
Topology Optimization using the UNsmooth VARiational
Topology OPtimization (UNVARTOP) method: an educational
implementation in Matlab
EDUCATIONAL ARTICLE

Daniel Yago1,2 · Juan Cante1,2 · Oriol Lloberas-Valls2,3 · Javier Oliver2,3

Abstract This paper presents an efficient and compre-

hensive MATLAB code to solve two-dimensional struc-

tural topology optimization problems, including mini-

mum mean compliance, compliant mechanism synthe-

sis and multi-load compliance problems. The Unsmooth

Variational Topology Optimization (UNVARTOP) meth-

od, developed by Oliver et al. [22], is used in the topol-

ogy optimization code, based on the finite element method

(FEM), to compute the sensitivity and update the topol-

ogy. The paper also includes instructions to improve the

bisection algorithm, modify the computation of the La-

grangian multiplier by using an Augmented Lagrangian

to impose the constraint, implement heat conduction

problems and extend the code to three-dimensional topol-

ogy optimization problems. The code, intended for stu-

dents and newcomers in topology optimization, is in-

cluded as an appendix (Appendix A) and it can be

downloaded from https://github.com/DanielYago to-

gether with supplementary material.

� J. Oliver
E-mail: oliver@cimne.upc.edu

1 Escola Superior d’Enginyeries Industrial, Aeroespacial i
Audiovisual de Terrassa (ESEIAAT)
Technical University of Catalonia (UPC/Barcelona
Tech), Campus Terrassa UPC, c/ Colom 11, 08222 Ter-
rassa, Spain

2 Centre Internacional de Mètodes Numèrics en Enginyeria
(CIMNE)
Campus Nord UPC, Mòdul C-1 101, c/ Jordi Girona 1-3,
08034 Barcelona, Spain

3 E.T.S d’Enginyers de Camins, Canals i Ports de
Barcelona (ETSECCPB)
Technical University of Catalonia (UPC/Barcelona
Tech), Campus Nord UPC, Mòdul C-1, c/ Jordi Girona
1-3, 08034 Barcelona, Spain

Keywords Structural Topology optimization ·
Relaxed Topological Derivative · Compliance ·
Compliant Mechanism · Education · MATLAB code

1 Introduction

The dissemination of the Matlab code, included in this

paper, is intended for education purposes, in order to

provide students and those new to the field with the

theoretical basis for topology optimization of structural

problems as well as to familiarize a wider audience with

the new technique. This article is inspired by similar

ones (e.g. [27] and [5]) which presented a Matlab im-

plementation and possible extensions of other topology

optimization approaches for structural problems.

A wide variety of topology optimization approaches

and the corresponding Matlab implementations can be

found in the literature, including the Solid Isotropic

Material with Penalization (SIMP) method ([6; 7] and

[27]), the Bidirectional Evolutionary Structural Opti-

mization (BESO) method ([39; 42] and [45]), the Level-

set method using a shape derivative ([2; 3; 34] and [10;

35]), the Topology Derivative method ([29; 21] and [30])

and the Phase-field approaches ([31; 34; 41] and [24]),

among others. Along years, researchers have adapted or

combined some features of these techniques to propose

alternative approaches. Nevertheless, some limitations

remain in any of them.

The Unsmooth Variational Topology Optimization

approach, first developed by Oliver et al. [22], appears

to be an alternative to other well-established approaches

due to the mathematical simplicity and robustness of

the present method. So far, the UNVARTOP approach

has been applied in a wide range of linear applications,

including static structural [22] and steady-state thermal

https://github.com/DanielYago/UNVARTOP

2 Daniel Yago et al.

applications [40], considering the volume constraint as

a single constraint equation, with promising results.

The domain, in the present approach, is implicitly

represented through a 0-level-set function [23], using

the so-called discrimination function ψ, to define a dis-

crete characteristic function, χ, at each point of the

domain, x. This variable, used as design variable, is re-

lated to the discrimination function with the Heaviside

function by χ(x) = H(ψ(x)), defining, thus, a black-

and-white design, i.e. a binary configuration with two

domains: a void and a material domain. This definition

is in contrast to that used by density-based methods,

such as SIMP method, where the relative density, ρe,

in each element is used as design variable see Bendsøe

and Sigmund [7]. In addition, this change in the de-

sign variable, typically from Level-set methods, allows

smooth representation of the topology (void and ma-

terial domains) and the corresponding boundary using

the 0-level iso-surface of the discrimination function.

The black-and-white design is relaxed via the ersatz

material approach to a bi-material setting, where the

void material is replaced with a soft material, as pro-

posed by Allaire et al. [1]. Despite this relaxation, the

discrete nature of the characteristic function is main-

tained. However, this is not true for density-based meth-

ods, which have to be relaxed via a power-law inter-

polation function to intermediate values (i.e. between

void and solid), leading thus to the SIMP method, in

order to avoid the ill-conditioning of the topology opti-

mization problem obtaining then blurry interfaces with

semi-dense elements, as stated in Sigmund and Peters-

son [28].

The aim of a topology optimization must be de-

fined by means of a cost function, which will be mini-

mized. For each specific cost function, a sensitivity eval-

uating the variation of it to topological perturbations

must be derived. This derivation may be mathemat-

ically challenging for some topology optimization ap-

proaches. For example, the Topology Derivative method

requires heavy analytical derivation methods, depen-

dent on the type of the topology optimization prob-

lem and the considered material in the optimization

[14; 21]. However, in the current method, a consistent

relaxed topological derivative is formulated within the

ersatz material approach, and evaluated as a directional

derivative of the cost function. Additionally, it can be

interpreted as an approximation of the exact topologi-

cal derivative, used in Topology Derivative method, re-

sulting in a simpler and less time-consuming derivation.

Apart from the problem setting and the cost func-

tion, the procedure of updating the design variable is a

crucial feature of each approach. Most of the topology

optimization methods, that use a level-set function to

define the topology layout at each iteration, update the

design variable via a Hamilton-Jacobi equation using an

appropriate velocity at boundaries (in terms of the pre-

computed sensitivity) [2; 34]. Despite using an equiv-

alent level-set function (discrimination function), the

topology is not updated neither via a Hamilton-Jacobi

[37; 3; 41] nor a Reaction-Diffusion [24] equations, but it

is updated via the solution of a fixed-point, non-linear,

closed-form algebraic system. The fulfillment of the vol-

ume constraint is ensured within the closed-form solu-

tion by means of a Lagrange multiplier, similar to the

one used with Optimality Criteria (OC) in SIMP meth-

ods, computed through an efficient bisection algorithm.

Almost every technique require some kind of filter-

ing in order to avoid or at least mitigate the inherent

ill-posedness of the topology optimization problem [28].

Through this filtering, the lack of mesh-independency is

overcome. Density-based methods resort to density or

sensitivity filtering, extensively used in density-based

approaches. Nevertheless, alternative filters have been

formulated in the last two decades. For instance, projec-

tion methods [15] or a Helmholtz filter [16] are also used

for this purpose. This last filter, so called the Laplacian

regularization [25; 33] is applied to the discrimination

function to control the filament width. A similar ap-

proach is used by Yamada et al. [41] to control the

complexity of the optimal design.

Finally, the last key feature is related with the vol-

ume constraint and how the requested volume percent-

age is achieved. An incremental time-advancing scheme

is adopted in the present methodology for the volume

percentage, as a control parameter, obtaining, then,

intermediate converged, optimal topologies. The opti-

mization procedure starts from a domain fully filled

with stiff material. Then, the topology optimization for

a given small volume percentage is performed, obtain-

ing a converged, optimal topology. Subsequently, the

volume percentage (pseudo-time in the algorithm) is

increased and the new optimal topology is found. This

procedure is repeated until the desired volume frac-

tion is achieved, similar to the Pareto frontier-optimal

tracing approach proposed by Suresh [30]. Although

this implementation is not unique of the current ap-

proach, it differs from SIMP and Level-set based meth-

ods, since they directly seek the optimal topology for

the requested volume fraction. Similar iterative schemes

can be found in ESO/BESO approaches, where the vol-

ume fraction is incremented at each iteration until the

final volume is achieved. However, optimal conditions

are not fulfilled at these intermediate volumes.

Thanks to this set of features, the methodology pro-

posed in this manuscript presents a lower computa-

tional cost, around 5 times, when it is compared with

Topology Optimization using the UNsmooth VARiational Topology OPtimization (UNVARTOP) method 3

other methods, e.g. a Level-set method with the RTD,

while obtaining very similar results, as reported in Oliver

et al. [22] and Yago et al. [40]. In addition, intermediate

converged optimal topologies are obtained for different

volume values at no additional computational cost, al-

lowing further decisions once the topology optimization

optimization has finalized.

The remainder of the paper is organized as follows.

The unsmooth variational topology optimization ap-

proach is briefly described in section 2 along with the

particularities for minimum mean compliance, multi-

load compliance and compliant mechanisms problems.

In section 3, the code implementation of the present

methodology, provided in Appendix A, is discussed in

detail. Several numerical examples are addressed in sec-

tion 4 to show the potential in the three optimization

problems. Additionally, in section 5, possible extensions

and enhancements of the code are discussed. Finally,

section 6 concludes with some final remarks.

2 Problem formulation

2.1 Unsmooth variational topology optimization

Let us define a fixed rectangular design domain, Ω ⊂
R2, composed by two smooth subdomains, Ω+ and Ω−,

as depicted in Figure 1. These two domains, made re-

spectively of solid and void materials, are defined via

the nonsmooth characteristic function, χ(x) : Ω →
{0, 1}, as{
Ω+ := {x ∈ Ω / χ(x) = 1}
Ω− := {x ∈ Ω / χ(x) = 0}

. (1)

The topology layout can also be implicitly repre-

sented by the smooth discrimination function, ψ(x) :

Ω → R, ψ ∈ H1(Ω), (see Figure 2) defined as{
Ω+ := {x ∈ Ω / ψ(x) > 0}
Ω− := {x ∈ Ω / ψ(x) < 0}

. (2)

–

+

Fig. 1 Representation of the fixed design domain Ω.

+

–

(= 1)

(=)

Fig. 2 Topology representation in terms of the discrimina-
tion function, ψ.

In addition, the characteristic function, χψ(x) : Ω →
{0, 1}, can be expressed in terms of the discrimination

function by

χψ(x) = H(ψ(x)) , (3)

where H(·) stands for the Heaviside function evaluated

at (·). The characteristic function, used as the design

variable, is now relaxed to χψ(x) : Ω → {β, 1}, where

the void material is replaced with a soft material with

low stiffness (ersatz material approach), with β being

the relaxation factor.

The topology optimization goal is to minimize a cost

function J (χ) subjected to one constraint, typically

the volume, and governed by the state equations. The

mathematical formulation of the corresponding topol-

ogy optimization problem can be expressed as

min
χ∈Uad

J (χ) ≡
∫
Ω

j(χ,x) dΩ (a)

subject to:

C(χ) ≡
∫
Ω

c(χ,x) dΩ = 0 (b)

governed by:

Equilibrium equation (c)

, (4)

where Uad stands for the set of admissible solutions for

χ and C(χ) represents the constraint functional (e.g.

the volume constraint).

Following Oliver et al. [22], the Relaxed Topological

Derivative (RTD) evaluated as

δJ (χ)

δχ
(x̂) =

[
∂j(χ,x)

∂χ

]
x=x̂

∆χ(x̂) , (5)

measures the sensitivity of the functional (4)-a when a

material exchange is made at point x̂. The term ∆χ(x̂),

denoted as the exchange function, corresponds to the

4 Daniel Yago et al.

signed variation of χ(x̂), due to that material exchange,

i.e.

∆χ(x̂) =

{
−(1− β) < 0 for x̂ ∈ Ω+

(1− β) > 0 for x̂ ∈ Ω−
. (6)

Mimicking equation (5), the RTD of the volume con-

straint ((4)-b) is computed as

δC(χ, t)
δχ

(x̂) =

[
∂c(χ,x)

∂χ

]
x=x̂

∆χ(x̂) =
1

|Ω|
sgn(∆χ(x̂)) ,

(7)

where C(χ, t) := t− |Ω
−|(χ)
|Ω| = 0 and |Ω−|(χ) =

∫
Ω

1−χ
1−β dΩ.

Additionally, the term t ∈ [0, T] corresponds to the

pseudo-time parameter, given by the user, used in the

pseudo-time-advancing strategy. Notice that the param-

eter T stands for the pseudo-time corresponding to the

final volume.

The Lagrangian function of the optimization prob-

lem (4) can be expressed as

L(χ) = J (χ) + λC(χ, t) , (8)

where the constraint equation, C, multiplied with a La-

grange multiplier, λ, is added to the original cost func-

tion J . The value of λ is such that the volume con-

straint is fulfilled.

Finally, applying the RTD to equation (8) and con-

sidering equations (5) and (7), the optimality condition

of the original topology optimization problem can be

written as

δL(χ, λ)

δχ
(x̂) =

(
∂j (χ, x̂)

∂χ
∆χ(x̂) + λ sgn(∆χ(x̂))

)
=

= −ψ(x̂, χ) = −(ξ(x̂, χ)− λ) ∀x̂ ∈ Ω , (9)

where ψ(x̂, χ) corresponds to the discrimination func-

tion and ξ(x̂, χ) is termed the pseudo-energy and must

be computed for each optimization problem. Compared

to other techniques, the pseudo-energy is first shifted1

and normalized, yielding to the modified energy density

defined as

ξ̂(x̂) =
ξ(x̂)− χ(x̂)∆shift

∆norm
, (10)

where ∆shift and ∆norm correspond to the shifting

and normalization parameters defined at the first itera-

tion as min(ξ0, 0) and max(range(ξ0),max(ξ0)), respec-

tively. The resultant ψ, after replacing equation (10)

into (9), is subsequently smoothed through a Laplacian

regularization in order to mitigate mesh-dependency

1The shifting is applied in order to obtain positive pseudo-
energy, ξ, in Ω at t = 0, thus, ensuring a converged topology
for this time-step.

along with controlling the minimum filament’s size. The

smooth discrimination function, ψτ , corresponds to the

solution of

{
ψτ − (τhe)

2∆xψτ = ψ in Ω

∇xψτ · n = 0 on ∂Ω
, (11)

where, ∆x(x, ·) and ∇x(x, ·) are respectively the Lapla-

cian and gradient operators, and n is the outwards nor-

mal to the boundary of the design domain, ∂Ω. τ and

he stand for the dimensionless regularization parameter

and the typical size of the finite element mesh, respec-

tively.

The topology layout, χ, is updated by means of the

Cutting&Bisection algorithm, in which the value of λ,

which enforces volume constraint (equation (4)-b), is

computed. Then, a closed-form solution of the topology

optimization problem (4) can be written as

ψ(x̂) := ξ̂(x̂, χ)− λ
χ(x̂) = H(ψτ (x̂))

C(χ(λ), t) = 0

in Ω , (12)

where ψτ (x̂) corresponds to the solution of equation

(11) that must be applied at each iteration. Equation

(12) constitutes a fundamental feature of the UNVAR-

TOP method, as aforementioned in section 1. Nonethe-

less, the Laplacian regularization only affects the modi-

fied energy density, ξ̂(x̂, χ), since the term λ is constant,

thus leading equation (12) to

ψτ (x̂) := ξ̂τ (x̂, χ)− λ
χ(x̂) = H(ψτ (x̂))

C(χ(λ), t) = 0

in Ω , (13)

where ξ̂τ is the solution of equation (11) for the modified

energy density. Due to this modification, the compu-

tational cost of the bisection algorithm is significantly

reduced.

For more details on the formulation, the reader is

referred to Oliver et al. [22] and Yago et al. [40], where

in-depth discussions are made on each subject.

2.2 State problem

The governing variational problem for linear elasticity,

in terms of the displacement field (uχ) and the virtual

Topology Optimization using the UNsmooth VARiational Topology OPtimization (UNVARTOP) method 5

displacement field (w), can be written as

Find the displacement field uuuχ ∈ U(Ω) such that

a(w,uχ) = l(w) ∀w ∈ V(Ω)

where

a(w,uχ) =

∫
Ω

∇Sw(x) : Cχ(x) :∇Suχ(x) dΩ ,

l(w) =

∫
∂σΩ

w(x) · σσσ(x) dΓ

+

∫
Ω

w(x) · bχ(x) dΩ ,

(14)

(15)

(16)

where Cχ and bχ correspond to the fourth order elas-

tic constitutive tensor and the volumetric force, respec-

tively. In addition, σσσ(x) stands for the boundary trac-

tions applied on ∂σΩ ⊂ ∂Ω, while the term ∇S(·) cor-

responds to the symmetrical gradient of (·). Finally, the

set of admissible displacement fields, U(Ω), is defined

as U(Ω) :=
{
u(x) / u ∈ H1(Ω), u = u on ∂uΩ

}
, while

the space of admissible virtual displacement fields is

given by V(Ω) :=
{
w(x) / w ∈ H1(Ω), w = 0 on ∂uΩ

}
.

The constitutive tensor2, Cχ, and the volumetric

force, bχ, depend on the topology. Thus, they are math-

ematically defined in terms of the characteristic func-

tion as follows{
Cχ(x) = χmkk (x)C(x) ; mk > 1

bχ(x) = χmb
b

(x)b(x) ; mb > 1

(17)

(18)

where m(·) stands for the exponential factor of property

(·). The lower limit of the relaxed characteristic func-

tion, χβ , is defined through the contrast factor, α(·),

and m(·) by β(·) = α
1/m(·)
(·) . Both C and b denote the

corresponding nominal property of the stiff material.

Assuming plane-stress condition, the constitutive ten-

sor C is given by

CPstress =
E

1− ν2

 1 ν 0

ν 1 0

0 0
1− ν

2

 , (19)

with E representing the Young’s modulus of the stiff

material and ν, the Poisson’s ratio of the isotropic ma-

terial.

2.3 Finite element discretization

The state equation (14) is now discretized using the

standard finite element method [44; 26]. The displace-

2The constitutive tensor is governed by Hooke’s law, i.e. σσσ =
Cεεε, with εεε being the strain tensor (εεε = ∇Suχ(x)).

ment field and its gradient are approximated as follows

uχ(x) ≡ Nu(x)ûuuχ (20)

∇Suχ(x) ≡ B(x)ûuuχ (21)

where Nu(x) and B(x) stand for the displacement, shape

function matrix and the strain-displacement matrix, re-

spectively, and ûuuχ corresponds to the nodal displace-

ment vector.

Introducing equations (17)-(18) and (20)-(21) into

equations (14)-(16), the resultant state equation reads

Kχûuuχ = f (22)

with

Kχ =

∫
Ω

BT(x) Cχ(x) B(x) dΩ

f =

∫
∂σΩ

Nu
T(x)σσσ(x) dΓ

+

∫
Ω

Nu
T(x)bχ(x) dΩ

, (23)

where Kχ and f stand for the stiffness matrix and the

external forces vector, respectively. The element stiff-

ness matrix and the volumetric term of the force vector

are numerically integrated inside each element, Ωe, em-

ploying several quadrature points. Subsequently, these

terms are assembled to obtain the global stiffness ma-

trix and force vector.

2.4 Algorithm

The flowchart of the algorithm used to obtain the op-

timal topology layouts in terms of the characteristic

function, χ, is illustrated in Figure 3.

The algorithm is based on a two-steps procedure: 1)

data initialization and FE analysis pre-processing, e.g.

mesh generation, creation of figures, computation of ele-

ment FE matrices, assembly of Laplacian regularization

matrix, along others, and 2) a topology optimization

loop over time-steps. For each step, the state equation

(22) is solved to obtain the displacement vector, and

the corresponding sensitivities are computed (equations

(5) and (7)), obtaining then the pseudo-energy, ξ, de-

pendent on each topology optimization problem defined

in subsequent sections, and the corresponding modified

energy density, ξ̂ (equation (10)). The cost function

is then computed via equation (4)-a using the previ-

ously computed displacement vector. Then, the Lapla-

cian regularization is applied to ξ̂ (equation (11)) while

the Lagrange multiplier is obtained by means of a bi-

section algorithm (equation (13)), thus obtaining the

new optimal topology (in terms of the discrimination

6 Daniel Yago et al.

Start Topology optimization

Preprocessing and data ini-
tialization (t = t0) [2-58]

Increase pseudo-time
(tn+1 = tn + ∆tn+1) [60]

Solve equilibrium equa-
tions (FEM) and com-
pute sensitivity [66-79]

Compute cost function [69]

Apply Laplacian reg-
ularization [80-86]

Compute Lagrangian
multiplier [88]

Update topology (ψ and χ) [88]

Convergence?
[65,90,94]

Optimal topology layout [100-103]

Last time-
step? [59]

Post-processing [109] and Exit

yes

yes

no

no

Fig. 3 The flowchart for the unsmooth variational topology
optimization algorithm with the corresponding code lines in
brackets.

function ψ and the corresponding characteristic func-

tion χ). If tolerances are fulfilled3, the topology is con-

sidered as converged and then the pseudo-time, t, is

increased. Otherwise, an iteration is carried out with

the new topology.

3The L2-norm of the characteristic function and the L∞-norm
of the Lagrange multiplier are checked.

2.5 Mean compliance

The main goal of the minimum mean compliance prob-

lems is to seek the optimal topology layout, in terms

of the characteristic function, χ, that maximizes the

global stiffness of the structure given specific bound-

ary conditions. That is, the external work produced by

applied forces is minimized. The objective function is

written as

J (uχ) ≡ l(uχ) ≡ aχ(uχ,uχ) ≡

≡ 2

∫
Ω

1

2
∇Suχ : Cχ :∇Suχ dΩ = 2

∫
Ω

Uχ dΩ ,

(24)

where Uχ can be identified as the actual strain energy

density (Uχ = 1
2∇

Suχ : Cχ : ∇Suχ), and aχ(uχ,uχ)

and l(uχ) are the bilinear forms of the elastic problem

(14) for w = uχ.

Considering equations (22) and (24), the correspond-

ing finite element discretization counterpart of problem

(4) reads

min
χ∈Uad

J (he)(uχ(t)) ≡ fTûuuχ(t) (a)

subject to:

C(χ, t) := t− |Ω
−|(χ)

|Ω|
= 0 ; t ∈ [0, 1] (b)

governed by:

Kχûuuχ = f (c)

, (25)

where fTûuuχ denotes the structural compliance.

According to Oliver et al. [22], the relaxed topolog-
ical derivative with respect to χ(x), using the adjoint

method4, is defined as

δJ (he)
(χ)

δχ
(x̂) =

[
2
δfTχ
δχ

(x)ûuuχ − ûuuTχ
δKχ
δχ

(x)ûuuχ

]
x=x̂

.

(26)

Assuming that no volumetric forces are applied on

the domain and substituting the definition of the re-

laxed topological derivative of each term (5), equation

(26) can be expressed as

δJ (he)
(uχ)

δχ
(x̂) = −2mk (χk(x̂))

mk−1 U(x̂)∆χk(x̂) ,

(27)

4The adjoint method is used to avoid explicitly compute the
sensitivities of the displacements. The minimum mean com-
pliance problem is self-adjoint.

Topology Optimization using the UNsmooth VARiational Topology OPtimization (UNVARTOP) method 7

where the nominal energy density, U(x̂), is given by

U(x̂) =
1

2

(
∇Suχ : C :∇Suχ

)
(x̂) ≥ 0 . (28)

Finally, comparing equation (27) with equation (9),

the pseudo-energy, ξ(x̂, χ), of topology problem (25)

reads

ξ(x̂, χ) = 2mk (χk(x̂))
mk−1 U(x̂)∆χk(x̂) , (29)

which must be then modified as detailed in equation

(10). Discretizing the terms in equation (29), and after

some mathematical manipulations, it can be numeri-

cally computed as

ξ(x̂, χ) = γ1û(x̂)
T
[
B(x̂)

TCB(x̂)
]

û(x̂) , (30)

with γ1 = 2mk (χk(x̂))
mk−1∆χk(x̂).

2.6 Multi-load mean compliance

Multi-load compliance problems are considered a spe-

cific case of minimum compliance problems (see section

2.5), in which a set of elastic problems with different

loading conditions are solved independently. The objec-

tive function (24) is replaced with the weighted average

sum of all the cases, i.e.

J (uχ) ≡
nl∑
i=1

l
(
u(i)
χ

)
≡

≡
nl∑
i=1

∫
Ω

∇Su(i)
χ : Cχ :∇Su(i)

χ dΩ =

=

nl∑
i=1

2

∫
Ω

U (i)
χ dΩ ,

(31)

where nl stands for the number of loading states and

U (i)
χ corresponds to the actual energy density of the i-

th loading state. Then, according to this new definition,

equation (25) is rewritten as

min
χ∈Uad

J (he)(uχ(t)) ≡
nl∑
i=1

f (i)Tûuu(i)χ (t) (a)

subject to:

C(χ, t) := t− |Ω
−|(χ)

|Ω|
= 0 ; t ∈ [0, 1] (b)

governed by:

Kχûuu(i)χ = f (i) ∀i ∈ [1, nl] (c)

. (32)

Equations (26) to (29) are consequently modified to

account multiple loading cases, leading to

ξ(x̂, χ) = γ1

nl∑
i=1

û(i)(x̂)
T
[
B(x̂)

TCB(x̂)
]

û(i)(x̂) . (33)

Bear in mind that the optimal topology layout will

considerably differ from the single minimum compliance

problem with all the loads applied at the same time.

Multi-load optimization problems are employed to find

a trade-off between optimal topologies for each loading

state.

2.7 Compliant mechanisms

Compliant mechanisms are flexible structures that trans-

fer an action (force or displacement) at the input port

to the output port, obtaining a desired force or displace-

ment at that port. The objective function, J , can be

expressed in terms of the displacement at the output

port, when maximum displacement is sought, as

J (uχ) ≡ 1Tûχ , (34)

where 1 represents a dummy constant force vector ap-

plied only on the output port at the desired direction.

Additional springs, denoted by Kin and Kout, must be

considered in the input and output ports, respectively.

In the context of finite element discretization, like

in equation (25), the topology optimization problem (4)

can be expressed as

min
χ∈Uad

J (he)(uχ(t)) ≡ −1Tûuuχ(t) (a)

subject to:

C(χ, t) := t− |Ω
−|(χ)

|Ω|
= 0 ; t ∈ [0, 1] (b)

governed by:

Kχûuuχ = f (c)

, (35)

where the cost function (34) has been defined as a min-

imization problem by changing its sign.

Contrary to the problem of minimal compliance (sec-

tion 2.5), the compliant mechanism problem is not self-

adjoint. Thus, an auxiliary state problem must be solved

in addition to the original state problem (22). Both sys-

tems present the same stiffness matrix Kχ but different

actions and solutions ûuu(1)χ and ûuu(2)χ , respectively, defined

as{
Kχ ûuu(1)χ = f (1) (system I)

Kχ ûuu(2)χ = 1 (system II)
(36)

Following Oliver et al. [22], the relaxed topological

derivative of the optimization problem (35), once the

adjoint state equation (36) has been substituted in, can

be expressed as

δJ (he)
(χ)

δχ
(x̂) =

[
ûuu(2) T
χ

δKχ
δχ

(x)ûuu(1)χ − ûuu
(2) T
χ

δf
(1)
χ

δχ
(x)

]
x=x̂

.

8 Daniel Yago et al.

(37)

As proceeded in section 2.5, equation (37) can be

simplified and expressed in terms of a pseudo-energy

density, yielding to

δJ (he)
(uχ)

δχ
(x̂) = 2mk (χk(x̂))

mk−1 U1−2(x̂)∆χk(x̂) ,

(38)

when volumetric forces are neglected. The correspond-

ing nominal pseudo-energy density can be determined

as

U1−2(x̂) =
1

2

(
∇Su(2)

χ : C :∇Su(1)
χ

)
(x̂) . (39)

Finally, mimicking equation (30), the pseudo-energy,

ξ(x̂, χ), can be obtained as

ξ(x̂, χ) = −γ1û(2)(x̂)
T
[
B(x̂)

TCB(x̂)
]

û(1)(x̂) . (40)

3 MATLAB implementation

The user can run the code from the Matlab prompt

with the following Matlab call

UNVARTOP_2D_compliance (nelx ,nely ,nsteps ,

Vol0 ,Vol ,k,tau)

where nelx and nely stand for the number of quadri-

lateral elements in the horizontal and vertical direc-

tions, respectively.5 The following four parameters de-

fine the time evolution of the optimization procedure,

being nsteps the number of increments to get from the

initial void volume (Vol0) to the final void volume (Vol

), and parameter k defines the curvature of the expo-

nential function, in case this type of time-advancing

sequence is preferred. For an equally-spaced pseudo-

time advance, set k to 0. The remaining input vari-

able, tau, rules the minimum filament’s width of the

optimal design. Other variables related with the topol-

ogy optimization algorithm and the numerical example

(geometry and boundary conditions) are defined inside

the function (see Appendix A), and can be modified if

needed.

For instance, the code can be called with the input

line

UNVARTOP_2D_compliance

(100 ,50 ,10 ,0 ,0.5 ,0 ,0.5)

5The design domains are assumed to be rectangular domains
discretized with quadrilateral unit square finite elements.

F

u

x
y

Fig. 4 Cantilever beam: topology optimization domain and
boundary conditions.

for the default example, which corresponds to a can-

tilever beam with a vertical load applied on the bottom-

right corner of Ω, and the displacements are prescribed

on the left side of it, as illustrated in Figure 4. The

algorithm generates two output figures, the first one

displays the optimal topology for each iteration, and

the second one shows the evolution of the cost function

Jχ and the void volume, |Ω−| along the time-steps, as

depicted in Figure 5. At the end, a graphical user inter-

Fig. 5 Cantilever beam: topology optimization results.

Topology Optimization using the UNsmooth VARiational Topology OPtimization (UNVARTOP) method 9

face (GUI) with topology evolution, animated in Online

Resource 1, is shown.

Relevant details of the Matlab code are explained in

the following subsections for the minimum mean com-

pliance problem (section 2.5), referring to the code in

Appendix A, along with the required modifications to

solve the topology optimization problems defined in sec-

tions 2.6 and 2.7.

3.1 Parameter definition: lines 2-4

Table 1 shows the list of variables and fields required by

the program and used along it, excluding the variables

already defined in the previous section. These parame-

ters can be grouped in three blocks: all the parameters

of the first block are related to the physical problem

and the finite element used in the FEM analysis, the

next three parameters conform the second block, which

define the threshold iterations of the algorithm, and the

last one defines a structure of optional parameters to

choose which graphics are displayed and which solver

is used to solve the Laplacian regularization.

3.2 Geometry definition: lines 5-9

The design domain, as aforementioned, is assumed to be

rectangular and discretized with square elements. The

FE mesh is defined via the coordinates and connectiv-

ities arrays, named coord and connect in the code. A

coarse example mesh of the default example, see Figure

4, is illustrated in Figure 6, consisting of 15 nodes and

8 elements, numbered in column-wise (top to bottom)

from left to right. The position of each node is defined

respect to Cartesian coordinate system with origin at

the left-bottom corner.

The coord matrix is generated using Matlab’s meshgrid

function and then, the obtained X,Y matrices are re-

shaped into the coordinates matrix, which dimensions

x

y

F

Fig. 6 Cantilever beam: mesh discretization.

Table 1 List of fields used in the code.

Variable Value Definition

n_dim 2
number of dimensions
of the problem

n_unkn 2
number of unknown
per node

n_nodes 4

number of nodes per
element (e.g. 4 nodes
for the quadrilateral
element)

n_gauss {1, 4}

total number of
quadrature points
of the quadrilateral
element

n
(nelx+1)

*(nely+1)
total number of nodes

h_e 1 element’s size

alpha0 1e-3
Prescribed value of
ψ for active/passive
nodes

iter_max_step 20
maximum number of
in-step iterations

iter_min_step 4
minimum number of
in-step iterations

iter_max 500
maximum number of
iterations

opt.

Plot_top_iso

{true,
false}

Boolean variable to
plot the topology
along iterations

opt.

Plot_vol_step

{true,
false}

Boolean variable to
plot the evolution of
the volume along iter-
ations

opt.EdgeColor

{’none’,
RGB-
color}

RGB color of the
sides of the quadrilat-
eral elements

opt.

Solver_Lap

{’direct’,
’iterative’}

method to solve the
Laplacian regulariza-
tion

are [n x n_dim], i.e.

coord =

[
0 0 0 1 1 . . . 4 4 4

2 1 0 2 1 . . . 2 1 0

]T
. (41)

The connectivity matrix, connect, is constructed fol-

lowing the same procedure for computing the degree of

freedom connectivity matrix, edofMat, described by An-

dreassen et al. [5]. First, matrix nodenrs is created with

node IDs in a (nely+1)x(nelx+1) matrix in line 7, mim-

icking the numbering in Figure 6. Next, the left-bottom

node ID of each element is stored in nodeVec vector, by

using matrix nodenrs. For the given example, this vari-

ables are defined as follows:

nodenrs =

1 4 7 10 13

2 5 8 11 14

3 6 9 12 15

 →
→ nodeVec = [2, 3, 5, 6, 8, 9, 11, 12]T .

(42)

https://github.com/DanielYago/UNVARTOP/blob/master/Online_Resources/ESM_01.gif
https://github.com/DanielYago/UNVARTOP/blob/master/Online_Resources/ESM_01.gif

10 Daniel Yago et al.

Finally, thanks to the repetitive structure of the grid,

the connectivity table, connect, can be constructed us-

ing only nodeVec and numbering within an element in

anticlockwise order starting from the left-bottom node,

which reads as

connect =

2 5 4 1

3 6 5 2
...

...
...

...

11 14 13 10

12 15 14 11

 . (43)

3.3 Load and boundary definition: lines 10-17

Lines 11-17 define the boundary conditions for the dis-

placement and force field. First, the force vector, F, and

the displacement vector, U, are initialized in lines 11

and 12, respectively. Next, line 13 assigns the imposed

force to the force vector, which corresponds to a down-

wards force applied at the bottom right corner, as il-

lustrated in Figure 4, with a small value to limit the

maximum displacement of the structure. The next line

defines the prescribed degrees of freedom, and stores

them in fixed_dofs.

Parameters active_node and passive_node of line 15

are used to force some nodes to be included in the stiff

(Ω+) and soft (Ω−) material domains, respectively. It

is done via the modification of the discrimination func-

tion, psi, as in line 54 for the initialization of the dis-

crimination function or in the bisection algorithm (line

149), by imposing the value alpha0 or -alpha0.

Finally, the list with free degrees of freedom is gener-

ated and stored in free_dofs (line 16), and the displace-

ment of fixed_dofs are prescribed to the corresponding

value, e.g. 0.

3.4 Material definition: lines 18-19

The material used for the analysis is defined in terms

of the Young’s modulus E0, of the stiff phase (material

domain) and the Poisson’s ratio nu, ν (see section 2.2).

In addition, and as a specific parameter of the algo-

rithm, the coefficient m is defined and prescribed to m=5

for the minimum mean compliance problem. This co-

efficient in conjunction with the contrast factor, alpha,

is used to compute the corresponding relaxation factor,

beta. Notice that a noticeably small contrast factor can

be imposed for compliance problem.

3.5 Animation preparation: lines 20-23

Lines 21-23 initialize the vectors psi_vec, chi_vec and

U_vec to 0, which correspond respectively to the dis-

crimination function, the characteristic function and

the displacement vector. This vectors are used to store

the corresponding variables at the convergence of each

time-step (line 103), and are later called by the Topology_

evolution GUI.

3.6 Finite element analysis preprocessing: lines 24-40

As already mentioned, the regularity in the mesh is

highly exploited when computing the global stiffness

matrix, K, to reduce the computational time inside the

optimization loop. For that reason, only two element

stiffness matrices are required, one for the mixed el-

ements6 and another for the other elements. The first

one, is computed with a central quadrature point posgp1

, while the second one requires at least 4 quadrature

points to be correctly integrated, posgp4. The weights

of each point are stored in W1 and W4, respectively. This

information is computed by evoking gauss_points func-

tion (lines 111-114) with the total number of point

inside the quadrilateral element, as will be later ex-

plained.

Next, the nominal constitutive tensor DE for E0 and

nu, assuming plane-stress (equation (19)), is computed

in line 27, by calling D_matrix_stress function. The ele-

ment stiffness matrix, evaluated as

Ke =

∫
Ωe

BT C B dΩ =

ngauss∑
i=1

wi|Ji|BT
i Ci Bi , (44)

is computed in lines 28-34 for solid and void elements,

KE. The equivalent nominal matrix, for bisected ele-

ments, KE_cut is computed in lines 35-37. The strain-

displacement matrix B, defined in lines 119-124 (B_matrix

), is evaluated in each gauss point along with the cor-

responding determinant of the Jacobian. Moreover, the

product BT CB for the i-th gauss point is stored in

KE_i and K_cut, respectively.

Finally, the connectivity table of DOFs, edofMat, is

generated in line 38 using built-in kron and repmat func-

tions. Each row represents the degrees of freedom of a

6The elements bisected by the zero-level of the discrimination
function are sub-integrated with a single quadrature point
according a three-field (εεε-σσσ-û) mixed element. Further details
can be found in [22].

Topology Optimization using the UNsmooth VARiational Topology OPtimization (UNVARTOP) method 11

different element, e.g.

edofMat =

3 4 9 10 7 8 1 2

5 6 11 12 9 10 3 4
...

...
...

...
...

...
...

...

21 22 27 28 25 26 19 20

23 24 29 30 27 28 21 22

 . (45)

This matrix is now used to compute the indices iK and

jK used to generate the global stiffness matrix as a

sparse matrix from the triplets iK, jK and sK, as will

be explained later.

3.6.1 Gauss points, Shape function and Cartesian

derivatives: lines 110-125

The bilinear quadrilateral element is used in the FE

analysis, which consists of four nodes. Its numerical im-

plementation can be found in the literature [44; 26].

This element is correctly integrated when 4 quadra-

ture points are employed. The position and weights

are computed in gauss_points function (lines 111-114),

where the gauss quadrature points in one direction (par-

ent dimension) are extended to two dimensions, using

Matlab’s meshgrid function. posgp defines the position

[ξ, η] in the parent square element, where each column

represent a different point. The weight values are stored

in W as a row vector.

The shape matrix, N, (size n_nodes x n_gauss) is

computed in lines 116-117 inside N_matrix function, as

explained in [44; 26].

Last, the shape derivatives (size n_dim x n_nodes),

the Jacobian matrix J (size n_dim x n_dim) and the Carte-

sian derivatives (size n_dim x n_nodes) are obtained in

B_matrix for a given gauss_points (lines 119-124), as-

suming a square unit element. Finally, the strain-displa-

cement matrix B for the case of interest is computed

(size 3 x n_nodes*n_unkn).

3.6.2 Element Stiffness matrix: lines 125-135

The constitutive tensor of each element depends on the

material properties, which are common to all the ele-

ments, and the characteristic function. Due to this reg-

ularity, the nominal constitutive tensor, C, is computed

only once for the stiff material properties, in lines 126

and 127, and the corresponding stiffness matrix is later

multiplied by the term χmβ , which depends on each ele-

ment. The relaxed characteristic function is calculated

in lines 129-131, inside interp_property function, as fol-

lows

coeff =

{
(χ+ (1− χ)β)

m
for stiffness

m (χ+ (1− χ)β)
m−1

(1− β) for sensitivity

with χ ∈ [0, 1].

The global stiffness matrix is assembled at each iter-

ation inside the optimization loop using Matlab’s sparse

function to addition the components with same i-th (iK)

and j-th (jK) degree of freedom, calling assembly_stiff_mat

. Its definition is written in lines 133-135, where the

third component (sK) for the sparse function is com-

puted. Each column of the sK matrix corresponds to

the stiffness matrix of element e. It is worth emphasiz-

ing that the bisected elements must be multiplied by

KE_cut.

3.7 Laplacian regularization preparation: lines 41-52

Mimicking the preprocessing procedure of the global

stiffness matrix (see section 3.6.2), the lhs matrix of

equation (11) can be computed just once (lines 42-48),

since it does not depend on the topology but on the

mesh, which is regular. Thus, the terms ∇NT∇N and

NTN, which correspond to KE_Lap and ME_Lap defined in

lines 42 and 43, are analytically computed and defined

as

KELap =

∫
Ω

BT B dΩ → KELap =
1

6

4 −1 −2 −1

−1 4 −1 −2

−2 −1 4 −1

−1 −2 −1 4

MELap =

∫
Ω

NT N dΩ →MELap =
1

36

4 −2 −1 −2

2 4 2 1

1 2 4 2

2 1 2 4

 .
Next, combining both matrices and the regularization

parameter τ , the lhs matrix is generated and saved in
KE_Lap (line 44). Lines 45 to 47 define the triplets i_KF,

j_KF and s_KF, which are then used to obtain the sparse

matrix K_Lap in line 48.

Depending on opt.solver_Lap, the Laplacian regu-

larization will be solved using a direct or an iterative

method. This procedure can be sped up by comput-

ing the Cholesky factorization of the lhs (chol(K_Lap,

’lower’)) if the direct method is chosen, or comput-

ing the incomplete Cholesky factorization (ichol(K_Lap,

opts), with opts = struct(’type’,’ict’,’droptol’,1e-3,

’diagcomp’,0.1)) in case an iterative algorithm is de-

sired. It will be later used as a preconditioner.

The rhs must be computed at each iteration, since it

depends on the discrimination function, psi, as detailed

in section 3.8.3. Nevertheless, the resolution procedure

of equation (11) can be prepared by computing both

the shape matrix, N_T, of size n_nodes x n_gauss 7, and

the indexes of the element nodes i_xi (reshaping the

7The matrix is transposed with respect to the common one.

12 Daniel Yago et al.

connectivity matrix into a column vector). The assem-

bly is carried out in lines 83 and 85 evoking accumarray

function.

3.8 Main program: lines 53-107

The main optimization procedure starts by initializing

the topology via the discrimination function to alpha0

, constant to all the nodes, except for those listed in

passive_node. Next, the characteristic function is ob-

tained via compute_volume function. Line 57 is used to

initialize several vectors, which will accumulate the con-

vergence variables (cost function, volume and lambda),

and other essential variables. The initial topology is dis-

played in the next line by means of plot_isosurface.

The optimization starts in line 59, where the loop

over time-steps is defined. As explained in section 2.4,

the reference pseudo-time is iteratively increased follow-

ing a linear or exponential expression, which definition

is written through lines 186-188, and for each time-step

the optimization loop is repeated until convergence is

achieved. The optimization loop (lines 65-99) consists

of five parts: finite element analysis, sensitivity compu-

tation, Laplacian regularization, topology update and

convergence check.

Finally, at each iteration, the topology is plotted

(line 92), the intermediate results are printed in display

(line 96) and the iteration counters are increased (line

97).

3.8.1 Finite element code: lines 66-69

The global stiffness matrix, K, is assembled inside assembly

_stiff_mat function using the sparse function, where

sK is computed considering the corresponding relaxed

characteristic function for each element. Next, in line

68, the equilibrium equation (22) is solved using a di-

rect method. The displacements are stored in U. Next,

the cost function, J, normalized with the one of the

first iteration (J_ref), can be obtained at the current

topology layout.

3.8.2 Sensitivity computation: lines 70-79

According to equation (9), the energy density is defined

as the partial derivative of the cost objective’s kernel

multiplied by the exchange function, ∆χ. The energy

density is computed in two parts, in the first one (lines

72 to 75) the sensitivity of non-bisected elements is ob-

tained for the 4 quadrature points, while the sensitivity

for the mixed elements is calculated in the second part

(lines 76 to 78).

The element sensitivity, as detailed in section 2.5

for the minimum compliance problem, is computed as

mχm−1β uT
eKe,iue (1 − β) for the e-th element and the

i-th gauss point (see equation (30)). However, for the

bisected elements, the element stiffness matrix Ke,i is

replaced by K_cut, and the resultant value is copied to

the four gauss points.

At the first iteration, the parameters xi_shift and

xi_norm are defined as

xi_shift = min(0,min(Energy (:)))

xi_norm = max([range(Energy (:));Energy (:)])

and will be used to obtain the modified energy density,

ξ̂(x), described in equation (10).

3.8.3 Laplacian regularization: lines 80-86

As aforementioned, instead of applying the Laplacian

regularization (11) to the resultant discrimination func-

tion, at each iteration of the bisection algorithm and

since it does not affect constant fields such as λ, the

Laplacian regularization is only implemented for ξ̂. The

corresponding system is defined as{
ξτ − (τhe)

2∆xξτ = ξ̂ in Ω

∇xξτ · n = 0 on ∂Ω
, (46)

where ξ̂ and ξτ stand for the modified unfiltered energy

density and the smooth energy density, respectively. As

commented in section 2.1, the lhs has been precom-

puted (see section 3.7) and the rhs is now computed

based on the modified energy density (field on gauss

points). FE discretization of the rhs leads to

rhs =

∫
Ω

NTξ̂(x) dΩ , (47)

which can be rewritten in matrix form, defined in line

81, as

81 xi_int = N_T*(Energy -xi_shift*chi)/xi_norm;

The nodal contribution of this integral is later con-

structed by means of the built-in accumarray Matlab

function.

The system of linear equations (46), as mentioned,

can be solved using the Cholesky factorization and a

direct solver (line 83) or an iterative solver (e.g. minres

solver) applying the incomplete Cholesky factorization

as the preconditioner of the system, as described in sec-

tion 3.7.

It is worth to mention that for low number of ele-

ments, as it is the case of this paper since it is for aca-

demic purposes, the Laplacian regularization may gen-

erate boundary waves for thin filaments, as displayed

in some figures. This undesirable effect should vanish if

finer meshes are used.

Topology Optimization using the UNsmooth VARiational Topology OPtimization (UNVARTOP) method 13

3.8.4 Update of χ and ψ: line 88

The topology layout, satisfying the constraint equation,

is obtained by means of a bisection algorithm (solu-

tion of equation (13)) called in line 88. The find_volume

functions computes the Lagrange multiplier λ (lambda),

the new discrimination function ψ (psi) and the corre-

sponding characteristic function χ (chi).

Bisection algorithm: lines 137-152 The bisection algo-

rithm consists of a search for a suitable bracket, and

the subsequent root finding. The left and right extremes

of the interval are easily defined by the minimum and

maximum value of the energy density field, and stored

as l1 and l2, respectively. The corresponding constraint

values are saved as c1 and c2. Lines 139-141 tests the

last λ as a trial extreme of the interval, by means of

compute_volume_lambda, to reduce the number of itera-

tions. The bisection loop is written in lines 142 to 146,

where the root of the constraint equation is estimated

as the midpoint of the bracketing interval (line 143).

At each iteration of the bisection, given a density

function xi and a trial lambda, the discrimination func-

tion is obtained at line 149. The active and passive

nodes are considered by modifying the psi function,

as aforementioned. The void volume ratio vol and the

characteristic function chi are obtained from compute_volume

in line 150. Next, the constraint equation is evaluated

in line 151, and the extremes of the interval are updated

accordingly. This procedure is repeated until the void

volume is within 10−4 of the reference time.

Volume computation: lines 153-161 The computation

of the volume is done by means of an integration with 36

quadrature points. This methodology differs for simplic-

ity of the implementation from the one used in Oliver

et al. [22], where a modified marching squares was em-

ployed.

The position and weights of the 36 quadrature points

are assigned as defined in [26]. First, line 158 determines

which elements are bisected by the internal boundary

through the nodal value of the discrimination function.

In case they all have the same sign, the boundary will

not cross throughout the element. Then, the element

nodal ψ, psi_n, is evaluated in the quadrature points

for the bisected elements and saved as psi_x. The char-

acteristic function is obtained as the dot product of W

and phi_x>0. Finally, the void volume ratio is computed

in line 161.

3.8.5 Convergence check: lines 90 and 94

Lines 90 and 94 compute the convergence tolerances

of the algorithm, along with the constraint tolerance

Tol_constr. The convergence is checked inside the while

condition at line 65, and it only converges when the

number of in-step iterations (iter_step) is in between

iter_min_step and iter_max_step, and the three follow-

ing conditions are satisfied: the L2-norm of the charac-

teristic function is less than 0.1, the relative difference

of the Lagrange multiplier with respect the previous one

is less than 0.1, and the volume magnitude is within

10−4 of the desired pseudo-time, t_ref.

The optimization terminates if the maximum num-

ber of iterations, iter_max, or the maximum number of

in-step iterations are achieved, showing a warning mes-

sage in command window.

3.9 Iso-surface plot: lines 92 (162-172)

The plot_isosurface function shows the optimal topol-

ogy via the discrimination function psi in a black-and-

white design, as seen in Figure 5 (top view). The be-

havior of this function depends on the iteration, i.e. the

first time it is called, a figure is generated and its handle

saved as fig_handle. In addition, the topology is repre-

sented using built-in patch function, the handle of which

is stored as obj_handle, by means of the coordinates ma-

trix, connectivity matrix and the nodal discrimination

function. However, only psi field is updated in the other

iterations using set(obj_handle,’FaceVertexCData’,psi)

;.

3.10 Cost function and volume vs. step plot: line 102

(173-184)

The definition of plot_volume_iter function is similar

to that of plot_isosurface function. At iteration 1, it

creates the figure, and two axes using subplot func-

tion. The cost function evolution is illustrated in the

top subplot, while the volume evolution is displayed at

the bottom. At other iterations, the lines are updated

using set function, with the updated J_vec and vol_vec

vectors, respectively.

3.11 Topology evolution GUI: lines 108-109

Once the Topology Optimization problem has been solved,

the results can be graphically post-processed by means

of a graphical user interface (GUI), where the topol-

ogy and displacement fields are displayed for the set of

time-steps. It is created by the following function call:

Topology_evolution(coord ,connect ,[Vol0 ,

vol_vec],psi_vec ,chi_vec ,U_vec);

14 Daniel Yago et al.

Fig. 7 GUI’s design.

where vol_vec corresponds to the set of pseudo-time val-

ues for which the topology has been optimized. Then,

psi_vec and chi_vec correspond respectively to the dis-

crimination function (nodal scalar field) and the char-

acteristic function (element scalar field), each column

corresponding to a different time-step. Similarly, U_vec

correspond to the displacement field, where each col-

umn and layer of the array represent a different loading

condition and a different time-step, respectively.

The interface allows to select the field to display

(psi, chi or the norm of the displacement for any load

condition) and the style of the representation (surface

only, wireframe only and surface plus wireframe). The

user can also choose the scale factor and the displace-

ment field to deform the mesh as it can be observed in

Figure 7.

The set of push-buttons on the top-left area controls

the animation of the topology along the pseudo-time,

the time between time-steps can be modified in the dt

text edit field. The last button corresponds to a toggle-

button, which animates indefinitely the topology until

it is clicked. Depending on the chosen loop style option,

the topology is animated along the time-steps (Volume)

or along the scale factor for a given time-step (Scale

linear and Scale sine).

The possibility to mirror/symmetrize the topology

is the last relevant feature of this figure. A set of check-

boxes allow to symmetrize the mesh and its properties

on any of the sides of the domain.

3.12 Multi-load mean compliance: code modification

According to section 2.6, the program can be easily

adapted to optimize multi-load problems, as shown in

Figure 8. Then, the cost function as well as the sensitiv-

ity are evaluated as weighted averages of each individual

optimization problem.

First, the loads and boundary conditions are changed

to include the second loading state8, defined in the sec-

ond column of F:

11 F = sparse(n_unkn*n,2);

12 U = zeros(n_unkn*n,2);

13-1 F(n_unkn*find(coord (:,2)==nely & coord (:,1)

==nelx) ,1) = 0.01* nelx;

13-2 F(n_unkn*find(coord (:,2)==0 & coord (:,1)==

nelx) ,2) = -0.01* nelx;

Furthermore, an additional column is added to U_vec

by replacing line 23 with

23 U_vec = zeros(n_unkn*size(coord ,1),size(U,2)

,nsteps +1);

Next, the sensitivity computation must be adapted

to include multiple loading states, via a for loop. Then,

lines 73-75 are substituted with

73-1 for i_load =1: size(F,2)

73-2 u_e = reshape(U(edofMat(id ,:) ’,i_load),

n_nodes*n_unkn ,[]); w_e = u_e;

74 for i=1: n_gauss; Energy(i,id) = Energy(i,

id) + sum(w_e.*(KE_i(:,:,i)*u_e) ,1); end

75 end; Energy(:,id) = int_chi .* Energy(:,id);

8More than one additional loading state can be considered.

= +

F
2

u

x
y

F
1

u

x
y

F
1

F
2

u

x
y

Fig. 8 Multi-load beam: topology optimization domain and boundary conditions.

Topology Optimization using the UNsmooth VARiational Topology OPtimization (UNVARTOP) method 15

and equivalently, lines 77 and 78 are replaced by

77-1 for i_load =1: size(F,2)

77-2 u_e = reshape(U(edofMat(id ,:) ’,i_load),

n_nodes*n_unkn ,[]); w_e = u_e;

78-1 Energy(:,id) = Energy(:,id) + repmat(sum(

w_e .*(K_cut*u_e) ,1),n_gauss ,1);

78-2 end; Energy(:,id) = int_chi .* Energy(:,id);

This example can be simulated by the following line

UNVARTOP_2D_multiload

(50 ,50 ,11 ,0 ,0.55 ,0 ,0.5)

The resultant optimal topology, at tref = 0.55, is dis-

played in Figure 9, while the topology evolution is shown

in Online Resource 2. It can be observed in Figure 10

how much the topology differs from the single loading

condition, when the two loads of Figure 8 are applied

at the same time.

Fig. 9 Multi-load beam: optimal topology layout.

Fig. 10 Multi-load beam: optimal topology layout when
loads are applied at the same time.

3.13 Compliant mechanisms: code modification

Mimicking the previous section, the base code in Ap-

pendix A also requires some modifications in order to

optimize compliant mechanisms, as depicted in Figure

11. A second loading state must be solved to compute

the adjoint state w, which is later used in the sensi-

tivity computation. This second state is loaded with a

dummy constant load applied in the output nodes in

the same direction as the desired displacement. Then,

the loads and boundary conditions are modified to

11 F = sparse(n_unkn*n,2);

12 U = zeros(n_unkn*n,2);

13-1 F(n_unkn*find(coord (:,2) >=0.9* nely & coord

(:,1) ==0) -1,1) = 0.0001* nelx;

13-2 F(n_unkn*find(coord (:,2) >=0.9* nely & coord

(:,1)==nelx) -1,2) = -0.0001* nelx;

14-1 fixed_dofs = [reshape(n_unkn*find(coord (:,2)

==nely) ,1,[]) ,...

14-2 reshape(n_unkn*find(coord (:,1)==0 & coord

(:,2) <=0.1* nely)+(-n_unkn +1:0) ,1,[])];

15-1 active_node = find(coord (:,2) >0.9* nely&(

coord (:,1) <0.05* nelx|coord (:,1) >0.95*

nelx));

15-2 passive_node = [];

Notice that the force is applied along a segment, and

not only in a single node. Furthermore, only half of the

design is computed thanks to the symmetry of the de-

sign and some nodes surrounding the input and output

ports are forced to remain as stiff material.

The properties of the material (line 19) should be

also changed to m=3 and alpha=1e-2. This adjustment

increases convergence.

To ensure fast convergence, external springs must

be included in the input and output ports at the same
degrees of freedom as the applied forces. These degrees

are obtained by means of the following lines:

id_in = find(F(:,1)); id_in = sub2ind(

n_unkn *(nely +1)*(nelx +1) *[1 1],id_in ,

id_in);

id_out = find(F(:,2)); id_out = sub2ind(

n_unkn *(nely +1)*(nelx +1) *[1 1],id_out ,

id_out);

F
2

u

x
y

F
1

Fig. 11 Inverter (compliant mechanism): topology optimiza-
tion domain and boundary conditions.

https://github.com/DanielYago/UNVARTOP/blob/master/Online_Resources/ESM_02.gif

16 Daniel Yago et al.

Fig. 12 Inverter (compliant mechanism): optimal topology
layout.

which must be inserted between lines 17 and 18. These

two lists are used inside assembly_stiff_mat, thus its call

has to be replaced by

67 [K] = assmebly_stiff_mat (chi ,KE,KE_cut ,

beta ,m,iK,jK,n_unkn ,nelx ,nely ,id_in ,

id_out);

as well as its definition at line 133

133 function [K] = assmebly_stiff_mat (chi ,KE ,

KE_cut ,beta ,m,iK,jK ,n_unkn ,nelx ,nely ,

id_in ,id_out)

The external springs, using id_in and id_out, are

added to the global stiffness matrix after line 135:

K(id_in) = K(id_in) + 0.002;

K(id_out) = K(id_out) + 0.002;

The prescribed value for the springs must be adjusted

for each individual example.

The cost function must be also replaced by the cor-

responding work at the output port, since the cost func-

tion is defined as the maximization of the output dis-

placement. It is implemented by the following line:

69 if iter == 1; U_vec (:,:,1)=U; J_ref = -abs

(F(:,2) ’*U(:,1)); end; J = F(:,2) ’*U

(:,1)/J_ref;

As in section 3.12, U_vec must be substituted by

23 U_vec = zeros(n_unkn*size(coord ,1) ,2,nsteps

+1);

Finally, the displacements of the adjoint system, used

in the calculation of the sensitivity, must be replaced by

the corresponding displacements of the second system.

Thus, these lines are now defined as

73-1 u_e = reshape(U(edofMat(id ,:) ’,1),n_nodes*

n_unkn ,[]);

73-2 w_e = -reshape(U(edofMat(id ,:) ’,2),n_nodes

*n_unkn ,[]);

and

77-1 u_e = reshape(U(edofMat(id ,:) ’,1),n_nodes*

n_unkn ,[]);

77-2 w_e = -reshape(U(edofMat(id ,:) ’,2),n_nodes

*n_unkn ,[]);

The optimal topology, for the given boundary con-

ditions, illustrated in Figure 12 can be performed with

UNVARTOP_2D_complmechanism

(100,50,10 ,0 ,0.8,-2,0.5)

The resultant compliant mechanism is animated in On-

line Resource 3.

4 Numerical examples

The following numerical examples exhibit the poten-

tial of the unsmooth variational topology optimization

technique in 2D problems. Unless otherwise stated, the

parameters and material properties are left as the de-

fault examples, for each of the three optimization prob-

lems described in this work. The design domain, the

function call and the boundary conditions for each ex-

ample are defined in Table 2.

4.1 Cantilever beam

A variation of the initial examples is now performed.

In this case, the load is not applied at the bottom-right

corner but in the middle of the right side of the do-

main, as depicted in the first row of Table 2. Dirichlet

conditions are not modified, i.e. the displacements are

prescribed on the left boundary of the domain. The

optimal topology layout, for the last time-step, is illus-

trated in Figure 13, with the values from Table 2. That

is, the interval of interest [0, 0.65] is discretized with 12

Fig. 13 Cantilever beam (load applied at the middle): opti-
mal topology layout.

https://github.com/DanielYago/UNVARTOP/blob/master/Online_Resources/ESM_03.gif
https://github.com/DanielYago/UNVARTOP/blob/master/Online_Resources/ESM_03.gif

Topology Optimization using the UNsmooth VARiational Topology OPtimization (UNVARTOP) method 17

Table 2 List of examples.

Domain Matlab’s call Boundary conditions

Fx
y

UNVARTOP_2D_compliance

(100, 50, 12, 0,

0.65, 0, 0.5)

F(n_unkn*find(coord (:,2)==round (0.5* nely)

& coord (:,1)==nelx) ,1) = -0.01* nelx;

fixed_dofs = reshape(n_unkn*find(coord

(:,1) ==0)+(-n_unkn +1:0) ,1,[]);

active_node = []; passive_node = [];

F

x
y

UNVARTOP_2D_compliance

(150, 50, 10, 0,

0.6, 0, 1)

F(n_unkn*find(coord (:,2)==nely & coord

(:,1) ==0) ,1) = -0.01* nelx;

fixed_dofs = [reshape(n_unkn*find(coord

(:,1) ==0) -1,1,[]) ,...

reshape(n_unkn*find(coord (:,1)==nelx

& coord (:,2) ==0) ,1,[])];

active_node = []; passive_node = [];

x
y

F

UNVARTOP_2D_compliance

(100, 100, 12,

0.36, 0.75, 0,

0.5)

F(n_unkn*find(coord (:,2)==round (0.2* nely)

& coord (:,1)==nelx) ,1) = -0.01* nelx;

fixed_dofs = reshape(n_unkn*find(coord

(:,1) <=0.4* nelx & coord (:,2)==nely)+(-

n_unkn +1:0) ,1,[]);

active_node = [];

passive_node = find(coord (:,1)>ceil(nelx

*0.4) & coord (:,2)>ceil(nely *0.4));

x
y

F UNVARTOP_2D_compliance

(240, 200, 32,

0, 0.775 , 0, 0.5)

F(n_unkn*find(coord (:,2)==floor(nely

1.6/5)) ,1) = -0.01 nelx;

fixed_dofs = [reshape(n_unkn*find(coord

(:,1) ==0) -1,1,[]) ,...

reshape(n_unkn*find(coord (:,1)

>=5.75/6* nelx & coord (:,2) ==0)+(-

n_unkn +1:0) ,1,[]) ,...

reshape(n_unkn*find(coord (:,1)==nelx

& coord (:,2)== floor(nely *1.5/5)) ,1,[])

];

active_node = find(coord (:,2) >=nely *1.5/5

& coord (:,2) <=nely *1.6/5);

passive_node = [];

x
y

F
1 F

2

UNVARTOP_2D_

complmechanism

(150, 75, 14, 0,

0.85, -2, 0.5)

F(n_unkn*find(coord (:,2) >=0.9* nely & coord

(:,1) ==0) -1,1) = 0.0001* nelx;

F(n_unkn*find(coord (:,2)==round (0.9* nely)

& coord (:,1) >=0.9* nelx) ,2) = 0.0001*

nelx;

fixed_dofs = [reshape(n_unkn*find(coord

(:,2)==nely) ,1,[]), reshape(n_unkn*

find(coord (:,1)==0 & coord (:,2) <=0.1*

nely)+(-n_unkn +1:0) ,1,[])];

active_node = [find(coord (:,2) >0.9* nely&

coord (:,1) <0.05* nelx); find(coord (:,2)

>0.9* nely&coord (:,2) <=0.95* nely&coord

(:,1) >=0.9* nelx)];

passive_node = [find(coord (:,1) >0.8* nelx &

coord (:,1) <0.9* nelx & coord (:,2) >0.8*

nely); find(coord (:,1) >=0.9* nelx &

coord (:,2) >0.95* nely)];

18 Daniel Yago et al.

Domain Matlab’s call Boundary conditions

x
y

F
1

F
2

UNVARTOP_2D_multiload

(200, 100, 24,

0, 0.6, 0, 0.5)

F(n_unkn*find(coord (:,2)==0 & coord (:,1)==

round(nelx /2)) -1,1) = -0.01* nelx;

F(n_unkn*find(coord (:,2)==0 & coord (:,1)==

round(nelx /2)) ,1) = -2*0.01* nelx;

F(n_unkn*find(coord (:,2)==0 & coord (:,1)==

round(nelx /2)) -1,2) = 0.01* nelx;

F(n_unkn*find(coord (:,2)==0 & coord (:,1)==

round(nelx /2)) ,2) = -2*0.01* nelx;

fixed_dofs = reshape(n_unkn*find((coord

(:,1)==0 & coord (:,2) ==0) | (coord

(:,1)==nelx & coord (:,2) ==0))+(-n_unkn

+1:0) ,1,[]);

active_node = []; passive_node = [];

(a) (b)

(c) (d)

Fig. 14 Cantilever beam: topology evolution. (a) optimal
topology at tref = 0.11, (b) optimal topology at tref = 0.22,
(c) optimal topology at tref = 0.38 and (d) optimal topology
at tref = 0.54.

equally spaced steps and the regularization parameter

is prescribed to τ = 0.5. In addition, the topology evo-

lution, shown in the animation (Online Resource 4), is

displayed in Figure 14 for time-steps 2, 4, 7, and 10.

Similar results obtained with other optimization tech-

niques can be found in [30; 8; 43; 11].

4.2 Messerschmitt-Bölkow-Blohm (MBB) beam

Half of the MBB-beam, with an aspect ratio of 3:1, is

optimized in the second example. Symmetry is assumed

on the left side of the domain and the vertical displace-

ment at the bottom-right corner is constrained, as ob-

served in Table 2, and only a point-wise load is applied

at the top-left corner. The last requested tref = 0.6 is

achieved in 10 time steps. Figure 15 depicts the result-

ing optimal topology layout using the provided code,

adapted with the corresponding boundary conditions

(see second row of Table 2). Additionally, Online Re-

source 5 displays the animation of optimal topologies

Fig. 15 MBB beam: optimal topology layout.

for the given time-steps. The results are comparable to

those presented by [27; 5; 32; 43; 11], among others.

4.3 L-Shape structure

The L-Shape structure, shown in Table 2, represents

a simplified version of a hook. The domain has a pre-

scribed void zone in the top right area, defined by xi ≥
0.4 and yi ≥ 0.4. All the nodes contained in this area

are listed in passive_node. A single vertical load is ap-

plied on the right side of the domain at y = 0.2.9 The

nodes on the top-left boundary (y = 1 and x < 0.4) are

fixed. The optimal configuration, shown in Figure 16,

is obtained by the inputs described in Table 2. As in

previous examples, the topology evolution is animated

in Online Resource 6. Similar optimal designs are ob-

tained by Biyikli and To [8] and Liu and Tovar [18], for

2D and 3D problems, respectively.

9All measures are relative to the dimensions of the domain.

https://github.com/DanielYago/UNVARTOP/blob/master/Online_Resources/ESM_04.gif
https://github.com/DanielYago/UNVARTOP/blob/master/Online_Resources/ESM_05.gif
https://github.com/DanielYago/UNVARTOP/blob/master/Online_Resources/ESM_05.gif
https://github.com/DanielYago/UNVARTOP/blob/master/Online_Resources/ESM_06.gif

Topology Optimization using the UNsmooth VARiational Topology OPtimization (UNVARTOP) method 19

Fig. 16 L-shape structure: optimal topology layout.

4.4 Bridge

The fourth numerical example in Table 2 corresponds

to a bridge, which domain is given by 12x5 rectangle.

However, only half of it is optimized thanks to the cen-

tral symmetry. Then, the horizontal displacement on

the left side of the domain is prescribed to 0. In ad-

dition, the domain is supported by a small segment

on the bottom-right corner of it and the vertical dis-

placement is prescribed at the right side of the road.

A distributed vertical downside load is applied on the

road, which does not change throughout the optimiza-

tion procedure (i.e. it can not be removed since all its

nodes are included in active_node list). The correspond-

ing boundary conditions of this problem are listed in

Table 2.

The optimal topology, at tref = 0.775, is displayed

in Figure 17, along with the corresponding animation in

Online Resource 7. The topology in Figure 17 is closely

similar to that obtained by Feijoo et al. [13] and Liang

Fig. 17 Bridge: optimal topology layout.

and Steven [17]. Furthermore, the design can be com-

pared with the solution of a multi-load problem done

by [19].

4.5 Gripper mechanism

Let us now consider a compliant mechanism different

from the one explained in section 3.13 and inspired by

[22; 41]. The goal of this optimization is to maximize the

compressive displacement at the output port (vertical

displacement at the top-right side) when an horizontal

force is applied at the input port (top-left side of the do-

main). The domain is supported by a small area in the

bottom-left corner and symmetry is applied on the top

side of Ω, as it can be observed in Table 2 (fifth row).

A small area in the output port is set to soft material

(i.e. included in passive_node list) in order to represent

the gap in the jaws of the gripper. Furthermore, some

stiff material areas are restricted in both ports, and the

Fig. 18 Gripper (compliant mechanism): optimal topology
layout. The central hinge is highlighted with a gray square.

Fig. 19 Gripper (compliant mechanism): close-up view of
the central hinge.

https://github.com/DanielYago/UNVARTOP/blob/master/Online_Resources/ESM_07.gif

20 Daniel Yago et al.

corresponding spring stiffness values must be replaced

by 0.01.

The pseudo-time is updated following an exponen-

tial expression in 14 time steps. The given optimal topol-

ogy of Figure 18 is obtained evoking UNVARTOP_2D_compl

mechanism function with the appropriate boundary con-

ditions. A close-up view of the central hinge is illus-

trated in Figure 19, where the flexible (thin) material,

circled in red, performs as a hinge. The compliant mech-

anism of Figure 18 is animated in Online Resource 8,

where the displacements are updated following a sinus

function.

4.6 Michell multi-load structure

The last numerical example corresponds to a multi-load

mean compliance problem with two loading states. The

2x1 rectangular domain is supported by its two bottom

corners and subjected to a pair of forces in the middle

Fig. 20 Multi-load michell structure: optimal topology lay-
out.

Fig. 21 Multi-load michell structure: optimal topology lay-
out when loads are applied at the same time.

of the bottom side at an angle of 30° with respect to

the vertical. The desired pseudo-time is prescribed to

0.6, which optimal topology is illustrated in Figure 20.

The topology animation is given in Online Resource 9.

The topology layout, as already noted, deviates from

the corresponding optimal topology when both loads

are applied at the same time, as shown in Figure 21.

In this setting, the bottom bars, which connect the

supporting nodes with the central node, have been re-

moved. The problem definition is based on [19]. Other

variations can be found in [10; 32].

5 Extensions

5.1 Bisection algorithm

The bisection algorithm of the cutting&bisection algo-

rithm, which estimates the solution as the midpoint of

the bracketing interval (see section 3.8.4), can be eas-

ily improved by introducing either a regula falsi method

[9] or a more sophisticated method, like the Anderson-

Björk with Illinois algorithm [4]. These two mathemati-

cal techniques reduce the number of iterations required

to find the root of the constraint equation ((25)-b), C.

5.1.1 Regula falsi

In order to compute the test lambda10 through the regula

falsi approximation inside the bisection algorithm [9],

line 143 must be replaced by

143 lambda = l1 - c1*(l2 -l1)/(c2-c1);

where l1 and l2 stand for the left and right λ brack-

ets, while c1 and c2 are respectively the corresponding

constraint values. The linear interpolation with the end-

points of the bracketing interval is used to find the value

of the root, i.e. the root is approximated as the inter-

secting point between the line joining the extremes and

the x-axis. Next, the subinterval is updated by checking

the sign of the constraint equation at lambda, as men-

tioned in section 3.8.4, until the tolerance is attained.

5.1.2 Anderson-Björck with Illinois algorithm

The regula falsi method usually converges faster than

the the regular bisection algorithm. However, for some

specific situations, it can show slower convergence. To

avoid these numerical instabilities, the Anderson-Björck

algorithm with an Illinois algorithm [4] is implemented.
11 Lines 143 and 152 are changed to:

10The Lagrange multiplier is denoted as lambda in the code.
11On one hand, the Illinois method [12] seeks to eliminate the

ill-condition generated by permanently retaining one of the

https://github.com/DanielYago/UNVARTOP/blob/master/Online_Resources/ESM_08.gif
https://github.com/DanielYago/UNVARTOP/blob/master/Online_Resources/ESM_09.gif

Topology Optimization using the UNsmooth VARiational Topology OPtimization (UNVARTOP) method 21

143 lambda = l1 - c1*(l2 -l1)/(c2-c1);

and

152-1 if c2*Tol_constr <=0; l1=l2; c1=c2; l2=

lambda; c2=Tol_constr;

152-2 else; g=1- Tol_constr/c2; g=(g-0.5) *(g>0)

+0.5; l2=lambda; c1=g*c1; c2=Tol_constr;

end

With these changes, the number of iterations and the

computational cost/time of the optimization procedure

is reduced.

5.2 Plane-strain assumption

The corresponding constitutive tensor, C, for the plane-

strain assumption

CPstrain =
E

(1− ν)(1− 2ν)

 1− ν ν 0

ν 1− ν 0

0 0
1− 2ν

2

(48)

can be easily used by replacing the definition of the

constitutive tensor of the plane-stress assumption, see

section 2.2, in lines 126-127 with the following

126 function [DE] = D_matrix_strain(E,nu) %

Planestrain

127 DE = E/((1+nu)*(1-2*nu))*[(1-nu) nu 0;nu (1-

nu) 0;0 0 (1-2*nu)/2];

Line 27 must be also modified, to call the D_matrix_strain

function, to

27 [DE] = D_matrix_stress(E0,nu);

5.3 Augmented Lagrangian to impose volume

constraint

The constraint equation (25)-b, C, can be also imposed

through an Augmented Lagrangian method [20], which

updates the lagrangian multiplier according the follow-

ing definition

λi+1 = λi + ρCi , (49)

to prescribed an equality constraint. The penalty value,

ρ, can be either set to a constant value or increased

end-points (always set to the left bracket in the code). This
issue is fixed by multiplying the retained extreme point by g =
0.5. On the other hand, Anderson-Björck algorithm improves
the regula falsi approach by combining linear interpolation
(when the left bracket should be replaced) with parabolic
interpolation (when the right bracket should be replaced).
Furthermore, it includes an Illinois-scheme with g = 1 −
C(λ)
C(λ2)

, when g is positive, or 0.5, otherwise.

along iterations, which improves convergence rate. Then,

the penalty coefficient is updated as

ρi+1 =

{
min (1.02ρi, 100ρ0) for |Ci+1 − Ci| < 10−3

ρi otherwise ,

(50)

where ρ0 corresponds to the initial penalty value and

i represents the i-th iteration. The values 1.02 and 100

can be modified at the user’s discretion, and will highly

depend on each specific numerical example. In this im-

plementation, the Lagrangian equation (8) is defined as

L = J + λC +
1

2
ρC2 . (51)

In order to impose the constraint with this method-

ology, a few changes need to be made to the original

code of Appendix A. First, the initialization of con-

straint vector and the penalty value must be initialized

by inserting

Tol_constr_vec = []; rho = rho0;

between lines 57 and 58, and the constraint must be

computed before starting the optimization loop, just

below line 64:

Tol_constr = t_ref - vol;

and stored in the corresponding vector after line 95

Tol_constr_vec = [Tol_constr_vec ,abs(

Tol_constr)];

The convergence criteria of line 65 must be also changed

to include the constraint equation as an extra conver-

gence condition by introducing abs(Tol_constr)>1e-3.
Second, the bisection algorithm (lines 137-146) and

its function call in the optimization loop (line 88) must

be replaced with the corresponding updating of λ and

ρ (equations (49) and (50)), defined as

function [lambda ,rho ,chi ,psi ,vol ,Tol_constr]

= find_volume (iter ,xi,connect ,

active_node ,passive_node ,t_ref ,lambda ,

rho ,rho0 ,alpha0 ,Tol_constr ,

Tol_constr_vec)

lambda = lambda + rho * Tol_constr;

psi = xi - lambda; psi(passive_node) = -

alpha0; psi(active_node) = alpha0;

[vol ,chi] = compute_volume (psi ,connect);

Tol_constr = -(vol -t_ref);

if iter >=3; rho = min (0.02* rho*(abs(diff(

Tol_constr_vec(end -1:end)))<1e-3) + rho

,100* rho0); end

and

88 [lambda ,rho ,chi_n ,psi ,vol ,Tol_constr] =

find_volume (iter ,xi,connect ,active_node

,passive_node ,t_ref ,lambda ,rho ,rho0 ,

alpha0 ,Tol_constr ,Tol_constr_vec);

22 Daniel Yago et al.

Last, the cost function must be computed according

equation (51), which takes into account the constraint

equation. The additional terms are summed in one ex-

tra line under line 69:

J = J + nelx*nely*(lambda*Tol_constr + rho

*Tol_constr ^2)/J_ref*xi_norm;

5.4 Thermal problem

According to Yago et al. [40], the implementation of

the thermal compliance problem is rather analogous

to the structural mean compliance problem, detailed

in section 2.5. In that case, the temperature, θ̂, is the

only unknown per node (n_unkn=1) and the steady-state

problem is used as the state equation. Therefore, the

cost function (24) has to be replaced by

J (θχ) ≡ 1

2
l(θχ) =

1

2
aχ(θχ, θχ) =

≡ 1

2

(∫
Ω

∇θχ ·κκκχ ·∇θχ dΩ
)

=

∫
Ω

Uχ dΩ ,
(52)

where l(θχ) and aχ(θχ, θχ) correspond to the bilinear

forms of the thermal problem. Furthermore, ∇θχ and

κκκχ represent the thermal gradient vector and the sym-

metric second order thermal conductivity tensor, re-

spectively. Unlike the elastic material behavior used in

section 2.2, the conductive material follows Fourier’s

law, i.e. the heat flux is proportional to the thermal

gradient by q(x, χ) = −κκκ(x, χ) ·∇θχ(x).

The state equation (14) must be also substituted by

Find the temperature field θθθχ ∈ U(Ω) such that

a(w, θχ) = l(w) ∀w ∈ V(Ω)

where

a(w, θχ) =

∫
Ω

∇w(x) ·κκκχ(x) ·∇θχ(x) dΩ ,

l(w) = −
∫
∂qΩ

w(x)q(x) dΓ

+

∫
Ω

w(x)rχ(x) dΩ ,

(53)

(54)

(55)

where U(Ω) and V(Ω) stand for the corresponding set

of admissible temperature fields and the corresponding

space of admissible virtual temperature fields, respec-

tively. r(x, χ) and q(x) correspond respectively to the

heat source function and the prescribed heat flux on

the boundaries of Ω.

After applying the RTD to equation (52), mimicking

the procedure described in section 2.5, the resultant

pseudo-energy, ξ(x̂), is expressed as

ξ(x̂, χ) = 2mκ (χκ(x̂))
mκ−1 U(x̂)∆χκ(x̂) , (56)

with

U(x̂) =
1

2

(
∇θχ ·κκκ ·∇θχ

)
(x̂) ≥ 0 . (57)

Several modification to the provided code, based on

equation (52) to (56), are required in order to solve ther-

mal problems. The most relevant ones are listed next:

the number of unknowns per node must be set to 1, the

gradient matrix, B, must be adjusted to be equal to

the Cartesian derivatives, the material property is now

the conductivity value of the high conductive material

instead of E and ν and the constitutive tensorκκκ is now

defined as

κκκ = κ

[
K11 K12

K21 K22

]
. (58)

In addition, boundary condition must be defined ac-

cordingly to the thermal problem.

5.5 3D extension

The topology optimization code UNVARTOP can be

readily extended to solve 3D problems. All the func-

tions related to FE analysis must be rewritten, starting

from the mesh, the shape matrices N, the correspond-

ing strain-displacement matrices B and the constitutive

tensor C. Therefore, element stiffness matrices should

be recomputed, along with the stiffness and mass matri-

ces for the Laplacian regularization. It is recommended

to use an iterative solver (e.g. minres solver) to compute

the displacements, as employed for the Laplacian regu-

larization (see section 3.8.3), in order to reduce compu-

tational cost. Function compute_volume must be slightly

adapted to hexahedral elements. In addition, functions

isosurface, isocaps and isonormals must be used to rep-

resent the optimal topology.

It is important to notice that the algorithm inside

the topology optimization does not require any modifi-

cation.

6 Conclusions

This paper has presented the 2D implementation in

Matlab of the unsmooth variational topology optimiza-

tion approach, previously formulated for structural [22]

and thermal [40] topology optimization problems. The

paper described and implemented the approach for ed-

ucational purposes while demonstrating its capabilities

and maintaining high computational efficiency and read-

ability of the code. Furthermore, the implementation

preserves the finite element analysis of the domain, thus

Topology Optimization using the UNsmooth VARiational Topology OPtimization (UNVARTOP) method 23

introducing students to the numerical analysis as well

as the topology optimization field.

The numerical examples performed in this work il-

lustrate the potential and effectiveness of the technique

to tackle a large set of different problems with a vol-

ume constraint, e.g minimum mean compliance prob-

lems (section 2.5), multi-load mean compliance prob-

lems (section 2.6) and compliant mechanisms synthesis

(section 2.7). The set of numerical examples include

a variety of boundary conditions, active and passive

nodes, number of time-steps, along others. Addition-

ally, section 5.4 shows how to easily switch from the

structural problem of minimum mean compliance to

the thermal problem, where thermal compliance is min-

imized. Finally, section 5.5 provides some guidelines for

the extension of the code to the resolution of 3D prob-

lems.

The topologies obtained for these examples are com-

parable to those shown by other researchers using more

established techniques (e.g. SIMP method or Level-set

method). In addition, smooth topology configuration

have been obtained in all the benchmarks with a rel-

atively small number of iterations. That is a feature

to be highlighted against more conventional techniques

based on elemental densities, such as SIMP method.

In conclusion, the dissemination of this code will

provide newcomers in this field a better understanding

in how this new topology optimization approach works

as well as to encourage future research of this technique

for miscellaneous applications.

The Matlab code, detailed in appendix A, along

with some variations of it, can be downloaded from the

author’s GitHub repository https://github.com/DanielYago.

Additional online resources, such as figures and anima-

tions, are also stored in the repository.

Acknowledgements This research has received funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(Proof of Concept Grant agreement n 874481) through the
project “Computational design and prototyping of acoustic
metamaterials for target ambient noise reduction” (META-
COUSTIC). The authors also acknowledge financial support
from the Spanish Ministry of Economy and Competitiveness,
through the research grant DPI2017-85521-P for the project
“Computational design of Acoustic and Mechanical Metama-
terials” (METAMAT) and through the “Severo Ochoa Pro-
gramme for Centres of Excellence in R&D” (CEX2018-000797-
S). D. Yago acknowledges the support received from the Span-
ish Ministry of Education through the FPU program for PhD
grants.
Conflict of interest

The authors declare that they have no conflict of inter-

est as regards this work.

Appendix A Matlab code

1 function [iter ,J] = UNVARTOP_2D_compliance (nelx ,nely ,nsteps ,Vol0 ,Vol ,k,tau)

2 n_dim = 2; n_unkn = 2; n_nodes = 4; n_gauss = 4; n = (nelx +1)*(nely +1); h_e = 1; alpha0 = 1

e-3;

3 iter_max_step = 20; iter_min_step = 4; iter_max = 500;

4 opt = struct(’Plot_top_iso ’,1,’Plot_vol_step ’,1,’EdgeColor ’,’none’,’solver_Lap ’,’direct ’);

5 %% Vector for assembling matrices

6 [X,Y] = meshgrid (0:nelx ,nely : -1:0); coord = [X(:),Y(:)]; clear X Y

7 nodenrs = reshape (1:n,1+nely ,1+ nelx);

8 nodeVec = reshape(nodenrs (1:end -1,1:end -1)+1,nelx*nely ,1); clear nodenrs;

9 connect = nodeVec +[0 nely +[1 0] -1]; clear nodeVec;

10 %% Loads and boundary setting for Cantilever beam

11 F = sparse(n_unkn*n,1);

12 U = zeros(n_unkn*n,1);

13 F(n_unkn*find(coord (:,2)==0 & coord (:,1)==nelx) ,1) = -0.01* nelx;

14 fixed_dofs = reshape(n_unkn*find(coord (:,1) ==0)+(-n_unkn +1:0) ,1,[]);

15 active_node = []; passive_node = [];

16 free_dofs = setdiff (1:(n_unkn*n),fixed_dofs);

17 U(fixed_dofs ,:) = 0;

18 %% Parameter definition

19 m = 5; E0 = 1; alpha = 1e-6; beta = nthroot(alpha ,m); nu = 0.3;

20 %% Prepare animation

21 psi_vec = zeros(size(coord ,1),nsteps +1);

22 chi_vec = zeros(size(connect ,1),nsteps +1);

23 U_vec = zeros(n_unkn*size(coord ,1) ,1,nsteps +1);

24 %% Finite element analysis preparation

25 [posgp4 ,W4] = gauss_points(n_gauss);

26 [posgp1 ,W1] = gauss_points (1);

27 [DE] = D_matrix_stress(E0,nu);

https://github.com/DanielYago/UNVARTOP

24 Daniel Yago et al.

28 KE = zeros(n_nodes*n_unkn ,n_nodes*n_unkn);

29 KE_i = zeros(n_nodes*n_unkn ,n_nodes*n_unkn ,n_gauss);

30 for i=1: n_gauss

31 [BE ,Det_Jacobian] = B_matrix(posgp4(:,i),n_unkn ,n_nodes);

32 KE_i(:,:,i) = BE ’*DE*BE;

33 KE = KE + KE_i(:,:,i)*Det_Jacobian*W4(i);

34 end

35 [BE_cut ,Det_Jacobian_cut] = B_matrix(posgp1 ,n_unkn ,n_nodes);

36 K_cut = BE_cut ’*DE*BE_cut;

37 KE_cut = K_cut*Det_Jacobian_cut*W1(1);

38 edofMat = kron(connect ,n_unkn*ones(1,n_unkn)) + repmat(1-n_unkn:0,1,n_nodes);

39 iK = reshape(kron(edofMat ,ones(n_nodes*n_unkn ,1)) ’,(n_nodes*n_unkn)^2* nelx*nely ,1);

40 jK = reshape(kron(edofMat ,ones(1,n_nodes*n_unkn)) ’,(n_nodes*n_unkn)^2* nelx*nely ,1);

41 %% Laplacian filter preparation

42 KE_Lap = 1/6* [4 -1 -2 -1;-1 4 -1 -2;-2 -1 4 -1;-1 -2 -1 4];

43 ME_Lap = 1/36*[4 2 1 2; 2 4 2 1; 1 2 4 2; 2 1 2 4];

44 KE_Lap = ME_Lap + (tau*h_e).^2* KE_Lap;

45 i_KF = reshape(kron(connect ,ones(n_nodes ,1))’,n_nodes ^2* nelx*nely ,1);

46 j_KF = reshape(kron(connect ,ones(1,n_nodes))’,n_nodes ^2* nelx*nely ,1);

47 s_KF = reshape(KE_Lap (:)*ones(1,nelx*nely),n_nodes ^2* nelx*nely ,1); clear KE_Lap ME_Lap;

48 K_Lap = sparse(i_KF ,j_KF ,s_KF);

49 if strcmp(opt.solver_Lap ,’direct ’); LF = chol(K_Lap ,’lower ’); clear K_Lap i_KF j_KF s_KF;

50 else; LF = ichol(K_Lap , struct(’type’,’ict’,’droptol ’,1e-3,’diagcomp ’ ,0.1)); clear i_KF

j_KF s_KF; end

51 i_xi = reshape(connect ’,n_nodes*nelx*nely ,1);

52 N_T = N_matrix(posgp4).*W4/4;

53 %% Loop over steps

54 psi = alpha0*ones(n,1); psi(passive_node) = -alpha0; psi(active_node) = alpha0; psi_vec

(:,1)=psi;

55 [~,chi] = compute_volume (psi ,connect); chi0_step = chi; chi_vec (:,1) = chi ’;

56 % Initialize variables

57 iter = 1; J_vec = []; vol_vec = []; lambda_vec = 0; lambda = 0; fhandle6 = [];

58 [fhandle2 ,ohandle2] = plot_isosurface ([],[],0,psi ,coord ,connect ,1,opt);

59 for i_step = 1: nsteps

60 [t_ref] = set_reference_volume(i_step ,Vol0 ,Vol ,nsteps ,k);

61 % Main loop by steps

62 Tol_chi = 1;

63 Tol_lambda = 1;

64 iter_step = 1;

65 while (((Tol_chi >1e-1 || Tol_lambda >1e-1) && iter_step <iter_max_step) || iter_step <=

iter_min_step)

66 % FE-analysis

67 [K] = assmebly_stiff_mat (chi ,KE,KE_cut ,beta ,m,iK ,jK,n_unkn ,nelx ,nely);

68 U(free_dofs ,:) = K(free_dofs ,free_dofs) \ (F(free_dofs ,:) - K(free_dofs ,fixed_dofs)*U(

fixed_dofs ,:));

69 if iter == 1; U_vec (:,:,1)=U; J_ref = full(abs(sum(sum(F.*U,1) ,2))); end; J = full(sum(

sum(F.*U,1) ,2))/J_ref;

70 % Calculate sensitivities

71 Energy = zeros(n_gauss ,nelx*nely);

72 id = chi ==1| chi ==0; int_chi = interp_property (m,m-1,beta ,chi(id));

73 u_e = reshape(U(edofMat(id ,:) ’,1),n_nodes*n_unkn ,[]); w_e = u_e;

74 for i=1: n_gauss; Energy(i,id) = sum(w_e .*(KE_i(:,:,i)*u_e) ,1); end

75 Energy(:,id) = int_chi .* Energy(:,id);

76 id = ~id; int_chi = interp_property (m,m-1,beta ,chi(id));

77 u_e = reshape(U(edofMat(id ,:) ’,1),n_nodes*n_unkn ,[]); w_e = u_e;

78 Energy(:,id) = repmat(int_chi .*sum(w_e.*(K_cut*u_e) ,1),n_gauss ,1);

79 if iter == 1; xi_shift = min(0,min(Energy (:))); xi_norm = max(range(Energy (:)),max(Energy

(:))); end

80 % Apply Laplacian regularization

81 xi_int = N_T*(Energy -xi_shift*chi)/xi_norm;

82 if strcmp(opt.solver_Lap ,’direct ’)

83 xi = LF ’\(LF\accumarray(i_xi ,xi_int (:) ,[n 1]));

84 else

85 [xi ,flag] = minres(K_Lap ,accumarray(i_xi ,xi_int (:) ,[n 1]) ,1e-6,500,LF,LF ’); assert(flag

== 0);

86 end

Topology Optimization using the UNsmooth VARiational Topology OPtimization (UNVARTOP) method 25

87 % Compute topology

88 [lambda ,chi_n ,psi ,vol] = find_volume (xi ,connect ,active_node ,passive_node ,t_ref ,lambda ,

alpha0);

89 lambda_vec = [lambda_vec ,lambda];

90 Tol_lambda = (lambda_vec(iter +1)-lambda_vec(iter))/lambda_vec(iter +1);

91 % Plot topology

92 [fhandle2 ,ohandle2] = plot_isosurface(fhandle2 ,ohandle2 ,iter ,psi ,coord ,connect ,J,opt);

93 % Update variables

94 Tol_chi = sqrt(sum((chi -chi_n).^2))/sqrt(sum(chi0_step .^2));

95 chi = chi_n;

96 fprintf(’ Step :%5i It.:%5i Obj .:%11.4f Vol .:%7.3f \n’,i_step ,iter_step ,J,vol);

97 iter_step = iter_step +1; iter = iter +1;

98 drawnow;

99 end

100 chi0_step = chi;

101 if J<10

102 [fhandle6 ,J_vec ,vol_vec] = plot_volume_iter(fhandle6 ,i_step ,J_vec ,J,vol_vec ,vol ,opt.

Plot_vol_step ,6,’Cost function Step’,’#step’,’+-b’);

103 psi_vec(:,i_step +1)=psi; chi_vec(:,i_step +1)=chi ’; U_vec(:,:,i_step +1)=U;

104 end

105 if iter_step >= iter_max_step; warning(’VarTopOpt:Max_iter_step ’,’Maximum number of in-

step iterations achieved.’); break; end

106 if iter > iter_max; warning(’VarTopOpt:Max_iter ’,’Maximum number of iterations achieved.’)

; break; end

107 end

108 %% Animation

109 Topology_evolution(coord ,connect ,[Vol0 ,vol_vec],psi_vec ,chi_vec ,U_vec);

110 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

111 function [posgp ,W] = gauss_points (n_gauss)

112 if n_gauss ==1; s = 0; w = 2; else; s = sqrt (3)/3*[-1 1]; w = [1 1]; end

113 [s,t] = meshgrid(s,s); posgp = [s(:) t(:)]’;

114 W=w’*w; W=W(:) ’;

115 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

116 function [N] = N_matrix(posgp)

117 N = 0.25*(1+[-1 1 1 -1]’*posgp (1,:)).*(1+[-1 -1 1 1]’* posgp (2,:));

118 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

119 function [BE ,Det_Jacobian ,cart_deriv] = B_matrix(posgp ,n_unkn ,n_nodes)

120 dshape = 0.25*[-1 -1;1 -1;1 1;-1 1]’.* flip (1+[-1 -1;1 -1;1 1;-1 1]’.*posgp ,1);

121 Jacobian_mat = dshape *[0 0;1 0;1 1;0 1];

122 Det_Jacobian = det(Jacobian_mat);

123 cart_deriv = Jacobian_mat\dshape;

124 BE = zeros(3,n_unkn*n_nodes); BE([1 3],1: n_unkn:end) = cart_deriv; BE([3 2],2: n_unkn:end) =

cart_deriv;

125 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

126 function [DE] = D_matrix_stress(E,nu) %Planestress

127 DE = E/(1-nu^2) *[1 nu 0; nu 1 0;0 0 (1-nu)/2];

128 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

129 function [coeff] = interp_property (m,n,beta ,chi)

130 coeff = chi + (1-chi).*beta;

131 coeff = double(m==n).*coeff .^m + double(m~=n).*m*coeff.^n*(1-beta);

132 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

133 function [K] = assmebly_stiff_mat (chi ,KE ,KE_cut ,beta ,m,iK,jK,n_unkn ,nelx ,nely)

134 sK = interp_property(m,m,beta ,chi).*KE(:); sK(:,chi ~=1& chi ~=0) = interp_property(m,m,beta ,

chi(chi ~=1& chi ~=0)).* KE_cut (:);

135 K = sparse(iK,jK,sK ,n_unkn *(1+ nelx)*(1+ nely),n_unkn *(1+ nelx)*(1+ nely)); K = (K+K’)/2; clear

sK;

136 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

137 function [lambda ,chi ,psi ,vol ,Tol_constr] = find_volume (xi,connect ,active_node ,passive_node

,t_ref ,lambda ,alpha0)

138 l1 = min(xi); c1 = t_ref; l2 = max(xi); c2 = t_ref -1; Tol_constr = 1; iter =1;

139 if lambda >l1 && lambda <l2

140 [chi ,psi ,vol ,l1,l2,c1 ,c2,Tol_constr] = compute_volume_lambda(xi,connect ,active_node ,

passive_node ,t_ref ,lambda ,l1,l2 ,c1,c2,alpha0);

141 end

142 while (abs(Tol_constr) >1e-4) && iter <1000

143 lambda = 0.5*(l1+l2);

26 Daniel Yago et al.

144 [chi ,psi ,vol ,l1,l2,c1 ,c2,Tol_constr] = compute_volume_lambda(xi,connect ,active_node ,

passive_node ,t_ref ,lambda ,l1,l2 ,c1,c2,alpha0);

145 iter = iter + 1;

146 end

147 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

148 function [chi ,psi ,vol ,l1,l2 ,c1,c2,Tol_constr] = compute_volume_lambda(xi,connect ,

active_node ,passive_node ,t_ref ,lambda ,l1,l2 ,c1,c2,alpha0)

149 psi = xi - lambda; psi(passive_node) = -alpha0; psi(active_node) = alpha0;

150 [vol ,chi] = compute_volume (psi ,connect);

151 Tol_constr = -(vol -t_ref);

152 if Tol_constr > 0, l1 = lambda; c1 = Tol_constr; else; l2 = lambda; c2 = Tol_constr; end

153 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

154 function [volume ,chi] = compute_volume (psi ,connect)

155 P = [-1 -1;1 -1;1 1;-1 1]; dvol = 1/4;

156 s = [-0.9324695142031521 -0.6612093864662645 -0.2386191860831969 0.2386191860831969

0.6612093864662645 0.9324695142031521]; [s,t] = meshgrid(s,s);

157 w = [0.1713244923791704 0.3607615730481386 0.4679139345726910 0.4679139345726910

0.3607615730481386 0.1713244923791704]; W=w’*w; W=W(:) ’;

158 psi_n = psi(connect); chi = sum((sign(psi_n)+1) ,2) ’/8; id = chi ~=1& chi ~=0;

159 phi_x = psi_n(id ,:) *((1+P(:,1)*s(:) ’).*(1+P(:,2)*t(:) ’)/4);

160 chi(1,id) = (W*(phi_x >0) ’+ 0.5*W*(phi_x ==0) ’)*dvol;

161 volume = 1 - sum(chi) / size(connect ,1);

162 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

163 function [fig_handle ,obj_handle] = plot_isosurface(fig_handle ,obj_handle ,iter ,psi ,coord ,

connect ,J,opt)

164 if opt.Plot_top_iso

165 if iter ==0; fig_handle = figure (2); set(fig_handle ,’Name’,’Topology ’); caxis([-1 1]);

colormap(flip(gray (2)));

166 axis equal tight; xlabel(’x’); ylabel(’y’); title([’J = ’,num2str(J)]);

167 obj_handle = patch(’Vertices ’,coord ,’Faces’,connect ,’FaceVertexCData ’,psi ,’EdgeColor ’,opt

.EdgeColor ,’FaceColor ’,’interp ’);

168 else

169 set(0, ’CurrentFigure ’, fig_handle); set(get(gca ,’Title’),’String ’,[’J = ’,num2str(J)]);

170 set(obj_handle ,’FaceVertexCData ’,psi);

171 end

172 end

173 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

174 function [fig_handle ,J_vec ,vol_vec] = plot_volume_iter(fig_handle ,iter ,J_vec ,J,vol_vec ,vol ,

opt_plot ,fig_num ,fig_name ,xlabel_name ,linestyle)

175 J_vec = [J_vec ,J]; vol_vec = [vol_vec ,vol];

176 if opt_plot

177 if iter ==1; fig_handle = figure(fig_num); set(fig_handle ,’Name’,fig_name);

178 subplot (2,1,1); plot(J_vec ,linestyle); ylabel(’\mathcal{J}_χ’,’Interp ’,’Latex ’);

xlabel(xlabel_name); grid; grid minor;

179 subplot (2,1,2); plot(vol_vec ,linestyle); ylabel(’|\Omega^-|’);

xlabel(xlabel_name); grid; grid minor;

180 else; set(0, ’CurrentFigure ’, fig_handle);

181 subplot (2,1,1); set(findobj(gca ,’Type’,’line’),’Xdata ’ ,1:numel(J_vec),’YData ’,J_vec);

182 subplot (2,1,2); set(findobj(gca ,’Type’,’line’),’Xdata ’ ,1:numel(vol_vec),’YData’,vol_vec);

183 end

184 end

185 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

186 function [vol] = set_reference_volume(iter ,Vol0 ,Volf ,nsteps ,k)

187 if k==0; vol=Vol0+(Volf -Vol0)/nsteps*iter;

188 else; C1=(Vol0 -Volf)/(1-exp(k)); C2=Vol0 -C1; vol=C1*exp(k*iter/nsteps)+C2; end

Listing 1 UNVARTOP code written in Matlab

Replication of results

The Matlab codes provided in the paper, in Appendix

A and GitHub repository, are the same ones used for

obtaining the results here presented (Section 4). There-

fore, they can be fully used as a replication tool, to

reproduce those results, as well as to be used in addi-

tional numerical simulations.

https://github.com/DanielYago/UNVARTOP

Topology Optimization using the UNsmooth VARiational Topology OPtimization (UNVARTOP) method 27

References

1. G. Allaire, E. Bonnetier, G. Francfort, and F. Jouve.
Shape optimization by the homogenization method. Nu-
merische Mathematik, 76(1):27–68, mar 1997. doi: 10.
1007/s002110050253.

2. G. Allaire, F. Jouve, and A.-M. Toader. A level-set
method for shape optimization. Comptes Rendus Math-
ematique, 334(12):1125–1130, jan 2002. doi: 10.1016/
s1631-073x(02)02412-3.

3. G. Allaire, F. Jouve, and A.-M. Toader. Structural
optimization using sensitivity analysis and a level-set
method. Journal of Computational Physics, 194(1):363–
393, feb 2004. doi: 10.1016/j.jcp.2003.09.032.

4. N. Anderson and Å. Björck. A new high order method
of regula falsi type for computing a root of an equation.
BIT, 13(3):253–264, sep 1973. doi: 10.1007/bf01951936.

5. E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov,
and O. Sigmund. Efficient topology optimization in
MATLAB using 88 lines of code. Structural and Mul-
tidisciplinary Optimization, 43(1):1–16, nov 2010. doi:
10.1007/s00158-010-0594-7.

6. M. P. Bendsøe. Optimal shape design as a material distri-
bution problem. Structural Optimization, 1(4):193–202,
dec 1989. doi: 10.1007/bf01650949.

7. M. P. Bendsøe and O. Sigmund. Topology Optimiza-
tion. Springer Berlin Heidelberg, 2004. doi: 10.1007/
978-3-662-05086-6.

8. E. Biyikli and A. C. To. Proportional topology opti-
mization: A new non-sensitivity method for solving stress
constrained and minimum compliance problems and its
implementation in MATLAB. PLOS ONE, 10(12):
e0145041, dec 2015. doi: 10.1371/journal.pone.0145041.

9. R. Bulirsch and J. Stoer. Introduction to Numerical
Analysis. Springer New York, 2010. ISBN 144193006X.

10. V. J. Challis. A discrete level-set topology optimiza-
tion code written in matlab. Structural and Multidis-
ciplinary Optimization, 41(3):453–464, sep 2009. doi:
10.1007/s00158-009-0430-0.

11. D. Da, L. Xia, G. Li, and X. Huang. Evolutionary topol-
ogy optimization of continuum structures with smooth
boundary representation. Structural and Multidisci-
plinary Optimization, 57(6):2143–2159, nov 2017. doi:
10.1007/s00158-017-1846-6.

12. M. Dowell and P. Jarratt. A modified regula falsi method
for computing the root of an equation. BIT, 11(2):168–
174, jun 1971. doi: 10.1007/bf01934364.

13. R. A. Feijoo, A. A. Novotny, E. Taroco, and C. Padra.
The topological-shape sensitivity method in two-
dimensional linear elasticity topology design. Applica-
tions of Computational Mechanics in Structures and Flu-
ids, 2005.

14. S. Giusti, A. Novotny, and C. Padra. Topological sensi-
tivity analysis of inclusion in two-dimensional linear elas-
ticity. Engineering Analysis with Boundary Elements,
32(11):926–935, nov 2008. doi: 10.1016/j.enganabound.
2007.12.007.

15. J. K. Guest, J. H. Prévost, and T. Belytschko. Achiev-
ing minimum length scale in topology optimization using
nodal design variables and projection functions. Inter-
national Journal for Numerical Methods in Engineering,
61(2):238–254, aug 2004. doi: 10.1002/nme.1064.

16. B. S. Lazarov and O. Sigmund. Filters in topology opti-
mization based on helmholtz-type differential equations.
International Journal for Numerical Methods in Engi-
neering, 86(6):765–781, dec 2010. doi: 10.1002/nme.3072.

17. Q. Q. Liang and G. P. Steven. A performance-based
optimization method for topology design of continuum
structures with mean compliance constraints. Computer
Methods in Applied Mechanics and Engineering, 191(13-
14):1471–1489, jan 2002. doi: 10.1016/s0045-7825(01)
00333-4.

18. K. Liu and A. Tovar. An efficient 3d topology optimiza-
tion code written in matlab. Structural and Multidis-
ciplinary Optimization, 50(6):1175–1196, jun 2014. doi:
10.1007/s00158-014-1107-x.

19. C. G. Lopes, R. B. dos Santos, and A. A. Novotny. Topo-
logical derivative-based topology optimization of struc-
tures subject to multiple load-cases. Latin American
Journal of Solids and Structures, 12(5):834–860, may
2015. doi: 10.1590/1679-78251252.

20. D. G. Luenberger and Y. Ye. Linear and Nonlinear Pro-
gramming. Springer International Publishing, 2016. doi:
10.1007/978-3-319-18842-3.

21. A. Novotny, R. Feijóo, E. Taroco, and C. Padra. Topo-
logical sensitivity analysis. Computer Methods in Applied
Mechanics and Engineering, 192(7-8):803–829, feb 2003.
doi: 10.1016/s0045-7825(02)00599-6.

22. J. Oliver, D. Yago, J. Cante, and O. Lloberas-Valls.
Variational approach to relaxed topological optimization:
Closed form solutions for structural problems in a sequen-
tial pseudo-time framework. Computer Methods in Ap-
plied Mechanics and Engineering, 355:779–819, oct 2019.
doi: 10.1016/j.cma.2019.06.038.

23. S. Osher and J. A. Sethian. Fronts propagating
with curvature-dependent speed: Algorithms based on
hamilton-jacobi formulations. Journal of Computa-
tional Physics, 79(1):12–49, nov 1988. doi: 10.1016/
0021-9991(88)90002-2.

24. M. Otomori, T. Yamada, K. Izui, and S. Nishiwaki.
Matlab code for a level set-based topology optimiza-
tion method using a reaction diffusion equation. Struc-
tural and Multidisciplinary Optimization, 51(5):1159–
1172, nov 2014. doi: 10.1007/s00158-014-1190-z.

25. G. Patanè and B. Falcidieno. Computing smooth approx-
imations of scalar functions with constraints. Computers
& Graphics, 33(3):399–413, jun 2009. doi: 10.1016/j.cag.
2009.03.014.

26. S. S. Rao. The Finite Element Method in Engineering.
Butterworth-Heinemann, 2004. ISBN 0-7506-7828-3.

27. O. Sigmund. A 99 line topology optimization code
written in matlab. Structural and Multidisciplinary
Optimization, 21(2):120–127, apr 2001. doi: 10.1007/
s001580050176.

28. O. Sigmund and J. Petersson. Numerical instabilities in
topology optimization: A survey on procedures dealing
with checkerboards, mesh-dependencies and local min-
ima. Structural Optimization, 16(1):68–75, aug 1998. doi:
10.1007/bf01214002.

29. J. Sokolowski and A. Zochowski. On the topological
derivative in shape optimization. SIAM Journal on Con-
trol and Optimization, 37(4):1251–1272, jan 1999. doi:
10.1137/s0363012997323230.

30. K. Suresh. A 199-line matlab code for pareto-optimal
tracing in topology optimization. Structural and Multi-
disciplinary Optimization, 42(5):665–679, jul 2010. doi:
10.1007/s00158-010-0534-6.

31. A. Takezawa, S. Nishiwaki, and M. Kitamura. Shape
and topology optimization based on the phase field
method and sensitivity analysis. Journal of Computa-
tional Physics, 229(7):2697–2718, apr 2010. doi: 10.1016/
j.jcp.2009.12.017.

28 Daniel Yago et al.

32. R. Tavakoli and S. M. Mohseni. Alternating active-phase
algorithm for multimaterial topology optimization prob-
lems: a 115-line MATLAB implementation. Structural
and Multidisciplinary Optimization, 49(4):621–642, oct
2013. doi: 10.1007/s00158-013-0999-1.

33. L. J. van Vliet, I. T. Young, and G. L. Beckers. A
nonlinear laplace operator as edge detector in noisy im-
ages. Computer Vision, Graphics, and Image Process-
ing, 45(2):167–195, feb 1989. doi: 10.1016/0734-189x(89)
90131-x.

34. M. Y. Wang and S. Zhou. Synthesis of shape and
topology of multi-material structures with a phase-
field method. Journal of Computer-Aided Materi-
als Design, 11(2-3):117–138, jan 2004. doi: 10.1007/
s10820-005-3169-y.

35. M. Y. Wang, S. Chen, and Q. Xia. Toplsm, a 199-line
matlab program, July 2004.

36. S. Wang and M. Y. Wang. Radial basis functions and
level set method for structural topology optimization.
International Journal for Numerical Methods in Engi-
neering, 65(12):2060–2090, 2006. doi: 10.1002/nme.1536.

37. S. Wang, K. Lim, B. Khoo, and M. Wang. An extended
level set method for shape and topology optimization.
Journal of Computational Physics, 221(1):395–421, jan
2007. doi: 10.1016/j.jcp.2006.06.029.

38. P. Wei, Z. Li, X. Li, and M. Y. Wang. An 88-line MAT-
LAB code for the parameterized level set method based
topology optimization using radial basis functions. Struc-
tural and Multidisciplinary Optimization, 58(2):831–849,
feb 2018. doi: 10.1007/s00158-018-1904-8.

39. Y. M. Xie and G. P. Steven. Evolutionary Structural
Optimization. Springer London, 1997. doi: 10.1007/
978-1-4471-0985-3.

40. D. Yago, J. Cante, O. Lloberas-Valls, and J. Oliver.
Topology optimization of thermal problems in a nons-
mooth variational setting: closed-form optimality crite-
ria. Computational Mechanics, 66(2):259–286, jun 2020.
doi: 10.1007/s00466-020-01850-0.

41. T. Yamada, K. Izui, S. Nishiwaki, and A. Takezawa.
A topology optimization method based on the level set
method incorporating a fictitious interface energy. Com-
puter Methods in Applied Mechanics and Engineering,
199(45-48):2876–2891, nov 2010. doi: 10.1016/j.cma.
2010.05.013.

42. X. Y. Yang, Y. M. Xie, G. P. Steven, and O. M. Querin.
Bidirectional evolutionary method for stiffness optimiza-
tion. AIAA Journal, 37:1483–1488, jan 1999. doi:
10.2514/3.14346.

43. W. Zhang, J. Yuan, J. Zhang, and X. Guo. A new topol-
ogy optimization approach based on moving morphable
components (MMC) and the ersatz material model.
Structural and Multidisciplinary Optimization, 53(6):
1243–1260, dec 2015. doi: 10.1007/s00158-015-1372-3.

44. O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The Finite
Element Method: Its Basis and Fundamentals. Elsevier
LTD, Oxford, 2013. ISBN 1856176339.

45. Z. H. Zuo and Y. M. Xie. A simple and compact python
code for complex 3d topology optimization. Advances in
Engineering Software, 85:1–11, jul 2015. doi: 10.1016/j.
advengsoft.2015.02.006.

	1 Introduction
	2 Problem formulation
	3 MATLAB implementation
	4 Numerical examples
	5 Extensions
	6 Conclusions
	A Matlab code

