Game Theoretic Analysis of the Slurm Scheduler
Model

Wilmer Uruchi Ticona*T,
*Barcelona Supercomputing Center, Barcelona, Spain
TUniversitat Politécnica de Catalunya, Barcelona, Spain
E-mail: wilmer.uruchi@bsc.es

Keywords—SLURM, Scheduling, High Performance Comput-
ing, Game Theory.

I. EXTENDED ABSTRACT

In the context of High Performance Computing, scheduling
is a necessary tool to ensure that there exists acceptable
quality of service for the many users of the processing power
available. The scheduling process can vary from a simple First
Comes First Served model to a wide variety of more complex
implementations that tend to satisfy specific requirements
from each group of users. Slurm is an open source, fault-
tolerant, and highly scalable cluster management system for
large and small Linux clusters [1]. MareNostrum 4, a High
Performance Computer, implements it to manage the execution
of jobs send to it by a variety of users [2]. Previous work
has been done from an algorithmic approach that attempts
at directly reduce queuing times among other costs [3][4].
We consider that there is utility at looking at the problem
also from a Game Theoretic perspective to define clearly the
mechanics involved in the system, and also those that define
the influx of tasks that the scheduler manages. We model the
Slurm scheduling mechanism using Game Theoretic concepts,
tools, and reasonable simplifications in an attempt to formally
characterize and study it. We identify variables that play a
significant role in the scheduling process and also experiment
with changes in the model that could make users behave
in a way that would improve overall quality of service. We
recognize that the complexity of the models might derive in
difficulty to theoretically analyze them, so we make use of
usage data derived from real usage from BSC-CNS users to
measure performance. The real usage data is extracted from
Autosubmit [5], a workflow manager developed at the Earth
Science Department at BSC-CNS. This is a convenient choice,
given that we also attempt to measure the influence of an
external agent (e.g. a workflow manager) could have in the
overall quality of service if it imposes restrictions, and the
nature of these restrictions.

A. Slurm Overview

The Slurm scheduling mechanism has two main compo-
nents: Priority and Scheduler. Priority: A value calculated
based on data from the user, and the jobs that the user sends
to the High Performance Computer (HPC). The calculation
tries to give higher priority to those users that have less usage.
Scheduler: Once the jobs have been received and their Priority
calculated, there are certain rules in Slurm that determine when
a job is sent for execution. As a result, the job with the highest

priority is not always executed first, but the order is altered so
resource usage is optimized.

Users Hierarchy: The users are organized in a hierarchical
tree structure, specifically in a Rooted Plane Tree [6], where
on top of it we have a main root account. Then, the leafs
are users and the internal nodes are the accounts to which
they are associated. In the Slurm documentation we encounter
many references to the term account, we consider it equivalent
to the term group.

Priority Calculation: There are four factors involved in
the calculation of this value: Age, a value from 0.0 to 1.0.
The longer a job sits in the queue and is eligible to run, the
bigger this value gets. Size, a value from 0.0 to 1.0 determined
by the number of nodes a job requests, the more nodes a job
requests the bigger this value gets. Fair-share, a value from
0.0 to 1.0 determined by [7]. QoS, a value from 0.0 to 1.0
determined by the priority given to different QoS defined in
the Slurm implementation.

Scheduling Mechanism: The Priority value effectively
produces an execution sequence; however, this ordering can
result in sub optimal resource allocation. For example: Con-
sider a large (in the size of nodes required) job with high
priority that is waiting to be scheduled, this job will take 25%
of the nodes in the HPC and it has a planned (supplied by the
user) running time of 10 hours; furthermore, it is in the front
of the queue. After this job, we have a number of smaller jobs
requiring a number of nodes from 1% to 2% of the total nodes
in the HPC, and expected times lower than 1 hour. Working
under this standard configuration, the scheduler is going to
wait for enough resources to be available and then schedule
the large job for execution, and this is not optimal because
resources will be idle. To avoid this scenario (to some extent),
there exists the backfill mode. In this mode, the scheduler will
start lower priority jobs if that does not delay the start of higher
priority jobs.

B. Data Overview

Slurm receives jobs, these jobs come from experiments on
which the users are working on. A typical experiment can be
modeled as a directed acyclic graph (DAG). It starts with jobs
that retrieve or set information, or they might compile software
that will be used in the later stages of the experiment. Then,
there are some heavy computation tasks that usually consist on
simulations that implement parallel processes and subsequently
require many nodes and long running time. As we mentioned,

these experiments can be modeled as a DAG G = (V, E)
where we have V = {1,....n} tasks and V" as the list of tasks
sorted in topological order with sizes w1, wo, ..., w, measured
in the number of HPC nodes they require, and t1,ts, ..., %,
as the planned time in minutes they will need to complete.
Typically, a number of vertex at the beginning and end of V"
will require less computation resources than the rest in average.
We will avoid using the word “node” to name the vertex in a
graph to avoid confusion with HPC nodes.

C. Game Theoretic Perspective

We begin by assuming that the backfill scheduling mecha-
nism subject of study is working as a BF_MOD scheduler as
defined in [3]. Under this assumption, resources are reserved
when a job reaches the top of the queue and is about to be
scheduled and the next jobs in the queue can be used for
backfilling, but if in the next scheduling event a job with higher
priority takes position at the top of the queue, the previous
reservation is discarded and a new reservation is executed
for the newly arrived top priority job. On the other hand we
have BF_UNMOD where the top job does not change even
if a higher priority job arrives, this is also defined in [3].
We assume our scheduler under BF_MOD configuration for
further discussion.

There are M nodes in the HPC, there are U users that
handle experiments represented as DAGs G, = (Vi, E,)
that result in a topological order of jobs V,, = {1,2,....,n}
for each experiment G, € G where G is the set of all
experiments from users U. Users will send job v; € V,, when
a; = {vj|(vj,v;) € Ey A status(vj) # 5} = (), where
status() is a function that returns 5 if the input job v has
status COMPLETED, meaning that all preceding jobs of v;
must have been completed successfully. Then, we define the
set of jobs sent to the scheduler by user u at a given iteration
as v, = {vilv; € V, Aoy = 0}.

N:LJZ/,u

Think of the scheduler as an agent A that receives N jobs,
each job n € N has attributes w,, for its weight or size,
t, as the planned time (supplied by the user) in minutes
that the job will take to complete, a, for the time it has
been waiting for execution, and p,, for its Priority calculated
using the previously mentioned attributes. Agent A uses the
Priority p,, as the main ordering principle to define a list
P, : N — {1, ...,n} of execution order. We now proceed to
give a glimpse of the analysis of games modeled using these
definitions.

Single Attempt Game: We have N jobs ordered in a
priority list Pj that defines the order in the queue of jobs
to be scheduled for execution. A strategy profile s is an
assignment of d jobs to |M| nodes by an agent A. In a single
backfill scheduling attempt, agent A takes the first d jobs in
the ordering P that minimize € = |M| — Zf:dl wj. Then, the
utility w of agent A is u(s) = |M| — e. Then, we proceed
to analyze the Nash Equilibrium of this setup as a foundation
stone for the analysis of more complex games.

Multiple Attempt Backfill Game: Agent A actions under
a sequence of backfill iterations. Clearly, it is under this
scenario that the backfill mechanism comes into play.

Submit to Scheduler Game: Instead of analyzing a single
agent A, we have players U submit jobs to an independent
scheduler. We define a utility function for each player based
on some of the variables that the user can modify when sending
a job.

Multiple Submit to Scheduler Game: Players U submit
jobs to an independent scheduler under a sequence of itera-
tions.

D. Experimental Environment

The workflow manager Autosubmit [5] saves the submit,
start, and finish time of each job it manages. We will use
this data to model synthetic data and test the behavior that,
according to the Game Theoretic analysis, shows promising
results. Slurm implements a node simulator that can be used
for this purpose. We will also try to simulate different traffic
situations in the arrival of jobs in order to test worst case
scenarios, if possible.

E. Conclusion

In this study, we try to use the Game Theoretic approach to
analyze an existing system in order to detect opportunities for
the implementation of configurations or tools that potentially
result in an improvement of quality of service. However,
this study might also reveal that there design choices or
configurations that make any kind of collaboration or control
not convenient.

II. ACKNOWLEDGMENT

This work is being developed in close collaboration with
the Computational Earth Science team at BSC-CNS.

REFERENCES
[1] “Slurm documentation.” [Online]. Available:
https://slurm.schedmd.com/archive/slurm-17.11.7/overview.html
[2] “Marenostrum4 user’s guide.” [Online]. Available:

https://www.bsc.es/user-support/mn4.php

[3] Baraglia R., Capannini G., Pasquali M., Puppin D., Ricci L., Techiouba
A.D, “Backfilling strategies for scheduling streams of jobs on computa-
tional farms,” Making Grids Work, 2008.

[4] Sergei Leonenkov, Sergey Zhumatiy, “Introducing new backfill-based
scheduler for slurm resource manager,” Procedia Computer Science,
vol. 66, pp. 661-669, 2015.

[5] E. S. D. at BSC-CNS, “Autosubmit.”
https://autosubmit.readthedocs.io/en/latest/

[6] S.G. W. Edward A. Bender, Foundations of Combinatorics with Appli-
cations, 2006.

[7] “Fair tree fairshare algorithm.” [Online]. Available:
https://slurm.schedmd.com/archive/slurm-17.11.7/fair_tree.html

[Online]. Available:

Wilmer Uruchi Ticona received his BSc degree
in Systems Engineering from Private University
of Tacna (UPT), Tacna in 2011. Then, he started
working in a variety of large scale software de-
velopment projects for his alma mater and other
private companies. In 2018 he decided to pursue
further education taking the Masters in Innovation
and Research in Informatics (Advanced Computing
specialization) program at Universitat Politecnica
de Catalunya (UPC), Spain. Since 2019, he has
been with the Computational Earth Science group
of Barcelona Supercomputing Center (BSC), Spain.

