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Laboratory-based spectral data acquisition of roof materials 

Abstract 

Roof characteristics such as material type and their properties information are 

essential to integrating urban agriculture (UA), rainwater harvesting (RWH), and 

energy systems on roofs. Roof materials can be identified from their spectral 

signatures. However, this identification requires a priori knowledge of the 

materials’ spectral characteristics. The main perspective of this work is the future 

use of spectral data for roof classification. A common practice in mapping 

materials is the use of spectral libraries. In this regard, this work describes a 

novel framework for laboratory-based spectral data acquisition. The reflectance 

data of common, recently introduced (plastics and metals), and representative 

roof materials from the Mediterranean region were obtained. Data acquisition 

was conducted in a laboratory under controlled conditions using a high-spatial-

resolution (HSR) sensor, which is usually used for airborne surveys. Large 

variations in the spectral reflectance data were observed due to the composition 

of the roof material. Flat spectral signatures were found for fibre cement, 

concrete, gravels and some metals, especially from the near-infrared (NIR) 

spectral region. Colour and surface finish greatly influence the visible (VIS) 

spectral range. It was confirmed that the view angle did not modify the spectral 

shapes. A collection of 39 spectral data of roof materials (ceramics, concrete, 

fibre cement, metals, plastics, paints, stone, and wood) were compiled into a 

spectral library that is available online. 

1. Introduction 

To supply essential needs, such as food, water, and energy, to citizens, cities must 

depend on their surrounding areas. According to the United Nations, by 2050, 68% of 

the world’s population will live in cities (United Nations 2018). The global demand for 

food, water, and energy is estimated to increase by over 50% (IRENA 2015). In this 

context, urban agriculture (UA), rainwater harvesting systems (RWHS), and renewable 

energy systems are key strategies for producing local resources and supplying these 

essential needs. 



Roofs represent half of the total impervious surface in cities and are generally 

unused spaces. Rooftops can be used for growing food, collecting rainwater, and 

generating energy (e.g., solar photovoltaic (PV) or solar thermal panels). Roof 

characteristics (i.e., the geometry, area, slope, solar radiation and material) are essential 

data for assessing their suitability for integrating food, water, or energy (FWE) 

production systems in cities (Villarreal and Dixon 2005; Carter and Keeler 2008; Orsini 

et al. 2016; Toboso-Chavero et al. 2018). 

Roof information has traditionally been conducted through ground-level 

measurement techniques. However, these techniques are inefficient, time consuming, 

and impractical for obtaining roof information on large scales. In this sense, new 

methods are needed to obtain roof information properties, and remote sensing (RS) 

technology represents an efficient and advantageous tool to obtain information at large 

scales about impervious surfaces such as roads, sidewalks, and roofs (Samsudin, Shafri, 

and Hamedianfar 2016). 

1.1 Remote sensing and roof data collection 

Remote sensing refers to the technology to acquire data in relation to an object without 

being in physical contact (Arnold and Gibbons 1996). RS technology such as light 

detection and ranging (LiDAR) and imagery systems have been used for obtaining roof 

properties to assess the suitability to integrate UA, RWHS, and PV systems in cities. 

1.1.1 LiDAR systems 

LiDAR systems are active RS that focus on geometry rather than radiometry (Weng 

2012). These sensors have been used to create digital elevation models (DEMs) and 

digital surface models (DSMs) (Wang and Wang 2011). LiDAR technology can provide 

precise information about elements in an urban area such as buildings and trees (Martín, 



Domínguez, and Amador 2015). Compared with other sources of data, such as 

conventional imagery, LiDAR has many advantages, short processing time and can 

acquire 3D information over target areas by mostly automated operation (Weng 2012). 

 LiDAR and UA. Berger (2013) analysed the potential of rooftop agriculture in New 

York City using LiDAR data. These data allowed the identification of roof 

characteristics such as surface area and slope to assess the feasibility of integrating 

rooftop UA systems. Saha and Eckelman (2017) described an automated procedure 

combining geographic information systems (GIS) and LiDAR data to quantify suitable 

areas for UA at ground level and on rooftops. A DSM of Boston buildings was created 

using a remotely sensed LiDAR point cloud dataset. From this DSM, the roof area and 

slope were obtained to identify potential roof areas for UA. Nadal et al. (2017) used 

LiDAR data acquired with a Leica ALS50-II airborne sensor. Roof characteristics such 

as surface, solar radiation, and slope were obtained. These data allowed the 

identification and assessment of roof potential to integrate UA in industrial buildings in 

Barcelona. 

LiDAR and RWHS. Few works have been performed to identify suitable roofs to 

integrate RWHS. Grant, McKinney, and Ries (2017) used LiDAR data to identify 

rooftop surfaces. LiDAR data allowed calculation of the catchment area of the rooftop 

and the potential for RWHS in Florida (USA). Lupia et al., (2017) analysed the water 

savings through RWHS from building rooftops to irrigate fruit and vegetable crops in 

the urban area of Rome, Italy. Data of rooftops areas were obtained from LiDAR data, 

and then the total roof surface was analysed to quantify rainwater collection. Oyedayo 

(2018) provided a novel framework for understanding the spatiotemporal pattern of 

rooftop rainwater harvesting potential in the Taita Hills region (Kenia), providing 

decision support for RWHS implementation. LiDAR data were used to automatically 



generate the footprints of roofs, and roof polygons were generated from the LiDAR data 

to estimate the rooftop rainwater harvesting potential for domestic water needs in the 

region. LiDAR data were obtained through two campaigns, the first in 2013 using the 

Optech ALTM 2100 sensor and the second in 2015 with Leica ALS60. 

LiDAR and PV.  Several works used GIS and remote sensing LiDAR data to quantify 

solar PV potential on roofs ( Palmer et al. 2018). Margolis et al. (2017) used LiDAR 

data obtained from the US Department of Homeland Security. The data were processed 

to determine the shading, tilt, and azimuth of each rooftop at a horizontal resolution of 1 

m2. A set of criteria was then applied to determine whether roof areas were suitable for 

PV systems. Nguyen et al. (2012) assessed PV rooftop solar potential in Kingston 

(Canada) using an Optech Airborne Laser Terrain Mapper 3100 (LiDAR system). 

Potential rooftops for PV systems were identified, and a calculation of the total potential 

area was performed. Brito, Gomes, Santos, and Tenedório (2012) estimated the PV roof 

potential in Carnaxide (Portugal) using building footprints acquired from LiDAR data, 

and an ArcGIS extension was used for modelling roof solar radiation. The results 

showed a potential capacity to cover 48% of the local electricity demand. Kodysh, 

Omitaomu, Bhaduri, & Neish, (2013) estimated solar potential on rooftops, for 212,000 

buildings in Knox County, Tennessee, (USA). The methodology allows the 

identification of suitable roofs with higher potentials for installing PV systems. The 

work was performed using LiDAR, building footprint data and GIS. Bayrakci Boz, 

Calvert, and R. S. Brownson (2015) acquired LiDAR data and building footprints to 

obtain roof characteristics (slope, azimuth, and shading) to identify rooftops suitable for 

solar energy systems. The case study was the city of Philadelphia, USA. The results 

showed that 33.7% of the building footprint areas were suitable for PV systems. 



Through the previous review, we can observe that to assess the feasibility of 

rooftop UA, only a few works have used LiDAR technology, most of which are located 

in the USA. All studies obtained roof area and slope data from LiDAR to identify 

minimum surface requirements and the presence of flat roofs to integrate rooftop UA 

and quantify their potential. 

To identify suitable areas for RWHS, few works have used LiDAR data; in these 

cases, roof areas were used to calculate the total rainwater that can be collected. These 

works were performed in Europe, the USA and Africa. 

In contrast to the previous areas of application (UA and RWHS), the use of 

LiDAR data has been widely used for PV potential. Geometric data of the roofs, such as 

area, slope, and azimuth, were used to identify and calculate solar potential. Most of 

these works have been developed in the USA, but there are also case studies in Canada 

and Europe. 

All these works identified geometric roof characteristics (slope and surface 

area), shadows and solar access, which are essential roof properties to assess the 

potential integration of FWE systems. However, LiDAR technology does not have the 

capability to identify roof materials. 

1.1.2 Imagery systems  

Imagery systems are passive remote sensors that record the radiation either reflected or 

emitted by surfaces. Imagery systems operate in a wide spectral range from visible 

(VIS), near-infrared (NIR), shortwave infrared (SWIR) and thermal-infrared (TIR) (Liu 

and Mason 2009). 

Data acquired from multispectral imagery commonly consist of  3 to 7 bands 

(e.g., Landsat satellite) of data and have bandwidths ranging from 50 to 120 or more 

nanometres (nm) (Hermiyanty, Wandira Ayu Bertin 2017). Imaging spectrometers, also 



called hyperspectral remote sensors, are a revolutionary development in imagery 

systems. These systems have approximately 100 to 200 or more spectral bands with 

relatively narrow bandwidths (5-10 nm) (Shafri et al. 2012; Liu and Mason 2009). 

Imaging systems and UA. Nadal et al. (2017) used hyperspectral data acquired from a 

Thermal Airborne Spectrographic Imager 600 (TASI-600) to identify the following roof 

materials: metal, gravel, concrete, and fibre cement. The data were used to assess the 

potential implementation of rooftop greenhouses for growing food in Barcelona, Spain. 

Other work by Nadal et al. (2019) used orthophotos from a satellite to assess UA 

potential on residential buildings in Quito (Ecuador). Orthophotos were used to identify 

roof areas, and these areas were digitalized as polygons to quantify the total roof 

potential to integrate UA. 

Imaging systems and RWHS. Ojwang, Dietrich, Anebagilu, Beyer, and Rottensteiner 

(2017) used high-spatial-resolution imagery (WorldView-2 satellite) to detect roof areas 

and materials to integrate RWHS in Mombasa (Kenya). Roof materials, tiles, iron and 

concrete were detected using supervised image classification, and a total roof area of 3 

km2 was identified as suitable for RWHS. Radzali et al. (2018) used WorldView-3 

satellite imagery to obtain spectral and spatial information of roofs. Three types of 

roofing material were identified in the study area: concrete, metal, and asbestos; in 

addition, the condition (new or old) of the roof was identified. This assessment was 

done by the true colour combination of band 5, band 3, and band 2 of the World-View 3 

image. The results allowed the identification and quantification of roofs to integrate 

RWH in Seri Kembangan, Malaysia. 

Imaging systems and PV. Jamal et al. (2014) mapped the potential roof area available in 

Dhaka (Bangladesh) and evaluated the possible electricity supply from rooftop PV 



systems. To perform the estimation, Quickbird satellite imagery and GIS tools were 

used. The results showed that PV generation potential might meet 15% of local grid 

electricity demands. Singh and Banerjee (2015) used a combination of land use data and 

GIS-based satellite image analysis for the estimation of rooftop PV potential in Mumbai 

(India). The results showed that rooftop PV potential might provide from 12.8 to 20% 

of the average daily energy demand. Khan and Arsalan (2016) used GIS and satellite 

imagery acquired from Google Earth™ to identify the available rooftop area for PV 

potential. The case study was performed in Karachi (Pakistan). Solar power potential 

and annual energy outputs for different scenarios of PV technologies were computed. 

The results demonstrated that monocrystalline and amorphous Si-based rooftop PV 

systems could provide 122.4% and 65.2% of the peak power demand, respectively. 

As we can observe, imagery systems have rarely been used to identify roof 

properties for UA implementation purposes. However, through these systems, it is 

possible to obtain roof material information for integrating UA rooftops. 

Few works have used imagery systems to obtain information on roofing 

materials and roofing conditions to assess the potential of RWHS. However, most of the 

studies used imagery systems to identify roof areas without considering roof materials. 

There have been many studies conducted by different researchers around the 

globe that demonstrated the use of GIS tools and RS data (multi- or hyperspectral) for 

the identification and estimation of rooftop PV (Khan and Arsalan 2016). However, 

there is no research about the identification of roof materials with the purpose of 

assessing the feasibility of PV systems. 

In conclusion, hyperspectral data obtained by imaging spectrometers provide the 

potential to derive detailed information on the properties of different surface materials 

(Arnold and Gibbons 1996), in contrast to LiDAR systems that provide information 



about the height and geometric properties of roofs, while high-resolution images can 

provide information about spectral signatures. 

Most of the works developed to identify roof characteristics to integrate FWE 

systems centre their interest on the slope, surface area, shadows and solar access. 

Therefore, there is a gap in the identification of roof materials to assess the potential 

integration of FWE systems. Roof materials are essential data to integrate into these 

systems: if a roof does not have the necessary load-bearing capacity to support the 

weight of an FWE system, it will not be possible to install a system on it. In this sense, 

spectral characteristics are useful for mapping materials, and from this knowledge, an 

indicator of the construction systems in a given area can be obtained, and the load 

capacity of roofs can be estimated. Furthermore, the quality and quantity of rainwater 

harvested from roofs are significantly affected by roofing materials (Farreny et al. 2011; 

Sanyé-Mengual et al. 2015; Nadal et al. 2017). 

1.1.2 Spectral libraries of impervious materials 

Roof materials can be classified from their spectral signatures (Jilge et al. 2017); 

however, the large number of different materials and their spectral variations are a 

challenge for roof classification. In this sense, a priori knowledge of the spectral 

characteristics of the materials is required (Ben-Dor, Levin, and Saaroni 2001; Heiden 

et al. 2001; Kotthaus et al. 2014). 

A common practice in mapping materials is to use spectral libraries (Nidamanuri 

and Ramiya 2014) that provide information about the spectral characteristics of 

materials. Spectral data can be acquired at three scales: in the laboratory, in the field, or 

from remote sensing platforms (Stevens et al. 2008). 

In general, laboratory-based measurements are made over fairly small samples, 

and spectroradiometers are used to obtain spectral data. Laboratory-based data 



acquisition has the advantage of providing controlled conditions and the highest quality 

reflectance, but it also requires the transport of surfaces to the laboratory; in many 

cases, this transport is infeasible. For field measurements, a number of field 

spectroradiometers are available (e.g., FieldSpec, Spectron- SE590, ASD Personal 

Spectrometer II). Airborne multi- and hyperspectral scanners, such as the Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS), HyMap or Compact Airborne 

Spectrographic Imager, have been used to acquire spectral data (Milton, Fox, and 

Schaepman 2006; Roberts and Herold 2004). For acquired spectral data, most sensors 

are mounted vertically over the target (nadir view). The same instrument is used to 

measure the energy (in terms of digital-number (DN) pixel values that have not yet been 

calibrated into physically meaningful units) of both the material and the reference panel 

(Roberts and Herold 2004), which is a nearly ideal Lambertian reflecting surface with 

known high reflectance (near 1) and spectrally flat. A conversion of the DN to radiance 

values can be performed through the calibration process using data from the sensor 

manufacturing company. Afterwards, a ratio between radiances for the target and the 

reference yields reflectivity values. Alternatively, reflectivity (the real intrinsic 

characteristic of a material) can be calculated through a simple ratio between the DN 

value corresponding to the target and the radiometric reference. However, the 

manufacturer calibration process takes into account more subtle variations, for example, 

the spectral alignment (Markelin et al. 2008). 

Table 1 shows some of the existing spectral libraries of urban materials. These 

libraries provide information on impervious and pervious materials and from the VIS, 

NIR, SWIR, and TIR spectral ranges. 

 



Table 1. Spectral libraries of impervious and pervious materials based on Kotthaus et al. 

(2014). 

References Country 
Urban surface 

cover type Roof material Spectral range 
(nm) 

Instrument 
Data 

acquisition 
P I L F A 

 Baldridge et 
al. (2009) 
ASTER 

USA ● ● 

Metals, rubber, 
asphalt, tile, 

roofing paper, 
shingle 

400-1000 
1000-2400 

8000-12000 
VIS-NIR-SWIR 

TIR 

Advanced Spaceborne 
Thermal Emission 

Reflection 
Radiometer 

● ●  

Herold et al. 
(2004) 

Santa Barbara 
spectral 
library 

USA ● ● 

Wood, shingle, 
tile, gravel, 

asphalt, roofing 
paper 

350–2400 
VIS-NIR-SWIR 

ASD FieldSpec 3 
Spectroradiometer 

AVIRIS 
 ●  

Heiden et al. 
(2007) Germany ● ● 

Mineral, 
metallic, 

hydrocarbons 

400–2500 
VIS-NIR-SWIR 

HyMap HRS & ASD 
FieldSpec 3 

Spectroradiometer 
 ● ● 

Moreira and 
Galvão 
(2010) 

Brazil  ● 

Tile, fibre 
cement, steel, 
aluminium, 
concrete, 

polyethylene, 
polyvinyl 
chloride, 

painted roof 

400-2400 
VIS-NIR-SWIR 

ASD FieldSpec 3 
Spectroradiometer 

● ●  

Nasarudin 
and Shafri 

(2011) 
UPMSpeclib 

Malaysia ● ● 

Asbestos, 
concrete, metal 

deck, 
polycarbonate, 
clay tile, zinc 

350-2500 
VIS-NIR-SWIR 

ASD FieldSpec 3 
Spectroradiometer 

 ●  

Kotthaus et 
al. (2014) 

SLUM 
England  ● 

Tile, shingle, 
metal, polyvinyl 

chloride, 
concrete 

350-2500 
2000-15400 

VIS-NIR-SWIR-
TIR 

HR-1024 
Spectroradiometer 

M2000 Fourier 
Transform Infrared 

spectrometer 

●   

The urban surface cover type includes some (P) pervious and (I) impervious roof materials. The 

spectral data were obtained in the laboratory (L), the field (F) or from an airborne (A) 

sensor. ASD: analytical spectral devices. HRS: hyperspectral remote sensing. ASTER: 

Advanced Spaceborne Thermal Emission Reflection Radiometer. The ASTER library 

includes contributions from the Jet Propulsion Laboratory (JPL), Johns Hopkins 

University (JHU) and the United States Geological Survey (USGS). 

Even with the existing libraries, information is still needed on commonly used roof 

materials according to different geographic regions. Furthermore, new building 

materials such as plastics and metals continuously enter the market, and their spectral 

characteristics have limited presence in the existing spectral libraries (Heiden et al. 



2007; Kotthaus et al. 2014; Jilge et al. 2017). 

 In this regard, this work aims to contribute to the knowledge of the spectral 

characteristics of roof materials. The main perspective is the future use of spectral data 

for roof classification, allowing the assessment of roofs for implementing FWE systems. 

The objectives of this work are 1) to describe a methodology for spectral data 

acquisition of common roof materials from the Mediterranean region and 2) to develop 

a spectral library of common roof materials in urban areas. 

2. Materials and methods 

2.1. Roof materials 

Common roof materials in urban areas, including some representative materials from 

the Mediterranean region, were selected according to the literature (Castellanos 1996; 

Chueca 2003; Schunck et al. 2003; Farreny et al. 2011; Nadal et al. 2017). In total, 39 

samples were collected. All the samples were in new condition. Granite, slate and wood 

roofs were also included, as they are common on rooftop open terraces. Various colours 

were considered in the selection. Each sample was coded with a letter identifying the 

material class and an ID number. Table 2 describes the characteristics of the roof 

material samples used in this study: ceramics (5), fibre cement (1), concrete (3), metals 

(9), paints (2), plastics (11), stone (7), and wood (1). 

Table 2. Characteristics of the roof material samples used to acquire the spectral data. 
ID Class Material Colour Dimensions (mm) 

C01 Ceramic Ceramic tiles Burnt red, dull 400 × 400 × 20  

C02 Ceramic Gres porcelain tiles White, shiny 300 × 600 × 6 

C03 Ceramic Gres porcelain tiles Red 300 × 600 × 6 

C04 Ceramic Gres porcelain tiles Grey, dull 410 × 410 × 5 

C05 Ceramic Gres porcelain tiles Multicoloured burnt 315 × 315 × 5 



ID Class Material Colour Dimensions (mm) 

red/brown/dark green, 

dull 

T01 Concrete Concrete tiles Grey, dull 200 × 200 × 40 

T02 Concrete Concrete tiles Grey, dull 400 × 400 × 35 

T03 Concrete Concrete bricks Grey, dull 95 × 200 × 75 

T04 Cement Corrugated fibre 

cement shingles 

Grey, dull 300 × 300 × 3 

M01 Metal Steel shingles Grey, dull 250 × 500 × 0.06 

M02 Metal Galvanized steel 

shingles 

Grey, shiny 250 × 500 × 0.05 

M03 Metal Inox steel shingles Grey, shiny 250 × 500 × 0.05 

M04 Metal Aluminium shingles Grey (polished) 250 × 500 × 1 

M05 Metal Steel shingles with 

paint 

Beige 400 × 300 × 0.05 

M06 Metal Copper shingles Copper 250 × 500 × 0.05 

M07

  

Metal Zinc shingles Grey 250 × 500 × 0.06 

M08 Metal Steel with paint 

(sandwich panels) 

Beige 400 × 300 × 35 

M09 Metal Aluminium with paint 

(sandwich panels) 

Grey, dull 270 × 185 × 50 

PT01 Paint Shingles with paint Blue, synthetic enamel  300 × 300 × 10 

PT02 Paint Shingles with paint Red, synthetic enamel  300 × 300 × 10 

P01 Plastic Methacrylate shingles Blue, shiny 300 × 250 × 3 

P02 Plastic Methacrylate shingles Red, shiny 300 × 250 × 3 

P03 Plastic Methacrylate shingles White, shiny 300 × 250 × 3 

P04 Plastic Polyvinyl chloride 

(PVC) shingles 

White 500 × 250 × 3 

P05 Plastic Polycarbonate shingles White, shiny 190 × 150 × 1 

P06 Plastic Polycarbonate shingles Translucent blue, shiny 190 × 140 × 1 

P07 Plastic Polycarbonate shingles Translucent shiny 210 × 297 × 8 

P08 Plastic Polycarbonate shingles Translucent blue, shiny 210 × 297 × 8 



ID Class Material Colour Dimensions (mm) 

P09 Plastic Polycarbonate shingles Translucent red, shiny 210 × 297 × 8 

P10 Plastic Synthetic rubber 

ethylene–propylene–

diene monomer rubber 

Black, dull 210 × 310 × 1 

P11 Plastic Asphalt polymer Black, dull 300 × 300 × 1 

S01 Stone Granite tiles Multicoloured 

White/black, dull 

150 × 150 × 20 

S02 Stone Granite tiles Multicoloured 

Black/grey/white, dull 

150 × 150 × 20 

S03 Stone Granite tiles Multicoloured 

White/green, dull 

150 × 150 × 20 

S04 Stone Granite tiles Multicoloured 

White/pink/black, dull 

150 × 150 × 20 

S05 Stone Slate tiles Grey, dull 300 × 600 × 10 

S06 Stone Gravel Multicoloured grey/beige, 

dull 

400 × 300 × 15 

 

S07 Stone Gravel Multicoloured 

grey/white/beige, dull 

400 × 300 × 15 

 

W01 Wood Wood shingles Light brown, dull 300 × 300 × 10 

 

2.2. Equipment and software 

The Airborne Imaging System for different Applications (AISA) Eagle II sensor was 

used to acquire the spectral data (Alamús et al. 2018).  

Table 3 describes the technical parameters of the airborne sensor. The AISA sensor, 

manufactured by Specim, is a commercial pushbroom-type imaging spectrometer 

system that records the VIS-NIR spectral range. It has a reflection grating with a two-

dimensional solid-state array detector based on charge-coupled devices (CCD) (Alamús 

et al. 2018).  



Table 3. Technical parameters of the AISA Eagle II imager. 
Parameter AISA Eagle II  

Field of view (FOV) 37.7º  

Spectral bands 252  

Spectral range 400-1000 nm 

Spectral resolution 2.5 nm 

Across-track spatial pixels 1024 pixels  

Swath width 47 cm 

 

To obtain homogeneous samples, a specific system was designed. It consisted of a 

workbench on which the sensor was installed, remaining fixed during data acquisition. 

A standard Mecalux® bench was used for this purpose. Below the sensor, a linear unit 

was installed. The linear unit allows movement of the sample and the Spectralon® 

(radiometric reference) under the sensor at a constant speed. Figure 1. shows the linear 

unit built for this work. The linear unit was equipped with a rail and a rolling platform 

driven by a stepper motor, plus a servo control that allows the selection of software 

parameters for driver movement, including the path and the speed of the platform. The 

speed was computer controlled using Ezi-MOTION Plus-R manufactured by direct 2 

motion. 

 

Figure 1. Linear unit built for displaying the roof material samples and the Spectralon® panel. 

View of the rail (left) and the linear unit platform and motor system (right). 



A Spectralon® reflectance reference panel manufactured by Labsphere was used 

during spectral acquisition. Figure 2. Illumination geometry for data acquisition in the 

laboratory. shows the light sources designed to provide sufficient energy in the spectral 

domain captured by the AISA Eagle II sensor. Two light sources were used to 

illuminate the sample, which gave a more spectrally homogeneous field of irradiance 

than that from a single source. For this purpose, two different lamps were used, and they 

illuminated the scene parallel to the slit opening of the sensor to avoid specular 

reflections: a 50 W LED lamp emitter with higher intensity emittance in the green-blue 

VIS spectral ranges and a standard 500 W halogen lamp, characterized by a peak in the 

yellow to near-infrared range. Figure 3 shows the emission spectrum of the lamps 

measured in the laboratory. The use of the LED together with the halogen lamp has the 

objective of obtaining the maximum illumination in the entire VIS-NIR spectral range 

to optimize the signal-to-noise ratio in the process of data acquisition. 

 

 

 

 



Figure 2. Illumination geometry for data acquisition in the laboratory. 

Figure 3. Emission spectrums of the LED and halogen lamps used for data acquisition 

in the laboratory. 

The essential software used in this study includes GeoView 2, which specializes 

in the management of raster and vector layers developed for internal use by the 

Cartographic and Geologic Institute of Catalonia (ICGC), and a script (see the 

appendices). 

2.3. Procedure 

Figure 4 shows the four main processing stages of the described methodology: spectral 

data acquisition, image preprocessing, radiance data processing, and the development of 

the spectral library. A detailed description of each stage is presented in the following 

sections. 



 

Figure 4. Diagram of the framework for laboratory-based spectral data acquisition of 

roof materials and the development of the spectral library. 

2.3.1. Spectral data acquisition  

Spectral data acquisition was performed in the Hyperspectral Laboratory of the ICGC 

under controlled conditions. The laboratory was isolated from natural light as well as 

artificial light sources from adjacent spaces. Artificial lights described in the previous 

section were used to illuminate the sample materials and to ensure uniform illumination. 



Radiance data were captured in the VIS-NIR spectral region from samples of 

common roof materials (identified in the literature) with the AISA Eagle II sensor. The 

spectral data were acquired by sampling each material together with the reflectance 

reference panel. Both of these objects were placed on the linear unit (Figure 5), and the 

sensor was placed in the nadir angle position (along-track viewing position). 

To obtain a similar pixel size for the along and across tracks, speed tests were 

performed before data acquisition. The speed at which a pixel was as square as possible 

was 4 mm s-1. The pixel resolution width and length were 0.45 mm and 0.40 mm, 

respectively. The average time needed for the data collection process for each material 

was 4 minutes. Each data acquisition instance was registered on paper, with three main 

information items: general data (date, sample ID, start and end time, consecutive 

number of data tests acquired); laboratory conditions (operation and conditions of the 

lighting and linear unit); and incident reports. 

 

Figure 5. Top view of the Spectralon ®, sample material (in this case, ceramic tile C01), 

and linear unit platform for spectral data acquisition. 

2.3.2. Image data preprocessing 

VIS-NIR spectral radiance data were obtained using the AISA Eagle II sensor that 

records high-spatial-resolution images and spectra in raw DN. To obtain the radiance, 



DNs were converted to radiance values using a calibration process. This process was 

performed through a proprietary calibration protocol from the sensor manufacturing 

company. The images were composed of the reflectance reference target, the sample 

material and the linear unit. To process the radiance data, valid pixels were selected 

from each image recorded, and two vector masks were made: the first mask was from 

the Spectralon® panel, and the second mask was from the roof material. This process 

was performed with GeoView 2. 

2.3.3. Processing the radiance data 

The pixel array was divided into four groups corresponding to different instantaneous 

fields of view (IFOVs). As Figure 6 illustrates, the four groups were -3°:0° & 0°:3; -7°:-

3° & 3°:7°; -12°:-8° & 8°:12°; and -17°:-13° & 13°:17°. These view angles were set in a 

script (available in the Appendices) to process the raw data in the different IFOVs. 

 

Figure 6. IFOV groups. 

The corresponding angular mask was obtained for each IFOV group. An overlap 

of two (i.e., the sample material and the reference target) three-dimensional arrays was 

made. The pixels of the sample material and the reflectance panel were spatially and 



temporally averaged. Illumination corrections were performed using the calibration file 

provided by the Spectralon® manufacturer. 

Reflectance data were obtained for each IFOV group using Equation (1). The 

absolute spectral reflectance αλ was calculated by dividing the sample material radiance 

𝑅𝑅𝑅𝑅𝑅𝑅𝛌𝛌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 by the reflectance panel (Spectralon®) 𝑅𝑅𝑅𝑅𝑅𝑅𝛌𝛌 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and by including the 

spectral reflectance of the Spectralon® 𝑅𝑅𝑅𝑅𝑅𝑅𝛌𝛌. 

 𝜶𝜶𝝀𝝀 = � 𝑅𝑅𝑅𝑅𝑅𝑅𝝀𝝀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑅𝑅𝑅𝑅𝑅𝑅𝝀𝝀 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
� 𝑅𝑅𝑅𝑅𝑅𝑅𝝀𝝀                                           (1)                                              

Figure 7 shows an example of the output script, which is composed of a series of 

five images and a file with the reflectance data for each roof material and view angle 

group. Images a through e contain a full-scene image (i); a sample mask (ii); a reference 

panel mask (iii); a view angle mask (iv); an image of the overlap between the view 

angle mask and the material mask (v); and an image of the overlap between the angle 

mask and the reference panel mask (vi). The fifth image corresponds to the spectral 

signatures of the four view angle groups. 



 

Figure 7. Example of a series of five (a through e) images output of the script, in this 

case shingles with blue paint (PT01). 

The available number of pixels to obtain the spectral reflectance data and create 

the spectral signatures were in the following ranges: 38,033 to 162,928 for IFOV 1; 

50,997 to 218,300 for IFOV 2; 12,214 to 223,523 for IFOV 3 and from 0 to 223,893 for 

IFOV 4. The available number of pixels of each sample material and IFOV group are 

shown in the Appendices. 

2.4. Spectral library 

All the acquired spectral reflectance data were compiled into a file. 

2.5. Spectral separability 

After the compilation of the spectral reflectance data (spectral library), a spectral 

separability analysis was performed. The approach to spectral separability was 



calculated using (the root mean square (RMS)) Equation (2), considering reflectance 

data in the VIS-NIR (400 to 1000 nm) spectral range and the four IFOV groups. A 

selection of 36 materials within and between classes was made. This selection was 

conducted randomly, considering similar and different reflectance data and considering 

the representative materials from the Mediterranean region. 

𝑅𝑅𝑅𝑅𝑅𝑅 = 1/𝑁𝑁�∑ (𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵)2𝑁𝑁
𝑖𝑖=1                            (2) 

3. Results 

In total, 52 laboratory tests were carried out, including pilot tests. VIS-NIR reflectance 

data of all (39) roof sample materials and the four view angle groups were obtained. 

However, in 10 (from P05 to P09, from S01 to S04 and T03) cases, it was not possible 

to obtain data from the fourth view angle group due to the small size of the sample 

material.  

3.1 Spectral signatures by material class 

In this section, the spectral reflectance of view angle group 1 for all the materials 

analysed is presented by material class. The results of the remaining three view angle 

groups are available in the spectral library. 

3.1.1. Ceramics 

Figure 8 shows the VIS-NIR spectral signatures of the ceramic samples. White ceramic 

(C02) showed a high and constant reflectance, with values ranging from 84% to 88%, 

due to its uniformly light colour and bright surface. Red ceramics (C01, C03, and C05) 

revealed a deep absorption reflectance between 420 nm and 5500 nm. Slight absorption 

was observed at approximately 650-700 nm and increased by 60% (to 900 nm). Grey 



ceramic (C04) demonstrated constant reflectance and slight absorption at approximately 

600-700 nm. 

 

Figure 8. Spectral reflectance of ceramics. 

3.1.2. Fibre cement and concrete 

Compared with other material classes, the fibre cement and concrete spectral signatures 

(Figure 9) demonstrated minor differences within them. The reflectance values of most 

of these material classes (T01, T02 and T03) increased slightly at approximately 550-

600 nm and increased up to approximately 600 nm. The fibre cement sample (T04) 

exhibited the lowest and most constant reflectance values of the samples in this 

category. The materials presented low reflectance values from 17% to 33%. 



 

Figure 9. Spectral reflectance of fibre cement and concrete. 

3.1.3. Metals 

The VIS-NIR reflectance of the metal samples is represented in Figure 10. Most of the 

metals exhibited values ranging between 12% and 30% and constant reflectance values 

between 600 nm and 997 nm. Almost all the metal samples (except for M05) 

demonstrated a slight increase at approximately 400-470 nm, and a slight absorption 

was observed at approximately 470-500 nm. Some of the steels (M05 and M08) 

demonstrated the highest reflectance values (from 58% to 80%). Polished aluminium 

and zinc (M04 and M07) showed the lowest reflectance values (4%-11%). 



 

Figure 10. Spectral reflectance of metals. 

3.1.4. Paints 

The VIS-NIR spectra of paints (Figure 11) showed pronounced increases and absorption 

peaks. PT01 had its highest reflectance peak (69%) at approximately 960 nm and the 

lowest reflectance peak (3%) between 600 nm and 740 nm. PT02 demonstrated the 

lowest reflectance (3%) at approximately 450-550 nm and its highest peak (74%) at 

approximately 960-997 nm.

 

Figure 11. Spectral reflectance of paints. 



3.1.5. Plastics 

The VIS-NIR reflectance of plastic samples (Figure 12) exhibited great variability in the 

spectral shapes. White plastics (P03 and P04) had similar values, ranging from 64% to 

88%, which were the highest among all the plastic samples. P03 presented a slight 

increase. PVC (P04) exhibited more constant values (between 736 nm and 997 nm); this 

outcome was in contrast to white methacrylate (P03), which demonstrated a decrease at 

approximately 800 nm and a slight increase at approximately 930 nm. Plastics P01, P03, 

P04, P05, P06, P07 and P08 revealed three crests in their spectral shapes: large 

increases at approximately 410-468 nm and large decreases at approximately 511-700. 

P02 and P09 exhibited two peaks, with a large decrease at approximately 418-588 nm 

and a large increase at approximately 590-800 nm. P10 and P11 showed very similar 

spectral shapes and constant reflectance values between 3% and 6%. 

 

Figure 12. Spectral reflectance of plastics. 

 



3.1.6. Stones 

Granite samples (S01, S02, S03 and S04) showed a slight increase in reflectance at 500-

600 nm. The granite samples presented reflectance values from 39% to 50%, except for 

S2, with low values ranging from 24% to 30%. All samples presented low variability in 

reflectance. The slate sample (S05) revealed the lowest reflectance, ranging from 19% 

to 25%, and its spectral shape was the same as that of the granite samples. Gravel, slate 

and dark granite samples presented the lowest reflectance values. Gravel samples 

showed absorption between 410 nm and 495 nm and a slight reflectance peak between 

500 nm and 565 nm; the reflectance values ranged from 18% to 28% (Figure 13). 

 

Figure 13. Spectral reflectance of stones. 

3.1.7. Wood 

Figure 14 illustrates the spectral signature of the wood sample. W01 showed a low 

reflectance (26%) at approximately 400-500 nm and a high reflectance peak (82%) up 

to approximately 800-942 nm. 



 

Figure 14. Spectral reflectance of wood. 

3.2. Representative roof materials from the Mediterranean region 

In this section, the spectral reflectance of only view angle group 1 is presented first, and 

then all the view angle groups are presented. Figure 15 shows a selection of 6 

representative roof materials from the Mediterranean region (Nadal et al. 2017; Farreny 

et al. 2011; Zinzi 2010). 

The results showed different spectral shapes and reflectance values according to 

the material. Fibre cement (T04), grey concrete (T02) and gravel (S07) showed a flat 

spectral shape and the lowest reflectance (from 17% to 28%) compared with that of the 

other materials. Red ceramic (C01) showed reflectance values from 13% (403 nm) to 

62% (approximately 997 nm), and the higher reflectance was in the NIR spectra. 

Polycarbonate (P05) exhibited the most variability in the spectral shape, and reflectance 

values from 35% (407 nm) to 95% (845-879 nm) were identified. The steel sandwich 

panel (M08) presented slight differences in the reflectance values, from 58% (403 nm) 

to 73% (532-569 nm). 



 

Figure 15. Spectral reflectance of the representative roof materials in the Mediterranean 

region. 

Figure 16 illustrates the spectral signatures of the representative Mediterranean 

roof materials of the four IFOV groups. The materials presented the same spectral 

signatures compared within the IFOV groups of each material. The polycarbonate (P05) 

exhibited some larger differences in the amplitude of the reflectance signature; 

however, the spectral shape remained unchanged. 



 

Figure 16. Spectral reflectance of the representative roof materials of the Mediterranean 

region and the four IFOV groups. 

3.3. Spectral library 

The spectral library is divided into seven sections. It includes specific 

information about each sample material, photographs, and spectral signatures. A file 

with the reflectance values from each material is also provided. The spectral library of 

rooftop materials in the urban area (Zambrano-Prado et al. 2017) can be acquired free 

online at https://ddd.uab.cat/record/196065 

https://ddd.uab.cat/record/196065


3.4. Spectral separability of roof materials 

Figure 17 shows the results of a quantitative analysis of spectral separability. A 

comparison among 36 materials was made. The average score of separability was 3.43. 

A score of 0 means that there is no separability, while a score increase indicates greater 

separability among the roof materials. 

Ceramic materials, burnt red (C01) and white (C02) ceramic tiles, showed a 

spectral separability of 10.61. In the case of ceramics (C01 and C05) with similar red 

colours, a low separability of 1.34 was found. Separability results between red ceramic 

tile (C01) and fibre cement (T04) showed a score of 4.32. Regarding metal materials, a 

low spectral separability score of 1.77 between M03 and M07 was found, while the 

separability comparison between M04 and M08 was higher (9.94). The steel sandwich 

panel (M08) and white plastic (P05) showed a value of 2.66. Regarding plastic 

materials, a score separability value of 4.01 was found between blue (P01) and 

translucent blue (P08). A low value of 1.08 was found between plastics (P03 and P04) 

with a similar white colour. The highest separability score (13.38) was found between 

white (P03) and black (P10) plastics. The results showed a low value (0.19) between 

black plastics (P10 and P11). Paint surfaces (PT01 and PT02) showed a separability 

score of 4.88. With respect to the stone materials class, a low separability of 0.49 was 

found within multicoloured granite tiles (S01 and S04). The results showed a 

separability score of 3.12 between multicoloured granite tiles (S01) and gravel (S06). 

Low separability of 0.24 was found for two types of gravel (S06 and S07). The results 

between gravel (S07) and concrete (T02) showed low (0.35) spectral separability. The 

lowest separability (0.15) was found between the concrete tile and brick (T01 and T03), 

and a value of 1.35 was found within two concrete tiles (T01 and T02). Finally, a 



spectral separability of 1.83 was found between the concrete tile (T01) and ceramic tile 

(C04). 

 

Figure 17. Spectral separability average scores for roof materials. 

4. Discussion 

The ceramic (C01, C03, C05) spectra varied greatly, and a strong absorption for red 

ceramics occurred in the visible region from 420 to 550 nm. These results confirm the 

existence of iron oxide features normally present in ceramic materials. These results 

agree with those found by Nasarudin and Shafri (2011) for clay tiles (strong absorption 

near 550 nm). 

The spectra of the fibre cement and concrete class showed a reflectance increase 

up to approximately 600 nm, which could indicate the presence of silica and carbonates 



in both materials. A clear difference in the spectral characteristics between fibre cement 

and concrete was not identified. The reflectance signatures of these materials were flat 

and low due to their dark grey surface coating. These results are similar to those 

obtained by Nasarudin and Shafri (2011) and Kotthaus et al. (2014). 

All metal materials showed similar spectral shapes, increasing reflectance peaks 

at approximately 450 nm and absorption reflectance peaks at 500 nm, and most of them 

showed low reflectance values, especially in the NIR reflectance. Some painted samples 

(M05 and M08) were included in the metal category, and these materials (M05 and 

M08) showed the highest reflectance due to the influence of the paint colour. Nasarudin 

and Shafri (2011) and Kotthaus et al. (2014) found similar spectral characteristics for 

the similar metal materials analysed in this work. 

The plastic samples showed great variability depending on the colour in terms of 

reflectance for visible wavelengths. The reflectance signatures of P10 and P11 were 

characterized by low reflectance throughout the whole VIS-NIR region due the dark 

colour of the samples. The NIR reflectance showed the same deep absorption (at 

approximately 900 nm) for all samples with the exception of the translucent plastics; 

these samples showed a slight absorption for the NIR wavelengths. The two absorption 

reflectance peaks (600 and 901 nm) for P01, P03 and P05 were similar to those (PVC 

sheets) obtained by Kotthaus et al. (2014). 

The reflectance spectra of stones vary slightly. These samples reveal two 

differentiated groups: 1) from S01 to S05 and 2) S06 and S07. Group one showed 

similar absorption bands (from 420 to 500 nm). Group two (gravels) showed two 

absorptions (423 and 486 nm) and increasing peaks (452 and 576 nm). The S01, S02, 

and S03 samples have a higher overall reflectance due to the presence of mostly light 



colours in the multicoloured samples. Kotthaus et al. (2014) found similar reflectance 

spectra (absorption bands from 350 to 500 nm) for multicoloured granite. 

In the case of paint samples, variability was observed for visible wavelengths 

depending on the colour. The NIR reflectance showed an absorption at approximately 

900 nm. The spectral reflectance of the paint sample was somewhat comparable to the 

signature of the plastic samples due to the similar component materials. 

It was confirmed that the IFOV modifies the overall amplitude of the reflectance 

signature but not the spectral signatures (Hapke 2012). 

The development of a spectral library provides knowledge on the spectral 

characteristics of common roof materials, not only some that can be found in the 

Mediterranean region but also new building materials such as metals and plastics that 

are still underrepresented in existing spectral libraries (Jilge et al. 2017; Kotthaus et al. 

2014). 

Low spectral separability was found within materials from the following classes: 

red ceramics (C01 and C05) 1.34; dark metals (M03 and M07) 1.77; black plastics (P10 

and P11) 0.19; white plastics (P03 and P04) 1.08; granite tiles (S01 and S04) 0.49; 

gravels (S06 and S07) 0.24; and grey concrete tiles (T01 and T02) 1.35. 

Additionally, low spectral separability between the following different material 

classes was found: grey concrete tile and grey ceramic 0.35; grey concrete and gravel 

1.83; red ceramic and fibre cement 4.32; and steel sandwich panel and white plastic 

2.66. In contrast, higher spectral discrimination was found within the following material 

classes: red and white ceramic tiles (C01 and C02) 10.6; dark and beige metals (M04 

and M08) 9.94; and white and black plastics (P03 and P10) 13.38. 

Spectral separability results between different material classes confirm the 

colour influence regarding spectral reflectance for the wavelengths (400-1000 nm) used 



in this study. These results emphasize that VIS-NIR spectral reflectance data might not 

be spectrally distinct enough to accurately map materials of similar colour. 

Low discrimination is especially obvious for dark plastics, gravels, and grey 

concrete tile roofs, as Herold et al. (2004) found. These classes are spectrally similar, 

implying potential difficulty in mapping them. Spectral similarity has already been 

observed in their spectral signatures of nearly constant low reflectance through the VIS-

NIR spectral range. In this regard, the use of SWIR spectroscopy that is best suited for 

several sets of minerals, clays, carbonates and sulphates or silicates and carbonates in 

TIR and a deeper separability analysis using other metrics, for example, the 

Bhattacharyya distance (B-distance), could be useful in future works (Herold et al. 

2004). 

5. Conclusions 

Roofs are made from a variety of materials that provide diverse spectral characteristics. 

A laboratory-based framework to obtain reflectance data using an HSR airborne sensor 

was described. 

Characteristics in the spectral signatures could be identified depending on the 

composition of the materials. However, colour and surface finishing influence the 

spectral reflectance for visible wavelengths, making the distinction between materials 

difficult in some cases. 

Materials such as concrete, fibre cement and metals presented similar (flat) 

spectral signatures. The plastic materials presented a particular spectral signature 

compared to that of the rest of the materials, especially in the NIR spectral range. 

The spectral signatures of roof materials provided qualitative results of their 

separability. In addition, a quantitative evaluation of spectral discrimination was 

provided by using RMS. Roof materials, especially those with similar colours within the 



same material class and some between different classes, are not spectrally distinct over 

the VIS-NIR spectral range (400-1000 nm) and may have limitations in regard to 

discrimination and accurate mapping. 

In this regard, work in the SWIR (Herold et al. 2004) and TIR spectral regions 

could improve the differentiation between roof materials, as Kotthaus et al. (2014) 

concluded. 

It was confirmed that view angles (IFOVs) modify the overall amplitude of 

reflectance signatures but do not significantly modify spectral shapes. 

Although this investigation has shown some limitations for the discrimination 

between some roof materials, the results showed great potential to obtain reflectance 

data using the described methodology and an HSR sensor in the laboratory.  

The spectral library provides spectral information about common roof materials. 

Furthermore, it includes new building materials (e.g., plastics and metals) that are 

underrepresented in the existing spectral libraries. However, due to the large size of the 

Mediterranean region, more work is still required to represent roof materials according 

to this geographic region. 

The spectral signatures of roof materials considering ageing processes as well as 

a deeper spectral separability analysis using other metrics, for example, B-distance, 

should be explored in future works. 
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Appendices 

Apendix A. Script developed for processing the radiance data 

  



Appendix B. Available number of pixels for each sample material 

Table 1. Available number of pixels for each sample material and IFOV group to obtain 

the spectral reflectance data and create the spectral signatures. 

Material information Number of pixels 

ID Material IFOV 1 IFOV 2 IFOV 3 IFOV 4 

C01 Ceramic tiles 108,287 171,314 187,541 161,026 

C02 Gres porcelain tiles 124,781 167,183 171,161 162,894 

C03 Gres porcelain tiles 123,133 161,437 165,128 147,434 

C04 Gres porcelain tiles 142,740 191,260 195,810 179,309 

C05 Gres porcelain tiles 116,428 155,965 156,241 162,027 

T01 Concrete tiles 52,860 75,027 48,649 2,864 

T02 Concrete tiles 84,130 139,138 183,301 203,680 

T03 Concrete bricks 58,675 78,583 80,464 0 

T04 Corrugated fibre cement shingles 156,623 209,835 214,856 223,893 

M01 Steel shingles 86,148 115,410 118,179 123,145 

M02 Galvanized steel shingles 883,33 118,341 121,193 112,239 

M03 Inox steel shingles 80,808 108,262 110,852 40,147 

M04 Aluminium shingles 82,680 110,770 113,420 36,042 

M05 Steel shingles with paint 46,344 62,032 63,526 65,516 

M06 Copper shingles 81,676 109,412 112,029 102,333 

M07

  

Zinc shingles 
81,432 109,098 111,708 17,220 

M08 Steel with paint (sandwich panels) 70,310 94,155 96,407 71,841 

M09 Aluminium with paint (sandwich 

panels) 
67,651 90,602 92,769 88,533 



PT01 Shingles with blue paint 98,991 132,579 135,783 122,037 

PT02 Shingles with red paint 96,080 140,407 148,262 128,012 

P01 Methacrylate shingles 88,059 117,910 120,803 67,937 

P02 Methacrylate shingles 85,956 115,160 114,316 30,311 

P03 Methacrylate shingles 85,488 114,532 115,311 39,840 

P04 PVC shingles 89,175 119,444 122,301 55,436 

P05 Polycarbonate shingles 67,644 90,601 30,762 0 

P06 Polycarbonate shingles 38,033 50,997 42,491 0 

P07 Polycarbonate shingles 102,241 136,106 118,257 0 

P08 Polycarbonate shingles 67,186 89,888 92,127 0 

P09 Polycarbonate shingles 70,824 94,886 97,156 0 

P10 Synthetic rubber  70,512 94,468 96,728 73,677 

P11 Asphalt polymer 103,501 144,597 148,624 154,360 

S01 Granite tiles 53,144 65,331 15,404 0 

S02 Granite tiles 51,792 69,388 12,214 0 

S03 Granite tiles 52,061 58,487 29,247 0 

S04 Granite tiles 51,637 65,597 17,171 0 

S05 Slate tiles 162,928 218,300 223,523 202,646 

S06 Gravel 90,647 121,420 124,329 129,559 

S07 Gravel 88,273 118,273 121,123 126,215 

W01 Wood shingles 110,704 148,314 151,494 151,594 
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