 7.45336×10−9

3 7.45327×10−9

Gravitational field 4 7.45353×10−9

5 7.45337×10−9

6 7.45339×10−9

2 1.37×10−5

3 7.97×10−7

Harmonic oscillator 4 7.98×10−7

5 7.98×10−7

6 7.98×10−7
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Table 4. Total energy (U) of liquid argon, in kJ/mol with statistical errors in parenthesis. Temperature (T, in Kelvin) and
pressure (P, in atm) of each system are also reported. For the sake of comparison, the result of the CHARMM36 force field

obtained by means of simulations made with the NAMD package has been also included.

System T P U
Experiment[16] 100 3.2 5.46
Experiment[17] 91 1.0 8.79

LFV 86.5 1.0 4.97 (0.05)
GPC 86.5 1.0 4.97 (0.05)

NAMD 86.5 1.0 4.91 (0.03)
RAB,s = 2 86.5 1.0 4.95 (0.04)
RAB,s = 3 86.5 1.0 4.95 (0.05)
RAB,s = 4 86.5 1.0 4.95 (0.05)
RAB,s = 5 86.5 1.0 4.95 (0.06)
RAB,s = 6 86.5 1.0 4.95 (0.06)

Table 5. Liquid argon self-diffusion coefficients (D, all values are expressed in units of 10−5 cm2/s). Temperature (T, in
Kelvin) and pressure (P, in atm) of each system are also reported. The result of the CHARMM36 force field obtained by means

of simulations made with the NAMD package has been also included.

System T P D
Experiment[19] 90 1.32 2.43

LFV 86.5 1.0 3.50
GPC 86.5 1.0 4.04

NAMD 86.5 1.0 3.90
RAB,s = 2 86.5 1.0 4.08
RAB,s = 3 86.5 1.0 3.98
RAB,s = 4 86.5 1.0 4.04
RAB,s = 5 86.5 1.0 4.05
RAB,s = 6 86.5 1.0 4.03

Table 6. CPU times (tCPU , in ms) per time step of each simulation. For the sake of comparison, the result of the CHARMM36

force field obtained by means of the package NAMD has been also included. A parallel mode calculation with 8 cores has been

used, whereas the remaining calculations were made with sequential single-processor runs.

System tCPU
LFV 28.79
GPC 44.28

NAMD 0.657
RAB,s = 2 29.60
RAB,s = 3 30.22
RAB,s = 4 33.03
RAB,s = 5 35.05
RAB,s = 6 36.10

Figures
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Figure 1. Core of the RAB integrator reported in the present work, written as a pseudo-code (left). Auxiliary (pseudo-)codes

used in the calculations with the RAB integrator (right). The routine to obtain the factorial of a number has been omitted due

to its simplicity.
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