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A B S T R A C T

Treatment design for musculoskeletal disorders using in silico patient-specific dynamic simulations is becoming a
clinical possibility. However, these simulations are sensitive to model parameter values that are difficult to mea-
sure experimentally, and the influence of uncertainties in these parameter values on the accuracy of estimated
knee contact forces remains unknown. This study evaluates which musculoskeletal model parameters have the
greatest influence on estimating accurate knee contact forces during walking. We performed the evaluation using
a two-level optimization algorithm where musculoskeletal model parameter values were adjusted in the outer
level and muscle activations were estimated in the inner level. We tested the algorithm with different sets of
design variables (combinations of optimal muscle fiber lengths, tendon slack lengths, and muscle moment arm
offsets) resulting in nine different optimization problems. The most accurate lateral knee contact force predictions
were obtained when tendon slack lengths and moment arm offsets were adjusted simultaneously, and the most
accurate medial knee contact force estimations were obtained when all three types of parameters were adjusted
together. Inclusion of moment arm offsets as design variables was more important than including either tendon
slack lengths or optimal muscle fiber lengths alone to obtain accurate medial and lateral knee contact force pre-
dictions. These results provide guidance on which musculoskeletal model parameter values should be calibrated
when seeking to predict in vivo knee contact forces accurately.

© 2020

1. Introduction

Roughly 10% of the European population over age 60 is affected
by osteoarthritis [1], with the knee being one of the joints most com-
monly affected. Those with knee osteoarthritis often suffer pain and loss
of function [2], which in turn affects their ability to perform activities
of daily living. While increased age is a contributing factor for knee os-
teoarthritis, the causes and evolution of this disease are not yet fully
understood [3]. Though treatment of knee osteoarthritis could be im-
proved if knee contact forces could be predicted accurately for individ-
ual subjects, the ability to generate reasonably accurate predictions re-
mains an open research question [4], especially when medial and lateral
knee contact forces are predicted simultaneously [5].

Few studies have measured in vivo knee contact forces due to the
invasiveness of performing such measurements [6–9], and the force
measurement in healthy subjects and subjects with osteoarthritis re-
mains a currently intractable challenge. Consequently, knee contact
forces are most commonly estimated using dynamic musculoskeletal
models that relate measured human body movement and external forces
to generated internal forces. External forces determine the
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net superior-inferior force and varus-valgus moment that must be bal-
anced by internal forces from muscles, articular contact, and ligaments.
For a given external loading pattern, muscles will be the main determi-
nants of knee contact forces [10]. Therefore, the estimation of knee con-
tact forces typically involves estimation of leg muscle forces, which in
turn requires solving an indeterminate problem typically using optimiza-
tion [11–15] or EMG-driven modeling [16–19] methods. The main dif-
ference between optimization and EMG-driven methods for estimating
muscle forces is that EMG-driven methods calibrate key model parame-
ter values (e.g., optimal muscle fiber length, tendon slack length) us-
ing the subject's EMG and motion data, while for optimization meth-
ods, EMG data are not used and model parameter values are rarely cal-
ibrated. Since leg muscle forces also cannot be measured non-invasively
in vivo under clinical conditions, validation of knee contact forces esti-
mated by dynamic musculoskeletal models remains a challenge.

To complicate matters further, knee contact and leg muscle forces
estimated by musculoskeletal models are sensitive to model parameter
values that are difficult to calibrate using commonly available experi-
mental data. Several studies have explored the sensitivity of leg mus-
cle force estimates to uncertainties in musculoskeletal model parame-
ter values [20–27]. In contrast, few studies have investigated the sen-
sitivity of estimated knee contact forces to uncertainties in model para-
meter values. Valente et al. [28] concluded that uncertainties in body
landmark positions, musculoskeletal geometry, and maximum mus
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cle tension could lead to differences in predicted total knee contact
forces up to 2.1 times body weight. Similar conclusions (although with
a lower variability in total knee contact forces) were obtained by Navac-
chia et al. [29]. Lund et al. [30] suggested that the calibration of the
positions and orientation of the lower body joints would result in more
accurate predictions of total knee contact force. Heller et al. [31] also
analyzed how the axial alignment influenced the knee contact forces.
However, it remains unknown which musculoskeletal model parameter
values affect the model's ability to predict accurate medial and lateral
knee contact forces.

This study assesses which musculoskeletal model parameters have
the greatest influence on predicting knee contact force accurately for
walking. To this end, we developed a two-level optimization approach
that adjusted constant muscle-related parameter values in the outer level
and time-varying muscle activations in the inner level. The goal was for
the outer-level optimization to find model parameter values that would
cause the inner-level optimization to match experimentally measured
medial and lateral knee contact forces [6] without including them any-
where in the inner-level problem formulation. By using different sets of
outer-level design variables composed of different combinations of mus-
cle-tendon and geometric parameters, we identified which parameters
should be included as design variables in the outer level optimization to
obtain accurate knee contact force predictions.

2. Methods

2.1. Experimental data

Experimental data for our study were obtained from the fourth
Grand Challenge Competition to Predict In Vivo Knee Loads [6]. The
data consisted of surface marker trajectories, ground reaction forces, sin-
gle-plane fluoroscopic knee motion trajectories, and in vivo knee con-
tact forces for a subject implanted with a force-measuring tibial pros-
thesis (gender: male, age: 88 years, mass: 65 kg, height: 166 cm, im-
planted knee: right). The prosthesis had four uniaxial load cells located
in the four quadrants of the tibial tray [8]. The data used for the study
included six normal overground gait trials performed at the subjec-
t's self-selected speed (1.26 ± 0.03 m/s). Ground reaction forces from
three force plates and in vivo knee contact forces were processed using
standard methods (low-pass filtered at 6 Hz using a fourth-order zero
phase-lag Butterworth filter).

2.2. Musculoskeletal model

A subject-specific OpenSim [32,33] musculoskeletal model of the
lower body (pelvis, thigh, shank, and foot) possessing 44 muscle-tendon
units per leg (see Table S.1 for muscle names) was used for this study,
as in previous work by members of our group [34]. The model incor-
porated subject-specific pelvis and lower body bone models constructed
from subject CT scan data. Peak isometric force values , optimal mus-
cle fiber length and tendon slack length values were derived from the
works by Arnold et al. ([35,36]) and scaled following an approach sim-
ilar to Campen et al. [26] to avoid infeasible initial guesses (Table S.1.).
The left leg of the scaled model was removed, and the kinematic struc-
ture of the scaled model was modified to possess 23 degrees of free-
dom (DOFs): three translations and three rotations defining the posi-
tion and orientation of the pelvis with respect to ground, three rotations
(flexion, adduction, and rotation) for the hip, three rotations (flexion,
adduction, and rotation) and three translations (superior–inferior, ante-
rior–posterior, and medial–lateral) for the knee, three rotations (flexion,
adduction, and rotation) and three translations (superior–inferior, ante-
rior–posterior, and medial–lateral) for the patella relative to the femur,
and two rotations (flexion and eversion) for the ankle. Patellar flexion
motion was prescribed as a function of knee angle, as in our earlier work
[34], and the other patellar degrees of freedom were locked to constant
values.

The OpenSim model was used to calculate joint kinematics, inverse
dynamic joint loads, muscle-tendon kinematics and moment arms, and
ultimately knee contact forces for each gait trial using the available
experimental data. Detailed knee kinematics were obtained by com-
bining fluoroscopy, marker motion, and knee contact force data using
pose estimation analyses performed with an elastic foundation contact
model. Given the knee flexion angle time history from an initial inverse
kinematics analysis, and internal-external rotation and anterior-poste-
rior translation time histories from fluoroscopy data, the pose estima-
tion algorithm estimated the superior-inferior and medial-lateral trans-
lation and varus-valgus rotation time histories. This algorithm matched
the experimental medial and lateral knee contact forces while minimiz-
ing the mediolateral contact force. A more detailed description can be
found elsewhere [37]. Remaining joint kinematics of the model were
calculated using OpenSim inverse kinematics analyses. Net loads act-
ing at the lower body joints were calculated using OpenSim inverse dy-
namics analyses, where the input joint kinematics were low-pass filtered
at 6 Hz (four-order zero phase-lag Butterworth filter). Muscle-tendon
lengths, velocities, and moment arms were calculated using OpenSim
muscle analyses. Once muscle forces were estimated using the two-level
optimization approach described below, muscle force contributions to
the net knee superior-inferior force and the net knee adduction moment
were obtained using the calculated moment arms. Knee contact force
contributions to the same two net knee loads were estimated by sub-
tracting the calculated muscle force contributions from the net loads,
where ligament contributions to net knee loads were assumed to be zero,
as in previous work by our group [34]. Medial and lateral knee contact
forces were then calculated from the superior-inferior knee contact force
and varus-valgus knee contact moment using validated regression rela-
tionships reported by Zhao and co-workers [38].

2.3. Optimization problem formulation

A two-level static optimization procedure was developed in Mat-
lab (The Mathworks, Natick, MA) to analyze how the accuracy of
model-predicted medial and lateral knee contact forces were affected
by the calibration of different types of model parameter values (i.e.,
optimal muscle fiber lengths, tendon slack lengths, and moment arm
offsets). The outer level used Matlab's trust region reflective nonlinear
least-squares algorithm [39] to adjust specified types of model para-
meter values so as to match the experimentally measured medial and
lateral knee contact forces as closely as possible. Design variables for
optimal muscle fiber lengths and tendon slack lengths were scale fac-
tors (one per muscle) that multiplied the scaled literature values, while
design variables for moment arm offsets (one per muscle per spanned
joint) were constant values added to the moment arms obtained from
OpenSim. The cost function used quadratic error terms to track the in
vivo medial and lateral knee contact forces, made maximum normalized
muscle fiber lengths close to one (following the findings of Arnold and
Delp [40]), minimized reserve activations from the inner level, mini-
mized scale factor differences between optimal muscle fiber length and
tendon slack length for each muscle, and minimized moment arm offsets
(see Section S.2 for a detailed formulation).

Given the current guess for model parameter values from the outer
level (muscle fiber lengths, tendon slack lengths and muscle moment
arms offsets), the inner level optimization used Matlab's quadratic pro-
gramming algorithm to minimize squared muscle and reserve activa-
tions so as to match six net loads from inverse dynamics (3 hip mo-
ments, 1 knee moment for flexion-extension, and 2 ankle moments)
(Section S.3). The contact force contributions to those loads were con-
sidered to be negligible. Design variables were time-varying muscle ac-
tivations along with reserve activations. The cost function used qua-
dratic terms to minimize both muscle and reserve activations. Linear
equality constraints were used to match the six net loads from inverse
dynamics. Muscle forces were calculated using a Hill-type muscle-ten
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don model with rigid tendon developed in Matlab and possessing con-
tinuous force-length and force-velocity properties (see De Groote et al.
[41] for details). No knee contact force information was used in the in-
ner level, and the muscle activations estimated by the inner level were
passed to the outer level for calculating the resulting medial and lateral
knee contact forces. Note that knee adduction and superior-inferior mo-
ment arms were only used to estimate knee contact forces and were not
used in the inner level optimization.

The accuracy of predicted knee contact forces when different types
of model parameter values were calibrated was investigated using a
two-step process. First, the complete two-level optimization was run us-
ing three gait trials together to calibrate the specified types of model
parameters. The output of this optimization was a calibrated model
which, when used in the inner-level optimization, would estimate me-
dial and lateral knee contact forces as closely as possible for the three
selected gait trials (calibration trials). Second, only the inner-level op-
timization was run using three additional gait trials to test the accu-
racy with which the previously calibrated model could predict medial
and lateral knee contact forces using non-calibration walking trials (pre-
diction trials). The complete code can be found in the following link:
https://github.com/gilserrancoli/mskkneeforces.

Table 1
Musculoskeletal parameters values considered in each problem formulation. DV stands for
design variables.

Problem
number Musculoskeletal parameters values

Scale factors of optimal
fiber lengths

Scale factors of tendon
slack lengths

Moment arm
deviations

1 DV 1 0
2 1 DV 0
3 1 1 DV
4 DV DV 0
5 DV 1 DV
6 1 DV DV
7, 8, 9 DV DV DV

2.4. Analyses

Nine different “calibrate-then test” problems were performed to eval-
uate how knee contact force prediction accuracy was affected by the
calibrated types of model parameters (see Table 1). Unless otherwise
noted, initial conditions for each problem were taken from the scaled
OpenSim model described above. Problems 1 to 3 optimized only one
type of design variable (muscle fiber lengths, tendon slack lengths, and
moment arm offsets, respectively) and kept the other possible variables
constant. Problems 4 to 6 used two types of parameters as design vari-
ables, as outlined in Table 1. Problem 7 used all three types of parame-
ters as design variables. Problem 8 was a variant of Problem 7 where a
common scale factor was used for optimal muscle fiber length and ten-
don slack length for each muscle. Problem 9 was also a variant of Prob-
lem 7 where the tracking weight for lateral knee contact force was in-
creased by 10% and the tracking weight for medial knee contact force
was decreased by 10%, since lateral contact force is often more difficult
to predict accurately than is medial contact force [5]. Different prob-
lems used different initial guesses to make use of the best information
available at the start of each problem (see Section S.4 from Supplemen-
tary Material).

For each problem, root mean square (RMS) errors and coefficient of
determination (R2) values were calculated to compare the differences in
magnitude and shape, respectively, between the estimated medial and
lateral knee contact forces and their experimental values.

3. Results

Medial knee contact force was well matched in both shape and mag-
nitude for all optimization problems in calibration (mean R2 ≥ 0.9 and
mean RMS < 105.0 N) and prediction (mean R2 ≥ 0.84 and mean
RMS < 133.0 N) trials (Table 2). Lateral contact force was overall bet-
ter matched in calibration and prediction trials when moment arm de-
viations were included as design variables (Problems 3 and 5 to 7), es-
pecially in terms of shape. For both calibration and prediction trials,
the most accurate matching of medial force was obtained when varying
all three types of design variables (Problem 7), whereas the most accu-
rate matching of lateral force was obtained when varying only tendon
slack lengths and moment arm deviations (Problem 6). Optimal solu-
tions were only slightly influenced by initial guess. When different ini

Table 2
Mean and standard deviation RMS errors and R 2 values for each optimization problem (calibration – C – and prediction – P –) used to predict medial, lateral, and total contact knee force.

Problem number Type RMS errors (mean ± std) R 2 values (mean ± std)

Medial Lateral Total Medial Lateral Total

1 C 104.5 ± 78.3 151.7 ± 32.9 209.1 ± 59.1 0.90 ± 0.70 0.08 ± 0.12 0.82 ± 0.54
P 133.0 ± 40.3 153.6 ± 41.8 201.2 ± 34.0 0.84 ± 0.19 0.25 ± 0.46 0.82 ± 0.36

2 C 102.2 ± 75.0 137.7 ± 37.0 201.4 ± 55.2 0.90 ± 0.62 0.23 ± 0.08 0.83 ± 0.40
P 129.1 ± 44.5 141.5 ± 46.0 200.1 ± 28.3 0.85 ± 0.19 0.36 ± 0.39 0.82 ± 0.25

3 C 75.9 ± 29.9 103.7 ± 49.4 161.9 ± 60.4 0.95 ± 0.10 0.57 ± 0.13 0.88 ± 0.39
P 108.5 ± 28.3 141.4 ± 47.6 197.9 ± 61.6 0.89 ± 0.22 0.37 ± 0.39 0.83 ± 0.25

4 C 99.6 ± 64.7 126.0 ± 40.3 190.7 ± 54.8 0.91 ± 0.48 0.35 ± 0.05 0.85 ± 0.40
P 114.2 ± 45.2 141.2 ± 42.7 191.3 ± 31.5 0.88 ± 0.23 0.35 ± 0.44 0.83 ± 0.22

5 C 66.6 ± 25.0 74.7 ± 27.2 119.7 ± 40.4 0.96 ± 0.08 0.78 ± 0.03 0.94 ± 0.19
P 100.6 ± 24.6 112.3 ± 30.9 168.6 ± 60.4 0.91 ± 0.06 0.58 ± 0.34 0.87 ± 0.15

6 C 69.1 ± 28.9 69.8 ± 35.4 124.4 ± 39.0 0.95 ± 0.06 0.81 ± 0.02 0.93 ± 0.16
P 115.2 ± 18.5 93.8 ± 13.2 146.6 ± 52.9 0.88 ± 0.08 0.70 ± 0.23 0.91 ± 0.04

7 C 59.9 ± 30.4 73.2 ± 26.8 115.2 ± 36.9 0.97 ± 0.07 0.79 ± 0.05 0.94 ± 0.17
P 93.9 ± 11.2 109.8 ± 26.6 148.8 ± 49.5 0.92 ± 0.11 0.60 ± 0.30 0.90 ± 0.12

8 C 69.6 ± 29.8 102.0 ± 44.9 152.8 ± 54.2 0.95 ± 0.11 0.59 ± 0.16 0.89 ± 0.30
P 92.6 ± 27.0 178.8 ± 43.3 186.7 ± 87.5 0.92 ± 0.44 −0.01 ± 0.65 0.85 ± 0.46

9 C 72.6 ± 29.4 61.1 ± 39.4 121.1 ± 30.7 0.95 ± 0.04 0.86 ± 0.02 0.93 ± 0.10
P 121.5 ± 3.5 118.8 ± 28.6 167.1 ± 51.1 0.87 ± 0.24 0.56 ± 0.17 0.88 ± 0.13
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tial guesses were used, differences in RMS values of knee contact force
for calibration trials were less than 10 N.

Optimization problems that varied only optimal fiber lengths (Prob-
lem 1) or tendon slack lengths (Problem 2) led to the poorest re

sults (Figs. 1–4 and Table 2). Estimated contact forces were similar
for these two problems, with RMS differences between the two solu-
tions for calibration and prediction trials being, on average, 22.3 N and
7.0 N, respectively, for medial contact force and 35.8 N and 11.8 N, re

Fig. 1. Calibration Trials for Optimizations 1 to 9. Thick line: mean values of 3 trials, thin lines: ± 2 std. Red: modeled, blue: experimental. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Prediction Trials for Optimizations 1 to 9. Thick line: mean values of 3 trials, thin lines: ± 2 std. Red: modeled, blue: experimental. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

spectively, for lateral contact force. Both optimizations overpredicted
the second peak of medial contact force in stance phase (at about 50%
of the gait cycle). When moment arm deviations alone were optimized
(Problem 3), total contact force was matched better than in Problems
1 and 2, especially for calibration trials (Table 2). However, lateral
contact force for prediction trials was not matched better than in Prob-
lems 1 and 2 (mean RMS error = 141.4 N and mean R2 value = 0.37).
In Problems 1 to 3, estimated lateral contact force had a non-realistic
peak at about 10% of the gait cycle.

The combination of moment arm deviations with optimal fiber
lengths (Problem 5) or tendon slack lengths (Problem 6) as design vari-
ables led to improvements in contact force matching. Optimization of
optimal fiber lengths and tendon slack lengths together (Problem 4) did
not improve knee contact force predictions with respect to Problem 3.
For calibration trials, Problem 4 also overpredicted the second peak of
medial force during stance phase. For calibration and prediction tri-
als, Problem 5 matched medial forces better, and lateral contact forces
worse, than in Problem 6. Problem 5 matched total contact force better
for calibration trials, whereas Problem 6 matched it better for predic
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Fig. 3. Mean and standard deviation of the RMS errors for calibration (above) and prediction (below) trials.

tion trials. Both Problems 5 and 6 decreased the erroneous lateral force
peak at 10% of the gait cycle observed in Problems 1 to 4.

The most accurate tracking of medial contact force was obtained
when varying all three types of parameters together (Problem 7). How-
ever, the results of this problem were not better than in Problem 6 for
lateral contact force, which continued to possess the unrealistic peak at
the beginning of stance phase. When the outer-level cost function weight
was increased by 10% for lateral contact force tracking and decreased
by 10% for medial contact force tracking (Problem 9), the match-
ing of lateral contact force for calibration trials was improved (from
mean RMS error = 73.2 ± 26.8 N and mean R2 value = 0.79 ± 0.05
in Problem 7 to mean RMS error = 61.1 ± 39.4 N and mean
R2 value = 0.86 ± 0.02 in Problem 9) while matching of medial con-
tact force worsened slightly (from mean RMS error = 59.9 ± 30.4 N
and mean R2 value = 0.97 ± 0.07 in Problem 7 to mean RMS er-
ror = 72.6 ± 29.4 N and mean R2 value = 0.95 ± 0.04 in Problem 9).
Furthermore, tracking of both medial and lateral contact forces wors-
ened for prediction trials (from medial: mean RMS er-
ror = 93.9 ± 11.2 N and mean R2 value = 0.92 ± 0.11, lateral: mean
RMS error = 109.8 ± 26.6 N

and mean R2 value = 0.60 ± 0.30 in Problem 7; to medial: mean
RMS error = 121.5 ± 3.5 N and mean R2 value = 0.87 ± 0.24, lat-
eral: mean RMS error = 118.8 ± 28.6 N and mean R2 value
= 0.56 ± 0.17 in Problem 9).

Using a common scale factor for optimal fiber lengths and tendon
slack lengths along with moment arm deviations (Problem 8) did not
improve the results compared to Problems 5 to 7. Specifically, results
were not better for either medial and lateral contact force in calibration
trials or lateral contact force in prediction trials (in which the RMS er-
rors were increased more than 60 N). The variation of these two types
of parameter values (fewer design variables than in Problem 7) was
small (less than 3%) compared to the nominal values in Problems 5 to 7.
The variation of optimal fiber lengths with respect to literature val-
ues was 7.4 ± 15.2% and 7.2 ± 21.5% for Problems 5 and 7, respec-
tively, and the variation of tendon slack lengths was 10.2 ± 12.3% and
5.6 ± 19.8% for Problems 6 and 7, respectively (Fig. 5).

Muscle force contributions to medial and lateral knee contact force
were different for some muscles among the different optimization prob-
lems. For example, Problem 1 and 7, GasMed and Semiten contribu
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Fig. 4. Mean and standard deviation of the R2 values for calibration (above) and prediction (below) trials.

tions to medial contact force differed by around 100 N during stance
phase (Fig. 6), while VasLat, BFSH and GasMed contributions to lateral
contact differed by more than 100 N (Fig. 7). Muscle moment arm de-
viations were lower than 1 cm for all muscles (Fig. 8).

The nested optimization takes between 25 min (when optimizing
only one set of parameters) to 95 min (when optimizing all three sets of
parameters). The inner level optimization which can be used to predict
muscle activations from previously calibrated musculotendon parame-
ters takes just 0.09 s to run.

4. Discussion

This study evaluated which common musculoskeletal model para-
meters have the largest influence on predicting knee contact forces ac-
curately during walking (at both medial and lateral compartments). A
two-level static optimization procedure was used to calibrate muscu-
loskeletal parameter values (time independent) in the outer level and
predict muscle activations (time dependent) in the inner level. Compar-
ison of modeled with experimental knee contact forces allowed indirect
evaluation of whether the estimated leg muscle forces were realistic.
The differences among the nine optimization problem formulations in

volved which types of parameters (optimal fiber lengths, tendon slack
lengths, and/or moment arm deviations) were allowed to vary. Our re-
sults showed that inclusion of moment arm deviations as design vari-
ables improved calibration of the musculoskeletal model, since it led to
more accurate knee contact force predictions. Optimizing only optimal
fiber lengths and tendon slack lengths overpredicted the second peak of
medial contact force during stance phase. These results provide insight
into how calibration of different sets of muscle-related parameter values
affect the accuracy of medial and lateral knee contact force predictions
made using musculoskeletal models.

Published studies have reported contradictory results on the sensi-
tivity of muscle force predictions to errors in muscle-tendon model pa-
rameter and moment arm values. On the one hand, some studies sup-
port the idea that the calibration of moment arms does not have a sig-
nificant impact on estimated muscle function [42], even though mo-
ment arm differences can be large when comparing generic with pa-
tient-specific models [43]. Modenese et al. [44] analyzed differences
in knee contact force predictions where optimal fiber lengths and ten-
don slack lengths were scaled with a constant ratio versus when they
were scaled without altering normalized fiber length. The main differ
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Fig. 5. Percentage change in optimal muscle fiber lengths and tendon slack lengths with respect to literature values for Problems 5, 6, and 7. Note that the values of muscle fiber lengths
in Problem 6 and the values of tendon slack lengths in Problem 5 were not changed and equal to the literature values.

ences were in the second peak of total knee contact force during stance
phase, which was more realistic when the normalized force-length curve
was not altered.

On the other hand, other authors performed sensitivity analyses us-
ing Monte-Carlo methods to investigate which parameters affect mus-
cle force predictions the most. The previous study most similar to ours
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Fig. 6. Muscle contributions to medial contact force of a calibration trial in Problems 1 and 7.

Fig. 7. Muscle contributions to lateral contact force of a calibration trial in Problems 1 and 6.

was the recent work reported by Navacchia and co-workers [29]. Us-
ing a scaled generic musculoskeletal model with 20 leg muscles, the
authors concluded that maximum isometric force, muscle lines of ac-
tion, and joint kinematics had the greatest influence on total knee
contact force and varus-valgus contact moment, while optimal muscle
fiber length and tendon slack length (calculated through pennation an-
gle and optimal fiber length) had little influence. Variability in model
outputs spanned experimental benchmark measurements well for to-
tal knee contact force but not for varus-valgus contact moment, sug-
gesting that inaccurate medial and lateral knee contact forces would
have been predicted in that study. In contrast, our study used a mus-
culoskeletal model with subject-specific bone geometry, 44 leg mus-
cles, and subject-specific fluoroscopic knee kinematics and concluded
that optimal muscle fiber length, tendon slack length, and moment arm
offsets were important for predicting medial and lateral knee contact
force accurately. Thus, only the conclusions regarding moment arm off-
set parameters are consistent with the conclusions of Navacchia et al.
Maximum isometric force was not identified in our study because it is
redundant with muscle activation amplitude for determination of ac-
tive muscle force, and muscles in our model produced little passive
force. Inconsistencies between the two studies in identified parame-
ters may be due to differences in model construction and kinematic in-
puts as well as differences in study goals (i.e., analysis of knee contact

force sensitivity to individual parameter values, which does not guaran-
tee that accurate knee contact forces can be achieved, versus evaluation
of which parameters should be calibrated to predict accurate knee con-
tact forces). Overall, our study suggests that if three types of model pa-
rameter values are well calibrated, a traditional musculoskeletal model
can predict both medial and lateral knee contact force with good accu-
racy.

Other studies, which did not consider moment arm variations, con-
cluded that tendon slack lengths played a more important role than
optimal muscle fiber lengths when estimating muscle forces via opti-
mization methods [45]. De Groote et al. [46] observed that tendon
slack lengths generally had more influence than optimal fiber lengths
on estimated muscle forces, though some muscle forces were sensitive
to optimal fiber length values as well. In our study, lateral knee contact
force was already estimated accurately without calibrating optimal fiber
lengths (Problem 6). When optimal fiber lengths were included as de-
sign variables (Problem 7), prediction of medial contact force improved
slightly, while prediction of lateral contact force worsened.

For all of our optimization problem formulations, errors in pre-
dicted medial and lateral knee contact forces were of similar or lower
magnitude compared to other studies [5,47,48]. Though experimen-
tal knee contact force information was used to calibrate model para-
meter values (outer level optimization), no knee contact force informa-
tion was used when estimating muscle activations (inner level optimiza
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Fig. 8. Moment arm deviations for Problems 5, 6, and 7. Note that knee inf-sup “moment arm” is dimensionless.

tion). Calibrated model parameter values produced muscles that oper-
ated within physiological ranges [49] in all nine optimization problems.
We observed that when moment arm deviations were not included as
design variables, the second peak of medial contact force at about 50%
of the gait cycle was overpredicted, as observed in other studies that did
not calibrate this parameter [15,44]. These findings suggest that exist-
ing musculoskeletal model formulations are capable of predicting knee
contact forces accurately as long as critical model parameter values are
calibrated properly.

Differences in estimated knee contact forces can be explained by
variations in a few muscle parameter values, which in turn are responsi-
ble for different muscle contributions to knee contact force [50]. Over-
prediction of the second peak of medial force at about 50% of the gait
cycle, especially in problems where no moment arm deviations were op-
timized, was due primarily to different GasMed force contributions (Fig.
6). The unrealistic peak of lateral force obtained at about 10% of the gait
cycle in several formulations was due to different BFSH, GasLat, TFL,
and GasMed force contributions (Fig. 7). As mentioned above, the most
important design variables were moment arm deviations (Fig. 8), which
were within a physiological range (< 1 cm) for all muscles in all prob-
lems. However, these small changes affected the optimizations enough
to produce the differences in knee contact force predictions mentioned
above.

Additionally, we tested two common issues in studies dealing with
muscle and knee contact force prediction. The first issue was that lat-
eral contact forces were tracked less accurately than were medial con-
tact forces [5]. We ran an extra optimization problem where we in-
creased the weight on lateral force tracking by 10% and decreased the
weight on medial force tracking by 10%. This change improved lat-
eral contact force tracking for calibration trials, but prediction of both
medial and lateral contact forces for prediction trials was worse than
when both forces were weighted equally. Obtaining accurate lateral con

tact force predictions remains challenging. More accurate models of the
knee, for example including the lateral collateral ligament (which was
not included in our study), may lead to better lateral contact force pre-
dictions. The second issue was whether scaling optimal muscle fiber
lengths and tendon slack lengths equally led to comparable results, since
the observed variations in optimal fiber lengths and tendon slack lengths
were low. However, the results were indeed better when calibration of
these two types of parameters were decoupled, consistent with the work
of other groups [23].

Nevertheless, a proper calibration of musculo-tendon parameters
that leads to accurate knee contact forces remains unknown when no
knee contact force information is available. However, the results of this
study give insight into which parameters should be calibrated to obtain
accurate medial and lateral knee contact forces, as well as what are the
main muscle force differences obtained when using different sets of de-
sign variables.

A drawback of using non-linear optimization (in our case, in the
outer level) was the fact that the optimization algorithm could expe-
rience entrapment in local minima, and thus we could not guarantee
that solutions of the two-level optimizations were global minima. How-
ever, we are confident that the muscle activation solutions were global
minima given a set of musculoskeletal parameters (inner-level optimiza-
tion), since these solutions were obtained using a quadratic program-
ming algorithm and the problem being solved was convex. To address
the local minima issue, we systematically started each outer level opti-
mization from different initial guesses. We chose the solutions that esti-
mated medial and lateral contact force magnitudes the best, which also
had the best shape estimates.

This study had several limitations that should be taken into account.
Apart from optimal muscle fiber lengths, tendon slack lengths, and mo-
ment arm deviations, other musculoskeletal model parameters could
be calibrated and could influence muscle and contact force prediction.
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For example, parameters related to the normalized muscle force-length
curve could also be varied [51]. However, the chosen parameters were
the ones that have been shown to have the greatest influence on muscle
force estimation [45], and they are also parameters amenable to calibra-
tion through EMG-driven modeling methods [16–19]. Maximum iso-
metric forces were not included in the set of design variables since they
could introduce numerical redundancies with muscle activations and
moment arms. To estimate maximum isometric forces, we recommend
using the scaling methods reported by Handsfield et al. [52]. As we did
an extensive set of analyses in this study, we performed our evaluation
using experimental data from a single 88-year old subject. Although our
single-subject design is a limitation, future work could expand on the
promising approaches from this study with instrumented knee datasets
from other subjects available at http://simtk.org/projects/kneeloads. In
addition, our results cannot be easily applied to datasets without in vivo
contact force measurements. We expect that dynamic variables, such as
joint moments, muscle forces, and knee contact forces, would be differ-
ent in other subjects, which would in turn require different model para-
meter values. However, we expect the influence on the solution of each
analyzed parameter type to follow a similar trend, since the optimiza-
tion problem formulation to estimate knee contact forces would be the
same. It is not known if the results of the analysis presented here would
be similar if non-walking movements were used to assess the calibration
approach. In the future, it would be valuable to repeat the evaluation for
other motions such as crouch gait, squatting, or stair climbing to evalu-
ate such differences.

In conclusion, this study demonstrated that medial and lateral knee
contact forces can be estimated accurately using an existing muscu-
loskeletal model structure as long as model parameter values are prop-
erly calibrated. The most accurate estimates of lateral knee contact
forces, which are the most difficult to match, were obtained when opti-
mizing tendon slack lengths and moment arm deviations. In contrast, the
most accurate estimates of medial knee contact forces occurred when
optimal muscle fiber lengths, tendon slack lengths, and moment arm
deviations were adjusted simultaneously. These conclusions should be
taken into account when selecting the set of musculo-tendon parameters
to calibrate when solving muscle-force sharing problems depending on
the purpose of the study. Based on our results, we suggest calibrating
only tendon slack lengths and moment arms, since problem formulations
that calibrated these parameters lead to the overall best predictions of
both medial and lateral contact forces. A challenge for the future will
be finding ways to calibrate these model parameter values when in vivo
knee contact force measurements are not available.

Declaration of Competing Interest

None.

Acknowledgments

Gil Serrancolí acknowledges support from the Serra Húnter Program.

Funding

None.

Ethical approval

Not required.

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.medengphy.2020.09.004.

References

[1] EUMUSC: European musculoskeletal conditions surveillance and information
network (2019, December 1). Musculoskeletal Health Europe. Retreived from
www.eumusc.net

[2] J.W.J. Bijlsma, F. Berenbaum, F.P.J.G. Lafeber Osteoarthritis: an update with
relevance for clinical practice. Lancet 2011;377:2115–2126. doi:10.1016/
S0140-6736(11)60243-2.

[3] R.F. Loeser Aging processes and the development of osteoarthritis. Curr Opin
Rheumatol 2013;25:108–113. doi:10.1097/BOR.0b013e32835a9428.

[4] Y. Bei, B.J. Fregly Multibody dynamic simulation of knee contact mechanics.
Med Eng Phys 2004;26:777–789. doi:10.1016/j.medengphy.2004.07.004.

[5] A.L. Kinney, T.F. Besier, D.D. D’Lima, B.J. Fregly Update on grand challenge
competition to predict in vivo knee loads. J. Biomech Eng 2013;135(2):021012.
doi:10.1115/1.4023255.

[6] B.J. Fregly, T.F. Besier, D.G. Lloyd, S.L. Delp, S.A. Banks, M.G. Pandy, et al.
Grand challenge competition to predict in vivo knee loads. J Orthop Res
2012;30:503–513. doi:10.1002/jor.22023.

[7] I. Kutzner, B. Heinlein, F. Graichen, A. Bender, A. Rohlmann, A. Halder, et al.
Loading of the knee joint during activities of daily living measured in vivo in
five subjects. J Biomech 2010;43:2164–2173. doi:10.1016/
j.jbiomech.2010.03.046.

[8] D.D. D’Lima, C.P. Townsend, S.W. Arms, B.A. Morris, C.W. Colwell An
implantable telemetry device to measure intra-articular tibial forces. J Biomech
2005;38:299–304. doi:10.1016/j.jbiomech.2004.02.011.

[9] W.R. Taylor, P. Schütz, G. Bergmann, R. List, B. Postolka, M. Hitz, et al. A
comprehensive assessment of the musculoskeletal system: the CAMS-Knee data
set. J Biomech 2017;65:32–39. doi:10.1016/j.jbiomech.2017.09.022.

[10] W. Herzog, D. Longino, A. Clark The role of muscles in joint adaptation and
degeneration. Langenbeck’s Arch. Surg. 2003;388:305–315. doi:10.1007/
s00423-003-0402-6.

[11] D.G. Thelen, F.C. Anderson, S.L. Delp Generating dynamic simulations of
movement using computed muscle control. J Biomech 2003;36:321–328.
doi:10.1016/S0021-9290(02)00432-3.

[12] K. Sasaki, R.R. Neptune Muscle mechanical work and elastic energy utilization
during walking and running near the preferred gait transition speed. Gait
Posture 2006;23:383–390. doi:10.1016/j.gaitpost.2005.05.002.

[13] Y. Lin, J.P. Walter, S.A. Banks, M.G. Pandy, B.J. Fregly Simultaneous prediction
of muscle and contact forces in the knee during gait. J Biomech
2010;43:945–952. doi:10.1016/j.jbiomech.2009.10.048.

[14] S.R. Hamner, A. Seth, S.L. Delp Muscle contributions to propulsion and support
during running. J Biomech 2010;43:2709–2716. doi:10.1016/
j.jbiomech.2010.06.025.Muscle.

[15] M.A. Marra, V. Vanheule, R. Fluit, B.H.F.J.M. Koopman, J. Rasmussen, N.
Verdonschot, et al. A subject-specific musculoskeletal modeling framework to
predict in vivo mechanics of total knee arthroplasty. J Biomech Eng
2015;137:1–12. doi:10.1115/1.4029258.

[16] D.G. Lloyd, T.F. Besier An EMG-driven musculoskeletal model to estimate
muscle forces and knee joint moments in vivo. J Biomech 2003;36:765–776.
doi:10.1016/S0021-9290(03)00010-1.

[17] K. Manal, T.S. Buchanan An electromyogram-driven musculoskeletal model of
the knee to predict in vivo joint contact forces during normal and novel gait
patterns. J Biomech Eng 2013;135:021014. doi:10.1115/1.4023457.

[18] M. Sartori, M. Reggiani, D. Farina, D.G. Lloyd EMG-driven forward-dynamic
estimation of muscle force and joint moment about multiple degrees of freedom
in the human lower extremity. PLoS ONE 2012;7:e52618. doi:10.1371/
journal.pone.0052618.

[19] A.J. Meyer, C. Patten, B.J. Fregly Lower extremity EMG-driven modeling of
walking with automated adjustment of musculoskeletal geometry. PLoS ONE
2017;12:e0179698.

[20] M. Zuk, M. Syczewska, C. Pezowicz Influence of uncertainty in selected
musculoskeletal model parameters on muscle forces estimated in inverse
dynamics-based static optimization and hybrid approach. J Biomech Eng
2018;140:121001. doi:10.1115/1.4040943.

[21] C.A. Myers, P.J. Laz, K.B. Shelburne, B.S. Davidson A probabilistic approach to
quantify the impact of uncertainty propagation in musculoskeletal simulations.
Ann Biomed Eng 2015;43:1098–1111. doi:10.1007/s10439-014-1181-7.

[22] C. Redl, M. Gfoehler, M.G. Pandy Sensitivity of muscle force estimates to
variations in muscle-tendon properties. Hum Mov Sci 2007;26:306–319.
doi:10.1016/j.humov.2007.01.008.

[23] C.R. Winby, D.G. Lloyd, T.B. Kirk Evaluation of different analytical methods for
subject-specific scaling of musculotendon parameters. J Biomech
2008;41:1682–1688. doi:10.1016/j.jbiomech.2008.03.008.

[24] M. Xiao, J. Higginson Sensitivity of estimated muscle force in forward
simulation of normal walking. J. Appl. Biomech. 2010;26:142–149.

[25] L.L. Menegaldo, L.F. Oliveira The influence of modeling hypothesis and
experimental methodologies in the accuracy of muscle force estimation using
EMG-driven models. Multibody Syst. Dyn. 2012;28:21–36. doi:10.1007/
s11044-011-9273-8.

[26] A.Van Campen, G. Pipeleers, F. De Groote, I. Jonkers, J. De Schutter A new
method for estimating subject-specific muscle – tendon parameters of the knee
joint actuators : a simulation study. Int J Numer Method Biomed Eng
2014;30:969–987. doi:10.1002/cnm.2639.

[27] D.C. Ackland, Y.-.C. Lin, M.G. Pandy Sensitivity of model predictions of muscle
function to changes in moment arms and muscle-tendon properties: a
Monte-Carlo analysis. J Biomech 2012;45:1463–1471. doi:10.1016/
j.jbiomech.2012.02.023.

http://simtk.org/projects/kneeloads
https://doi.org/10.1016/j.medengphy.2020.09.004
http://www.eumusc.net/


UN
CO

RR
EC

TE
D

PR
OO

F

12 G. Serrancolí et al. / Medical Engineering and Physics xxx (xxxx) 1–12

[28] G. Valente, L. Pitto, D. Testi, A. Seth, S.L. Delp, R. Stagni, et al. Are
subject-specific musculoskeletal models robust to the uncertainties in parameter
identification? PLoS ONE 2014;9:e112625. doi:10.1371/journal.pone.0112625.

[29] A. Navacchia, C.A. Myers, P. Rullkoetter, K.B. Shelbourne Prediction of in vivo
knee joint loads using a global probabilistic analysis. J Biomech Eng
2016;138:4032379. doi:10.1115/1.4032379.

[30] M.E. Lund, M.S. Andersen, M. de Zee, J. Rasmussen Scaling of musculoskeletal
models from static and dynamic trials. Int Biomech 2015;2:1–11. doi:10.1080/
23335432.2014.993706.

[31] M.O. Heller, W.R. Taylor, C. Perka, G.N. Duda The influence of alignment on
the musculo-skeletal loading conditions at the knee. Langenbeck’s Arch Surg
2003;388:291–297. doi:10.1007/s00423-003-0406-2.

[32] S.L. Delp, F.C. Anderson, A.S. Arnold, P. Loan, A. Habib, C.T. John, et al.
OpenSim: open-source software to create and analyze dynamic simulations of
movement. IEEE Trans Biomed Eng 2007;54:1940–1950. doi:10.1109/
TBME.2007.901024.

[33] A. Seth, J.L. Hicks, T.K. Uchida, A. Habib, C.L. Dembia, J.J. Dunne, et al.
OpenSim: simulating musculoskeletal dynamics and neuromuscular control to
study human and animal movement. PLoS Comput Biol 2018;14:e1006223.
doi:10.1371/journal.pcbi.1006223.

[34] G. Serrancoli, A.L. Kinney, B.J. Fregly, J.M. Font-Llagunes
Neuromusculoskeletal model calibration significantly affects predicted knee
contact forces for walking. J Biomech Eng 2016;138:081001. doi:10.1115/
1.4033673.

[35] E.M. Arnold, S.R. Hamner, A. Seth, M. Millard, S.L. Delp How muscle fiber
lengths and velocities affect muscle force generation as humans walk and run at
different speeds. J Exp Biol 2013;216:2150–2160. doi:10.1109/20.619708.

[36] E.M. Arnold, S.R. Ward, R.L. Lieber, S.L. Delp A model of the lower limb for
analysis of human movement. Ann Biomed Eng 2010;38:269–279. doi:10.1007/
s10439-009-9852-5.

[37] J.P. Walter, A.L. Kinney, S.A. Banks, D.D. D’Lima, T.F. Besier, D.G. Lloyd, et al.
Muscle synergies may improve optimization prediction of knee contact forces
during walking. J Biomech Eng 2014;136:021031. doi:10.1115/1.4026428.

[38] D. Zhao, S.A. Banks, D.D. D’Lima, C.W. Colwell Jr., B.J. Fregly In vivo medial
and lateral tibial loads during dynamic and high flexion activities. J Orthop Res
2007;25:593–602. doi:10.1002/jor.20362.

[39] T.F. Coleman, Y. Li An interior trust region approach for nonlinear
minimization subject to bounds. SIAM J Optim 1994;6:418–445. doi:10.1137/
0806023.

[40] E.M. Arnold, S.L. Delp Fibre operating lengths of human lower limb muscles
during walking. Philos Trans R Soc Lond B Biol Sci 2011;366:1530–1539.
doi:10.1098/rstb.2010.0345.

[41] F. De Groote, A.L. Kinney, A.V. Rao, B.J. Fregly Evaluation of direct collocation
optimal control problem formulations for solving the muscle redundancy
problem. Ann Biomed Eng 2016;44:2922–2936. doi:10.1007/
s10439-016-1591-9.

[42] T.A. Correa, R. Baker, H. Kerr Graham, M.G. Pandy Accuracy of generic
musculoskeletal models in predicting the functional roles of muscles in human
gait. J Biomech 2011;44:2096–2105. doi:10.1016/j.jbiomech.2011.05.023.

[43] L. Scheys, A. Spaepen, P. Suetens, I. Jonkers Calculated moment-arm and
muscle-tendon lengths during gait differ substantially using MR based versus
rescaled generic lower-limb musculoskeletal models. Gait Posture
2008;28:640–648. doi:10.1016/j.gaitpost.2008.04.010.

[44] L. Modenese, E. Montefiori, A. Wang, S. Wesarg, M. Viceconti, C. Mazzà
Investigation of the dependence of joint contact forces on musculotendon
parameters using a codified workflow for image-based modelling. J Biomech
2018;73:108–118. doi:10.1016/j.jbiomech.2018.03.039.

[45] C.Y. Scovil, J.L. Ronsky Sensitivity of a hill-based muscle model to
perturbations in model parameters. J Biomech 2006;39:2055–2063.
doi:10.1016/j.jbiomech.2005.06.005.

[46] F. De Groote, A. Van Campen, I. Jonkers, J. De Schutter Sensitivity of dynamic
simulations of gait and dynamometer experiments to hill muscle model
parameters of knee flexors and extensors. J Biomech 2010;43:1876–1883.
doi:10.1016/j.jbiomech.2010.03.022.

[47] R.E. Richards, M.S. Andersen, J. Harlaar, J.C. van den Noort Relationship
between knee joint contact forces and external knee joint moments in patients
with medial knee osteoarthritis: effects of gait modifications. Osteoarthr. Cartil.
2018;26:1203–1214. doi:10.1016/j.joca.2018.04.011.

[48] F. Schellenberg, W.R. Taylor, A. Trepczynski, R. List, I. Kutzner, P. Schütz, et al.
Evaluation of the accuracy of musculoskeletal simulation during squats by
means of instrumented knee prostheses. Med Eng Phys 2018;61:95–99.
doi:10.1016/j.medengphy.2018.09.004.

[49] E.M. Arnold, S.L. Delp Fibre operating lengths of human lower limb muscles
during walking. Philos Trans R Soc B Biol Sci 2011;366:1530–1539.
doi:10.1098/rstb.2010.0345.

[50] C.R. Winby, D.G. Lloyd, T.F. Besier, T.B. Kirk Muscle and external load
contribution to knee joint contact loads during normal gait. J Biomech
2009;42:2294–2300. doi:10.1016/j.jbiomech.2009.06.019.

[51] Z.J. Domire, J.H. Challis A critical examination of the maximum velocity of
shortening used in simulation models of human movement. Comput Methods
Biomech Biomed Engin 2010;13:693–699. doi:10.1080/10255840903453082.

[52] G.G. Handsfield, C.H. Meyer, J.M. Hart, M.F. Abel, S.S. Blemker Relationships
of 35 lower limb muscles to height and body mass quantified using MRI. J
Biomech 2014;47:631–638. doi:10.1016/j.jbiomech.2013.12.002.


	Influence of musculoskeletal model parameter values on prediction of accurate knee contact forces during walking
	Keywords
	Abstract
	Introduction
	Methods
	Experimental data
	Musculoskeletal model
	Optimization problem formulation
	Analyses

	Results
	Discussion
	Declaration of Competing Interest
	Acknowledgments
	Funding
	Ethical approval

	Supplementary materials
	References


