
IS - HPC Applications in CFDUsing accelerators to speed up scientific and engineering codes: perspectives and problems

VI International Conference on Computational Methods in Marine Engineering
MARINE 2015

F. Salvatore, R. Broglia and R. Muscari (Eds)

USING ACCELERATORS TO SPEED UP SCIENTIFIC AND
ENGINEERING CODES: PERSPECTIVES AND PROBLEMS

E. CALORE∗, S.F. SCHIFANO∗, R. TRIPICCIONE∗

∗Università di Ferrara and INFN - Sezione di Ferrara
via Saragat 1, 44122 Ferrara (ITALY)

email: calore,schifano,tripiccione@fe.infn.it

Key words: Computational Fluid-dynamics, Accelerator computing, Many-core archi-
tectures

Abstract. Accelerators are quickly emerging as the leading technology to further boost
computing performances; their main feature is a massively parallel on-chip architecture.
NVIDIA and AMD GPUs and the Intel Xeon-Phi are examples of accelerators available
today. Accelerators are power-efficient and deliver up to one order of magnitude more
peak performance than traditional CPUs. However, existing codes for traditional CPUs
require substantial changes to run efficiently on accelerators, including rewriting with
specific programming languages.

In this contribution we present our experience in porting large codes to NVIDIA GPU
and Intel Xeon-Phi accelerators. Our reference application is a CFD code based on
the Lattice Boltzmann (LB) method. The regular structure of LB algorithms makes
them suitable for processor architectures with a large degree of parallelism. However,
the challenge of exploiting a large fraction of the theoretically available performance is
not easy to met. We consider a state-of-the-art two-dimensional LB model based on 37
populations (a D2Q37 model), that accurately reproduces the thermo-hydrodynamics of
a 2D-fluid obeying the equation-of-state of a perfect gas.

We describe in details how we implement and optimize our LB code for Xeon-Phi
and GPUs, and then analyze performances on single- and multi-accelerator systems. We
finally compare results with those available on recent traditional multi-core CPUs.

1 INTRODUCTION

The last decade has seen a significant change in the way in which computers deliver
their computational performance. Today, clock frequencies have essentially reached a
plateau, while processor architectures are becoming more and more parallel: in other
words, processors are able to perform more and more tasks in a fixed amount of time
rather than completing the same task in a shorter time span. This trend is due to basic

1

278

E. Calore, S. F. Schifano, R. Tripiccione

physics limitations in the behavior of the electronic gates that make up computer systems,
so it is going to stay in the foreseeable future.

An undesirable consequence is that moving a code from a given processor to a different
one, which has a larger degree of parallelism and a larger peak performance, in most
cases brings negligible gains: indeed, extracting a large fraction of the peak processor
performance requires that the program use efficiently almost all available computing re-
sources. Improved compilation techniques, able to identify parts of the original code that
can execute in parallel and mapping them onto the processor, have tried to mitigate the
problems. This approach has had limited success and is quickly becoming hopeless as
recent high performance processors (usually referred to as accelerators) contains O(100)
cores and are able to perform thousands of independent operations per clock cycle. In the
(hopefully) near future, improved programming languages (e.g., OpenACC or OpenMP4),
allowing programmers to explicitly identify the parallelism available in their codes, should
become a viable and solid alternative; it is then up to the corresponding compilers to ex-
ploit available parallelism as widely as allowed by the target computer, granting – it is
hoped – a fair balance of portability and efficiency. For the time being, writing a large
production-grade, massively parallel, efficient scientific or engineering code is still a non
trivial tasks, requiring, at some stage, to use proprietary languages (e.g., CUDA) specific
for a given family of processors (NVIDIA GPUs, for the CUDA case).

In this work we share our experience in adapting and optimizing for accelerators a
state-of-the-art Lattice Boltzmann code. Over the years, LB codes have been written and
optimized for large clusters of commodity CPUs [1], for application-specific machines [2, 3]
and even for FPGAs [4]. More recently work has focused on exploiting the parallelism of
powerful traditional many-core processors [5], and of power-efficient accelerators such as
GPUs [6, 7] and Xeon-Phi processors [8]. This paper focuses on a specific use case, but
we think that our experience is a fair account of the problems (and of the strategies to
overcome them) that arise as scientific and engineering codes are adapted and optimized
for recent and future HPC architectures, so it can be interesting to a wider readership.

This paper is structured as follows: section 2 provides a short introduction to accelera-
tor architectures and section 3 presents an overview of the Lattice Boltzmann approach to
computational fluid-dynamics. Section 4 describes the optimization strategies used to im-
plement our LB codes for different accelerators, and section 5 presents our results, assesses
the performance gain that are to be expected by the use of accelerators and summarizes
– as our concluding remarks – the balance between performance and portability.

2 ACCELERATOR ARCHITECTURES

In this section we sketch the main features of the accelerators we have used – the
Intel Xeon-Phi and the NVIDIA K80 GPU – representative examples of the prevailing
accelerator architectures. Both systems come as add-on boards, connected to the main
processor by a PCIe interface (typical bandwidth is 8 GB/s) representing a significant
bottleneck in the data exchange between CPU and accelerator.

2

279

E. Calore, S. F. Schifano, R. Tripiccione

The Xeon-Phi uses the Knights Corner (KNC) processor based on the Many Integrated
Core (MIC) architecture, an extreme evolution of the multi-core approach, containing 61
cores interconnected by a high-speed ring. Each core has the Pentium architecture with
32 KB of L1-cache for data and instructions and 512 KB L2 data-cache; it also includes
a vector Floating Point Unit (FPU), performing at each clock cycle the same operation
on 16 (8) sets of operands in single (double) precision. Running at ≈1 GHz, the peak
performance is ≈2 (1) Tflops in single (double) precision. A GDDR5 memory bank of 8
GB connects to the processor with a bandwidth of ≈ 320GB/s, while all cores share their
L2 caches. On these accelerators, performance dictates that applications are split in many
concurrent threads (thread parallelism, mapped onto the cores) and, at the same time, on
each thread the same operations are applied to many data items (vector parallelism). For
more details see the Intel online documentation on the KNC architecture.

The K80 accelerator has two Kepler GPUs and 24 GB of GDDR5 memory. GPU
operation is best abstracted in term of GPU-threads, each thread typically processing
just one element of the program data set. Threads are executed by several Streaming
Multiprocessors (SMXs). Each SMX handles up to 2048 active threads and has 192
scalar cores to process them. At each clock cycle groups of 32 threads executing the
same instruction (so called warps) are active within each SMX. Large banks of registers
within each SMX contain temporary data, while data transfer with the memory occurs
at ≈ 250 GB/s. Peak performance is 4 (1) Tflops in single (double) precision. The
thread-based approach to GPU programming is probably more elegant, since one has to
consider just one level of parallelization at the conceptual level; in practice however the
actual scheduling of threads to warps has several architectural limitations, so performance
is strongly program dependent. For more details on Kepler architecture see the NVIDIA
online whitepaper “Kepler GK110”.

3 LATTICE BOLTZMANN METHODS

Lattice Boltzmann methods (LB) are widely used in computational fluid dynamics, to
describe flows in two and three dimensions. LB methods (see, e.g., [9] for an introduction)
are discrete in position and momentum spaces; they are based on the synthetic dynamics
of populations sitting at the sites of a discrete lattice. At each time step, populations hop
from lattice-site to lattice-site and then incoming populations collide, that is, they mix
and their values change accordingly.

Over the years many different LB models have appeared, solving flows in 2 and 3
dimensions with different degrees of accuracy and describing different situations such as
multi-phase or complex flows; see [10] for a recent review. LB models in n dimensions
with y populations are labeled as DnQy; here, we consider a state-of-the-art D2Q37
model that reproduces the thermo-hydrodynamical equations of motion of a fluid in two
dimensions and enforces the equation of state of a perfect gas (p = ρT) [11, 12]; this
model has been extensively used for large scale simulations of convective turbulence (see
e.g., [13, 14]).

3

280

E. Calore, S. F. Schifano, R. Tripiccione

Figure 1: Left: LB populations in the D2Q37 model, hopping to nearby sites during the propagate

phase. Center: populations fl are identified by an arbitrary label; populations are stored in memory
according to several possible layouts. Right: Data packing within AVX vectors of lattice data for the
Xeon-Phi implementation.

From a computational point of view this very accurate scheme is more complex than
simpler LB models, at the cost of more severe requirements for storage (each lattice points
has 37 populations), memory bandwidth and floating-point throughput (each time step
uses ≈ 7600 double-precision floating point operations per lattice point).

Populations (fl(x, t) l = 1 · · · 37) are defined at the sites of a discrete and regular 2-D
lattice; each fl(x, t) has a given lattice velocity cl; populations evolve in (discrete) time
according to the following equation:

fl(y, t+∆t) = fl(y − cl∆t, t)− ∆t

τ

(
fl(y − cl∆t, t)− f

(eq)
l

)
(1)

Macroscopic quantities, density ρ, velocity u and temperature T are defined in terms
of the fl(x, t) and of the cls (D is the number of space dimensions):

ρ =
∑
l

fl, ρu =
∑
l

clfl, DρT =
∑
l

|cl − u|2 fl; (2)

the equilibrium distributions (f
(eq)
l) are known function of these macroscopic quantities

[9], and τ is a suitably chosen relaxation time. In words, Eq. 1 stipulates that populations
drift from lattice site to lattice site according to the value of their velocities (propagation)
and, on arrival at point y, they interact among one another and their values change
accordingly (collision). One can show that, in suitable limiting cases and after appropriate
renormalizations are applied, the evolution of the macroscopic variables defined in Eq. 2
obeys the thermo-hydrodynamical equations of motion of the fluid.

An LB code takes an initial assignment of the populations, in accordance with a given
initial condition at t = 0 on some spatial domain, and iterates Eq. 1 for all points in the
domain and for as many time-steps as needed; boundary-conditions at the edges of the
integration domain are enforced at each time-step by appropriately modifying population
values at and close to the boundaries.

4

281

E. Calore, S. F. Schifano, R. Tripiccione

Figure 2: Performance of the propagate kernel on the Xeon-Phi (left) and on one GPU of the K80
board (right). For the Xeon-Phi, we show for comparison results of the STREAM memory benchmark.

The LB approach has a huge degree of easily identified parallelism. Indeed, Eq. 1 shows
that the propagation step amounts to gathering the values of the fields fl from neighboring
sites, corresponding to populations drifting towards y with velocity cl; the following step
(collision) then performs all mathematical processing needed to compute the quantities
in the r.h.s. of Eq. 1, for each point in the grid. One sees immediately from Eq. 1, that
both steps above are fully uncorrelated for different points of the grid, so they can be
executed in parallel according to any suitable schedule.

In practice, an LB code executes a loop over time steps; each iteration foresees three
kernels: propagate, bc and collide.

propagate moves populations across lattice sites according to the pattern of Figure1,
collecting at each site all populations that will interact at the next phase (collide).
In our model populations move up to three lattice sites per time step. Computer-wise,
propagate moves blocks of memory locations allocated at sparse addresses, corresponding
to populations of neighbor cells.

bc executes after propagation and adjusts populations at the edges of the lattice,
enforcing appropriate boundary conditions (e.g., constant temperature and zero velocity
at the top and bottom edges of the lattice). For the left and right edges, we usually apply
periodic boundary conditions. This is conveniently done by adding halo columns at the
edges of the lattice, where we copy the rightmost and leftmost columns (3 in our case)
of the lattice before starting the propagate step. After this is done, points close to the
boundaries are processed as those in the bulk.

collide performs all mathematical steps needed to compute the population values at
each lattice site at the new time step, as per Eq. 1. Input data for this phase are the
populations gathered by the previous propagate phase. This step is the most floating
point intensive part of the code.

4 IMPLEMENTATION OF THE LB CODE

In this section we describe the implementation and optimization of our LB code for
Xeon-Phi and K80 accelerators. In both cases we adopt the offload approach: the host
first uploads lattice data onto the accelerator memory and then performs a loop over time

5

282

E. Calore, S. F. Schifano, R. Tripiccione

Figure 3: Performance of the collide kernel as a function of the number of threads for the Xeon-Phi
accelerator (left) and for one GPU of the K80 board (right).

steps, and at each iteration executes several kernels.
Lattice data is stored in column-major order, and we keep in memory two copies; while

wasting some memory space, this choice allows to process many lattice sites in parallel, as
each kernel reads input data from one copy and write results onto the other. We surround
the physical lattice with Hx halo-columns and Hy halo-rows; for a physical lattice grid of
size Lx×Ly, we allocate Nx×Ny lattice points, where Nx = 2Hx+Lx, and Ny = 2Hy+Ly.
This makes the computation uniform for all sites and avoids control-flow divergences that
negatively impact performances.

For the Xeon-Phi we write a hybrid program which runs on the host and on the KNC
processor [8]. One starts from a standard C or C++ code and uses #pragma offload

directives to identify the parts of the code to be executed onto the KNC. The compiler
generates code that automatically offload code and data to the KNC memory and starts
all required threads.

For GPUs, we use CUDA-C , the NVIDIA programming language for GPUs [15].
CUDA-C is again a slightly modified C (or C++) program including keyword extensions
defining data-parallel functions, called kernels and executed by GPUs. A CUDA-C pro-
gram has code running on the CPU and kernels. Kernels typically generate a large number
of threads and independent operations, that exploit data parallelism. Threads generated
by a kernel are grouped into blocks which in turn form the execution grid. Blocks are
arrays of threads which run on the same SMX and share data through a fast shared
memory.

The two architectures use different programming tools, but the issues faced by pro-
grammers are similar: in order to exploit parallelism, one must ensure that all cores work
in parallel, data is allocated in such a way that it can be fetched efficiently by memory
controller and the code structure allows an efficient exploitation of vector parallelism.

4.1 OPTIMIZING FOR THE MIC ARCHITECTURE

For the Xeon-Phi we adopt the Array-of-Structures (AoS) memory layout, storing the
populations of each site at contiguous memory addresses; this layout keeps all population
data of each lattice site at contiguous addresses and better suits the cache structure of

6

283

E. Calore, S. F. Schifano, R. Tripiccione

the KNC. Each iteration starts with the execution of the propagate mic function, which
performs the pbc and the propagate phases together. pbc enforces periodic boundary
conditions along the X dimension; in our case this is simply a copy of fresh data to the
halo Y columns.

The propagate kernel moves populations of each site according to the pattern defined
in Eq. 1 and visualized in Figure 1 at left. This step does not perform any floating-point
computation; it is basically a rearrangement of data in memory, implying memory accesses
with sparse address patterns. propagate mic spawns Nt threads, each threads handling
a sub-lattice of size (Lx/Nt) × Ly; first, two threads execute pbc to update the left and
right halo columns, then all Nt threads apply the propagate step, each onto a different
portion of the lattice.

To exploit vector parallelism, we divide the lattice in K strips along the Y dimension,
and pack together populations of sites at distance Ly/K, see right-side of Figure1. In this
approach our lattice is an array of vector sites, and each vector site is itself an array of 37
AVX vectors, each holding K populations. Within each thread, K sites are processed in
parallel by vector instructions. We set K = 8, the number of double-precision data words
that can be packed into a 512-bit AVX vector.

Streaming vector instructions can be automatically inserted by the compiler; this ap-
proach is a simple and fast option for the programmer, but efficiency is limited by the
ability of the compiler to identify parts of the code on which vectorization can be applied.
A potentially more efficient approach explicitly introduces vector variables and processes
them by so-called intrinsic functions which are mapped directly onto the corresponding
assembly instruction. We use vector programming and intrinsic functions, based on our
previous experience [16, 17] with Intel processors for which auto-vectorization yielded
sub-optimal performances.

In the left-side of Figure 2 we show the bandwidth measured in several implementa-
tions of the propagate kernel for Nt values up to four times the number of cores. The
bandwidth obtained via an automatic vectorization is rather poor (scalar); bandwidth
increases significantly (by a factor 2) as one uses AVX vectors through intrinsic functions
(avx+store); a further significant gain is obtained using the STORENRNGO vector stream-
ing instruction that does not waste time and bandwidth loading populations values into
cache before updating them (avx+storenrgo). For comparison, we also show the results of
the STREAM memory benchmark, which attains a maximum bandwidth of ≈ 150 GB/s
corresponding to ≈ 40% of peak. Under this constraints our implementation reached
≈ 65% of the effective memory bandwidth.

After propagate mic completes, the host launches the bc mic kernel that applies
boundary conditions at the top and bottom edges of the lattice. This function runs several
threads, each one operating only on the three rows at the top and bottom of its lattice
slice; the execution time of this phase has a minor impact on the overall performance.

The next step is the execution of collide mic, which performs the collision of popu-
lations gathered by the propagate step. This is the truly floating-point intensive part of

7

284

E. Calore, S. F. Schifano, R. Tripiccione

Figure 4: Program schedule allowing to overlap communications and processing of the propagate kernel.

the code. It performs approximately 7000 double-precision operations per site and offers
in principle a degree of parallelism as large as the lattice size, as the processing of each
site uses its own set of variables. The collide mic kernel spawns several threads, up to
4 per core, each thread processing a slice of the lattice. We code collide using intrin-
sic functions and enforce SIMD parallelism explicitly, processing 8 lattice sites packed in
an AVX vector. In the left-side of Figure 3 we show the performance of three different
implementations, showing the performance gain obtained as more and more aggressive op-
timization steps are taken. One sees that automatic vectorization increases performance
by a factor 3.4 over a basic non-vectorized version. A carefully handcrafted AVX-based
optimization offers a further 2× improvement. Our best result is a performance of 360
GFlops, corresponding to an efficiency of 30% of the (double-precision) peak.

4.2 OPTIMIZING FOR THE KEPLER ARCHITECTURE

Our implementation for GPUs is described in detail in references [18, 17, 15]; here we
recall the main results and update performance results including those measured on the
recently introduced K80 accelerator.

A key point here is that a different data layout is needed: we adopt the Structure-
of-Arrays (SoA) memory scheme, since it helps exploit the coalescing of global memory
accesses, relevant to obtain a high memory bandwidth on these processors. To appreciate
the relevance of this problem, consider that our tests have shown that adopting the AoS
approach, we incur in a performance penalty as large as 5X for propagate and 2X for
collide. Figure 2 shows the effective bandwidth as a function of the number of threads per
block. This kernel is strongly memory-bound, and performance is substantially constant
for a number of threads-per-block larger than 64, reaching a peak of 155 GB/s.

As in the case of Xeon-Phi, collide executes after enforcing boundary conditions to
the top and bottom of the lattice. collide is strongly compute bound and executes 6472
double-precision additions and multiplications for each lattice site. We use data prefetch
to hide memory accesses and all loops have been unrolled using #pragma unroll directive.
Exploiting the large register file, this allows to keep population values on registers and
avoid to load them several time from memory. Figure 3 shows the performance measured
by our CUDA implementation as a function of the number of threads. Performance
improves up to 384 threads per block reaching a value of ≈ 700 GFlops corresponding to
≈ 48% of peak.

8

285

E. Calore, S. F. Schifano, R. Tripiccione

// launch asynchrouns t r a n s f e r from dev i ce to host (D2H)
#pragma offload_transfer : out (c f 2 [LEFT HALO] : REUSE into (send L buf)) signal (&send L buf)
#pragma offload_transfer : out (c f 2 [RIGHT HALO] : REUSE into (send R buf)) signal (&send R buf)

// launch asynchronous execut ion o f propagate ke rne l over BULK
#pragma offload : signal (&i n t e r n a l p r o p s i g n a l){ propagate m (. . .) ; }

// wait end o f d2h t r a n s f e r
#pragma offload_wait : wait (&send L buf)
#pragma offload_wait : wait (&send R buf)

// execute ha lo s SWAP
MPI_Sendrecv (send_R_buf to mpi_rank_R , TAG_RIGHT , recv_L_buf to mpi_rank_L , TAG_RIGHT) ;
MPI_Sendrecv (send_L_buf to mpi_rank_L , TAG_LEFT , recv_R_buf to mpi_rank_R , TAG_LEFT) ;

// launch asynchrouns t r a n s f e r from host to dev i ce (H2D)
#pragma offload_transfer : in (r ecv L bu f : REUSE into (c f 2 [LEFT HALO])) signal (&recv L bu f)
#pragma offload_transfer : in (recv R buf : REUSE into (c f 2 [RIGHT HALO])) signal (&recv R buf)

// wait end o f h2d t r a n s f e r
#pragma offload_wait : wait (&recv L bu f)
#pragma offload_wait : wait (&recv R buf)

// launch asynchronous execut ion o f propagate over l e f t − and r ight−columns
#pragma offload { propagate m (. . .) ; } signal(& ex t e r n a l p r op s i g n a l)

// wait end o f propagate k e rn e l s
#pragma offload_wait : wait (&i n t e r n a l p r o p s i g n a l)
#pragma offload_wait : wait (&ex t e r n a l p r op s i g n a l)

Figure 5: Scheduling of operations on the MIC board to overlap communications and execution of
propagate.

4.3 MULTI-ACCELERATOR IMPLEMENTATION

On multi-accelerator systems, accelerators are installed on the same host (typically
up to 4 or 8 accelerators) or on multiple hosts that exchange data using commodity
networks such as Infiniband. Here we discuss an implementation for a single-host with
four accelerators.

Our implementation splits a lattice of size Lx × Ly on Np accelerators along the X
dimension, each handling a sub-lattice of size Lx/Np × Ly. This splitting is necessary to
have continuous halo-columns allocated in memory, and avoids a further gather-step to
collect halos on a contiguous buffer before doing communications. This allocation scheme
implies a virtual ordering of the accelerators along a ring, so each one is connected with
a previous and a next companion; at the beginning of each time-step, before starting
propagate, accelerators must exchange data, since cells close to the right and left edges
of the sub-lattice needs data allocated on the logically previous and next nodes.

When using multi-accelerator systems, the overlap of communications with computa-
tion is a key approach to scalability. In our case, the key point to consider is that propagate
for the bulk of the lattice (all lattice points except for three columns at right and left)
has no data dependency with pbc (while propagate on the edges depends on fresh data
moved to the halos by pbc). Our strategy therefore tries to overlap as much as possible
data transfers with the execution of propagate on the bulk.

We have scheduled operations as shown in figure 4: i) the host launches propagate
on the bulk of the lattice; this is an asynchronous kernel which runs in parallel with the
following steps; ii) the host starts the copy of the left and right column borders from device

9

286

E. Calore, S. F. Schifano, R. Tripiccione

// launch asynchronous execut ion on stream [0] o f propagate over bulk
propagate <<<grid , block , 0 , stream [0] >>> (f1+BULK_OFF , f2+BULK_OFF) ;

// execute MPI t r a n s f e r s
for (kk = 0; kk < NPOP ; kk++){

MPI_Sendrecv (
f2_d+(kk∗NX∗NY)+(HX+SIZEX−3)∗NY , 3∗NY , MPI_DOUBLE , mpi_nxt , 0 ,
f2_d+(kk∗NX∗NY) , 3∗NY , MPI_DOUBLE , mpi_prv , 0 ,
MPI_COMM_WORLD , MPI_STATUS_IGNORE) ;

MPI_Sendrecv (
f2_d+(kk∗NX∗NY)+HX∗NY , 3∗NY , MPI_DOUBLE , mpi_prv , 1 ,
f2_d+(kk∗NX∗NY)+(HX+SIZEX)∗ NY , 3∗NY , MPI_DOUBLE , mpi_nxt , 1 ,
MPI_COMM_WORLD , MPI_STATUS_IGNORE) ;

}

// launch asynchronous execut ion o f propagate f o r l e f t and r i gh t borders on stream [1] and stream [2] .
propagate <<< propGridLR , propBlockLR , 0 , stream [1] >>> (f1_d+LC_OFF , f2_d+LC_OFF) ;
propagate <<< propGridLR , propBlockLR , 0 , stream [2] >>> (f1_d+RC_OFF , f2_d+RC_OFF) ;

// wait a l l k e rne l f i n i s h
cudaDeviceSynchronize ()

Figure 6: Scheduling of operations on GPUs to overlap communications and execution of propagate.

to host (D2H); iii) as D2H finishes the host performs the corresponding MPI communications
to exchange data with neighbor nodes; iv) as MPI receive operations are completed data
are moved back on the accelerator (H2D); v) finally propagate executes on the left and
right borders. When all the above steps are completed execution continues with bc and
collide kernels. This schedule is the same for our MIC and GPU implementations.

On MIC systems MPI functions cannot access data allocated on the accelerator, so
the code must explicitly move data between host and accelerator. All steps to overlap
computation of propagate with pbc are detailed in Figure 5.

On GPUs MPI communication are integrated with CUDA through UVA (Unified Vir-
tual Addressing), supporting a common address space between host and device. This
means that MPI functions can address memory areas allocated on the GPU. Figure 6
shows how propagate and pbc are scheduled in this case.

5 RESULTS AND CONCLUSIONS

In Table 1 we compare performance figures of our code optimized for Xeon Phi, Kepler
K80 and for a dual-processor commodity systems [17] (dual Intel E5-2630), based on the

Table 1: Performance comparison of the propagate and collide kernels on KNC and Kepler accelerators
and on a dual 8-core E5-2630 (Intel Haswell micro-architecture) processor running at 2.4 GHz.

Intel Xeon 7120 NVIDIA K80 E5-2630 v3
devices(s) 1 2 3 4 1 2 3 4 1 2

Propagate (GB/s) 85 161 225 274 154 266 393 520 40 88
Sr 1.0X 1.90X 2.65X 3.22X 1.0X 1.72X 2.55X 3.37X 1.0X 2.2X
Collide (GFs) 358 709 1056 1383 667 1359 2029 2706 111 222
Sr 1.0X 1.98X 2.95X 3.86X 1.0X 2.03X 3.07X 4.05X 1.0X 2.0X

Global P (MLUPS) 39 73 110 139 72 140 209 277 12 23
Sr 1.0X 1.95X 2.82X 3.56X 1.0X 1.93X 2.88X 3.84X 1.0X 1.98X

10

287

E. Calore, S. F. Schifano, R. Tripiccione

Haswell micro-architecture.
We first focus on comparing performances with just one accelerator. The propagate

kernel is a memory-bound step corresponding to memory copies with sparse address pat-
terns. On the Kepler architecture we reach ≈ 64% of the available peak bandwidth. The
Xeon-Phi, that uses the same class of memories, obtains a lower bandwidth, ≈ 85 GB/s,
that is ≈ 24% of peak. This is mainly due to the limited bandwidth (≈ 220 GB/s) of
the internal ring, connecting cores and memory controllers. On the Haswell processor we
measure ≈ 40 GB/s corresponding to ≈ 67% of the available peak.

The collide kernel is a strongly compute-bound step, requiring approximately 20
double-precision floating-point operations per byte. On Kepler, this kernel reaches a
sustained performance of ≈ 46% of the available peak. The Xeon-Phi performance is
lower, only approximately ≈ 30% of the available peak, while on the Haswell CPU we
measure an efficiency of ≈ 29%. The last section (Global P) of the table shows the
performance of the full code, measured in Millions Lattice Update Per Second (MLUPS).
Comparing with the traditional eight-core CPU, the Xeon-Phi is ≈ 3X faster, while on
one GPU of the K80 system, the speed-up is 6X.

Table 1 also shows scalability results (Sr). We see that the individual steps and the full
code scale quite well meaning that communications have been hidden with computation;
running with 4 GPUs the sustained performance of the full code is 1.7 TFLOPS.

In conclusion, our application running on one accelerator are up to 6X faster than a
recent standard CPU, and also a good scaling on multi-accelerator systems. While these
are valuable results, we underline that they were obtained with handcrafted optimizations
tailored for each target accelerator. This is due to the still immature programing method-
ologies able to map the same code on different accelerator architectures. Portability of
codes and also of performances is today a real issue that needs to be solved to make
accelerators a widespread solution for HPC computing.

Acknowledgements

This work was done in the framework of the COKA, COSA and SUMA projects of INFN.

We thank CINECA (Bologna, Italy), and the NVIDIA Jülich Application Lab (Jülich Super-

computer Center, Germany) for allowing us to use their computing systems.

REFERENCES

[1] Pohl, T., et al., Performance evaluation of parallel large-scale lattice boltzmann applications
on three supercomputing architectures Proc. of SC (2004) doi:10.1109/SC.2004.37

[2] Biferale, L., et al., Lattice boltzmann fluid-dynamics on the QPACE supercomputer Proc.
Comp. Science 1(1) (2010) 1075–1082 doi:10.1016/j.procs.2010.04.119

[3] Pivanti, M., et al., An optimized lattice boltzmann code for BlueGene/Q LNCS 8385
(2014) 385–394 doi:10.1007/978-3-642-55195-6 36

11

288

E. Calore, S. F. Schifano, R. Tripiccione

[4] Sano, K., et al., FPGA-based streaming computation for lattice boltzmann method Field-
Programmable Technology (2007) 233–236 doi:10.1109/FPT.2007.4439254

[5] Biferale, L., et al., Optimization of multi-phase compressible lattice boltzmann codes
on massively parallel multi-core systems Proc. Comp. Science 4 (2011) 994–1003
doi:10.1016/j.procs.2011.04.105

[6] Biferale, L., et al., A multi-gpu implementation of a D2Q37 lattice boltzmann code LNCS
7203 (2012) 640–650 doi:10.1007/978-3-642-31464-3 65

[7] Bailey, P., et al., Accelerating lattice Boltzmann fluid flow simulations using graphics pro-
cessors In: Parallel Processing (2009) 550–557 doi:10.1109/ICPP.2009.38

[8] Crimi, G., et al., Early Experience on Porting and Running a Lattice Boltz-
mann Code on the Xeon-phi Co-Processor Proc. Comp. Science 18 (2013) 551–560
doi:10.1016/j.procs.2013.05.219

[9] Succi, S., The Lattice-Boltzmann Equation Oxford university press (2001)

[10] Aidun, C.K., Clausen, J.R., Lattice-Boltzmann Method for Complex Flows Annual Review
of Fluid Mechanics 42 (1) (2010) 439–472

[11] Sbragaglia, M., et al., Lattice Boltzmann method with self-consistent thermo-hydrodynamic
equilibria J. of Fluid Mechanics 628 (2009) 299–309 doi:10.1017/S002211200900665X

[12] Scagliarini, A., et al., Lattice Boltzmann methods for thermal flows: Continuum limit
and applications to compressible Rayleigh–Taylor systems Physics of Fluids 22(5) (2010)
055101. doi:10.1063/1.3392774

[13] Biferale, L., et al., Second-order closure in stratified turbulence: Simulations and
modeling of bulk and entrainment regions Phys. Review E 84(1) (2011) 016305
doi:10.1103/PhysRevE.84.016305

[14] Biferale, L., et al., Reactive Rayleigh-Taylor systems: Front propagation and
non-stationarity EPL (Europhysics Letters) 94(5) (2011) 54004 doi:10.1209/0295-
5075/94/54004

[15] Kraus, J., at al., Benchmarking GPUs with a parallel Lattice-Boltzmann code Proc. of
Computer Architecture and High Performance Computing (SBAC-PAD) (2013) 160–167
doi:10.1109/SBAC-PAD.2013.37

[16] Mantovani F et al, Exploiting parallelism in many-core architectures: Lattice Boltz-
mann models as a test case. J. Phys. Conf. Series 454 012015 (2013) doi:10.1088/1742-
6596/454/1/012015

[17] Mantovani F et al, Performance issues on many-core processors: a D2Q37 Lattice Boltz-
mann scheme as a test-case. Comp. & Fluids 88 (2013) doi:10.1016/j.compfluid.2013.05.014

[18] Biferale L et al, An Optimized D2Q37 Lattice Boltzmann Code on GP-GPUs. Comp. &
Fluids 80 (2013) doi:10.1016/j.compfluid.2012.06.003

12

289

