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ABSTRACT

This paper proposes an estimationmethod of joint size and terminal velocity distribution on the basis of sampling

data of precipitation particles containing multiple types. Assuming that the velocity follows the normal distribution

and the size follows the gammadistribution, themethod searches a locallymaximum logarithmic likelihoodwithin a

realistic parameter range using the expectation–maximization algorithm. Several test populations were prepared

with a realistic number of elements, and then the method was evaluated by retrieving the populations from their

sample. The results showed that the original parameters were successfully estimated in most cases of the test

population containing some of liquids, graupels, and rimed and unrimed aggregates. The original number of ele-

mentswas also estimatedwith an adjustment of thenumber of elements in amanner such that each of theirminority

fractions exceeded a threshold. Applied to the two-dimensional disdrometer observation data, the method was

helpful to discard frequently observed erroneous data with unrealistically large fall velocity.

1. Introduction

The precipitation particle size distribution (PSD) was

already well known for the liquid phase (Marshall and

Palmer 1948) and for the solid phase (Gunn andMarshall

1958). The number concentration rate of precipitation

particles diameter Nd (m23mm21) follows a parametric

gamma distribution on the diameter D (mm) as

N
d
(D)5N

0
Dm exp(2lD) , (1)

where N0 (m23mm21), m, and l (mm21) denote the

intercept parameter, the distribution shape parameter,

and the slope parameter, respectively. A long-lasting

problem is how observed samplings of precipitation

particle size are fit to a parametric distribution. Any

observation instruments available at present tended to

miss small-size particles for their insufficient sensitivity

and resolution, unless disdrometers like Meteorological

Particle Sensor (Baumgardner et al. 2002) are combined

to cover small sizes; this is hereinafter referred to as

truncation problem (Handwerker and Straub 2011).

Moreover large-size particles were rarely detected, which

often brings us a kind of sampling problems. The moment

method has been widely used for the fitting to size distri-

bution (e.g., Vivekanandan et al. 2004; Smith and Kliche

2005; Yuter et al. 2006; Brandes et al. 2007; Kliche et al.

2008; Cao and Zhang 2009; Smith et al. 2009; Handwerker

and Straub 2011), but a shortage of sampling length biases

the estimate of parameters (Smith and Kliche 2005). The

maximum likelihood and L-moment method can provide

an unbiased estimate, but the truncation problem desta-

bilizes the statistics (Kliche et al. 2008; Cao and Zhang

2009). Smith et al. (2009) showed that the above methods

were difficult to fit limited sampling data to a gamma

distribution of a small shape parameter. Recently, Yano

et al. (2018) relieved this problem in the fitting to a gamma

distribution solely on the basis of bulk quantities of PSD

by applying the maximum entropy principle (Yano et al.

2016).Another problem comes upwhenfitting themixture

of multiple particle types in a single sampling (Brandes

et al. 2007). For example, sampling data possibly contain
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graupels and aggregates in a time interval (Yuter et al.

2006) that should be long enough to avoid the sampling

problem (Smith and Kliche 2005).

On the other hand, the particle terminal velocity V

(m s21) is assumed to be proportional to the power of

the particle’s diameter as

V(D)5 a
y
Dby , (2)

where ay and by depend on particle phase, shape, and

degree of riming (Atlas et al. 1973; Locatelli and Hobbs

1974). It is remarked that another functional form may

be possible for liquid particles (Atlas et al. 1973) but we

chose the simpler form as Eq. (2) to avoid a superfluous

parameter throughout the paper. Many publications

have been devoted to find an optimal fitting curve for

particle diameter and velocity, on the basis of observed

sampling data with optical or video disdrometers such

as Particle Size Velocity (PARSIVEL; Löffler-Mang

and Joss 2000; Battaglia et al. 2010; Angulo-Martínez
et al. 2018), Laser Precipitation Monitor (LPM; Angulo-

Martínez et al. 2018), and two-dimensional video dis-

drometer (2DVD; Kruger and Krajewski 2002). Recently,

Molthan and Colle (2012) compared on-site observation

withmodel outputs in every separated cell on thediameter–

velocity quarter plane, instead of the direct comparison of

velocity–diameter relationship or probability density func-

tion (PDF) on the plane. Bernauer et al. (2016) classified

snow particles observed by 2DVD into three ranges of

riming degree and four crystal types. The above fitting

to a power law like Eq. (2) is, however, very difficult in a

case of mixed particle types, because the least squares

method conventionally used assumed a single type of

precipitation particles. Enough of a short time interval,

like 1min (Bernauer et al. 2016), could partly, not per-

fectly, avoid the mixing, around the period when two

independent distributions are clearly transited, by not

sampling data from both the distributions, but would

cause the sampling problem. A fitting to mass flux, a

production of size–velocity and size–mass relations, par-

tially resolved this problem (Ishizaka et al. 2013), but it is

still difficult in a case of a clear bimodal distribution due

to coexistence of liquid and solid phases (Brandes et al.

2007; Yuter et al. 2006) or coexistence of graupels and

aggregates. Another problem in the fitting to size–

velocity relation is a sampling error in small-size

particles with an unrealistically high speed. This was

often found in the output of single-sensor type dis-

drometers such as PARSIVEL and LPM (Angulo-

Martínez et al. 2018), when particles passed through

the edge of the sensitivity frame (Minda et al. 2016).

This was also found in a double line-sensor type dis-

drometer of 2DVD for a failure of matching (Huang

et al. 2010; Bernauer et al. 2015). One inevitably ex-

cluded the part of sampling data out of the velocity range

between 0.5 and 5ms21 (Huang et al. 2010) and excluded

data of small size less than 1mm (Yuter et al. 2006;

Bernauer et al. 2015, 2016), although the method filtering

drops outside the640%of the theoretical fall velocitymay

be also applicable if all particles are guaranteed to be liquid

(Kruger and Krajewski 2002). This treatment deteriorated

the truncation and sampling problems in the fitting to a size

distribution, however.

This study aims to relieve the above problems of the

mixing and the erroneous data often observed by dis-

drometers by fitting diameter–velocity data including

multiple precipitation particle types and phases tomixed

joint PDF on the diameter–velocity quarter plane; We

conveniently utilized the gamma and normal distribu-

tions and the velocity–diameter relationship to evaluate

the PDF in the comparison with a conventional method

and well-known velocity–diameter relationships previ-

ously proposed. The fitting problem can be then reduced

to a numerical search of an optimal set of parameters

of the mixed joint PDF from the diameter–velocity

data. We here develop the method with an aid of the

expectation–maximization (EM)algorithm(Dempster et al.

1977). A performance of the new method is evaluated by a

PDF retrieval from test data randomly sampled from a

given population PDF.We next emphasize the strength of

the newmethod to discern the coexistence of precipitation

particle types and the sampling error in a subset of 2DVD

data. This paper is organized as follows. Section 2 describes

the observed 2DVD data, and section 3 elucidates the

proposed method including a nutshell of the EM algo-

rithm.We design experiments to check performance of the

new method in section 4 and detect a bundle of erroneous

data by applying the method to sample datasets obtained

by the 2DVD in section 5. Section 6discusses the limitation

of the new method and section 7 concludes this paper.

2. Observation data

We used the precipitation diameter–velocity data

obtained by a 2DVD installed at a site of the Institute

of Low Temperature Science, Hokkaido University,

Sapporo, Japan, located at 43.0838N, 141.3398E (Nagumo

and Fujiyoshi 2015; Campbell et al. 2018). The 2DVD

(Kruger andKrajewski 2002), widely used in the scientific

community (Huang et al. 2010; Bernauer et al. 2015,

2016), measures precipitation particle diameter and ve-

locity by matching two images captured by double line

sensors installed at an upper and a lower position of the

instrument. Image processing algorithm originally im-

plemented in the 2DVD sensor matched the two particle

images. As a preprocessing, we discarded erroneous
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sampling particles with their velocity larger than 15ms21,

much larger than the terminal velocity of rain droplets

(Atlas et al. 1973). We used surface air temperatures

and precipitation records by Sapporo Meteorological

Observatory of the JapanMeteorological Agency (JMA)

located at 43.06058N, 141.3298E, 2.6km away from the

2DVD site (JMA 2019a,b).

3. Method

a. Mixed joint PDF

The PDF of particle diameter was here assumed to be

the gamma distribution, a normalized version of Eq. (1):

P(Djm,l)5 lm11Dm

G(m1 1)
exp(2lD) , (3)

where G is the gamma function. Here P(Djm, l) indi-

cates conditional probability density of D under parame-

tersm and l.We assume that the particle’s terminal velocity

follows the normal distribution with its mean being Eq. (2):

P(VjD, a
y
,b

y
,s2)5

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p exp

"
2
(V2 a

y
Dby)2

2s2

#
, (4)

where s2 is variance of velocity. This assumption was

supported by theoretical experiments (Schmitt et al.

2019) and observations (Sasyo and Matsuo 1980). In

multiplying Eqs. (3) and (4), a joint PDF of particle

diameter and velocity is

P(V,Dja
y
,b

y
,s2,m,l)5

lm11Dmffiffiffiffiffiffiffiffiffiffiffi
2ps2

p
G(m1 1)

3 exp

"
2
(V2 a

y
Dby)2

2s2
2 lD

#
.

(5)

Linearly combining independent joint PDFs, a mixed

joint PDF with K elements was written as

P(V,Dju)5 �
K

k51

v
k
P(V,Dja

yk
,b

yk
,s2

k, mk
, l

k
), (6)

where vk is a mixing fraction of the kth PDF element and

should satisfy�K

k51vk 5 1. Now we introduced the vector

u whose components are conditional parameters as

u5 (v
1
. . . v

K
a
y1
. . . a

yK
b
y1
. . . b

yK
s2
1 . . .

s2
K m

1
. . . m

K
l
1
. . . l

K
)
T
.

Many possible PDFs can be constructed by sweeping

a set of parameters u within a realistic range. Given a

sampling dataset, we may search an optimal parameter

set u to estimate the PDF to be fit to the data. The dis-

tribution of particle number concentration rate within

diameter–velocity quarter plane, Nvd (m23 sm21mm21),

more suitable unit for the traditional definition in

meteorology, was easily obtained by multiplying the

number concentration of total precipitation particles

Ntot (m
23):

N
vd
(V,D)5N

tot
P(V, Dju). (7)

Note that the PDF [Eq. (6)] and the number concen-

tration rate [Eq. (7)] explained diameter–velocity data

by a disdrometer directly observing particle number

concentration (e.g., Muramoto and Shiina 1989).

The joint PDF following diameter–velocity data by

disdrometers observing precipitation particles passing a

finite area such as 2DVD, PARSIVEL, and LPM is

described as

P
S
(V,Dja

y
,b

y
,s2,m,l)

5
V

a
y
Dby

P(V,Dja
y
, b

y
,s2,m1 b

y
, l). (8)

From this equation, the shape parameter m is shifted by

by with a diameter–velocity relationship form of Eq. (2)

(Ignaccolo and De Michele 2014; Adirosi et al. 2016)

and PS(V,D) extends to the tendency of higher velocity

due to a factor ofV/ayD
by . The mean fall velocity for the

joint PDF of Eq. (8), VS, is also different from Eq. (2):

V
S
(D)5

ð‘
2‘

VP
S
(V,Dja

y
, b

y
,s2,m,l) dVð‘

2‘

P
S
(V,Dja

y
, b

y
,s2,m,l) dV

5
s2

a
y
Dby

1 a
y
Dby . (9)

The mixed joint PDF based on Eq. (8) is

P
S
(V,Dju)5 �

K

k51

v
k
P
S
(V,Dja

yk
, b

yk
,s2

k, mk
,l

k
). (10)

The distribution of particle number concentration rate is

N
vd
(V,D)5

L

ADtV
P
S
(V,Dju), (11)

where A, Dt, and L are, respectively, an observing area

(m2), the sampling time (s), and the number of total

particles observed by a disdrometer. See appendix A for

derivations of Eqs. (8) and (11).

Equations (5) and (8) should be properly assumed

as a joint PDF form that diameter–velocity data by a
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disdrometer should follow. Because we could not for-

mulate the EM algorithm for parameters ay and by
with this joint PDF form of Eq. (8) (cf. section 3b),

however, the PDF form of Eq. (5) was applied to the

observed sampling data by 2DVD. The problem on

using Eq. (5) for 2DVD data will be discussed in

section 6.

b. EM algorithm

The EM algorithm (Dempster et al. 1977) was used

to search an optimal parameter set of Eq. (6). First,

we posed a kernel PDF from the lth particle for the

kth PDF element as P(Vl, Dljayk, byk, s
2
k, mk, lk). The

logarithmic (log) likelihood was then constructed by

summing the logarithm of this kernel PDFs for all of L

particles in the sample:

lnF(V,Dju)5�
L

l51

ln

"
�
K

k51

v
k
P(V

l
,D

l
ja

yk
, b

yk
,s2

k, mk
, l

k
)

#
.

(12)

The EM algorithm finds a parameter set of u that

satisfies

›

›u
lnF(V,Dju)5 0 (13)

to maximize the log likelihood [Eq. (12)] under the

constraint of �K

k51vk 5 1. Equation (13) is reduced to

the iteration relations below:

a
yk
5
�
L

l51

g
lk
V

l
D

byk
l

�
L

l51

g
lk
D

2byk
l

(14)

›

›b
yk

lnF(V,Dju)5 a
yk

s2
k

�
L

l51

g
lk
ln(D

l
)(V

l
2 a

yk
D

byk
l )D

byk
l

5 0 (15)

s2
k 5

�
L

l51

g
lk
(V

l
2 a

yk
D

byk
l )

2

�
L

l51

g
lk

, (16)

ln(m
k
1 1)2C(m

k
1 1)5 ln(D

k
)2 ln(D)

k
, (17)

l
k
5

m
k
1 1

D
k

, and (18)

v
k
5
�
L

l51

g
lk

L
, (19)

where

C(x)5
d

dx
ln[G(x)]

is the digamma function, the responsibility fraction glk
ranging over 0–1 as

g
lk
5

v
k
P(V

l
,D

l
ja

yk
, b

yk
,s2

k,mk
,l

k
)

�
K

j51

v
j
P(V

l
,D

l
ja

yj
,b

yj
,s2

j ,mj
, l

j
)

(20)

represents how much the lth particle explains the kth

PDF element, and Dk and ln(D)k, respectively, represent

the mean diameter [5
�
�L

l51glkDl

�
=
�
�L

l51glk

�
] and

the mean log diameter {5
h
�L

l51glk ln(Dl)
i
=
�
�L

l51glk

�
}

corresponding to the kth PDF element. We numeri-

cally solved Eq. (15) by the secant method (Householder

1970), and solved Eq. (17) by iteration (Kliche

et al. 2008):

m
k
1 1:5 (m

k
1 1)

ln(m
k
1 1)2C(m

k
1 1)

ln(D
k
)2 ln(D)

k

. (21)

Note that Eqs. (17) and (18) with K 5 1 are the

completely same form as the equations of the con-

ventional maximum-likelihood method in estimat-

ing particle size distribution (Kliche et al. 2008)

so that the EM algorithm with K 5 1 estimates

m and l as comparably as the maximum-likelihood

method.

Next, the EM algorithm estimates an optimal pa-

rameter set including responsibility fraction [Eq. (20)]

in the iteration procedure. Initially, we give the number

of PDF elements K and parameters for the kth PDF

element as

(lna
yk
, b

yk
,s2

k,mk
,l

k
,v

k
)5

"
ln(ă

y
)1 ln

�
â
y

ă
y

�
k2 1

K2 1
,
(k2 1)

K2 1
,V 0,

D2

D0 2 1,
D

D0,
1

K

#
(K. 1)

"
ln(â

y
ă
y
)

2
, 0:5,V 0,

D2

D0 2 1,
D

D0, 1

#
(K5 1)

8>>>>>><
>>>>>>:

, (22)
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where 8>>>><
>>>>:

â
y
5

max
1#l#L

V
l

D

ă
y
5

V

4

, (23)

with overbar and prime denoting the average and the

variance for all the particles. See appendix B for details

of this initial parameter determination. We call provid-

ing the responsibility fraction for the parameter set with

Eq. (20) the E step and updating the parameter set with a

sequential calculation order of by withEq. (15) substituting

Eq. (14) for ay, ay with Eq. (14), s2 with Eq. (16), m with

Eq. (17), lwith Eq. (18), and vwith Eq. (19) theM step.

The E step and M step are iterated if the log likelihood

increases by more than 1022 relative to the value before

the steps. Otherwise the iteration stops. No more iter-

ations than 5000 avoids computation for divergent cases.

It is noted that a convergence solution by this iteration

procedure is solely a locally most likelihood nearest

from the initial and is not always the most likelihood

globally, and therefore the EM algorithm is not referred

to as the maximum-likelihood method.

c. Estimation of the number of PDF elements

A remaining parameter that should be estimated is

the number of PDF elements, K, even though the EM

algorithm itself can be performed with given K. We

now introduce the Akaike information criterion (AIC;

Akaike 1974)

AIC5 lnF(V,Dju)2 6K (24)

andBayesian information criterion (BIC; Schwarz 1978)

BIC5 lnF(V,Dju)2 3K lnL . (25)

An appropriate number of PDF elements can be

searched by maximizing AIC or BIC by sweeping K

from 1 to 4. We also applied minority rejection method

to find the appropriate number of elements by an ad-

justment such that the smallest mixing fraction in the

elements is larger than a threshold following 0.1K. See

appendix C for the rationality of this choice.

4. Performance test

a. Design

Performance of the proposed method is examined in

light of (i) computational stability of the EM algorithm,

(ii) the accuracy on the parameter forming the PDF el-

ements, (iii) the accuracy on the estimate of the optimal

PDF-element number, and (iv) comparison with the

least squares method conventionally used. All points

can be checked by experiments, similarly designed, to

estimate a given PDF from random sampling data from

the PDF, just like a Monte Carlo simulation (Smith and

Kliche 2005; Kliche et al. 2008; Cao and Zhang 2009;

Smith et al. 2009; Handwerker and Straub 2011).

For points i–iii, we prepared nine population distri-

butions containing PDF elements including liquid pre-

cipitation particle L with (ayL, byL)5 (3.78, 0.67) (Atlas

et al. 1973), lump graupel G with (ayG, byG)5 (1.3, 0.66)

(Locatelli and Hobbs 1974), densely rimed aggregates

R with (ayR, byR) 5 (1.1, 0.15) (Ishizaka 1995), or side-

plane unrimed aggregates U (ayU, byU) 5 (0.82, 0.12)

(Locatelli and Hobbs 1974). The mixed joint PDFs

prepared here are mixture of liquid particle, graupel,

and rimed aggregates (LGR), mixture of graupel and

rimed aggregates (GR), and mixture of rimed and un-

rimed aggregates (RU), with the same mixing fraction

for all elements (i.e., v 5 1/3 for LGR and v 5 1/2 for

GR and RU). Note that these combinations of particle

types were subjectively chosen to represent some of

possible observed examples. For point iv, a single PDF

element with liquids (L), graupels (G), rimed aggregates

(R), or unrimed aggregates (U) was prepared. We set

the shape parameter asm5 1.5 for all of the populations.

Rather than the parameters (ay, by, v, m), the PDF ele-

ments depend on data variance s2 and slope l. We set

three different combinations of these two parameters to

check a variety of mixed joint PDFs as Table 1. Three

kinds of PDF element combined with three parameter

sets of s2, m, and lmade nine mixed joint PDFs (Fig. 1),

and each experiment is nominated as the prefix of LGR,

GR, or RU combined with the suffix of 0, s, or v. For

example, the experiment LGRv means a given PDF of

elements LGR with a parameter set of v. Next, we

randomly sampled diameter–velocity data from the

population distribution by von Neumann’s method

within ranges of 0#D# 30mm and 0#V# 10m s21.

The sensitivity to the sample size was checked by

TABLE 1. Parameters of the variance s2 and the slope l for

populations with small variance and small slope (label 0), small

variance and large slope (label s), and large variance and small

slope (label v) for the probability density function elements of

liquids, graupel, rimed aggregates, and unrimed aggregates

(labels L, G, R, and U, respectively).

0 s v

Population type s2 l s2 l s2 l

L 0.16 4 0.16 6.5 0.64 4

G 0.04 1.5 0.04 2.5 0.16 1.5

R 0.04 0.4 0.04 0.8 0.16 0.4

U 0.04 0.4 0.04 0.8 0.16 0.4
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taking 100, 1000, 2000, 3000, 6000, and 10 000 particles.

Last, the EM algorithm was applied to the sampled

data and the obtained PDF was compared with the

original. Each estimation was repeated 1000 times with

different sampling data. To keep the same element

order between estimate and population, the estimated

elements are matched to the elements in the pop-

ulation by selecting the combination of ( j, k) with the

nearest neighbor measured by normalized Euclidian

distance of

������
2
4 (a

yj
2 a

yk
)/a

yk

(b
yj
2 b

yk
)/b

yk

3
5
������ . (26)

Here j represents the jth PDF elements in the esti-

mation ( j5 1, 2, 3 in LGR and j5 1, 2 in GR and RU),

and k represents PDF element L, G, R, or U.

Point i is to check computational stability measured

by the convergence rate of EM algorithm, in which

we counted how many trials were numerically con-

verged in 1000 trials with a different sample dataset. This

check should be required because the EM algorithm,

searching a local optimal solution nearest from an initial

value, not a global optimal solution, is not always con-

verged. We regarded that the trial was successful when

the computation was converged for every number of

PDF elements given from 1 to 4. Point ii was to check the

accuracy of the parameters forming the PDF elements.

This was evaluated as the root-mean-square error

(RMSE) of parameters, ay, by, s
2, m, l, and v, of the

estimated PDF elements from the reference of the

population PDF given (Fig. 1). The relative error of

log likelihood was also used as the measure. Point iii

was to check the accuracy of the estimate of the

number of PDF elements K from 1 to 4. When the

FIG. 1. Population distribution given in the performance tests of (a) LGR0, (b) GR0, (c) RU0,

(d) LGRs, (e) GRs, (f) RUs, (g) LGRv, (h) GRv, and (i) RUv. Parameters of each PDF

element are indicated by the text inset; diameter–velocity curves are drawn by dashed lines

for liquids (red), graupel (green), rimed aggregates (blue), and unrimed aggregates (purple).

Contours indicate probability of 0.1, 0.01, and 0.001. See the text for the details of the given

population PDFs.
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number of PDF elements in the estimation was matched

with the given number, we regarded it as hit. The hitting

rate is defined as the hit number divided by the total

trials that are converged. Point iv was to compare our

method that could generally estimate a mixed joint PDF

with the conventional method that estimated only a

single velocity–diameter relationship. We then used

the single-element PDF as the population with three

different combination patterns of variance and slope

parameters.

b. Results

The computational stability was first checked by

the convergence rate of estimation. Whatever we

gave the PDF element number, the EM algorithm

was converged by mostly 100% of 1000 trials if the

sample size was greater than 1000 (Fig. 2a). In a small

sample size of 100, the EM algorithm sometimes did

not find a convergence solution with greater PDF

elements given (Fig. 2b). Therefore, it is not recom-

mended to give the number of PDF elements greater

than 2 when the sample size is less than 100.

Hereinafter we show the results with the sample data

size at 2000.

Second, the accuracy of the estimation of PDF el-

ements in comparison with the given population was

checked by RMSE of each parameter (Fig. 3), in the

estimation with the truth number of PDF elements K

given. Greater the sample size was, more accurate

the estimate was in most cases; the RMSE of any

parameters plummeted with L exceeding 2000 (not

shown). Parameters ay and by, directly determined a

diameter–velocity relationship, were successfully estimated,

especially in the retrieval of graupel and rimed aggregates

with small variance (GR0 and GRs; Figs. 3a,b). The

population containing rimed and unrimed aggregates with

larger variance (RUv) was estimated with relatively larger

RMSE. The variance parameter, s2, of PDF elements was

also well retrieved with its RMSE almost less than a

quarter of variance parameter in the PDF elements in the

given population except for liquids forLGRv (Fig. 3c). The

parametermwas estimatedwith itsRMSEmostly less than

0.5 (Fig. 3d). The slope parameter l was well retrieved in

all the cases with its RMSE less than 10% of the slope

parameter in the PDF elements in the given population

(Fig. 3e). This estimate from smaller sample size than 2000

was much worse in RU0, RUs, and RUv (not shown). The

RMSE of mixing fraction v ranged over 0.01–0.05 except

for the estimation for RUv population (Fig. 3f).

Figure 4 shows the PDF of the relative error of log

likelihood based on 1000 trials, in which positive and

negative values mean overfitting and mismatching, re-

spectively. None of the trials fell into a wrong optimum

except for RU0 and RUs. In the cases of RU0 and RUs,

the distribution of relative error shows bimodality

separated at zero (Figs. 4c,f). If the relative error of log

likelihood below 20.2% was regarded as a wrong

optimum, about 10% of the trials failed to estimate

the true PDF. Because the error majority ranged from

0% to 0.5%, the PDF estimate was slightly biased to the

overfitting side. It is worthwhile noting that this width of

range was probably attributed to the uncertainty due to a

sampling randomness indwelling in the sampled data,

which was small enough here (Fig. 4). Therefore, the

overfitting was the primary cause for the RMSE in esti-

mated parameters (Fig. 3), but the mismatching was the

secondary cause only in the cases of RU0 and RUs.

Third, we evaluated the number of PDF element by

the hitting rate (Fig. 5). The result showed that the mi-

nority rejection method based on smallest mixing

FIG. 2. The convergence rate (a) as a function of sample size L for every number of PDF

elements K from 1 to 4 and (b) as a function of K in experiments with L5 100. The line color

and type are as per the legend in (a).
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fraction provided the best performance in all the pop-

ulation patterns given (Fig. 5c). The hitting rate was

asymptotic to 100% for greater sample size. The

sample size of 1000 or more made the hitting rate of

100% for the populations of LGR0, LGRs, LGRv,

GR0, GRs, and GRv based on the method maximiz-

ing BIC (Fig. 5b). The method maximizing AIC pro-

vided the worst estimates (Fig. 5a), very sensitive to the

sample size; the hitting rate is too low for the population

with the large variance parameter even the sample size

is large.

Fourth, our method for the estimate from the pop-

ulation containing the single PDF element was com-

pared with the conventional method to find an optimal

velocity–diameter relationship by the least squares

method: the comparison was done for two parameters ay
and by (Fig. 6). The populations regardless of parame-

ters s2 and lwere retrieved with the comparable RMSE

between the methods. The difference between methods

was insensitive to the sample size (not shown). Hence,

our method can be also applicable to a single-element

population in addition to amultiple-elements population.

Comparing the result of single PDF element cases (Fig. 6)

andmultiple PDF elements cases (Fig. 3), the estimations

for the joint PDF population of GR0 and GRs had as a

good performance as two individual estimations for the

single PDF population G0 or R0 (Figs. 3 and 6). In con-

trast, the estimation for the RUs and RUv populations

FIG. 3. RMSE of parameters (a) ay, (b) by, (c) s
2, (d) m, (e) l, and (f) v in the estimate of

nine populations for PDF elements of liquids (L), graupel (G), rimed aggregates (R), and

unrimed aggregates (U), with the sampling size at 2000.
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had a worse performance than two estimations for Rs,

Rv, Us, or Uv population.

5. Results

In addition to the performance test above, we here

demonstrated how the proposedmethod fit to diameter–

velocity data observedby the 2DVDatSapporo (section 2),

with two cases not to be considered in the performance

test. The first case included erroneous and normal data

during 1400–1430 Japan standard time (JST) 22 January

2017, when the JMA reported the snow particles fell in

the air temperature of24.98C (JMA 2019a). The second

case included liquid and wet snow particles during 0100–

0130 JST 6 December 2016, when the JMA reported that

the rain turned to sleet and the air temperature changed

from 38 to 2.28C (JMA 2019b).

The observed data by the 2DVD during 1400–1430 JST

22 January 2017, included erroneous data with unrealisti-

cally large velocity probably due to the matching problem

(Fig. 7a). With two PDF elements given, our method

estimated one element (red in Fig. 7a) with its center at

V5 2.61D0.54 and the variance of 6.43m2 s22, which was

so unrealistic. Moreover, this erroneous PDF element

underestimated probability around 1.5m s21 (red in

Fig. 7c) due to the assumption that the velocity followed

the normal distribution in this study. In contrast, the

erroneous PDF well represented diameter distribution

(red in Fig. 7b), because the matching error affected the

velocity only. The estimation of the other PDF element

(blue in Fig. 7a) was successfully fit to V 5 0.83D0.21,

near to the optimal curve for graupel-like snow of hex-

agonal type, V 5 0.86D0.25, or aggregates of densely

rimed radiating assemblages of dendrites,V5 0.79D0.27,

in Locatelli and Hobbs (1974) (Fig. 7a). This PDF

element well represented the observed distributions

of both the diameter and velocity (blue in Figs. 7b,c).

However, because the estimated velocity–diameter

relationship roughly diagnosed the characteristics

of precipitation particles (Bernauer et al. 2016), the

estimated velocity–diameter relationship V 5 0.83D0.21

did not always guarantee the precipitation particles

containing graupel-like snow and aggregates of densely

rimed radiating assemblages.While the fitting result was

FIG. 4. The PDF of relative error of log likelihood for nine populations. Positive values

mean overfitting, and negative values mean mismatching. Total probability integrated down

from 20.2% is indicated in the text inset.
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obtained with K 5 2 subjectively given, the minor-

ity rejection method estimated the number of PDF

elements at K 5 1 because the minimum mixing

fraction with K 5 2, v 5 0.18 (Fig. 7a), was less

than the threshold of 0.2 determined in advance

(section 3c).

Interesting is a different case for mixing rain droplets

and wet snow particles observed with the 2DVD

at Sapporo during 0100–0130 JST 6 December 2016

(Fig. 8). Here the minority rejection method estimated

two PDF elements. If we subjectively fixed the number

of elements at 3, we estimated the first element with its

center at V 5 2.33D0.03 and the variance of s2 5 0.13

(green in Fig. 8), the second element with its center at

V 5 2.9D0.53 and the variance of s2 5 0.12 (blue in

Fig. 8), and the third element with its center at V 5
2.83D0.62 and the variance of s2 5 3.46 (red in Fig. 8).

The first element resembles a distribution by wet snow

particles reported by Yuter et al. (2006), and the second

element was similar to a diameter–velocity curve of rain

droplets (V 5 3.78D0.67 in Atlas et al. 1973) with small

variance and good fitness of velocity distribution (blue in

Fig. 8c). The third element probably contained errone-

ous data because of its large variance and inappropriate

fitting to velocity distribution (red in Fig. 8c), however.

The minority rejection method estimated the number of

elements at K 5 2, probably because the number of

erroneous data was smaller as shown in Fig. 7.

6. Discussion

We showed that the proposed method successfully

reproduced the original PDF from the sampling data

of its size larger than 2000 under a limitation of

possible PDF element number considered (Fig. 3).

However, as in the application to observation data

including error (section 5), we must take a treatment

for erroneous data as the preprocessing because an

arithmetic underflow often occurred in representing

their probability. For example, the probability of

particles at (D, V) 5 (2, 15) under a condition of (ay,

by, s
2, m, l) 5 (0.82, 0.12, 0.09, 1.5, 0.3) in Eq. (5)

approximates 102481 that causes a double-precision

underflow. This might cause the zero division error in

the calculation of the responsibility fraction [Eq.

(20)] with uniform mixing fractions among the PDF

elements. This underflow problem can be relieved by

setting the initial variance parameter larger than

s2 5 0.16 and by discarding particles with their ve-

locity faster than 15m s21. If one successfully avoided

this problem by the preprocessing like above, the EM

algorithm would make light of erroneous extreme

data and search an optimal set of PDF elements that

follow data majority.

FIG. 6. RMSE of parameters (a) ay and (b) by in the estimate

of populations L0–Uv by our method (open bars) and the least

squares method (filled bars).

FIG. 5. Hitting rate of K estimated by (a) maximizing the AIC, (b) maximizing the BIC, and (c) the minority

rejection method.
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Moreover, we still suffer from the truncation effect

attributed to not only the small size particles but

also slow velocity ones. To relieve the problem, we

now consider the truncated version of mixed joint

PDF. The truncated version of particle size distribu-

tion is

P
T
(Djm,l)5 P(Djm, l)P(D,D

min
,D

max
)

Q(D
max

jm,l)2Q(D
min

jm,l), (27)

where Dmin and Dmax are, respectively, the minimum

and maximum diameters that a disdrometer is capable

to measure,P is the rectangle function (1 betweenDmin

and Dmax and 0 elsewhere), and Q is the cumulative

density function (Mallet and Barthes 2009; Johnson

et al. 2014). Similar to Eq. (27), the truncated version of

terminal velocity distribution is

P
T
(VjD, a

y
, b

y
,s2)

5
P(VjD, a

y
, b

y
,s2)P(V,V

min
,V

max
)

Q(V
max

jD, a
y
, b

y
,s2)2Q(V

min
jD, a

y
,b

y
,s2)

,

(28)

where Vmin and Vmax are, respectively, the minimum

and maximum velocity that a disdrometer is capable

to measure. Therefore, the truncated version of mixed

joint PDF is derived by linearly combing the joint

PDF of PT(VjD, ay, by, s
2) 3 PT(Djm, l). Modifying

the EM algorithm using this truncated version of

mixed joint PDF, the proposed method might relive

the truncation problem, but this is beyond the scope

of this paper.

We next discuss the time interval for data sampling in

the observation. The time interval that the total number

of precipitation particles passing through an area of

A (m2) reaches L is computed in appendix D as

Dt5
L

AR

"
�
K

k51

v
k
lbmkG(m

k
1 b

yk
1 1)

a
mk
G(m

k
1 b

yk
1 b

mk
1 1)

#21

, (29)

where R (mg m22 s21) is precipitation intensity, am and

bm are parameters of the mass–diameter relationship:

M5 amD
bm (mg). Note that (am, bm) for liquids,

graupels and densely rimed and unrimed aggregates

are (0.52, 3), (0.078, 2.8), (0.094, 1.9), and (0.04, 1.4),

respectively (Atlas et al. 1973; Locatelli and Hobbs

1974; Ishizaka 1995). Figure 9 shows the time interval to

obtain 2000 particles per a unit area of ;0.01m2 com-

posed by the typical 2DVD (Kruger and Krajewski

2002). Since the sample size should be greater than 2000

for computational stability of the algorithm (Fig. 2) and

FIG. 8. (a) Scatterplot of diameter and velocity for precipitation

particles observed by 2DVD during 0100–0130 JST 6 Dec 2016.

The colored dots show the responsibility fractions glk for the three

elements with green, blue, and red and their mixture: (gl1, gl2, gl3)5
(1, 0, 0) with green, (gl1, gl2, gl3)5 (0, 1, 0) with blue, (gl1, gl2, gl3)5
(0, 0, 1) with red, and (gl1, gl2, gl3)5 (1/3, 1/3, 1/3) with gray. The text

inset indicates the parameters for the PDF estimate with the

number of PDF elements given at 3. The colored dotted lines

are diameter–velocity curves estimated by our method. Also

shown are the estimated (lines) and observed (bars) PDFs for

(b) diameter and (c) fall velocity.

FIG. 7. (a) Scatterplot of diameter and velocity for precipitation

particles observed by a 2DVD installed at Hokkaido University

during 1400–1430 JST 22 Jan 2017. The colored dots show the re-

sponsibility fractions glk for the two elements with blue and red and

their mixture: (gl1, gl2)5 (1, 0) with blue, (gl1, gl2)5 (0, 1) with red,

and (gl1, gl2) 5 (0.5, 0.5) with magenta. The text inset indicates the

parameters for the PDF estimate with the number of PDF elements

given at 2. The colored dotted lines are diameter–velocity curves es-

timated by our method. Also shown are the estimated (lines) and

observed (bars) PDFs for (b) diameter and (c) fall velocity.
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for accuracy of the parameter estimation (Figs. 3 and 5),

in 1mmh21 precipitation intensity, the time interval is

roughly 5min for LGRs, GRs, and RUs populations,

30min for LGR0, LGRv, GR0, GRv, RU0, and RUv.

Moreover, with an intake of PARSIVEL and LPM of

almost one-half of 2DVD, the time interval is doubled

(Angulo-Martínez et al. 2018).
We similarly compared our method with the conven-

tional maximum-likelihood method by Kliche et al.

(2008) in light of the shape m and slope l parameters

from the single population of liquid precipitation parti-

cles following the gamma distribution. They reported

that theRMSE of shape parameter was 0.13 with respect

to the population of m 5 2 for the sample size of 1000.

This result was consistent with our result of the esti-

mated PDF element corresponding to the liquid parti-

cles for the LGR0, LGRs, and LGRv populations

(Fig. 3d). As for the slope parameter, Kliche et al. (2008)

computed a median value of estimated l normalized

with its population being ;1.0 with a sample size of

1000. In this study, the normalized l of the estimated

PDF element corresponding to the liquid particles was

;1.02 for LGR0,;1.03 for LGRs, and;1.05 for LGRv

(not shown). Hence, the performance of our proposed

method with K 5 3 was slightly worse than the

maximum-likelihood method, completely same as the

proposed method with K 5 1 (section 3b). Moreover,

Kliche et al. (2008) computed a median value of nor-

malized l estimated with the moment method being

;1.05 with a sample size of 1000, which is mostly the

same performance as that of the proposed method

with K 5 3. Therefore, the proposed method can es-

timate the particle size distribution discriminating

PDF elements as accurately as the moment method

with a single PDF.

Last, we discuss the problem that the diameter–velocity

data by disdrometers such as 2DVD, PARSIVEL, and

LPM originally follows the different form of joint PDF

[Eq. (8)] from the joint PDF assumed in this study

[Eq. (5)]: a shifted shape parameter as much as by [Eq. (8)]

and an offset of s2/(ayD
by ) in the mean terminal velocity

[Eq. (9)]. The difference in terminal velocity is larger for

the smaller particle diameter (Fig. 10), so that parameter ay
and by should be, respectively, overestimated and under-

estimated under an assumption of the joint PDF form by

Eq. (5) comparing with the estimation assuming the joint

PDF form byEq. (8). However, the difference in themean

velocity is mostly less than 0.1ms21 with a larger diameter

than 1mm in the parameter range used in this study

(Fig. 10). Therefore, the estimation of ay and by might

not be largely affected regardless of the joint PDF

forms expressed with Eqs. (5) and (8) if the sampling

data consists of large particles. If so, the shape pa-

rameter estimated by the proposed method can be

simply converted to the shape parameter estimated

with an assumption of the joint PDF form of Eq. (8)

by an offset of by.

7. Conclusions

Anewmethod with the EMalgorithmwas developed to

estimate an optimal mixed joint PDF from precipitation

FIG. 9. Time interval (h) to obtain 2000 particles per a unit area

(0.01m2) as a function of precipitation intensity (mm h21). FIG. 10. The difference of mean terminal velocity between the

joint PDF for a disdrometer observing particle number concen-

tration [Eq. (5)] and the joint PDF for a disdrometer observing

particles passing a finite area [Eq. (8)] expressed by s2/ayD
by

[Eqs. (2) and (10)].
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particles’ diameter–velocity data. The method was ver-

ified by the test to retrieve the given PDF from a ran-

domly sampling data based on a population that

contains some of PDF elements: liquid particles,

graupels, densely rimed aggregates, and unrimed

aggregates (Fig. 1). The performance test suggested

that the sample size should exceed 2000 for the com-

putational stability (Fig. 2) and for accuracy of pa-

rameter estimation (Fig. 3). In the estimate of the

number of PDF elements, minority rejection method

made a better performance than maximizing AIC or

BIC (Fig. 5). Our estimate made a comparable per-

formance to the conventional least squares method

(Fig. 6) and the maximum-likelihood method (section 3b)

in the estimate of a single-element population. Applying

this method to the observation data with 2DVD, our

method was able to detect erroneous data (Fig. 7) and to

distinguish liquid-phase from solid-phase precipitation

particles (Fig. 8).
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APPENDIX A

Derivation of Eqs. (8) and (11)

Since the disdrometers such as 2DVD, PARSIVEL,

and LPM observes precipitation particles passing

a finite area, the observed diameter–velocity data

should follow the joint PDF as follows (Ignaccolo and

De Michele 2014):

P
S
(V,D)5

ADtV

L
N

tot
P(V,D). (A1)

Here, P(V, D) is the joint PDF expressed with Eq. (5).

The total number of precipitation particles is repre-

sented as

L5ADtN
tot

ð‘
0

�ð‘
2‘

VP(V,D) dV

	
dD

5ADtN
tot
a
y
l2by

G(m1 b
y
1 1)

G(m1 1)
. (A2)

Substituting Eq. (A2) into Eq. (A1), Eq. (8) is de-

rived. Equation (11) is simply derived by rearrang-

ing Eq. (A1).

APPENDIX B

Initial Parameters for the EM Algorithm

The initial parameters for the EM algorithm should

be reasonably determined for an accurate parameter

estimation. First, we determine two velocity–diameter

curves approximately passing maximum and minimum

bounds of velocity on the diameter–velocity quarter

plane: one is passing a point of ðD, max
1#l#L

VlÞ on the

diameter–velocity quarter plane with by 5 1, and another

is constant at V5V/4. These conditions are satisfied with

two parameters sets of (ay, by)5 (ây, 1) and (ay, by)5
(ăy, 0), where ây and ăy are given by Eq. (23). Then, K

sets of (ay, by) are equally spaced out between ây and ăy
and between 1 and 0 as per Eq. (22). Parameterss2,m, and

l are simply determined by the mean and variance of

diameter–velocity data and are uniformly given to all the

PDFelements.Themixing fractionv is alsouniformly given.

APPENDIX C

Threshold for the Minority Rejection Method

The threshold value forminority rejectionmethod is given

by cK, where c is an arbitrary positive constant andK is the

number of PDF elements. The threshold value by this

formulation effectively reduces a possible range of K be-

cause theK estimation with the minority rejection method

never exceeds an expectation value: cK # 1/K. Hence

1#K# 1/
ffiffiffi
c

p
. (C1)

This limitation is probably helpful to avoid an overfitting

problem.

Figure C1 shows a hitting rate of the number of PDF el-

ements averaging all cases of sample size (L 5 100, 1000,

2000, 3000, 6000, 10000) with the minority rejection method

as a function of c. The estimation were achieved by mostly
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100% forGR0, GRs, andGRv populations within c ranging

over 0.1–0.2. The number of PDF elements in RU0, RUs,

andRUvpopulationswere also successfully estimatedwith a

relatively narrower range of c.On the other hand, forLGR0,

LGRs, and LGRv populations, the PDF element number

were estimated only within a narrow range of c around 0.05.

The results suggested that the hitting rate becomes more

sensitive to c in a case for estimating a population con-

structed from more number of PDF elements. Eventually,

an averaged hitting rate over all population tests was ap-

proximately 90% at c 5 0.1 (gray thick line in Fig. C1),

which limits a range ofK to 1–3 [Eq. (C1)]. We hence used

c 5 0.1 for the minority rejection method in the text.

APPENDIX D

Derivation of Eq. (29)

The relationship between mass and diameter of precipi-

tation particles is empirically described by the power law as

M5 a
m
Dbm , (D1)

where M (mg) is the mass of a particle and am and bm
are empirical coefficients (Locatelli and Hobbs 1974).

Multiplying M [Eq. (D1)] and V [Eq. (2)], a mass flux

F (mg m s21) is obtained:

F5 a
y
a
m
Dby1bm . (D2)

Assuming that a PSD follows the gamma form repre-

sented by Eq. (1), precipitation intensityR (mgm22 s21)

is obtained by integrating NdF over D:

R5N
0
a
y
a
m

ð‘
0

Dm1by1bm exp(2lD) dD

5N
0
a
y
a
m

G(m1 b
y
1 b

m
1 1)

lm1by1bm11
. (D3)

Similarly, particle number flux ~L (m22 s21) is obtained

by integrating NdV over D:

~L5N
0
a
y

ð‘
0

Dby exp(2lD) dD5N
0
a
y

G(m1b
y
1 1)

lm1by11
.

(D4)

Dividing Eq. (D4) by Eq. (D3),

~L5
lbmG(m1 b

y
1 1)

a
y
G(m1 b

y
1 b

m
1 1)

R . (D5)

For K elements, a linear combination of independently

estimated particle number flux ~Lk following Eq. (D5)

brings

~L5 �
K

k51

v
k
lbmkG(m

k
1 b

yk
1 1)

a
mk
G(m

k
1 b

yk
1b

mk
1 1)

R . (D6)

The total particle number passing through an area A (m2)

within a time-intervalDt,L5A
Ð Dt
0
~Ldt, provides Eq. (29).
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