

MASTER THESIS

TITLE: Realistic VTOL simulator

MASTER DEGREE: Master's degree in Applications and Technologies for
Unmanned Aircraft Systems (Drones) (MED)

AUTHOR: Sergi Lucas Millan

PROFESSIONAL ADVISOR: Miquel Mulet Autonell

ACADEMIC ADVISOR: Jose Ignacio Rojas Gregorio

DATE: October 9, 2020

Abstract

This master's thesis is focused on the development of a VTOL drone flight
simulator. Two main objectives have been set. The first one is that the simulator
must simulate all the flight phases of a VTOL. To make it possible, the simulator
software is integrated with the simulation of the drone flight controller, which
can be ArduPilot or PX4. The second objective is that it should be possible to
control the simulated UAV via radio control, in the same way that we would do
with a real drone. The thesis is structured in four chapters.

In the first chapter, we do a study of the different types of VTOL drones. There
are mainly three types: tailsitters, tiltrotors, and QuadPlanes. The three flight
phases of a VTOL (vertical take-off and landing, transition and horizontal flight)
are also studied. The advantages of a VTOL over a fixed-wing and a multirotor
are studied. Finally, we analyse the characteristics of the VTOL that Venturi is
developing, called V1.

The second chapter summarizes the European laws that affect drones. There
are currently two laws: Delegated Regulation 2019/945 and Implementing
Regulation 2019/947. The first regulation classifies drones into five classes,
according to their capabilities and characteristics. The second regulation deals
with the rules and procedures that drones must fulfil. Operations are classified
into three categories: open, specific and certified.

In the third chapter, a study of the software that is being used for simulation of
UAVs is done. The pros and cons of each option are analysed. In view of this
study, Gazebo, a robot simulation environment, is chosen for this project.

Finally, the last chapter explains the structure of the software that has been
developed to carry out the desired simulation. Then, to test this simulator, tests
are done with two different QuadPlane models: a model designed by Gazebo
and a model of the Venturi V1. Three tests are performed for each of these
QuadPlane models: 1) a test of the rotation of the engines and movement of
the control surfaces; 2) a test in which the UAV must follow a pre-planned
mission; and 3) a test in which we try to control the drone with a joystick.

For the first UAV model, the three tests are satisfactory; in particular, the
computed average error when following the planned mission is 1.9 m.
Moreover, in the joystick control test, the drone responds perfectly to the
controls, just like a real VTOL. For the Venturi V1, the first test is satisfactory,
but unfortunately the second and third tests cannot be carried out, likely due to
an error in the Gazebo model of the V1.

As a result of this project, the developed simulator is being integrated in Venturi
with a computer vision system for detection of pedestrians, to make safer
landings, and for detection of the power lines, so that the UAV can follow them
autonomously during power line inspection missions.

INDEX

INTRODUCTION .. 1

1. Motivation ... 1

2. Goals ... 2

3. Time planning .. 2

CHAPTER 1. VTOL ... 3

1.1 Types of VTOLs ... 3
1.1.1 Tailsitter .. 3
1.1.2 Tiltrotors .. 5
1.1.3 QuadPlanes .. 7

1.2 Flight phases .. 7
1.2.1 Take-off and landing ... 7
1.2.2 Transition .. 8
1.2.3 Horizontal flight ... 8

1.3 Advantages and disadvantages ... 9

1.4 Venturi VTOL .. 10

CHAPTER 2. EUROPEAN LEGISLATION ... 13

2.1 Delegated Regulation 2019/945 .. 13
2.1.1 C0 Class ... 13
2.1.2 C1 Class ... 14
2.1.3 C2 Class ... 15
2.1.4 C3 Class ... 16
2.1.5 C4 Class ... 17

2.2 Implementing Regulation 2019/947 ... 18
2.2.1 Open category .. 18
2.2.2 Specific category .. 19
2.2.3 Certified category ... 20

2.3 Venturi VTOL .. 21

CHAPTER 3. STATE OF THE ART OF DRONE SIMULATORS 22

3.1 X-Plane .. 22

3.2 RealFlight ... 23

3.3 Gazebo .. 23

3.4 jMAVSim ... 23

3.5 JSBSim ... 24

3.6 AirSim ... 24

3.7 Choice of technology .. 25

CHAPTER 4. SIMULATION .. 27

4.1 Elements involved ... 27
4.1.1 Gazebo model .. 27
4.1.2 Plugin .. 29
4.1.3 Ground Control Station ... 30

4.2 Pre-configuration ... 31
4.2.1 SITL configuration .. 31
4.2.2 Plugin configuration .. 32

4.3 Simulator operation ... 34
4.3.1 ArduPilot side.. 36
4.3.2 ROS side .. 38
4.3.3 Gazebo side.. 38
4.3.4 Main side .. 42

4.4 Results .. 43
4.4.1 Standard VTOL ... 44
4.4.2 Venturi V1 ... 48

CONCLUSIONS ... 52

ACRONYMS .. 54

REFERENCES ... 55

ANNEX ... 57

1. Motors specifications .. 57
1.1. Hacker Q80-13S 28-Pole kv175 ... 57
1.2. T-motor MN801S 150kv .. 57

2. Flight test videos ... 58
2.1. Standard VTOL ... 58
2.2. Venturi V1 .. 59

3. Simulator codes ... 59
3.1. Plugin code ... 59
3.2. Matlab code ... 59

FIGURE INDEX

Fig. 0.1 Gant chart showing the time planning of the Master’s Thesis project 2
Fig. 1.1 Tailsitter drone ... 3
Fig. 1.2 Earth fixed axes, body axes and Euler angles for aircraft 4
Fig. 1.3 Different frame configuration for tailsitters: + configuration (left) and x

configuration (right) ... 4

Fig. 1.4 Tilt rotor drone ... 5
Fig. 1.5 Tilt wing drone ... 6
Fig. 1.6 QuadPlane .. 7
Fig. 1.7 Fixed-wing UAV ... 9
Fig. 1.8 V1 model on SolidWorks ... 11

Fig. 1.9 Real V1 before operation ... 11

Fig. 2.1 C0 class UAS identification label ... 14

Fig. 2.2 C1 class UAS identification label ... 15
Fig. 2.3 C2 class UAS identification label ... 16
Fig. 2.4 C3 class UAS identification label ... 17
Fig. 2.5 C4 class UAS identification label ... 17

Fig. 4.1 Venturi V1 UAV model in Gazebo ... 28
Fig. 4.2 Standard VTOL UAV model in Gazebo ... 29

Fig. 4.3 Communication between nodes in a ROS system 30
Fig. 4.4 Plugin parameters and their explanation ... 33
Fig. 4.5 Software blocks diagram ... 35

Fig. 4.6 Different reference systems: NED (left) and x-axis pointing forward, y-
axis pointing left, and z-axis pointing up (right) ... 37

Fig. 4.7 PWM working principle, with the duty cycles of periodic signals 37

Fig. 4.8 Rotation speed of vertical flight motors with respect to the throttle 39

Fig. 4.9 Lift and drag forces acting on airfoil ... 41
Fig. 4.10 Lift and Drag Coefficient vs Angle of attack 42
Fig. 4.11 Developed software flowchart ... 43

Fig. 4.12 Ailerons moving to initial position: before SITL runs (left) and during
SITL simulation (right) ... 44

Fig. 4.13 Mission trajectory on Mission Planner ... 45
Fig. 4.14 UAV trajectory in planned mission ... 46
Fig. 4.15 Graphical visualization of distance between point and segment 46
Fig. 4.16 UAV trajectory in planned mission with colour bar for distances 47

Fig. 4.17 Control surfaces moving to initial position for the V1 UAV model 48
Fig. 4.18 Centre of gravity (CG) for each V1 element (motors, wings, tail) and

global CG .. 49

Fig. C.1 Pedestrian model (left) and Electric Tower model (right) 53
Fig. A.1 Hacker Q80-13S 28-Pole kv175 engine specifications 57
Fig. A.2 T-motor MN801S 150kv engine specifications 58

INTRODUCTION 1

INTRODUCTION

A Vertical Take-Off and Landing (VTOL) drone is a drone that is capable of taking
off and landing vertically, while in the other flight phases it evolves as planes do.
So, we could say that a VTOL drone combines the operation of a quadrotor, for
take-off and landing, with the operation of a conventional airplane, for the other
flight phases.

Venturi Unmanned Technologies is a company that was born in 2015. Since then,
it has been dedicated to the construction of a VTOL drone to carry out inspection
tasks of electrical networks and gas pipelines. This Master's Thesis has been
developed during an internship of the author at Venturi.

1. Motivation

The origin of this thesis is caused by one of the needs that Venturi has from the
first years of work. The main drawback of all companies related to the world of
unmanned aerial vehicles (UAV) is the European legislation on airspace in
relation to drones.

The European legislation is currently very restrictive regarding the use of UAV,
because they have to share airspace with aircraft and the technology needed to
ensure the separation between drones and aircraft is not yet sufficiently
developed, nor the protocol to be followed in order to fly a drone in controlled
airspace. In addition, the legislation is more restrictive the larger and heavier the
UAV. Obviously, work is being done to integrate drones into this airspace. The
Single European Sky Air Traffic Management Research Joint Undertaking
(SESAR JU) has created the U-Space proposal, which is a European Union (EU)
project for the integration of drones in all European airspace.

Venturi’s drone is a VTOL with a 3 m wingspan and a 25 kg Maximum Take-Off
Weight (MTOW). Given these characteristics and the current legislation, it is very
difficult to fly this drone in Spain, you have to be given special conditions and fly
in a segregated airspace. These conditions are far from airports and areas with
dense air traffic. Therefore, every time Venturi wants to fly the drone, they have
to move far away from the offices in Castelldefels, since these are close to
Barcelona-El Prat airport, which generates a very high temporal and economic
cost.

Because of this, the motivation to develop a VTOL drone flight simulator in Venturi
arose. In this way, it will be possible to implement new flight configurations,
simulate missions and see the behaviour of the aircraft in a simulated
environment without having the expenses of transporting the drone to the actual
flight site and renting the segregated airspace in which drone flights are
performed.

2 Realistic VTOL simulator

2. Goals

Once we know the motivation for developing a drone simulator, we need to be
clear about what the simulator's goals will be.

The objectives of the simulator will mainly be two. The first and most important
goal is that the simulator is able to simulate the flight dynamics of a VTOL during
vertical take-off, transition vertical-to-horizontal flight, horizontal flight, transition
horizontal-to-vertical flight, and finally vertical landing. Along with the flight
dynamics, the simulator must also allow integration with the actual aircraft flight
controller software. In the case of Venturi, at the moment, they are using
ArduPilot. Therefore, the simulator must be able to understand the commands
generated by ArduPilot [1] and above all, understand and execute the missions
that can be created through a ground station.

The second goal of the simulator is to be able to understand the commands
generated by a radio control. In this way, if the simulated drone is able to execute
the commands sent to it through a radio control, it will be possible to carry out
trainings for future pilots of the company. Thus, novice pilots will be able to have
a first contact with a VTOL in a simulated environment. They will be able to learn
the different modes of flight, without endangering the actual aircraft.

3. Time planning

 Due to the scale of the project, a Gantt chart was developed to establish efficient
and orderly time planning, as shown in Fig. 0.1.

Fig. 0.1 Gant chart showing the time planning of the Master’s Thesis project

As can be seen in the Gantt Chart, there was extensive work to do prior to actually
starting to develop the simulator, as the technologies used in the work have a
very long learning curve and therefore it was necessary to learn how to use these
tools well.

Once this learning time passed, almost 5 months were spent developing the
designed code.

VTOL 3

CHAPTER 1. VTOL

VTOL is the acronym for Vertical Take Off and Landing. Thus, a VTOL drone
arises from the combination of a multirotor with a fixed wing aircraft, combining
the best features of each of these types of aircraft: it takes off and lands like a
helicopter and flies like a plane.

VTOLs use rotors to generate lift (the force that balances weight and keeps the
aircraft flying in the air) and thrust (the force that propels the aircraft forward)
during the take-off and landing phases. During the horizontal flight phase, the
rotors only generate thrust, while the lift is generated by the vehicle’s wings.

For a better understanding of VTOLs, we will classify the different types of VTOLs
that exist today and the different phases of flight for each type of VTOLs, and
then we will analyse the advantages and disadvantages of using a VTOL.

Finally, we will analyse the VTOL used by Venturi and its characteristics.

1.1 Types of VTOLs

There are currently three types of VTOLs: tailsitters, tiltrotors and QuadPlanes.
Each type has the same common denominator, which is vertical take-off and
landing capability, but the configuration and operation of the engines are different
in each case [2].

1.1.1 Tailsitter

Tailsitters, as their name suggests, are drones that usually sit on their tail for take-
off and landing (see Fig. 1.1). Not all tailsitters land on their tail, as it is a very
tricky manoeuvre, and thus there are some that land on the belly of the vehicle.
Once they take off, the entire drone tilts forward to begin horizontal flight. You
can see a video of the operation of this type of drone at the following link. This is
the only VTOL type that has a vertical orientation, the rest have a horizontal
orientation.

Fig. 1.1 Tailsitter drone

https://youtu.be/ahSASWrR_AI

4 Realistic VTOL simulator

Typically, tailsitters can have two, three, or four rotors, and have two control
surfaces. These control surfaces are elevons, which are responsible for changing
the orientation of the drone during take-off and landing of the vehicle, and
manoeuvrability during flight. Elevons are control surfaces that combine the
functions of ailerons and elevators. Ailerons are used for roll control and elevators
are used for pitch control. So, elevons are used for roll and pitch control. Fig. 1.2
shows the Euler angles and axes around which aircraft can rotate.

Fig. 1.2 Earth fixed axes, body axes and Euler angles for aircraft

In addition to having different numbers of engines, tailsitters may have different
configurations; for instance, having four engines can vary their configuration with
respect to the fuselage: they can have an x or + configuration, in the same way
as multicopters (see Fig. 1.3).

Fig. 1.3 Different frame configuration for tailsitters: + configuration (left) and x
configuration (right)

VTOL 5

Lastly, tailsitters may have a directional thrust or not; this will depend on whether
the rotors can be tilted or not. On one hand, tailsitters with directional thrust will
be better as they will be more stable, that is, they will be able to find balance more
easily. On the other hand, those tailsitters which do not have directional thrust
must have the centre of mass well located, as in the event that the centre is
displaced to the back or shoulder of the vehicle, the drone might have stability
problems during take-off [3].

The stability of a body depends on the position of its centre of gravity and the size
of its base. If the centre of gravity falls outside the base of the body, the object
becomes unstable. Normally all tailsitters have a very narrow body, therefore it is
very easy for the centre of gravity to fall outside its base and so become unstable.
In the case of a tailsitter with four rotors or with vectored thrust, there are no
problems as they can compensate the swinging caused by instability. In the case
of a tailsitter with two non-vectored throttles, it is not able to cope with this
instability. For this reason, it is necessary that the centre of gravity of a tailsitter
is well positioned.

1.1.2 Tiltrotors

For the tiltrotors, like for the tailsitters, their name indicates their operation: the
rotors tilt to move from take-off configuration to horizontal flight configuration, and
to move from horizontal flight configuration to landing configuration. You can see
a video of the operation of this type of drone at the following link. Tiltrotors are
vehicles that land and take off horizontally, on their legs or belly (see Fig. 1.4).

Fig. 1.4 Tilt rotor drone

Tilt rotors have a wide variety of configurations, in terms of the number of engines,
their position, the number of engines that are tilted and whether the wings are
tilted or not. They can usually have three, four or six engines. As for quadrotors,
in the case that the drone has four rotors, the distribution can be in the form + or
x. Also, depending on the number of rotors and their position, not all of them may
have the option of being tilted. There are some configurations in which the
engines are placed on the wings and therefore these also tilt. This type of VTOLs
is called tilt wing. An example of tilt wing is shown in Fig. 1.5.

https://youtu.be/Vsgh5XnF44Y

6 Realistic VTOL simulator

Fig. 1.5 Tilt wing drone

In order to control the direction of the rotors, servos are used, which can be
continuous or binary. If the servos are binary, the rotors will only have vertical or
horizontal position, that is, they cannot remain in an intermediate position.
Obviously, continuous servos are better because they allow tilting the rotors to
any position in a given range of positions. There are some configurations in which
the servos allow the thrust to be directional during horizontal flight; this allows for
better control of the rotations of drones around their yaw axis [4].

Depending on the configuration, tiltrotors can have different control surfaces to
control the flight (see Table 1.1). In the case of a tiltrotor drone without tail, the
control surfaces are two elevons. In the case that the tiltrotor has a tail, there are
more control surfaces. The primary control surfaces in the wings are ailerons.
The tail can be V-shaped, A-shaped, or the standard T-shaped tail. In the case
of a standard tail, the drone has an elevator and a yaw rudder. In the case of a
V- or A-shaped tail, the drone has two control surfaces called ruddervators, which
perform the combined functions of both a rudder and an elevator.

Table 1.1 Movement of the control surfaces to control tiltrotors

 Tilt rotor without tail Tilt rotor with tail

Pitch up Both elevons move up Both tail surfaces move
up

Pitch down Both elevons move
down

Both tail surfaces move
down

Roll right Right elevon moves
down and left elevon
moves up

Right aileron moves up
and left aileron moves
down

Roll left Right elevon moves up
and left elevon moves
down

Right aileron moves
down and left aileron
moves up

Yaw right Both tail surfaces move
right

Yaw left Both tail surfaces move
left

VTOL 7

1.1.3 QuadPlanes

A QuadPlane is a combination of a fixed wing aircraft with a multirotor (see Fig.
1.6). It combines vertically oriented engines, a horizontally oriented engine and
the typical control surfaces of fixed wing aircraft. Like tiltrotors, QuadPlanes take
off and land in horizontal orientation, on the belly or legs of the vehicle.

Fig. 1.6 QuadPlane

QuadPlanes have a simpler configuration than tiltrotors in terms of the number of
engines and their position: four or eight engines are used for vertical propulsion.
The distribution of the engines in both cases can be H, x or + with respect to the
fuselage. For horizontal flight, QuadPlanes only have one engine for propulsion,
as they have wings, which are responsible for the lift.

As for tiltrotors, there are many configurations in terms of control and
manoeuvrability of the vehicle and therefore different control surfaces can be
selected. If the UAV has a tail, then it has two ailerons on the wings and two
control surfaces on the tail. The control surfaces of the tail depend on the shape.
In the case of a V- or A-shaped tail, the control surfaces are called ruddervators.
In the case of a standard T-shaped tail, the contour surfaces are rudder and
elevator. If the QuadPlane has no tail, the wing control surfaces are elevons.

1.2 Flight phases

Unlike other UAVs, VTOLs fly in three very different flight phases, where the
rotors and control surfaces behave very differently. These phases of flight are,
take-off and landing, transition and horizontal flight.

1.2.1 Take-off and landing

In this flight phase, the UAV operates in the same way as a multicopter. It
generates thrust and lift with its engines, and maintains stability only thanks to

8 Realistic VTOL simulator

them. In the case of a tailsitter, this phase can be more delicate than for tiltrotors
and quadplanes if it has only two rotors, since it will have to have the centre of
gravity very well positioned. Otherwise, it will be impossible to maintain the
stability with only two engines.

It is one of the flight phases where the vehicle consumes most energy, as all or
most of the vehicle’s engines are working at full throttle, or close, to ascend or
descend vertically, and/or maintain position.

1.2.2 Transition

The transition is the most important and critical phase of the flight of a VTOL. It
is the phase that allows the VTOL to move from vertical flight to horizontal flight
and vice versa. Most VTOL accidents happen at this phase due to its difficulty.
The transition from horizontal to vertical flight is more critical due to the inertia of
the vehicle.

The behaviour and operation of the drone varies depending on the drone type. In
the case of a tailsitter, at this stage, thanks to the control surfaces of the vehicle,
it tilts to move from the vertical to the horizontal position, or in the case of the
landing, from horizontal to vertical.

In the case of a tiltrotor, the transition involves the tilt of the engines to move from
a vertical flight to a horizontal flight, or vice versa, for the landing. In order to shift
from vertical to horizontal flight, the servos move the rotors such that their axes
are in horizontal position and the speed of the rotors decreases. The reason is
that, since horizontal speed is gained, the wing of the vehicle begins to generate
lift and therefore engines do not need to generate lift anymore. For the landing,
the procedure is the opposite: the rotors begin to tilt their axes towards vertical
position and to spin faster, since the horizontal speed of the vehicle is decreasing
and therefore the wing does not generate as much lift and the rotors must
compensate for this.

In the case of a QuadPlane, the operation of the engines is simpler: during the
take-off, the rotors are used with vertical orientation; to shift to horizontal flight,
the propulsive rotor begins to turn and the vehicle begins to gain speed; with this
speed, the wings and body of the VTOL begin to generate lift and therefore the
vertical rotors do not need to spin so fast. When the wings generate enough lift,
the vertical rotors stop rotating and only the propulsion rotor works.

The transition phase must be very well set up. Due to its difficulty many vehicles
lose some height in the transition.

1.2.3 Horizontal flight

In this flight phase, the drone flies in the same way as a fixed-wing UAV (see Fig.
1.7). In horizontal flight, the UAV is controlled by its control surfaces. In the case
of a tailsitter, it is controlled with the elevons. In the case of a tiltrotor or a

VTOL 9

QuadPlane, they usually have more control surfaces: elevons on tail-less UAVs
and ailerons and tail control surfaces for UAVs with tail.

Fig. 1.7 Fixed-wing UAV

During the horizontal flight phase, depending on the type of VTOL, not all the
engines might work. In the case of a tailsitter, as the engines go in the same
direction as the fuselage, they will all work. In the case of a tiltrotor, only those
engines that are inclined to the horizontal position will work. Depending on their
configuration, there may be engines that are only used for take-off and landing.
In the case of a QuadPlane, only the propulsion engine will work, as the rest are
oriented vertically.

1.3 Advantages and disadvantages

Because a VTOL is a combination of a multicopter and a fixed wing aircraft, it has
the advantages of each vehicle and is therefore more competent when compared
against a pure multirotor or a pure fixed wing aircraft. To see the advantages and
disadvantages, we will compare a VTOL with the latter vehicles. We will start by
analysing the advantages and disadvantages of VTOLs with respect to a fixed
wing aircraft and then with respect to a multirotor.

The biggest advantage of a VTOL with respect to a fixed wing aircraft is of course
that it has vertical take-off and landing capabilities, just like multirotors do, so this
makes it easy to start flying or landing anywhere, without the need of a runway.
In addition, these types of take-offs and landings are safer, as the inertia and
horizontal speed of the vehicle is not as large as for a fixed wing.

Because it is capable of operating as a multirotor, a VTOL can make hovering,
while a fixed wing aircraft cannot, so a VTOL will be able to perform inspection
and monitoring tasks where it is necessary to maintain a steady position in the
air, that is, where hovering is necessary, as hovering refers to the action of
staying in the same position in the air, in location and height.

In addition, due to the vertical movement, the VTOL will be able to adapt better
to a change in the environment. A fixed wing aircraft will not be able to land if the
conditions of the environment in which it flies vary greatly, whereas a VTOL could

10 Realistic VTOL simulator

be able, as it needs little space to land. Finally, a VTOL is more manoeuvrable
than a fixed wing thanks to the ability to vary the relative speed of each rotor,
which will create changes in thrust and torque.

The advantages of a VTOL over a multirotor are three: the larger payload
capacity, range (maximum flight distance) and/or endurance (maximum flight
time). This is thanks to the lift generated by the wings of the VTOL during
horizontal flight. Because in horizontal flight the lift is generated with the wings of
the UAV, some VTOL engines will stop working, so the batteries will last longer
and the range and/or of operation will be greater.

The only downside to VTOLs is that they tend to be less manoeuvrable than
multirotors in air hovering.

With respect to a fixed wing aircraft, the VTOLs have less range of operation,
since in the phases of take-off, landing and transition, the wings of the VTOL do
not generate all the lift and, therefore, the rotors must do it. This causes a
significant consumption of energy.

Another drawback of a VTOL in front of multirotors and fixed wing aircraft is that
VTOLs are less reliable, because the configuration of a VTOL is much more
complex, as many more movable and mechanical elements are involved
(combining rotors, servos and control surfaces), and therefore the probability that
a component fails is greater.

1.4 Venturi VTOL

Venturi intends to inspect power lines and pipelines with its drone. To do so, it
must carry a set of cameras and sensors safely. Due to the size of the network
of power lines and pipelines, a UAV is needed that has the largest possible
operating range. To achieve this goal, the UAV must fly at a high altitude
constantly and at a high speed. Due to these conditions, Venturi opted for the
construction of a VTOL, specifically of the QuadPlane type.

Venturi’s QuadPlane (see Fig. 1.8) is designed entirely by the company, using
3D modelling software. The commercial computer-aided design (CAD) software
used to design the model from scratch is SolidWorks from Dassault Systèmes
SolidWorks Corp., Waltham, MA (USA).

This first VTOL designed by Venturi is called V1. It is built of carbon fibre
reinforced epoxy (CFRE) as this composite material has very good mechanical
properties. CFRE weighs little and has very high strength, compared with some
aluminium alloys, for example.

VTOL 11

Fig. 1.8 V1 model on SolidWorks

As a QuadPlane, Venturi’s V1 has four engines in charge of vertical propulsion
and one engine in charge of providing thrust for horizontal flight. It also has four
control surfaces, two ailerons in the wings for balance/bank control and two
ruddervators in the tail for the pitch control. The tail of the V1 has an inverted V
shape; this type of tail is called A-tail (it has an A shape). The configuration of the
fuselage and engines for vertical propulsion has the H-shape.

The V1 has a special feature and this is that it has engines that are used for
slightly inclined take-off and landing. With this inclination, the aim is to have more
control over the yaw of the UAV [5]. Because the distribution of the rotors is H-
shaped, the inclination of the motors is only two or three degrees.

It has been designed with a 3 m wing span configuration.

In order to see that the design of the V1 has been transformed into a real UAV,
an image of the V1 is shown in Fig. 1.9, where the V1 can be seen in the airfield
before performing an operation.

Fig. 1.9 Real V1 before operation

The total mass of the V1 is around 21-22 kg, so it is estimated that the payload it
can carry is around 3-4 kg. It has a cruising speed of up to 70 km/h (19.44 m/s)

12 Realistic VTOL simulator

and a coverage range of up to 110 km, but of course the maximum speed and
range will depend on the payload carried by the UAV.

The V1 can work in conditions of wind speeds up to 36 km/h (10 m/s) in all
directions, in quad and cruise mode and in a temperature range between 0 and
40ºC. Work is currently underway to make the UAV hydrogen-powered, which
will increase the distance it can travel.

EUROPEAN LEGISLATION 13

CHAPTER 2. EUROPEAN LEGISLATION

As explained in the introduction, one of the motivations for making a VTOL
simulator for Venturi is the current EU legislation on drones. In order to
understand how restrictive is the current legislation, and where stands the drone
designed by Venturi, I will explain the current legislation.

The European Commission has currently published two delegated regulations on
unmanned aerial systems (UAS) or drones. These are the “Delegated Regulation
(EU) 2019/945” of the Commission of 12 March 2019 and the “Implementing
Regulation (EU) 2019/947” of the Commission of 24 May 2019.

2.1 Delegated Regulation 2019/945

The European Commission published on March 12, 2019, this law that deals with
the requirements of the UAS and the requirements that must be met by UAS
manufacturers, designers, importers and distributors to obtain a mark of
conformity and to control the security of the market and competitiveness of the
same [6].

This law divides the UAS into five different classes, from C0 to C4, according to
the characteristics of each UAS. If a manufacturer wants to build a UAS of a
specific class, it must meet all the characteristics set for that class.

2.1.1 C0 Class

This class encompasses the smallest drones. The Maximum Take Off Mass
(MTOM) must be less than 250 g, including the payload that the UAS can carry.
Their maximum speed at level flight must be 19 m/s. They can reach a maximum
height of 120 m from the point of origin of take-off.

C0 class UAS must be powered by electric batteries that may not exceed 24 V
direct current (DC) or equivalent alternate current (AC) power. The UAS must
ensure a safe flight in terms of stability, manoeuvrability and performance of the
data link with a pilot radio control, which will be used following the UAS
manufacturer's instructions. The C0 class UAS must be built without elements
that could cause damage to people during their operation, so sharp shapes must
be avoided.

In case the Remotely Piloted Aircraft System (RPAS) has the follow-me flight
mode, the UAV must never be able to move beyond 50 m of the pilot, and this
will always maintain the controllability of the drone above the follow-me mode.

To pilot a C0 class drone, it will not be necessary for the pilot to have any type of
license.

14 Realistic VTOL simulator

A C0 class UAS must display the badge shown in Fig. 2.1 in order to identify the
class it belongs to.

Fig. 2.1 C0 class UAS identification label

2.1.2 C1 Class

C1 class UAV must not have an MTOM higher than 900 g and must not exceed
a flight speed of 19 m/s. The speed and weight limits are key to limiting the
kinematic energy of the UAS. In addition to energy, the impact of the drone in the
event of a possible fall or crash would be greater and cause more damage.

These RPAS will not be allowed to fly above 120 m from the point of origin of
take-off. As in C0 class, C1 class must be safe in terms of stability,
manoeuvrability and performance of the data link with the remote control following
the manufacturer's instructions. In this class, in case the data link is lost, the UAS
must be able to resume the data link or end the flight.

The UAS must not have sharp shapes to avoid causing harm to people during
operation. As in the previous class, the RPAS must be powered by DC batteries
that do not exceed 24 V or the equivalent AC. The drone must have a unique
physical serial number. It must be equipped with lights in order to improve
manoeuvrability, to be able to follow the drone at night and to distinguish the
RPAS from an airplane.

The UAV can be identified remotely through a documented transmission protocol,
where real-time UAV information such as serial number, position, speed, height,
etc. can be viewed in real time.

Finally, these drones must incorporate geo-conscious systems that prevent them
from flying into restricted areas such as airports, nuclear power plants, etc. There
must also be clear indication to the pilot when either the drone battery or the radio
control battery is low. In the same way as C0 class UAS, if the C0 class UAS has
a follow-me flight mode, it must not be able to move beyond 50 m from the pilot,

EUROPEAN LEGISLATION 15

and the pilot must always maintain the drone's controllability above the tracking
mode.

Like for C0 class drones, the pilot does not need a license to fly a C1 class UAS.

C1 class drones must display the badge shown in Fig. 2.2.

Fig. 2.2 C1 class UAS identification label

2.1.3 C2 Class

C2 class UAS must not have an MTOM higher than 4 kg, including payload. As
in the first two classes, the maximum flight height will be 120 m from the take-off
point. It must be safe in terms of stability, manoeuvrability and performance of the
data link, following those defined in the Implementing Regulation (EU) 2019/947
and following the UAS manufacturer’s instructions.

It must be built in such a way as to avoid damage to persons during the operation,
so sharp shapes must be avoided. In case the UAS is tied by a tether, the cable
must not be longer than 50 m.

If the UAV loses the data link, it must be able to retrieve the link on its own or end
the flight, unless the drone is tied up. The data link must be protected against
unauthorized connections for commands and control functions, unless the UAV
is tied.

Unless it is a fixed wing, the RPAS must have a slow flight mode, which can be
activated from the pilot's remote control and which must limit the cruising speed
to 3 m/s. C2 class drones must be powered by batteries that do not exceed 48 V
DC or equivalent AC power.

As in the previous class, they must have a unique serial number, be equipped
with lights to improve controllability, night tracking and to distinguish them from
an airplane and have a geo-conscious system. There must also be clear
indications to the pilot when either the drone battery or the radio control battery

16 Realistic VTOL simulator

is low. The UAV information must be remotely accessible, showing the serial
number, position, height, speed, pilot position if possible, etc.

From C2 class drones the pilot must have a license to operate with them.

C2 class drones must display the badge shown in Fig. 2.3.

Fig. 2.3 C2 class UAS identification label

2.1.4 C3 Class

C3 class UAV must not have an MTOM higher than 25 kg, including payload, and
cannot exceed 3 m in characteristic dimension. They may not exceed 120 m in
height from the point of origin of take-off. Like the C2 class, it must be secure in
terms of data link stability, manoeuvrability and performance in accordance with
Implemented Regulation (EU) 2019/947 and the UAS manufacturer’s
instructions.

If the rope is tied, it cannot exceed 50 m in length. In the event that they are
unattached and the data link is lost, you must have a secure method to recover
the data link or end the flight. The data link must be protected against
unauthorized connections, unless it is linked.

As in the previous class, the battery may not exceed 48 V DC or equivalent AC
power. It will also need to have lights to improve the controllability, tracking and
distinguishing it from an airplane. It must be equipped with a geo-conscious
system.

It must have a unique serial number. Unless linked, it must be possible to access
transaction information remotely and in real time.

The pilot will need a license to fly C3 class drones.

C3 class drones must display the badge shown in Fig. 2.4.

EUROPEAN LEGISLATION 17

Fig. 2.4 C3 class UAS identification label

2.1.5 C4 Class

C4 class is very similar to C3 class. The main difference is that in the C4 class it
corresponds to model airplanes.

C4 class vehicles will not have an automatic control mode except for stabilized
flight assistance. For the C4 class it will also not be necessary for the pilots to be
licensed.

C4 class UAS must display the badge shown in Fig. 2.5.

Fig. 2.5 C4 class UAS identification label

18 Realistic VTOL simulator

2.2 Implementing Regulation 2019/947

The European Commission published on May 24, 2019, this law, which deals with
the rules and procedures for the use of drones by pilots and operators, defining
categories of use and a series of requirements for their use [7].

UAS operations must be performed under either the open, specific or certified
categories.

2.2.1 Open category

Open category UAS operations are not subject to any prior operational
authorization or to an operational statement from the UAS operator prior to the
operation.

For an operation to be recognized within an open category, it must meet a number
of requirements. First of all, the UAS must belong to one of the classes marked
in Delegated Regulation (EU) 2019/947 that we have explained before, or be built
privately. The MTOM must be less than 25 kg.

The pilot must ensure a safe distance between the drone and people and at no
time he/she will be allowed to fly over a group of people. The pilot must always
fly the drone in Visual Line of Sight (VLOS), unless he/she is using the follow-me
mode or there is some observer controlling the UAV who is in constant
communication with the remote pilot.

During the operation, it will not be possible to fly the UAS further than 120 m from
the point of origin of the flight unless it has to overcome some obstacle. The UAS
is not allowed to carry any dangerous load or drop any material.

Open category UAS operations are divided into three subcategories according to
Part A of the Annex to this law. These categories are called A1, A2 and A3.

2.2.1.1 Subcategory A1

Subcategory A1 must meet two requirements. If the drone is C0 class, it must be
conducted in such a way that the remote pilot will not be able to fly over groups
of people, but will be allowed to fly over people not involved in the operation. If it
is a C1 class UAS, it must be flown in such a way by the pilot that he/she may
overfly uninvolved persons but shall never overfly assemblies of people.

2.2.1.2 Subcategory A2

Only C2 class drones fall into subcategory A2. The pilot must ensure that the
UAS never flies over people who are not involved in the operation and maintain
a horizontal distance of at least 30 m from them. The pilot will be allowed to
reduce the minimum distance to 5 m if the UAV is flying in low speed mode.

EUROPEAN LEGISLATION 19

Finally, the operation must be carried out by a pilot who knows the UAS
manufacturer's flight manual and has the corresponding remote pilot certificate.

2.2.1.3 Subcategory A3

In the subcategory A3, the UAS of classes C2, C3 and C4 are involved. The UAS
must be piloted by the remote pilot in an area where the persons not involved will
not be in danger, throughout the area of the operation for the total time of the
operation. The operation will take place at a minimum distance of 150 from
residential, commercial, industrial or recreational areas. Finally, the pilot must
have successfully passed an online training course and a theoretical knowledge
test.

2.2.2 Specific category

An operation will be within a specific category if only one of the requirements of
the open category is no longer met. If one of the requirements of the open
category is not met, the operator must obtain an operating authorization from the
competent authority of the Member State where he/she is registered.

When the operator requests an operating authorization from a competent
authority, the operator shall carry out a risk assessment in accordance with Article
11 of the law and submit it together with the application, including the appropriate
mitigation measures. The competent authority shall issue an operational
authorization if it considers that the operational risks are sufficiently mitigated in
accordance with Article 12, which sets out the points necessary to authorize an
operation.

2.2.2.1 Article 11

Article 11 of Implementing Regulation 2019/947 sets out the requirements that
the operational risk assessment to be done by the operator requesting
authorization must have in order for the competent authority to give permission
to carry out an operation.

The operational risk assessment must describe the characteristics of the
operation to be carried out by the UAS. It must adequately propose operational
safety objectives. The operator requesting authorization must identify the hazards
on the ground and in the air, and must also identify a range of measures to
mitigate the risks and, finally, determine the necessary level of robustness of the
mitigation measures, so that the operation can be carried out safely.

The description of the operation must include at least explanation of:

• the purposes/objectives of the activities to be carried out
• the environment and geographical area of the operation
• the complexity of the operation

20 Realistic VTOL simulator

• the preparation and execution of the operation
• the composition of the team who will participate in the operation
• the skills, experience, competencies, training and role of each of the

members of the staff in charge of the operation
• the technical means to carry out the operation
• the technical characteristics of the UAS, including its performance in the

face of the conditions encountered during the operation

The assessment must propose a security level objective that must be equivalent
to the aviation security level, in view of the specific characteristics of the
operation.

All risks both on land and in the air that cannot be avoided during the operation
must also be included. Ground hazards take into account the type of operation
and the conditions under which the operation will be carried out.

As the risks are analysed, the necessary mitigation measures will also need to
be analysed in order to achieve the proposed level of security. These mitigation
measures shall consider the following possibilities:

• containment measures for people on the ground
• strategic operational limitations for the operation of the UAS
• strategic mitigation according to the general rules of aviation and shared

airspace and services
• capability to withstand adverse weather conditions
• factors such as operation and maintenance procedures can also be

organized by the operator following the UAS manufacturer's manual
• the level of competency and expertise of the personnel involved in the

safety of the operation
• the risk of human error
• the design and performance characteristics of the UAS

The soundness of the proposed mitigation measures will be assessed to ensure
that the targeted level of security is achieved, to ensure that all stages of the
operation are safe.

2.2.3 Certified category

UAS operations will be classified within the certified category if during the
operation the UAS has to fly over people, or if the operation involves the transport
of people or some dangerous object, which can be a high risk for third parties in
case of accident.

In addition, UAS operations may also fall into this category if, based on the
operational risk assessment provided by the operator, the competent authority
considers that the risk of the operation cannot be adequately mitigated without
certification of the UAS, the operator or when applicable without a license from
the UAS pilot.

EUROPEAN LEGISLATION 21

2.3 Venturi VTOL

Once we have seen the current European legislation for drones and the
characteristics of the Venturi V1 drone in Chapter 1, now we can know how the
legislation affects the V1 drone.

Regarding the Delegated Regulation 2019/945, due to the its wing dimensions of
3 m and its MTOM lower than 25 kg, the Venturi V1 belongs to the C3 class.

With respect to the type of operation carried out by the V1 drone, we have already
explained previously that the objective of the drone is the inspection of power
lines and gas pipelines. In order to perform these tasks, the drone must travel
long distances in a single operation, moving far away from the pilot. This type of
operation is called Beyond Line of Sight (BVLOS). In addition, depending on the
characteristics of the cameras and the power lines, the drone can exceed 120 m
in height at certain times. These two factors mean that the operation cannot be
of the open category and therefore the operation is of the specific category.

As the operation of the drone belongs to the specific category, Venturi must carry
out an operational risk assessment, present it to the competent authority and
have it approved before flying the V1.

22 Realistic VTOL simulator

CHAPTER 3. STATE OF THE ART OF DRONE
SIMULATORS

In this chapter, the fundamentals and the state of the art of drone simulators are
presented. Most drones that use free software technology use ArduPilot or PX4
from DroneCode Foundation, San Francisco, CA (USA), as flight controller
software. ArduPilot was born in 2007, but the developers did not manufacture the
first autopilot plate for UAV until 2009. Since then, this software has grown
continuously and is currently capable of controlling up to seven different vehicles
or systems: multi-rotor drones, fixed-wing and VTOL aircraft, helicopters, rovers,
submarines, ships and antennas.

In 2011, DroneCode created PX4 [8] from ArduPilot. DroneCode is a non-profit
Linux company that began the project of professionalizing the development of
open source software for flight controllers for UAV.

ArduPilot and PX4 have developed a simulation so that their software can be
tested in a simulated environment. There are two simulation options: Software In
the Loop (SITL) and Hardware In the Loop (HITL) [9]. These simulations have a
very poor visual representation, only the icon of the simulated vehicle is shown
on a map. The simulation does not show the movements of the rotors or the
control surfaces of the UAV.

SITL is test software that simulates a vehicle's hardware and its behaviour during
a mission. HITL is a bit different from SITL in the sense that it needs a flight
controller to do the simulations, because HITL simulates all the hardware
components except the flight controller. The tool commonly used is SITL due to
its simplicity, so we will also work with SITL.

Venturi is currently using ArduPilot, but in the short-term future they plan to use
PX4, so our simulation software will have to be combined with the current
ArduPilot and PX4 simulation. Our simulator must show the simulated vehicle,
the rotation of the rotors, the movement of the control surfaces and the movement
of the UAV in a 3D environment.

The simulation must be in 3D because it will be used to train future pilots of the
company and in this way, we will have a good approximation of a real flight. To
choose the best software for performing our 3D simulation (our simulation will be
carried out within an external simulation software), in the following subsections
we will study different options, analysing their advantages and disadvantages.

3.1 X-Plane

X-Plane from Laminar Research, Columbia, SC (USA) [10], is a commercial flight
simulator, which has very good graphics. It can simulate the behaviour of
airplanes and helicopters in a very good way. In addition, it is able to connect with
ArduPilot's SITL, but not with PX4. It has a wide variety of airplane and helicopter
models.

STATE OF THE ART OF DRONE SIMULATORS 23

The big drawback of X-Plane is that it is commercial software, and therefore, be
able to use it completely (that is, with all the full capabilities and functionalities),
it will be necessary to acquire it. Another major drawback is that it does not allow
simulating models other than those incorporated by the official software
distributor. In particular, it is only capable of simulating airplanes and helicopters,
so it cannot simulate all types of multirotor drones or VTOL vehicles.

Moreover, because it is commercial software, its code is not accessible and its
configuration to work with SITL is not entirely intuitive and nothing can be
modified. X-Plane can run on Windows, Linux and Mac.

3.2 RealFlight

RealFlight from Knife Edge Software, Corvallis, OR (USA) [11], is also a
commercial flight simulator, so it would also be necessary to acquire it in order to
combine SITL with RealFlight. RealFlight is designed for drone pilots and for
aircraft controlled with a radio control.

With RealFlight we can use our own models and also simulate different
environments. This software has different versions and not all of them work with
SITL. In fact, only ArduPilot can use SITL. PX4 cannot use SITL, but HITL can.

The big downside to RealFlight is that it is not easy to add new vehicle models
and that it only works on Windows computers.

3.3 Gazebo

Gazebo [12] is a simulator that allows the user to simulate the dynamics of any
robot, create outdoor and indoor environments, and simulate all kinds of sensors
and design Plugins that control these robots. Moreover, it is able to simulate any
type of vehicle, designed from scratch by the user.

Gazebo can be combined with both ArduPilot and PX4 SITL, and since it can
represent any model, it is capable of simulating all SITL vehicles. Another great
advantage of Gazebo is that it is open source code and therefore it is for free.

The big downside to Gazebo is the big learning curve, which is needed to be able
to work with it, as knowledge of C++ and Robot Operating System (ROS) is
needed. Works on Windows and Linux computers.

3.4 jMAVSim

jMAVSim [13] is a simple quadrotor simulator that allows the user to simulate with
PX4. It is very easy to set up and use due to its simplicity.

24 Realistic VTOL simulator

The big downside is that it only works with PX4's SITL, as it has been developed
by the same developers. On the other side, it is capable of simulating multiple
vehicles at once, while keeping the simulation environment very simple.
Therefore, it does not require large computational resources, compared to other
simulators. jMAVSim works on Windows, Linux and Mac computers.

3.5 JSBSim

JSBSim [14] is a flight dynamics model (FDM) software that is capable of
simulating the flight of any air vehicle. FDM are the physical and mathematical
models that define the movement of a vehicle under the forces and moments
acting on the vehicle thanks to the control systems that can use the simulator and
the forces of nature that apply on the vehicle.

The strengths of JSBSim are the accuracy of its simulation calculations, and the
fact that the flight control systems, aerodynamics and propulsion of the vehicles
to be simulated can be configured. In addition, it takes into account the effects of
the rotation of the Earth.

The big downside to JSBSim is that it has no graphical user interface (GUI), so
the user needs the combination of another software package to be able to
visualize the results. JSBSim can be used with SITL, but we will still not have 3D
visualization. For this purpose, it is usually combined with FlightGear [15], which
is a free code simulator that aims to create a sophisticated and open flight
simulator environment for use in research, academic environments, pilot training,
in industry, etc.

Apart from all this, the learning curve for being able to create your own model and
make it realistic is very long, as there is not a large users community that shares
its experiments, which makes it difficult to learn.

Finally, JSBSim only works with ArduPilot's SITL; currently it cannot work with
PX4. It can be used on Windows, Linux and Mac computers.

3.6 AirSim

AirSim from Microsoft, Redmon, WA (USA) [16], is a free code simulator from
Microsoft, capable of simulating vehicles such as drones and cars. The simulator
has been built with Unreal Engine [17], which is the most powerful 3D rendering
tool today, used in many video games, architecture, television, etc.

This simulator is designed for use in deep learning projects, computer vision and
learning algorithms for autonomous vehicles. The simulation is very good in terms
both of visualization and modelling of physic phenomena, that is, many laws of
physics are properly introduced into the simulation such that more realistic effects
and results are achieved. The physics simulated is a close approximation to real
physics, although discrete values are used.

STATE OF THE ART OF DRONE SIMULATORS 25

The big downside to using AirSim is that it only works for one quadrotor model.
Thus, so far, user customary models cannot be incorporated into the simulation,
therefore it is not possible to simulate any VTOL. Another major drawback of
AirSim compared to other simulators is that it works on Unreal Engine, and this
tool has a very high computational cost, which means that not all computers are
able to use this simulator.

In addition, it works with both ArduPilot and PX4 SITL. AirSim works on Windows,
Linux and Mac computers.

3.7 Choice of technology

Table 3.1 summarises the main simulators that exist in the market, their main
advantages, disadvantages, and characteristics, as found in the previous
analysis, to see in perspective the strengths and weaknesses of each simulator,
and to be able to choose the technology that we will finally use in this project.

Table 3.1. Comparison between the studied simulator software packages

Simulator Pros Cons

X-Plane - Good graphics
- Good physics modelling

- Commercial software (750 $)
- You cannot create your own
models
- It does not simulate VTOL
- Does not work with PX4

RealFlight - Good graphics

- Commercial software (110 $)
- Difficult for the users to
create their own models
- It does not simulate VTOL
- Does not work with PX4

Gazebo - Allow the users create
their own models
- Simulates worlds, forces,
sensors, etc.
- Works with ArduPilot and
PX4
- Free code

- Very long learning curve

jMAVSim - Simple simulation
- Free code

- Does not work with ArduPilot
- It does not simulate VTOL

JSBSim - Free code
- Very precise physics
- Allows the users create
their own models

- Needs extra software for 3D
visualization
- Long learning curve
- Does not work with PX4

AirSim - Amazing graphics (uses
Unreal Engine)
- Good physics modelling
- Free code
- ArduPilot and PX4

- It does not simulate VTOL
- Very high computational cost

26 Realistic VTOL simulator

In order to make the right choice, we need to know the requirements of the
simulator we will be using. There are several conditions that must be met, and
those are that it must be a free code simulator and that it must be able to simulate
any type of vehicle, that is, we must be able to create our own models.

In addition, the simulator must be able to work with at least ArduPilot and, if
possible, with PX4, as in the future the simulator will also have to work with PX4.

Once we know the minimum requirements of the simulator software, and we also
know the strengths and weaknesses of the main simulators that exist in the
market, we can choose the most suitable software for our project and purposes.
Finally, the chosen simulator is Gazebo.

The choice of Gazebo is basically due to the fact that it is open source software
and that it allows simulating any type of vehicle and environment. In addition, with
Gazebo the user can simulate sensors and physics. However, the development
of the simulation with Gazebo must be done with ROS and C++, which are two
programming languages with a very long learning curve, and therefore the
development of the code will be difficult.

SIMULATION 27

CHAPTER 4. SIMULATION

As explained in the first chapter, after a thorough analysis of the alternatives to
make our simulations, the chosen technology is Gazebo, which is a robot
simulation environment. In order to develop our own simulation in Gazebo, we
will have to combine different elements. First of all, we will need the model to be
simulated. Then, we will have to design the program that will be responsible for
giving the commands to the Gazebo model. In addition, these commands will
have to come from somewhere, which will be the SITL of ArduPilot.

In order to understand how the simulation works, all the elements involved will be
explained in detail below. Once the elements involved have been explained, the
necessary configuration will be explained in the SITL and in Gazebo. Then, the
development that has been done and its operation will be explained. Finally, the
results will be presented.

To make sure the simulator works well, we will test the simulation first of all with
a standard VTOL created by Gazebo. In case it works correctly, we will use the
simulator to fly the UAV designed by Venturi, if possible.

4.1 Elements involved

4.1.1 Gazebo model

In Gazebo, a model is a physical entity with dynamic, kinematic and visual
properties. Everything represented in a simulation in Gazebo is a model, even
the ground is a model. A model can represent any type of shape, from the
simplest to the most complex. Plugins are available to control the behaviour of a
model in Gazebo. In our simulation, we will focus only on the drone model, which
is the main protagonist of our simulation.

Models in Gazebo are usually defined in Simulation Description Format, usually
abbreviated as SDF. The SDF format is an XML format that describes objects
and environments for robot simulation, visualization, and control. It was born from
the hand of Gazebo, as it was designed for scientific applications with robots.
Over time, it has become very stable and robust, and is being used to describe
more phenomena, such as the statics and dynamics of an object, terrain, physics,
light, sensors, and so on.

To perform a simulation, the user can create his/her own model or use those that
are already created. In either case, all robots have the same parts. The robot
model has three main parts: links, joints and Plugins [18]:

1. links: links contain the physical properties of a model body; there are
different types of links:

a. collision: encapsulates the geometry used to calculate a collision
with the model/robot

28 Realistic VTOL simulator

b. visual: used to display parts of a link, and the link may or may not
be visible

c. inertia: describes the physical properties of the link, such as the
mass and rotation/inertia matrix

d. sensor: collects information about the link, which may be needed in
Plugins

e. light: describes the light source that corresponds to it

2. joints: joints connect two links, between which there should always be a
parent-child relationship. In addition, other parameters are set in a joint,
such as the axis of rotation, the limits of the movement, etc.

3. Plugins: Plugins are the libraries that are created in order to be able to
control the robots

With these three elements, we can define any type of robot. In our case, we want
to define in SDF format the Venturi V1. So far, the UAV is designed in SolidWorks,
so first it must be converted from a SolidWorks model to an SDF model. This step
is not at all easy as there is no well-known method for doing so.

In fact, there is no software that does the conversion from SolidWorks to SDF,
but luckily there is one that does the conversion to Unified Robotic Description
Format (UDRF). This is another XML format for describing robots. The mentioned
software is called "SW2URDF". Once the model is converted to URDF format, it
can be transformed to SDF format. ROS can automatically transform a URDF file
to SDF. The difference between URDF and SDF is that URDF only describes the
robot, while SDF can define many more things, such as the world where the robot
is located. Therefore, an SDF file includes the information found in a URDF file.

Although it is possible to create an SDF file from a SolidWorks model, if this model
does not have the characteristics well defined in SolidWorks, its simulation will
not work well in Gazebo.

Fig. 4.1 shows the V1 in the Gazebo simulation environment.

Fig. 4.1 Venturi V1 UAV model in Gazebo

SIMULATION 29

While we want to simulate the UAV designed by Venturi, we will also simulate a
Gazebo standard VTOL model, which was designed from scratch by the
developers of Gazebo. This ensures with high degree of confidence that the
model has no bugs. We will first test the simulation with the Gazebo standard
model and, if it works well, we will do it with the Venturi V1.

Fig. 4.2 Standard VTOL UAV model in Gazebo

As can be seen in Fig. 4.2, unlike Venturi's V1, this UAV has no tail, it only has
two control surfaces on the wings. However, it has four engines for vertical take-
off and landing and one engine for horizontal propulsion, like Venturi's V1.

Although the two VTOL models that will be simulated do not have the same
characteristics, they do have the same operation and a similar flight controller
configuration. Therefore, the two models will be used to see the flight dynamics
of a VTOL (its flight phases) and to train future pilots.

4.1.2 Plugin

As we explained in the previous section, every model in Gazebo can be controlled
by a Plugin. First of all, we need to understand what a Plugin means [19]. A Plugin
is basically a piece of code compiled like a library, which is inserted into the
simulation and with which we are able to control any aspect of Gazebo.

There are many types of Plugins, but since we are interested in controlling a UAV,
the relevant type of Plugin to be used is called Model Plugin. Depending on the
type of Plugin, we can control different aspects of Gazebo.

30 Realistic VTOL simulator

The development of the Plugin that will control the entire simulation must be done
with the C++ programming language [20]. This programming language was
designed in the 1980s. Its main goal was to extend the C programming language
and make it object-oriented. It is one of the most widely used languages today
due to its great performance.

In addition to using C++ as a programming language, we will also need ROS.
ROS [21] is a robotic middleware, i.e., a collection of frameworks for the
development of robot software.

ROS is a system based on nodes. A node is any software or hardware with which
it can interact. ROS has defined a standard for communication between the
nodes that can form the system. There are two communication mechanisms: the
first and most used is subscription/publication, while the second is services. The
first is based on sending and receiving messages. These messages will be
posted or received based on topics. Publisher continually broadcasts a message
to all connected subscribers. Services, unlike the subscription/publishing method,
only send the message when the client requests it.

What nodes basically do is to receive messages from the topics the user is
subscribed to, and/or post messages on the topics the user creates and can also
act with the data the user has. If a node posts a message in a particular topic, in
order for another node to receive it, it must be subscribed to that topic. Then, it
will receive the message. Fig. 4.3 shows a sketch for a better understanding of
how a ROS node system works.

Fig. 4.3 Communication between nodes in a ROS system

In order to use a Plugin with a Gazebo model, the user must call this Plugin from
the SDF file that defines the model. Each Plugin has some variables, which will
vary depending on the used model. These variables must be described in the file
that defines the simulated vehicle. Then, the user should identify what settings
the chosen Plugin needs to work.

4.1.3 Ground Control Station

A Ground Control Station (GCS) is a ground control centre that allows the
operator to control a UAV. In our case, even though it is a simulation, the
simulated drone also has the same operating system as a real UAV, so we need
this GCS to be able to send commands to the drone to control it.

SIMULATION 31

Since the flight controller of the simulated UAV uses ArduPilot, we will use the
GCS most used by ArduPilot, i.e., Mission Planner. The Mission Planner can be
used as a utility for drone configuration and as a dynamic complement to the
UAV.

Communication between the GCS and the simulated drone occurs through the
Micro Aerial Vehicle Link (MAVLink) communication protocol. This protocol is
designed for communication with small UAVs. Communication between the GCS
and the UAV flight controller is done through packets that follow this protocol.

For the simulation we need the GCS because through the GCS we can connect
a control radio, with which we will be able to control the drone of the simulation.
In addition, through the GCS we will read the values of the drone sensors, such
as the output generated by each engine and control surface. Thanks to a GCS
we can plan missions to be carried out by the UAV, these missions can be sent
to the UAV through the MAVLink protocol and once the drone has received the
instructions it can execute the planned mission.

4.2 Pre-configuration

Once the elements involved have been explained, it is time to explain the
configuration to be done in the SITL and what parameters the Plugin needs to
work.

4.2.1 SITL configuration

As we have explained on more than one occasion in this work, the SITL is an
ArduPilot simulator. ArduPilot is the software that many UAV flight controllers use.
As we know, not all UAVs are the same, there can be multirotors, fixed wings,
VTOLs, helicopters, etc. Therefore, since the ArduPilot software works for many
types of vehicles, the SITL must also be able to simulate all these types of
vehicles. This is why the configuration of the SITL is very important, as the
configuration must be appropriate to be able to achieve a good simulation.

As we saw in a previous section, the two models to be simulated (the Gazebo
standard VTOL model and the V1 model) do not have the same number of control
surfaces, so they will have to be configured differently. What really needs to be
configured in the SITL is the type of UAV that is being simulated (in our case, a
QuadPlane), the shape of the fuselage and engines configuration (in our case,
the H shape) and, finally, the number of rotors and control surfaces of the UAV,
and which outputs correspond to each of them, as will be explained in the
following sections.

4.2.1.1 Standard VTOL configuration

Let us start with the configuration of the Gazebo standard VTOL. As we saw in
Fig. 4.2, this UAV has two control surfaces and five rotors.

32 Realistic VTOL simulator

According to ArduPilot's documentation, we have up to sixteen engine outputs
[22]. Of these sixteen outputs, in the case of a QuadPlane, outputs five through
eight (both included) are reserved for engines that produce vertical thrust [23].
The control surfaces of the wings will be considered elevons.

To tell SITL what each output is, we need to look for the conversion of these
values in the ArduPilot parameter list. The conversion will be a number from 0 to
133, so there are 134 options to set as output of the engines.

Since we have 2 control surfaces and 5 rotors, the motor distribution will be as
follows (next to each element, the corresponding number from the list of 134
parameters is indicated):

{

Output 1: Left elevon → 77
Output 2: Right elevon → 78
Output 3: Throttle → 70
Output 4:Motor 1 → 33
Output 5: Motor 2 → 34
Output 6:Motor 3 → 35
Output 7: Motor 4 → 36

4.2.1.2 V1 configuration

In the same way we configured the Gazebo standard VTOL, we now configure
the V1 designed by Venturi. Since the V1 is a real UAV, we can use the actual
UAV configuration for the simulation.

In this model, we have 4 control surfaces and 5 rotors, so we will have 9 outputs:

{

Output 1: VTail Right → 80
Output 2: Throttle → 70
Output 3: Left aileron → 4
Output 4: Right aileron → 4
Output 5:Motor 1 → 33
Output 6:Motor 2 → 34
Output 7:Motor 3 → 35
Output 8:Motor 4 → 36
Output 9: VTail Left → 79

4.2.2 Plugin configuration

Once we have completed the configuration of the SITL, to simulate the two
different models, it is now the time to set the parameters of the Plugin. As we
explained before, to use a Plugin in a model, it must be called in the SDF file of
the UAV, which is the file that defines our model.

SIMULATION 33

Plugin is designed to be used with different types of UAVs, which have a number
of different engines as well as control surfaces. To avoid having to modify the
code each time we work with a different model, we can make the software know
the model configuration through the parameters we define in the SDF file.

The definition of the parameters must be done through an XML structure. In Fig.
4.4, you can see which parameters the Plugin needs and the explanation of each
parameter.

Fig. 4.4 Plugin parameters and their explanation

As we can see, Fig. 4.4, defines all the parameters that the Plugin needs to work
properly. As we know, in all UAVs there is more than one engine or control
surface. To indicate this, it will be as easy as repeating the structure of the engine
or control surface as many times as engines or control surfaces we have in our
UAV.

34 Realistic VTOL simulator

4.3 Simulator operation

Once the elements involved in the simulation have been explained, we can now
explain how the simulation works. First of all, we have to record what each part
will do. As we said at the beginning, we will use Gazebo for the simulation, as
this software allows simulating any type of vehicle in a 3D environment.

We also explained at the beginning that the Venturi V1 works with ArduPilot
software and that it has a testing software, the SITL. The SITL is a tool for testing
the behaviour of a UAV, but this simulation does not have a 3D graphical
representation.

Finally, we use Mission Planner as a GCS, with which we will control the missions
that the simulated UAV will perform, and the parameters and connection of a
joystick to control the flight of the simulated UAV.

Now that we know all the parts involved, we can know what is necessary to carry
out the desired simulations. We need to develop novel software that is able to
understand the commands sent by the ArduPilot SITL, transform these
commands so that Gazebo is able to understand them, and send them to
Gazebo. In addition, the software must also be able to receive the GCS
commands, which will be the commands generated by the control joystick and
the generated missions.

As we explained before, due to the requirement imposed by Gazebo, the software
developed by the author is written with C++ programming language. All software
will be developed within a ROS project for easiness of compilation and
subsequent use. Particularly, the software designed by the author will go in the
form of a Plugin, as it is the way we can control a model in Gazebo.

To make everything clear and to make the work easier, Fig. 4.5 presents a blocks
diagram showing the relationships between the various codes and components
involved, as explained before. The coloured blocks correspond to the
contributions developed by the author to achieve the desired simulation.

SIMULATION 35

Fig. 4.5 Software blocks diagram

From Fig. 4.5 we can see that between the connection of some blocks appears
UDP or TCP and some numbers. UDP is the acronym for User Data Protocol,
and TCP is the acronym for Transmission Control Protocol, both are
communication protocols. The numbers next to these acronyms are the ports
used to make each connection.

As can be seen in Fig. 4.5, the software developed is divided into four parts.
Three parts each of which is connected to the corresponding external part:
Gazebo, ROS and ArduPilot. Then, there is a part that is the main code, which is
the one that handles the overall operation of the designed software. In order to
understand what each of the parts is doing, each will be explained separately in
the following sections. Also, as we see on the left-hand side of Fig. 4.5, we use
an external Plugin called LiftDrag that works in conjunction with the Gazebo part.

We will start by explaining the individual parts, and then the main file that is
responsible for making each part work correctly.

36 Realistic VTOL simulator

4.3.1 ArduPilot side

This is one of the most important parts of the software, as it is the one that
communicates with the SITL, which is the simulation tool of ArduPilot. As seen in
the blocks diagram in Fig. 4.5, the connection between our software and ArduPilot
is made through UDP, where data are sent and received through ports 9003 and
9002, respectively.

The most important issue in this part is to understand what we are sending and
receiving. For this purpose, we need to look at the ArduPilot SITL code,
specifically, at the file that corresponds to the connection of ArduPilot with
Gazebo [24]. This file is called "SIM_Gazebo.cpp". In this file, we see that SITL
sends us a package of the type servo_packet and we have to send a package of
the type fdm_packet.

To find out the structure of each of the packages, we need to look for the header
file that defines the packages [25]. This file is called "SIM_Gazebo.h". First of all,
we analyse the packet we receive, that is, a packet of type servo_packet.
According to the header, a package of the type servo_packet contains an array
of 16 positions of floats, each of which gives the speed of a servo. As we saw in
a previous section, in the ArduPilot documentation, up to 16 outputs for servos
appear in the list of parameters that configure a VTOL (follow the scheme of the
planes). That is why in a package of the type servo_packet there is an array with
16 servos speeds; each of the positions of the array corresponds to one of the
possible servos that the UAV may have. It is important to note that servos can be
either the rotors of the UAV or the control surfaces.

To find out what the structure of a package of type fdm_packet looks like, we
need to look at the header file again. Recall that FDM stands for flight dynamic
model. The structure of the package is as follows:

{

double timestamp
double angular_velocity_rpy[3]
double linear_acceleration_xyz[3]

double quaterion[4]
double velocity_xyz[3]
double position_xyz[3]

As we can see, it asks for timestamp, a three-position array with the linear
acceleration components in the x-, y-, and z-axis, a three-position array with the
angular velocity components in the roll, pitch and yaw axis, a four-position array
with the orientation quaternion, a three-position array with the velocity
components in the x-, y-, and z-axis, and finally a three-position array with the
position in the x-, y-, and z-axis.

It is very important to know the reference systems with which you are working.
During the simulation, two different reference systems are used. The reference
system of the world and the model is the same, they use a reference system
where the x-axis is the longitudinal axis pointing forward, the z -axis is the vertical
axis pointing up and the y-axis is the lateral axis pointing to the left. The inertial

SIMULATION 37

system uses the NED (North-East-Down) reference system. To better understand
the differences between these reference systems, see Fig. 4.6.

Fig. 4.6 Different reference systems: NED (left) and x-axis pointing forward, y-
axis pointing left, and z-axis pointing up (right)

It is important that the order of the package is respected when sending this
package, as otherwise the values that the SITL will receive will not make sense.

It is also important to understand that, in this part of the code, the data are only
sent and received, that is, it is not in this piece of code where we operate the
motors and control surfaces of our Gazebo model. This is done in the Gazebo
part. The only action that is done in this section is a small calculation about the
data we receive from the engines. SITL gives the information of the motors in
Pulse Width Modulation (PWM) format. PWM modifies the duty cycle of a periodic
signal to provide information. In Fig. 4.7, we can see how PWM works.

Fig. 4.7 PWM working principle, with the duty cycles of periodic signals

Y

 X

X

Y

Z

Z

38 Realistic VTOL simulator

As can be seen in Fig. 4.7, the output corresponds to the percentage occupied
by a duty cycle with respect to the period of the periodic signal. For example, if
the duty cycle occupies 25% of the signal period, the output value is 25% and so
on.

Then, to calculate the speed at which the motors are rotating or the position at
which the control surfaces are deployed is very easy, since we have the
maximum value and the minimum value that the SITL can send for each engine
and control surface. Therefore, it is very simple to make these calculations with
the following equations:

Motor velocity =
Current value − Min. PWM value

Max. PWM value − Min. PWM value
∗ 100 (4.1)

Ctrl. surface position =
Current value − Min. PWM value

Max. PWM value − Min. PWM value
∗ 100

(4.2)

The result of equations 4.1 and 4.2 is in percentage.

4.3.2 ROS side

As seen in the blocks diagram in Fig. 4.5, to use ROS it is necessary for SITL to
activate a module called mavros. This module creates a master node that is
posting messages to topics so that we can access them and is also subscribed
to topics in which we can post to the SITL.

In this part of the code, we use ROS to subscribe to a single topic that gives us
some information about where the SITL simulation is. The topic we subscribe to
is called /mavros/state and we get from it whether we are connected to the SITL,
whether the UAV is armed, in which flight mode it is, etc. It may seem that this
information is not very important but in fact it is, as the SITL sends some
meaningless values at the beginning of the connection and, thanks to the
information we receive in this part, we avoid errors.

4.3.3 Gazebo side

This is the most important part of individual code, as it is the one that has a direct
connection to the UAV model in Gazebo. First of all, it takes all the information
we need from our model. This information is described in the parameters defined
in the SDF file of the model.

When this code is executed, first it grabs all the information from the parameters.
Because we have more than one motor and control surfaces, it makes a loop that
collects information from all motors and all control surfaces. It stores all the
information in an array, where the size of the array corresponds to the number of

SIMULATION 39

motors or control surfaces, and in each position there is a structure that stores all
the internal parameters of the motors or control surfaces.

Once the necessary prior information has been saved, we are able to control the
movements of the motors and control surfaces.

In this part, we basically have to transform the information coming from the SITL
into speed for the motors or position for the control surfaces and calculate the
information to be sent to the SITL.

We start by calculating the speed of the engines. We have taken as engines the
engines used by the V1. The Venturi UAV has two types of engines: one for take-
off and landing and another for horizontal flight. The engine for vertical movement
is T-motor MN801S 150kv and the engine for horizontal flight is Hacker Q80-13S
28-Pole kv175. From the technical specifications of the vertical flight engine
(attached in the appendices), we can extract the rotor speed values as a function
of the throttle. These values are extracted experimentally and will not be met
under all conditions. The datasheet does not contain the speeds for all throttle,
so we made a linear interpolation. In the case of the vertical flight engine, we do
not have data for throttle values inferior to 40%. Thus, a linear interpolation
between 0% and 40% has been done to extract intermediate values. This
approximation can be seen in Fig. 4.8. In the case of the horizontal flight engine,
we only have values for 25%, 50%, 75% and 100% of the full throttle. These
values do not correspond to the turning speed of the motor. To avoid making
more approaches, we use the values of the vertical flight engines in horizontal
flight for the V1 simulation.

Fig. 4.8 Rotation speed of vertical flight motors with respect to the throttle

40 Realistic VTOL simulator

Once we have calculated the speed, we just have to send the command to the
engine to turn at the indicated speed.

In the case of control surfaces, it is easier. From the real model of V1 we know
that the control surfaces move in a range of +/- 20º. To calculate the position of
the surface, we consider that -20º is equivalent to 0% and 20º is equivalent to
100%. It is therefore very easy to calculate the position of the control surface with
the following equation:

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (º) = (
𝑆𝐼𝑇𝐿 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑢𝑡𝑝𝑢𝑡

100
∗ 40) − 20º (4.3)

It is very simple to calculate the required values in the fdm_packet package, as
Gazebo has an inertial sensor that is built into the vehicle. It is possible set the
type of noise, the standard deviation, the mean, the mean of bias and the
standard deviation of bias. Linear acceleration and angular velocity can be
extracted directly from this inertial sensor. The other parameters (orientation
quaternion, velocity and position in the x-, y- and z- axis) can be extracted directly
from values given by Gazebo, without the need to incorporate any sensors. In
this section, we only save the information in a package of the type fdm_packet.
This package is then sent in the part of ArduPilot, as explained before.

As we have seen in the Gazebo part, we move the engines and control surfaces,
but neither the V1 or the Gazebo standard VTOL are able to fly only with this. To
fly, an aerodynamic Plugin created by Gazebo is used. As we said before, this
Plugin is called LiftDrag.

4.3.3.1 LiftDrag Plugin

This is a Plugin created by Gazebo, which implements the lift and drag effects on
any Gazebo model [26]. When a body moves within a fluid, a fluid-dynamic force
appears on the body (that is, a force that the fluid exerts on the body). This force
can be decomposed in two components: the lift is the component in a direction
perpendicular to the movement of the body, while the drag is the component
aligned with the movement of the body but in the opposite direction (see Fig. 4.9).

SIMULATION 41

Fig. 4.9 Lift and drag forces acting on airfoil

Therefore, with this Plugin the UAV movement will be generated, as it calculates
the forces generated by the rotation of the engines, the forces generated by the
fuselage of the drone, and the movements of the control surfaces.

In order to calculate the aerodynamic effects of the propellers and the body of the
UAV, we need some aerodynamic input parameters:

• Area

• α0 → initial alpha. Initial angle of attack. The angle of attack is the angle
between the wind direction and the chord line of an airfoil.

• Cla → coefficient of lift before stall

• Cda → coefficient of drag before stall

• Cp → centre of pressure. Where forces are applied

• α stall → angle of attack at stall point

• Cla stall → Cla after stall

• Cda stall → Cda after stall

• ρ → air density

The values for cl and cd are extracted from the graph cl/cd vs alpha. The values
of cl and cd depend on the slope of the curve of the lift coefficient or of the drag
coefficient respectively. Cla and Cda correspond to the slope of the curve before
entering stall zone. Cl stall and Cd stall correspond to the slope of the curve after
stall point.

To better understand it, see Fig. 4.10, which shows the curves of lift and drag
coefficient as a function of the angle of attack.

42 Realistic VTOL simulator

Fig. 4.10 Lift and Drag Coefficient vs Angle of attack

From these parameters and the real-time conditions of the flight, we calculate the
aerodynamic forces generated by each element (lift and drag) and the moment.

The formulas used by the Plugin to calculate the lift and drag [27] for each UAV
propeller and control surface are:

𝐿𝑖𝑓𝑡 = 𝐶𝑙 ∗
𝜌 ∗ 𝑉2

2
∗ 𝐴 (4.4)

𝐷𝑟𝑎𝑔 = 𝐶𝑑 ∗
𝜌 ∗ 𝑉2

2
∗ 𝐴 (4.5)

The values of Cl and Cd will vary according the angle of attack and the geometric
shape of the vehicle. The results of equations 4.4 and 4.5 are the forces
generated by the propellers, fuselage and control surfaces of the simulated UAV.
The direction in which these forces are applied must be taken into account.

4.3.4 Main side

This is the central part of all the software designed. It is responsible for calling all
the functions at the right time for the proper functioning of the Plugin. As
expected, the first thing this part does is to initialize the other three parts and

CDα

CLα

CLα stall

CDα stall

SIMULATION 43

connections, that is, establish a connection to the Gazebo model, initialize the
ROS node, and establish the connection with SITL.

Once the three parts have been initialized and a connection has been
established, the execution of an infinite loop begins, in which the same actions
are performed iteratively again and again. This loop will remain active as long as
the SITL simulation is active.

The workflow is described in the diagram shown in Fig. 4.11.

Fig. 4.11 Developed software flowchart

4.4 Results

Once all the elements involved have been described, and the operation of the
software that will control the simulation has been explained, the results can be
presented. To see if the simulator works well, three tests have been planned for

44 Realistic VTOL simulator

each of the existing QuadPlane models. The first test consists of a ground check:
its purpose is to see that the motors rotate properly (through Mission Planner you
can test the four motors that are responsible for the vertical movement) and that
the control surfaces go to the starting position. The second test consists of the
planning of a mission through Mission Planner and the consequent execution by
the UAV. The last test consists of the execution of a commanded flight through a
radio control.

With the three proposed tests, it will be possible to see if the operation of the
simulator is correct or not. The simulator will work well if the simulated models
are able to follow an operation just like a real QuadPlane would, that is, vertical
take-off, transition to horizontal flight, then transition to vertical flight and landing.
Since we have two QuadPlane models, we will start testing the Gazebo Standard
VTOL model, as it will be error-free, in terms of physical properties such as inertia
matrices and mass of the model, due to the fact that it was designed by Gazebo.
Then, if the test results are good, we will repeat the tests with the Venturi V1
model. In the case of the planned mission, we will quantify the error between the
desired trajectory and the trajectory that the simulated model follows. In the case
of the mission controlled with the joystick we will see if the simulated UAV follows
the commands that we send it with the joystick in the same way as a real UAV
does.

4.4.1 Standard VTOL

4.4.1.1 Ground test

When the simulator is started, the control surfaces drop due to gravity. As soon
as the SITL starts running and connects to the simulator, the control surfaces go
to the initial position. As can be seen in Fig. 4.12, the control surfaces are placed
in the initial position.

Fig. 4.12 Ailerons moving to initial position: before SITL runs (left) and during
SITL simulation (right)

SIMULATION 45

If we perform the engine rotation test through the Mission Planner, we see how
each rotor rotates in the corresponding direction. To see the results, watch the
video in section 2.1.1. of the annex.

Once we see that the control surfaces are in the initial position, we start the
engine test. As each rotor responds to the spin request and spins in the correct
direction, we consider that the motor test has been passed correctly. So, the
ground test is given as satisfactory.

4.4.1.2 Planned Mission

For this test, we plan a simple mission, which is planned and sent through Mission
Planner. A lay-out view of the trajectory of the drone is shown in Fig 4.13.

Fig. 4.13 Mission trajectory on Mission Planner

As can be seen in Fig. 4.13, the flight trajectory has approximately a square
shape. The drone first rises to a height of 50 meters and then begins the transition
to horizontal flight. After completing its square-shaped trajectory, it finally lands
at the same point it took off.

As can be seen in the video section 2.1.2. of the annex, the drone follows the
previously mentioned trajectory; particularly, it is able to take off, make the
transition correctly, follow the planned trajectory, and finally land.

To see how the drone has made the transition, the speed of its five engines is
analysed. In the video, you can see how the cruise motor starts to spin faster at
the same time that the quad motors start to reduce their rpm. Finally, only the
cruise motor works when the UAV goes from vertical flight to horizontal flight.

46 Realistic VTOL simulator

When going from horizontal to vertical flight it goes the other way around, the
quad motors begin to rotate at the same time that the cruise motor stops rotating.

The trajectory of the drone in the planned mission can be seen in Fig. 4.14. From
this figure, we can see that the trajectory is drawn in the geodesic coordinate
system: the axes are longitude and latitude. To calculate the distance error
between the actual trajectory followed by the UAV and the planned trajectory, we
have to represent the trajectory in the local NED coordinate system, where the
units are measured with meters.

Fig. 4.14 UAV trajectory in planned mission

To calculate the distance error between the followed path and the planned one,
we will calculate the distance between each point of the followed path and the
segment formed by two consecutive waypoints, as can be seen in Fig. 4.15.

Fig. 4.15 Graphical visualization of distance between point and segment

SIMULATION 47

In Fig. 4.16, we can see represented the path followed by the UAV in the NED
coordinate system. The colour code of the path depends on the distance between
each point and the corresponding segment. This distance is the error of the path
at each point. As we can see, the largest errors are found at the beginning of the
horizontal flight, in the turns, and at the end of the horizontal flight. The errors at
the beginning and at the end are likely due to the transition (a critical moment of
the flight of VTOLs, as mentioned earlier). The errors in the turns are due to the
drone always turning before reaching a waypoint to search for the next one. The
mean distance between the followed path and the planned path is 1.9 m.

Fig. 4.16 UAV trajectory in planned mission with colour bar for distances

4.4.1.3 Controlled by a joystick

As in the previous mission, the UAV's goal now is to take off to a height of 50 m,
fly a square-shaped trajectory, and finally land, with the only difference with
respect to the previous case that this time the drone is controlled by a radio
control.

As can be seen in the video in section 2.1.3. of the annex, the QuadPlane is able
to follow the commands sent by the radio control, which is linked to it via Mission
Planner. The trajectory of the UAV is not as accurate in this test as in the previous
test, since we introduce human error, which is why the trajectory does not follow
as accurately the square as in the previous test.

48 Realistic VTOL simulator

During this test the UAV has responded quickly and fluently to the joystick
controls. The QuadPlane has understood the flight mode changes that I have
made via radio control and has made the transitions well.

4.4.2 Venturi V1

4.4.2.1 Ground test

We now perform on the V1 the same tests as for the Standard VTOL. In the same
way that happened before, when the model is loaded into Gazebo, its control
surfaces appear dropped due to gravity (see Fig. 4.17 top). When we connect
with the SITL, the control surfaces move to their initial position. The change in
position of the control surfaces, once the Gazebo model has been connected to
the SITL, can be clearly seen in Fig. 4.17 bottom.

Fig. 4.17 Control surfaces moving to initial position for the V1 UAV model

If we perform the Mission Planner engine rotation test, the engines of the Gazebo
model respond and rotate without any problems, in the same way as for the
Standard VTOL model. This test can be seen in section 2.2.1. of the annex.

4.4.2.2 Planned mission

We plan a mission with a square flight trajectory, just as we did for the previous
model. In this case, when the V1 QuadPlane tries to take off, it tilts too much, it
is not able to take off in a stabilized way, and the mission is aborted. Many
attempts are done to repeat the mission but unfortunately the same result is
obtained always: in no occasion the SITL is able to stabilize the UAV and let it fly.
The results of the flight test can be seen in section 2.2.2. of the annex.

SIMULATION 49

Obviously, if the UAV is not able to pass this test, it will not be able to pass the
mission test following the commands of a radio control due to problem it cannot
be solved with joystick control as the flight controller acts in the same way as for
a planned mission. As we have seen with the tests in the previous model, the
simulator works correctly, the only difference between these tests and the
previous ones is the model with which they are being performed.

The Gazebo model of the Venturi V1 was not made manually or natively in
Gazebo, as explained earlier, it was made with a SolidWorks to Gazebo
conversion tool. A Gazebo model must have its physics well defined, but in this
case, as it is a UAV model with very complex geometries, it is difficult to correctly
determine the matrix of moments of inertia, one of the key elements for the
Gazebo simulation. Also, the calculation of the mass of the V1 model in
SolidWorks does not correspond to the value of the mass of the V1 in reality. All
of these reasons may cause the drone to tilt as it attempts to take off.

Before finding out what the problems were, it was thought that it might be a
problem with the SITL stability control, particularly, that it was not able to control
the UAV because of a problem with the UAV moments. The V1 has a tail, and
this causes the CG of the drone to shift backwards. When the drone tries to take
off, the CG is closer to the rear engines and therefore this generates a moment
which may be responsible for the observed tilt, as it always tilts backwards. To
explain all this, a study has been done in Matlab on the moments of the V1.

Fig. 4.18 Centre of gravity (CG) for each V1 element (motors, wings, tail) and
global CG

50 Realistic VTOL simulator

As we see in Fig. 4.18, the global centre of gravity (CG) is located at the
coordinates (7.58 × 10-5, 0.1469, -0.0046) and the obtained moment respect to
this point is (5.62 x 10-16, 11.86 x 10-17, 0), that is to say, 0, as expected in the
CG.

If we add force in our motors, for example, a force of 6 N in the direction in which
the motors create thrust, the sum of moments in the CG is (-0.9436, 0.0018, 0).
The moments have increased considerably, especially on the x-axis. On the y-
axis, the resulting moment is very close to 0, which may be the result of some
decimal lost in the calculation.

In order to obtain null moment in the CG, the difference of the moments of the
front and rear motors is calculated with respect to the CG. Once we have the
difference of moments, and as we have the distance of the motors to the CG, we
can find the extra strength that the rear engines need to compensate for the
torque. The equations are as follows:

∆Mx = Mx,motor0 −Mx,motor1 (4.6)

∆𝑀𝑦 = 𝑀𝑦,𝑚𝑜𝑡𝑜𝑟0 −𝑀𝑦,𝑚𝑜𝑡𝑜𝑟1 (4.7)

F′z =
∆Mx

dCG→rotor1,y

(4.8)

F′z = −
∆My

dCG→rotor1,x

(4.9)

𝑀 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑑 x = 𝑀𝑡𝑜𝑡𝑎𝑙𝑥 + 𝐹′𝑧 ∗ 𝑑𝐶𝐺→𝑟𝑜𝑡𝑜𝑟1,𝑦 + 𝐹′𝑧 ∗ 𝑑𝐶𝐺→𝑟𝑜𝑡𝑜𝑟3,𝑦 (4.10)

𝑀 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑑 𝑦 = 𝑀𝑡𝑜𝑡𝑎𝑙𝑦 + 𝐹′𝑧 ∗ 𝑑𝐶𝐺→𝑟𝑜𝑡𝑜𝑟1,𝑥 + 𝐹′𝑧 ∗ 𝑑𝐶𝐺→𝑟𝑜𝑡𝑜𝑟3,𝑥 (4.11)

In Equations 4.6 and 4.7 we calculate the difference in moments. Equations 4.8
and 4.9 are used to calculate the force on the z-axis generated by the difference
in moments, that is, the force that motors 1 and 3 need to compensate for those
moments. These equations come from the determinant of the matrix of moments.

�⃗⃗� = [
𝑖 𝑗 �⃗�

𝑅𝑥 𝑅𝑦 𝑅𝑧
𝐹𝑥 𝐹𝑦 𝐹𝑧

] (4.12)

M⃗⃗⃗ = (RyFz − RzFy)i − (RxFz − RzFx)j + (RxFy − RyFx)k⃗

(4.13)

SIMULATION 51

As we can see in equations 4.12 and 4.13, we have the formula to calculate the
components of the moment vector in each axis. Consider the forces on the x- and
y-axes are null. Therefore, to calculate whether the moments are compensated
with the new forces for motors 1 and 3, we use equations 4.10 and 4.11.

The resulting moment if we add force to the rear engines is (-0.0026,0.0017,0).
As we see, the moment is virtually null. Therefore, it is verified that the method
explained with equations 4.6-4.13 works. Please, see these calculations, in
section 3.2. of the annex.

Unfortunately, if we do a flight test and rectify the forces of the rear engines
following the method explained, still the V1 is unable to fly. Hence, we have
shown that the problem is not that the SITL is not able to counterbalance these
moments, as we have just fixed it ourselves and it has not worked. Therefore, the
error likely comes from the generated model, that is, the inertia matrices
generated in the transformation of the SolidWorks model to Gazebo are not good
and this causes this error in the flight test. It is very difficult to fix this error because
it is very difficult to calculate the inertia matrix of a body with such a difficult
geometry.

52 Realistic VTOL simulator

CONCLUSIONS

The purpose of this work is to create a flight simulator for a VTOL. The choice to
base a final master's thesis on the development of a simulator for a VTOL is due
to the real needs of Venturi Unmanned Technologies. Venturi is a start-up that is
designing drones for the inspection of power lines and pipelines. To develop a
reliable drone, it is necessary to perform many configuration tests and do many
hours of flight with the actual platform. One of the problems of the company is
precisely when it comes to flying the drone: due to the laws, which are very
restrictive, they have to fly the UAV in special conditions. The place where these
conditions can be recreated is far from the location of the business. This makes
it very expensive to perform flight tests in terms of logistics and economics.

The goals that were set at the beginning of the work were two. First of all, make
a simulator that follows the flight mechanics of a VTOL drone, because, if you
want to test special configurations, the simulator must be able to replicate the
flight modes of a VTOL. The second goal was to develop a simulator that allows
controlling the simulated UAV with a radio control or a joystick.

Thanks to this simulator, the company will reduce costs and time in testing new
systems and equipment that a VTOL can carry, such as cameras and a LIDAR.
Also, with the simulator, Venturi will be able to train new pilots without having to
leave the office. Novice pilots can learn to configure missions, understand how
the basic controls of the VTOL work and its flight modes. This will save the time
it takes to travel to the location where drones can be flown in accordance with the
law, and will save the cost of booking this airspace.

First of all, we have seen what types of VTOLs currently exist. There are three
types, tailsitters, tiltrotors and QuadPlanes. We have seen the flight phases that
a VTOL follows. We have analysed the advantages of using a VTOL against a
multirotor or a fixed wing. Finally, we have seen the type of VTOL that Venturi V1
is and its features; particularly, Venturi's VTOL V1 can be classified as
QuadPlane.

After this analysis, the current European regulation has been studied. Knowing
the current law, we understand where the UAV designed by Venturi is and we
understand what are the difficulties that Venturi has to be able to fly the drone
and what are the conditions that allow us to do so.

Finally, in order to start developing the simulator, an in-depth study has been
done of the technologies that are being used today to perform simulations. This
analysis is one of the most important parts of this work, as the choice of
technology must be correct to be able to develop the simulator and be able to
meet the established objectives. As a result of this analysis, the software tool
selected to develop the simulator is Gazebo, which is a tool for performing 3D
simulations of any type of robot.

Up to five flight tests have been performed for two types of QuadPlanes models:
a model created by Gazebo and a model that represents Venturi's V1. As a result
of the flight tests on the first model, it is concluded that the simulator works

CONCLUSIONS 53

correctly. Particularly, it has been possible to carry out two flight operations
correctly, where the UAV behaved as a real QuadPlane. In these operations, the
simulated UAV took off, made the transition to horizontal flight, made horizontal
flight, made a transition to vertical flight and finally landed. The first operation was
carried out autonomously by the UAV, following a pre-planned trajectory with an
average error of 1.9 m. In the second mission, the drone was controlled by a
joystick. The UAV responds to commands originated by the joystick without any
problem, in the same way it should in a real operation.

The only problem with the flight tests was that it was not possible to fly with the
simulated model of the Venturi V1. It has been determined that the error casuing
this problem was originated in the process of transforming a SolidWorks model
into a Gazebo model. Specifically, the error is found in the inertia matrices. An
attempt has been made to solve this problem by correcting the forces generated
by the V1's rear engines. Unfortunately, despite this engine power corrections,
the SITL has not been able to take off the V1 in a stabilized manner.

However, as a result of this work and during the realization of this work, new
project proposals have emerged for the company. First and foremost, after seeing
how the simulator works, Venturi is considering the migration from ArduPilot V1
flight controller software to PX4. Another project that has emerged with the
simulator is to integrate the simulation with a computer vision project that is being
developed at Venturi. The computer vision system has two goals: the first one is
the detection of people, and the second one is the detection of electrical towers
and power lines. Pedestrian detection will be used for the landing phase, since
landing is often autonomous and far from the take-off point. The aim is to detect
people before landing, calculate the position of these people, calculate the safest
landing zone, and make the UAV land in the safe zone. The detection of electrical
towers is intended to detect the high voltage lines that join two electrical towers.
Once the UAV detects these lines, it will be able to follow the power lines
autonomously. In addition to following the power lines, it will take images of the
elements of the tower that the potential users of the drone want to analyse to see
if there is any failure or defect.

In order to integrate these systems into the simulation, a camera and gimbal have
to be added to the simulated UAV. In addition, the world where the simulation is
carried out must be modified so that pedestrians and electrical lines appear. Fig.
C.1 shows an example of pedestrian and power lines models.

Fig. C.1 Pedestrian model (left) and Electric Tower model (right)

54 Realistic VTOL simulator

ACRONYMS

 AC Alternate Current
 BVLOS Beyond Visual Line of Sight
 CG Centre of Gravity
 DC Direct Current
 EU European Union

GCS Ground Control Station
 HITL Hardware In the Loop
 MTOM Maximum Take Off Mass

ROS Robot Operating System
RPAS Remotely Piloted Aircraft System
SESAR JU Single European Sky Air Traffic Management Research Joint

Undertaking
 SITL Software In the Loop
 UA Unmanned Aircraft
 UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle
 VLOS Visual Line Of Sight
 VTOL Vertical Take-Off and Landing

ACRONYMS 55

REFERENCES

[1] “History of ArduPilot – Dev documentation”, ArduPilot,

https://ardupilot.org/dev/docs/common-history-of-ardupilot.html [last accessed:
2/9/2020].

[2] “Airframe Reference – PX4 v1.9.0 User Guide”, 30/03/2020, PX4,

https://docs.px4.io/v1.9.0/en/airframes/airframe_reference.html#vtol [last
accessed: 7/9/2020].

[3] “Tailsitter Planes – Plane documentation”, ArduPilot,

https://ardupilot.org/plane/docs/guide-tailsitter.html#center-of-gravity [last
accessed: 31/8/2020].

[4] “Tilt Rotor Planes – Plane documentation”, ArduPilot,

https://ardupilot.org/plane/docs/guide-tilt-rotor.html#the-tilt-type [last accessed:
31/8/2020].

[5] “QuadPlane tips – Plane documentation”, ArduPilot,

https://ardupilot.org/plane/docs/quadplane-tips.html#increasing-yaw-authority
[last accessed: 1/9/2020].

[6] Official Journal of the European Union “COMMISSION DELEGATED

REGULATION (EU) 2019/945”

[7] Official Journal of the European Union “COMMISSION IMPLEMENTING

REGULATION (EU) 2019/947”

[8] “The history of Pixhawk | Auterion”, Auterion, https://auterion.com/company/the-

history-of-pixhawk/ [last accessed: 1/9/2020].

[9] “HITL - Paparazzi UAV”, 24/11/2018, Paparazzi UAV,

https://wiki.paparazziuav.org/wiki/HITL [last accessed: 7/9/2020].

[10] “Using SITL with X-Plane 10 – Dev documentation”, ArduPilot

https://ardupilot.org/dev/docs/sitl-with-xplane.html# [last accessed: 9/9/2020].

[11] “RealFlight® 9.5 RC Flight Simulator - Now with more than 170 different

aircraft to fly!”, Horizon Hobby, LLc, https://www.realflight.com/index.php [last
accessed: 9/9/2020].

[12] “Gazebo”, Open Source Robotics Foundation, http://gazebosim.org/ [last

accessed: 9/9/2020].

[13] “jMAVSim with SITL – PX4 v1.9.0 Developer Guide”, PX4,

https://dev.px4.io/v1.9.0/en/simulation/jmavsim.html [last accessed: 9/9/2020].

[14] “JSBSim Open Source Flight Dynamics Model”, http://jsbsim.sourceforge.net/

[last accessed: 9/9/2020].

https://ardupilot.org/dev/docs/common-history-of-ardupilot.html
https://docs.px4.io/v1.9.0/en/airframes/airframe_reference.html#vtol
https://ardupilot.org/plane/docs/guide-tailsitter.html#center-of-gravity
https://ardupilot.org/plane/docs/guide-tilt-rotor.html#the-tilt-type
https://ardupilot.org/plane/docs/quadplane-tips.html#increasing-yaw-authority
https://auterion.com/company/the-history-of-pixhawk/
https://auterion.com/company/the-history-of-pixhawk/
https://wiki.paparazziuav.org/wiki/HITL
https://ardupilot.org/dev/docs/sitl-with-xplane.html
https://www.realflight.com/index.php
http://gazebosim.org/
https://dev.px4.io/v1.9.0/en/simulation/jmavsim.html
http://jsbsim.sourceforge.net/

56 Realistic VTOL simulator

[15] “Introduction – FlightGear Flight Simulator”, https://www.flightgear.org/about/
[last accessed: 9/9/2020].

[16] AirSim, Microsoft, https://github.com/microsoft/AirSim [last accessed:

9/9/2020].

[17] “The most powerful real-time 3D creation platform - Unreal Engine”, Epic

Games, https://www.unrealengine.com/en-US/ [last accessed: 9/9/2020].

[18] “Gazebo: Tutorial: Make a model”, Gazebo,

http://gazebosim.org/tutorials?tut=build_model [last accessed: 1/9/2020].

[19] “Gazebo. Tutorial: Plugins 101”, Gazebo
http://gazebosim.org/tutorials/?tut=plugins_hello_world [last accessed: 1/9/2020].

[20] Edpresso Team, “What is C++?”, Educative,

https://www.educative.io/edpresso/what-is-cpp [last accessed: 7/9/2020].

[21] Amanda Dattalo, “ROS/Introduction – ROS Wiki”, 08/08/2018, ROS

http://wiki.ros.org/ROS/Introduction [last accessed: 7/9/2020].

[22] “Complete parameter list – Plane documentation”, ArduPilot,

https://ardupilot.org/plane/docs/parameters.html#servo-parameters [last
accessed: 7/9/2020].

[23] “QuadPlane Frame setup – Plane documentation”, ArduPilot,

https://ardupilot.org/plane/docs/quadplane-frame-setup.html#motor-ordering
[last accessed: 7/9/2020].

[24] Github – SITL code from ArduPilot (SIM_Gazebo.cpp), 15/08/2019,

https://github.com/ArduPilot/ardupilot/blob/master/libraries/SITL/SIM_Gazebo.c
pp [last accessed: 7/9/2020].

[25] Github – SITL code from ArduPilot (SIM_Gazebo.h) , 15/08/2019,

https://github.com/ArduPilot/ardupilot/blob/master/libraries/SITL/SIM_Gazebo.h
[last accessed: 7/9/2020].

[26] “Gazebo: Tutorial: Aerodynamics”, Gazebo,

http://gazebosim.org/tutorials?tut=aerodynamics&cat=physics [last accessed:
11/9/2020].

[27] Fadri Furrer, Michael Burri, Mina Kamel, Janosch Nikolic, Markus Achtelik,

ROS – LiftDrag Plugin code, 6/06/2019,
http://docs.ros.org/melodic/api/rotors_gazebo_plugins/html/liftdrag__plugin_8c
pp_source.html [last accessed: 11/9/2020].

https://www.flightgear.org/about/
https://github.com/microsoft/AirSim
https://www.unrealengine.com/en-US/
http://gazebosim.org/tutorials?tut=build_model
http://gazebosim.org/tutorials/?tut=plugins_hello_world
https://www.educative.io/edpresso/what-is-cpp
http://wiki.ros.org/ROS/Introduction
https://ardupilot.org/plane/docs/parameters.html#servo-parameters
https://ardupilot.org/plane/docs/quadplane-frame-setup.html#motor-ordering
https://github.com/ArduPilot/ardupilot/blob/master/libraries/SITL/SIM_Gazebo.cpp
https://github.com/ArduPilot/ardupilot/blob/master/libraries/SITL/SIM_Gazebo.cpp
https://github.com/ArduPilot/ardupilot/blob/master/libraries/SITL/SIM_Gazebo.h
http://gazebosim.org/tutorials?tut=aerodynamics&cat=physics
http://docs.ros.org/melodic/api/rotors_gazebo_plugins/html/liftdrag__plugin_8cpp_source.html
http://docs.ros.org/melodic/api/rotors_gazebo_plugins/html/liftdrag__plugin_8cpp_source.html

ANNEX 57

ANNEX

1. Motors specifications

1.1. Hacker Q80-13S 28-Pole kv175

Fig. A.1 shows the specifications of the engine Hacker Q80-13S 28-Pole kv175.

Fig. A.1 Hacker Q80-13S 28-Pole kv175 engine specifications

1.2. T-motor MN801S 150kv

Fig. A.2 shows the specifications of the engine T-motor MN801S 150kv.

58 Realistic VTOL simulator

Fig. A.2 T-motor MN801S 150kv engine specifications

2. Flight test videos

2.1. Standard VTOL

2.1.1. Ground test

In the following link you can find the video with the first flight test. As you can see
in the video, a rotational test of the motors is done through Mission Planner. first
one by one and then tested in sequence.

Link to video: https://youtu.be/vJbeKo1qtyc

2.1.2. Following a mission

In the following link you can find the video with the second flight test. As you can
see in the video, a mission is planned through Mission Planner. Once planned,
this mission is executed. The VTOL follows the trajectory set to perfection. The
only critical moment of the flight is in the final transition, and the landing flight,
which is a bit unstable.

Link to video: https://youtu.be/fwcL8f6n1hM

https://youtu.be/vJbeKo1qtyc
https://youtu.be/fwcL8f6n1hM

ANNEX 59

2.1.3. Controlled by a joystick

In the following link you can find the video with the third flight test. First we enable
the joystick (it is connected to the computer) and then we configure the flight
modes necessary to fly in quad mode and in fixed wing mode. It can be seen how
we are able to carry out a trajectory similar to the previous mission.

Link to video: https://youtu.be/Jf0Z55Kuopw

2.2. Venturi V1

2.2.1. Ground test

In the following link you can find the video with the first flight test but in this case
with the V1. The test is carried out in the same way as for the other model.

Link to video: https://youtu.be/7FDrj2aVsvE

2.2.2. Following a mission

In the following link you can find the video with the second flight test. The test is
not performed well, when you try to execute the mission that we have planned
the V1 leans. As it is not possible to take off in a stabilized way, the mission is
aborted.

Link to video: https://youtu.be/muKVKo9Esto

3. Simulator codes

3.1. Plugin code

Due to the quantity and size of the simulator files, a link is attached to view all the
code developed.

Link to code: https://github.com/slucasm/venturi_ardupilot_gazebo_plugin

3.2. Matlab code

This section presents the code that was written to find the balance of moments in
the centre of gravity of the V1 to try to stabilize the flight.

% Storing data in struct

struct(1).name = 'imu';

struct(1).position = [0 0 0];

https://youtu.be/Jf0Z55Kuopw
https://youtu.be/7FDrj2aVsvE
https://youtu.be/muKVKo9Esto
https://github.com/slucasm/venturi_ardupilot_gazebo_plugin

60 Realistic VTOL simulator

struct(1).mass = 0.015;

struct(2).name = 'base';

struct(2).position = [7.8e-05, 0.143099, -0.005197];

struct(2).mass = 1.12552;

struct(3).name = 'rotor_0';

struct(3).position = [-0.49257, (-0.62087-0.028277), -0.06048];

struct(3).mass = 0.000725188;

struct(4).name = 'rotor_1';

struct(4).position = [0.49257, (0.84087+0.023542), 0.06048];

struct(4).mass = 0.000725194;

struct(5).name = 'rotor_2';

struct(5).position = [0.49257, (-0.62087-0.028277), -0.06048];

struct(5).mass = 0.000725281;

struct(6).name = 'rotor_3';

struct(6).position = [-0.49257, (0.84087+0.023542), 0.06048];

struct(6).mass = 0.000725258;

struct(7).name = 'rotor_puller';

struct(7).position = [0, (0.54754 + 0.013947), 0];

struct(7).mass = 0.000725199;

struct(8).name = 'aileron_left';

struct(8).position = [(0.695+0.335), (0.32655-0.007343), (0.023592-0.032816)];

struct(8).mass = 0.00611893;

struct(9).name = 'aileron_right';

struct(9).position = [(-0.695-0.335), (0.32655-0.007343), (0.023592-

0.032816)];

struct(9).mass = 0.00611893;

struct(10).name = 'tail_left';

struct(10).position = [(0.1248+0.115253), (1.4491-0.066509), (0.21616-

0.024189)];

struct(10).mass = 0.00162948;

struct(11).name = 'tail_right';

struct(11).position = [(-0.1248-0.115225), (1.4491+0.066558), (0.21616-

0.024189)];

struct(11).mass = 0.00162948;

num_X = 0;

num_Y = 0;

num_Z = 0;

den_X = 0;

den_Y = 0;

den_Z = 0;

i = 1;

ANNEX 61

%Computing numerators and denominators to calculate GC

while (i <= length(struct))

 num_X = num_X + (struct(i).position(1) * struct(i).mass);

 num_Y = num_Y + (struct(i).position(2) * struct(i).mass);

 num_Z = num_Z + (struct(i).position(3) * struct(i).mass);

 den_X = den_X + struct(i).mass;

 den_Y = den_Y + struct(i).mass;

 den_Z = den_Z + struct(i).mass;

 i = i + 1;

end

%Compute GC

X_mc = num_X / den_X;

Y_mc = num_Y / den_Y;

Z_mc = num_Z / den_Z;

%Plotting all stuff

figure(1)

hold on;

i = 1;

scatter3(X_mc, Y_mc, Z_mc, 'r', 'filled');

while (i <= length(struct))

scatter3(struct(i).position(1),struct(i).position(2),struct(i).position(3),

'b');

 quiver3(struct(i).position(1),struct(i).position(2),struct(i).position(3),

0, 0, -0.1, 'b');

 plot3([X_mc struct(i).position(1)], [Y_mc struct(i).position(2)], [Z_mc

struct(i).position(3)], 'b');

 i = i + 1;

end

quiver3(X_mc, Y_mc, Z_mc, 0, 0, -0.1, 'r');

xlabel('X-axis (m)');

ylabel('Y-axis (m)');

zlabel('Z-axis (m)');

title('V1 moments');

view(-60,30);

legend('CG global', 'CG elements');

momentum_total = [0 0 0];

i = 1;

%computing sum of moments in GC

while (i <= length(struct))

62 Realistic VTOL simulator

 struct(i).line_cg = [struct(i).position(1)-X_mc, struct(i).position(2)-

Y_mc, struct(i).position(3)-Z_mc];

 struct(i).force = [0 0 -struct(i).mass * 9.81];

 struct(i).momentum = [struct(i).line_cg(2)*struct(i).force(3) -

struct(i).line_cg(3)*struct(i).force(2); -

(struct(i).line_cg(1)*struct(i).force(3) -

struct(i).line_cg(3)*struct(i).force(1));

struct(i).line_cg(1)*struct(i).force(2) -

struct(i).line_cg(2)*struct(i).force(1)];

 momentum_total(1) = momentum_total(1) + struct(i).momentum(1);

 momentum_total(2) = momentum_total(2) + struct(i).momentum(2);

 momentum_total(3) = momentum_total(3) + struct(i).momentum(3);

 i = i + 1;

end

force_rotors = [0 0 6];

%Compute distance from motors 1 & 3 to GC where sum of moments is zero

struct(4).position_cg_equilibrated = [struct(4).line_cg(1) (Y_mc +

abs((struct(3).position(2)-Y_mc))) struct(4).line_cg(3)];

struct(6).position_cg_equilibrated = [struct(6).line_cg(1) (Y_mc +

abs((struct(5).position(2)-Y_mc))) struct(6).line_cg(3)];

momentum_rotor0 = [struct(3).line_cg(2)*force_rotors(3) -

struct(3).line_cg(3)*force_rotors(2); -(struct(3).line_cg(1)*force_rotors(3) -

struct(3).line_cg(3)*force_rotors(1)); struct(3).line_cg(1)*force_rotors(2) -

struct(3).line_cg(2)*force_rotors(1)];

momentum_rotor1 = [struct(4).line_cg(2)*force_rotors(3) -

struct(4).line_cg(3)*force_rotors(2); -(struct(4).line_cg(1)*force_rotors(3) -

struct(4).line_cg(3)*force_rotors(1)); struct(4).line_cg(1)*force_rotors(2) -

struct(4).line_cg(2)*force_rotors(1)];

momentum_rotor2 = [struct(5).line_cg(2)*force_rotors(3) -

struct(5).line_cg(3)*force_rotors(2); -(struct(5).line_cg(1)*force_rotors(3) -

struct(5).line_cg(3)*force_rotors(1)); struct(5).line_cg(1)*force_rotors(2) -

struct(5).line_cg(2)*force_rotors(1)];

momentum_rotor3 = [struct(6).line_cg(2)*force_rotors(3) -

struct(6).line_cg(3)*force_rotors(2); -(struct(6).line_cg(1)*force_rotors(3) -

struct(6).line_cg(3)*force_rotors(1)); struct(6).line_cg(1)*force_rotors(2) -

struct(6).line_cg(2)*force_rotors(1)];

%compute new sum of moments with GC equilibrated

momentum_total(1) = momentum_total(1) + momentum_rotor0(1) +

momentum_rotor1(1) + momentum_rotor2(1) + momentum_rotor3(1);

momentum_total(2) = momentum_total(2) + momentum_rotor0(2) +

momentum_rotor1(2) + momentum_rotor2(2) + momentum_rotor3(2);

momentum_total(3) = momentum_total(3) + momentum_rotor0(3) +

momentum_rotor1(3) + momentum_rotor2(3) + momentum_rotor3(3);

%Compute force necessary for motors 1 & 3 to equilibrate moments in GC

difference_mom_x = abs(momentum_rotor0(1)) - abs(momentum_rotor1(1));

difference_mom_y = abs(momentum_rotor0(2)) - abs(momentum_rotor1(2));

ANNEX 63

force_to_equal_mom_y = difference_mom_x / struct(4).line_cg(2);

force_to_equal_mom_x = -difference_mom_y / struct(4).line_cg(1);

momentum_total(1) = momentum_total(1) +

(force_to_equal_mom_x+force_to_equal_mom_y)*struct(4).line_cg(2) +

(force_to_equal_mom_x+force_to_equal_mom_y)*struct(6).line_cg(2);

momentum_total(2) = momentum_total(2) +

(force_to_equal_mom_x+force_to_equal_mom_y)*struct(4).line_cg(1) +

(force_to_equal_mom_x+force_to_equal_mom_y)*struct(6).line_cg(1);

