
UPC - NASA JPL

Bachelor Thesis

Mathematics and Telecommunications Engineering

Development and Implementation
of an Adaptive-Sweep Algorithm

for Carrier Acquisition and
Tracking in Spacecraft Radios

Author
Tomàs Ortega

Tutor
Dr. Olga Muñoz

Supervisor
Dr. Marc Sánchez

Co-Supervisor
Dr. Kar-Ming Cheung

July 2020

This research was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, and was sponsored by the JPL Visiting Student Research

Program and the National Aeronautics and Space Administration

c© Tomàs Ortega, 2020. All rights reserved.

This page is intentionally left blank

Abstract

Spacecraft radios transmit a signal modulated at a carrier frequency, which is later
demodulated and processed at baseband. However, this carrier frequency shifts over
time due to the Doppler effect, which must be removed prior to demodulation by
acquiring and tracking the carrier. An algorithm to do so is already implemented
in spacecraft radios developed by NASA [5]. However, it uses a fixed-step sweep al-
gorithm to acquire the carrier, a limitation that facilitates implementing it in flight
hardware, but makes the acquisition process brittle. In this thesis, a novel carrier
acquisition algorithm that uses an adaptive-step is presented and its performance
is quantified in the presence of Additive White Gaussian Noise (AWGN). Addition-
ally, a software implementation using GNU Radio is also presented and tested in
simulation for a wide variety of Signal to Noise Ratio (SNR) conditions. Finally,
results presented in this work demonstrate the ability of the algorithm to acquire
and track the carrier of the Lunar Reconnaissance Orbiter (LRO).

Keywords Signal theory, carrier acquisition, sweeping algorithm
AMS code 94A99

i

https://www.gnuradio.org/

Acknowledgements

First of all, I want to express my sincere gratitude to my supervisor at JPL, Dr.
Marc Sánchez for the attention, patience, and help he has given me throughout this
thesis.

I would also like to acknowledge Dr. Kar-Ming Cheung and Dr. Dariush Di-
vsalar, who have followed my work during these six months, and given me their
input and guidance.

To my tutor from UPC, Dr. Olga Muñoz, thank you for fueling my passion for
telecommunications since the first college course.

I would like to take a moment to recognize JPL and the CFIS program, who
have given me the opportunity to work on such an interesting problem.

Last but not least, I would like to thank my family and friends, both at JPL and
abroad, for their tremendous support during these unconventional six months.

This research was carried out at the Jet Propulsion Laboratory, California Insti-
tute of Technology, and was sponsored by the JPL Visiting Student Research Program
and the National Aeronautics and Space Administration (80NM0018D0004).

ii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Literature review . 3

1.3.1 Signal model . 3
1.3.2 Phase-Locked Loop . 4
1.3.3 Sweeping Algorithm . 7

1.4 Thesis statement . 10
1.5 Thesis structure . 11

2 Analysis and implementation 12
2.1 Signal to Noise Ratios . 12
2.2 Parameter calculation . 13

2.2.1 PLL and Sweeping Algorithm update rates 14
2.2.2 Steady-state phase error . 14
2.2.3 Noise distribution . 15
2.2.4 Step calculation . 19
2.2.5 Expected acquisition time . 20
2.2.6 Standard Deviation of Doppler residuals 22

2.3 SDR Implementation . 25

3 Results 27
3.1 Design script . 27
3.2 Simulink . 28

3.2.1 PLL . 29
3.2.2 Adaptive-Sweep Algorithm . 29

3.3 Software-Defined Radio . 31
3.4 Stand-alone SDR platform . 33

4 Conclusions 37
4.1 Summary . 37
4.2 Contributions . 37
4.3 Future work . 38

Acronyms 39

Bibliography 40

A Doppler shift 41

iii

B Extended PLL residual error analysis 44
B.1 Residual frequency error . 44

B.1.1 Taylor expansion with critically damped coefficients 45
B.2 Residual phase error . 46

C Stand-alone SDR setup 47

D Code listings 48

iv Tomàs Ortega

List of Figures

1.1 Doppler shift received in the Canberra DSN station 1

1.2 PLL block diagram . 5

1.3 PLL filter response with BL = 50Hz 6

1.4 PLL Simulink design schematic . 6

1.5 PLL and fixed-step frequency sweep block diagram 7

1.6 Fixed-step sweep algorithm scheme 7

1.7 Block diagram of the proposed system 8

1.8 Block diagram of the adaptive-sweep algorithm 9

1.9 P and D as a function of π∆fT . 10

1.10 Lock and Direction Detector Simulink block 10

2.1 P and D with noise SNRM = 20dB 13

2.2 Maximum supported r depending on BL 15

2.3 Noise PDF at α = 0 with different SNRM values 16

2.4 P and D with 99% error bounds . 17

2.5 P and D error bounds at α = 0 . 17

2.6 P and D without noise, with emphasis on the linear region 18

2.7 Optimal expected acquisition time performance plots 22

2.8 Experimental σf , with exact and first order predictions 25

2.9 Flow graph of a FM Radio with GRC 25

2.10 Flow graph with custom blocks in GRC, with a AWGN channel . . . 26

3.1 Difference between real and estimated fd(t) depending on ν 29

3.2 Estimated fd(t) with 1 Hz, 100 Hz and 1 kHz of offset 30

3.3 Complete Simulink model of the system 30

3.4 f̂(t) with the proposed sweep algorithm 31

3.5 Comparison of results with Simulink and GNU Radio simulations . . 31

3.6 σf when PLL is locked, with N = 16 and Equation 3.1 (dashed line) . 32

3.7 LRO signal spectrogram and system output 33

3.8 Scheme of the experimental set-up . 33

3.9 LRO track 48247 spectrogram . 34

3.10 LRO track 48810 spectrogram . 34

3.11 LRO track 48247 results . 35

3.12 LRO track 48810 results . 35

A.1 LRO Doppler shift from Canberra during a whole lunar month 42

A.2 LRO Doppler rate from Canberra during a whole lunar month 42

A.3 Zoomed in Fourier transform of LRO Doppler shift from Canberra . . 43

v

B.1 Residual phase error and its estimation 46

vi Tomàs Ortega

Chapter 1

Introduction

1.1 Context

NASA operates a variety of spacecraft, including rovers, satellites, instruments, and
other devices. For all interplanetary missions, and a few in Earth vicinity, NASA
uses the Deep Space Network (DSN) to communicate with said spacecraft. The
DSN also provides the means to command, track and monitor the health and safety
of those missions.

According to NASA, the DSN is the largest and most sensitive scientific telecom-
munications system in the world [3]. It is equipped with an array of giant antennas,
in three facilities strategically located around the globe to allow constant communi-
cation with spacecraft. The DSN is monitored and operated by NASA’s Jet Propul-
sion Laboratory (JPL) and its current state can be consulted at eyes.nasa.gov/dsn.

When spacecraft communicate with Earth, they transmit at a predetermined
carrier frequency. However, due to the Doppler effect, the received signal on Earth
has suffered a frequency shift. For example, Figure 1.1 plots the received signal at
the Canberra DSN station when the Lunar Reconnaissance Orbiter (LRO) transmits
a carrier tone. Also, no signal is received during the periods of occultation, that is,
when the Moon is between the spacecraft and Earth.

0 50 100 150 200 250

-10

-5

0

5

10

15

Figure 1.1: Doppler shift received in the Canberra DSN station

The frequency shift induced by the Doppler effect depends on the relative motion

1

https://eyes.nasa.gov/dsn/dsn.html

of the spacecraft with respect to Earth. Each mission provides the DSN with Doppler
shift predictions that allow the frequency shift to be corrected on Earth. When the
ground station uplinks data to the spacecraft, the Doppler shift is compensated
at the Earth node. This way, the spacecraft can transmit and receive at a given
frequency ignoring the Doppler effect.

However, consider the case of a communications link between a rover and a satel-
lite, also known as a proximity link. One of the two communications terminals must
correct the Doppler shift. Since a precise location of the receiver is not necessarily
known by the transmitter, the correction is done at the receiver.

Spacecraft radio that must support proximity links are already equipped with
technology to perform this correction, using a fixed-step frequency sweep algorithm.
This thesis explains how this technology works, and explores a possible improvement
on this technology, in which the frequency sweep is enhanced with an adaptive step.

A spacecraft radio, like Iris or Electra, performs the carrier acquisition and track-
ing digitally, with the fixed-step algorithm implemented in an Field Programmable
Gate Array (FPGA) [5]. This can be accurately simulated with a Software-Defined
Radio (SDR), which is a radio communication system that is primarily implemented
by means of software [9]. In a SDR, the input signal (which originates either from
software or hardware) is processed by software run on a general purpose CPU or
embedded system. This facilitates the development process of new technologies,
such as the proposed adaptive-sweep algorithm, by allowing the implementation of
components like mixers, filters or amplifiers directly in software.

1.2 Motivation

Current technology for carrier acquisition in spacecraft radios for proximity links
consists in a fixed-step frequency sweep algorithm. This approach to solve the
problem is intuitive, but lacks robustness. Theoretical research developed recently
at JPL suggests that that a faster, more robust approach could be achieved using
an adaptive-sweep algorithm [2].

There are at least three motivating applications for an improved carrier acqui-
sition and tracking algorithm: Proximity links at Mars or the Moon, support of
Multiple Uplinks per Antenna (MUPA) in the DSN, and generation of Doppler
measurements for navigation purposes.

Proximity links at Mars or the Moon require a fast and robust method to ac-
quire and track the carrier frequency in order to establish communications, since
the Doppler shift cannot be predicted by the transmitter or the receiver because
they do not know their relative motion. Instances of noise or high Doppler dy-
namics might trigger loss of lock at the receiver, and hence loss of communications.
Carrier acquisition is therefore paramount in order to minimize the time without
communications.

Having an advanced acquisition and tracking system would also facilitate the
development of MUPA. Currently, a DSN antenna uplinks data to a spacecraft
by pre-compensating the sent signal so that the spacecraft receiver operates at its
Best-Lock Frequency (BLF). If multiple spacecraft with different trajectories share
the same uplink, the DSN station cannot pre-compensate the Doppler for all of
them at once. However, if spacecraft could acquire and track the frequency shift
with sufficient precision, the correction of different Doppler shifts could be done at

2 Chapter 1 Tomàs Ortega

reception. This way, the Earth antenna could uplink data to several spacecraft at
once.

A third possible application of this system are navigation systems in planetary
bodies where GPS or weak-GPS signals are not available. Since the Doppler shift
is a function of the direction of motion and relative velocity between transmitter
and receiver, knowing the evolution of the Doppler shift over time could allow the
navigation system to infer its current position. Therefore, an advanced acquisition
and tracking system such as the one proposed in this thesis could be used to produced
the required observables for the navigation system.

The main purpose of this thesis is to refine and mature an adaptive sweep algo-
rithm by studying its performance in the presence of Additive White Gaussian Noise
(AWGN), and implementing it in a SDR environment. Successful demonstration of
the algorithm in the SDR will make a strong case for hardware-based testing and,
ultimately, implementation in flight radios such as IRIS or Electra.

1.3 Literature review

In order to understand the current system for carrier acquisition and tracking, it
is necessary to introduce some core concepts and definitions. These include the
definition of the Doppler shift, the model of the signal, the essentials of a Phase-
Locked Loop (PLL) for carrier tracking and an introduction to a carrier acquisition
sweeping algorithm.

The first concept to introduce is the Doppler shift. Spacecraft radios transmit a
signal modulated at a carrier frequency, which is later demodulated and processed
at baseband. However, the Doppler effect introduces a phase shift on the received
signal that must be compensated in order to recover the modulated symbols.

The Doppler shift is defined as the difference between the received and the trans-
mitted frequency,

fd(t) = fRx(t)− fTx(t)
This shift, along with changes in frequency due to instabilities in oscillators, adds

a time-varying distortion in the phase of the received signal. It is important to note
that the frequency is the time derivative of the phase, that is, φ̇(t) = ω(t) = 2πf(t).
The full signal model will be presented in subsection 1.3.1.

A Phase-Locked Loop (PLL) is a system designed to generate an output signal
whose phase φ̂(t) is as similar as possible to the phase φ(t) of the input signal.
Therefore, variations of carrier frequency due to Doppler effects or instabilities of
the oscillators can be tracked using a PLL, which enables proper demodulation of
the received signal. The essentials of a PLL will be presented in subsection 1.3.2.

The drawback of using only a PLL is that it cannot operate when the difference
between the received frequency and the transmitted one is too large. In particular,
the first acquisition of the carrier frequency must be done by a separate system, this
is where the Sweeping Algorithm comes into play. The way the Sweeping Algorithm
works is explained in subsection 1.3.3.

1.3.1 Signal model

This thesis assumes that the transmitted signal is a Binary Phase Shift Keying
(BPSK) signal with residual carrier, as is common in deep space applications [7].

Chapter 1 Tomàs Ortega 3

The complex baseband equivalent of the received signal is [2]

r(t) =
√
Pte

j[φ(t)+βm(t)g(t)] + n(t), (1.1)

φ(t) = 2π

∫ t

−∞
fd(τ) dτ + θc (1.2)

where Pt is the total received carrier and data power, m(t) is the BPSK modulated
signal, θc is the carrier phase and fd(t) is the Doppler frequency shift. Data is mod-
ulated onto a subcarrier using, for example, a square waveform g(t) = sign(2πfsct),
with a modulation index β < π/2. Finally, n(t) is a complex Additive White Gaus-
sian Noise (AWGN) with two-sided power spectral density N0/2.

When acquiring and tracking the carrier, the sub-carrier components are filtered
out. The remaining complex baseband equivalent of the carrier signal is

s(t) =
√
Pce

jφ(t) + n(t), (1.3)

where φ(t) is the same as in Equation 1.2. Assuming a square wave subcarrier,
Pc = Pt cos2(β) is the power in the carrier (unmodulated) component. The rest of
the power, Pd = Pt sin2(β) corresponds to the data (modulated) component, that
has been filtered out.

Assuming that the carrier power can be estimated, the input signal is normalized,
and Equation 1.3 becomes

s(t) = ejφ(t) + n(t), (1.4)

where n(t) is now AWGN of variance Fs

Pc/N0
, and Fs is the sample frequency. The

Pc/N0 parameter, called carrier to noise ratio, is usually estimated by NASA missions
using the link budget equation.

The final aspect of the signal model that must be explored is the Doppler shift.
An extended study on the Doppler shift for the link between the LRO and the DSN
can be found in Appendix A. For this work, the Doppler shift that will be considered
is modelled as a ramp,

fd(t) = f0 + rt, (1.5)

where f0 is the Doppler offset, sometimes referred to simply as the Doppler of the
signal, and r is the Doppler rate.

The Doppler shift model in Equation 1.5 is appropriate because the first order
Taylor approximation in each point of Figure 1.1 is locally (within an interval of a
minute) very accurate.

1.3.2 Phase-Locked Loop

This section introduces the fundamentals of a PLL. First, the PLL will be described
in a block diagram, then the elements and signals present in the diagram will be
specified. Finally, the PLL used in this work will be detailed, as well as the condition
that relates analog and digital PLLs.

A basic PLL has the block structure detailed in Figure 1.2. To facilitate the
analysis, an ideal scenario with no noise is initially considered; therefore the input
signal can be written as ejφ(t), as described in Equation 1.4. Similarly, the phase
estimated by the PLL is denoted by φ̂(t). The received and estimated phases are
first subtracted using a mixer, and then fed into a phase extractor. Then, the phase

4 Chapter 1 Tomàs Ortega

is passed through a filter that estimates the phase derivative, or angular frequency.
This is then fed to a Numerically Controlled Oscillator (NCO) that outputs the
conjugate of the estimated phase to start the loop again.

It is important to remember the definition of angular frequency, which is ω =
2πf . Therefore, an estimate of the Doppler frequency can be obtained from the
output of the PLL. Additionally, when the estimated frequency is the Doppler fre-
quency, or the absolute value of their difference is below a given tolerance, the PLL
is said to be in lock.

× Phase extractor Filter
φ(t)− φ̂(t)

NCO

ejφ(t) ej(φ(t)−φ̂(t))

̂̇φ(t) = ω̂(t)e−jφ̂(t)

Figure 1.2: PLL block diagram

The first element after the mixer is the phase extractor. To extract the phase
of the mixed signal, the imaginary operator is used. Assuming that the received
and estimated phases are close, the small angle approximation of the sine is used to
obtain

=
{
ej(φ(t)−φ̂(t))

}
= sin

(
φ(t)− φ̂(t)

)
≈ φ(t)− φ̂(t) (1.6)

This approximation allows the linear analysis of the circuit, and also illustrates the
need for a good estimation of the initial frequency offset.

After the phase extractor, the next element in Figure 1.2 is the PLL filter, which
is Infinite Impulse Response (IIR) filter. A PLL is said to be of order N when its
filter is an IIR of order N . A filter of order N is designed to track dynamics up to
the Nth order. In other words, a first order PLL will only be able to track dynamics
up to the first order, i.e. fd(t) = f0 a constant offset. A second order PLL will track
Doppler shifts of the form fd(t) = f0 + rt.

The PLL Filter is designed to be a lowpass filter with unitary gain and bandwidth

BL =
1

2

∫ ∞
−∞
|H(j2πf)|2 df (1.7)

where H(z) represents the closed-loop transfer function defined by

H(z) =
φ̂(z)

φ(z)

and for a second order PLL is [8]

H(z) =
(K1 +K2)z −K1

z2 + (K1 +K2 − 2)z + 1−K1

(1.8)

However, there is a more intuitive way to see this. Given a fd(t) Doppler frequency
shift in time, BL is the threshold of the Fourier transform of φ(t) that the PLL

Chapter 1 Tomàs Ortega 5

cancels. If fd(t) = sin(2πνt), then signals with ν > BL should be cancelled (ex-
perimental results on this topic can be found in subsection 3.2.1). The trade-off is
that a lower BL will offer better noise rejection, while a higher BL will allow higher
Doppler dynamics.

The filter used in the final system uses the coefficients described in [8] for a
second order critically damped filter (current spacecraft radio like Electra also use
a second order filter [5]). Both the under-damped and the critically damped filter
responses can be found in Figure 1.3. As they are second order filters, the responses
are far from an ideal rectangular-shaped filter.

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 1.3: PLL filter response with BL = 50Hz

In practice, PLL are implemented digitally. However, for a high sample rate, the
behaviour is the same as an analog PLL [8]. The condition that must be satisfied for
the digital PLL to behave like its analog counterpart is called the Continuous Update
(CU) approximation, and is BL/FPLL ≤ 0.02, where BL is the PLL bandwidth and
FPLL is the PLL update rate [8].

The schematic in Figure 1.4 is a basic PLL Simulink model. An interesting
element to point out is the integrate and dump block, which has a length of N
samples and a 1/N gain block for averaging afterwards. This helps to reduce the
noise; however, it also reduces the PLL update rate FPLL by

FPLL =
Fs
N

(1.9)

Out1

Input	signal

	D1
	D1 	D1

In1Out1

NCO

	D1	D1

(K1+K2)-K1z	-1

1-z	-1

Loop	Filter

	D2

	D2

Integrate
and	Dump

	D2 	D2

Repeat
200x	D1	D1

exp(j*phi(t))

exp(-j*phihat(t))

Figure 1.4: PLL Simulink design schematic

6 Chapter 1 Tomàs Ortega

1.3.3 Sweeping Algorithm

The Sweeping Algorithm is in charge of correcting large variations in phase that
cannot be tracked by the PLL because they exceed its bandwidth. In particular,
it corrects the initial offset f0 and thus help the PLL lock. It operates at a lower
frequency than the PLL to allow the PLL to lock onto different candidate offsets.
A block diagram of the complete system is illustrated in Figure 1.5.

×

Lock Detector

Fixed-step
Sweeping
Algorithm

Phase extractor Filter

NCO +

φ(t)− φ̂(t)ejφ(t) ej(φ(t)−φ̂(t))

P

ω0

̂̇φ(t) = ω̂(t)e−jφ̂(t)

Figure 1.5: PLL and fixed-step frequency sweep block diagram

A crucial part of the Sweeping Algorithm is the Lock Detector. The Lock Detec-
tor is a system that, when fed a unitary amplitude input signal, outputs a function
of the phase that is maximal when the phase is null. Ideally, this would be a binary
block that outputs 1 when the phase is locked and 0 when it is not. In reality, it
outputs a value between 1 and 0, and this value is later compared to a threshold to
simulate the ideal behaviour.

The algorithm that is currently implemented in spacecraft radio is fairly straight-
forward [5], and is illustrated in Figure 1.6. The sweeping algorithm makes a sweep
between an initial frequency and a final frequency with a fixed step jump. In each
step, the conjugate of the estimated signal is fed into the mixer, along with the
input signal, and the mixer result is fed into the Lock Detector. If the output of
the Lock Detector (denoted P in Figure 1.2) is greater than a given threshold, the
sweeping algorithm stops and lets the PLL continue tracking. If the final frequency
is reached without having surpassed the threshold, the algorithm restarts.

Transmitted frequency
(0 baseband)

Received frequency
(Doppler shift)

Frequency (Hz)

Step 1

P < Threshold
(No lock)

Sweep step

Step 2

P < Threshold
(No lock)

Step 3

P < Threshold
(No lock)

Step 4

P > Threshold
Frequency Lock!

Final sweep
frequency

Sweep range

≈

Figure 1.6: Fixed-step sweep algorithm scheme

The adaptive-sweep algorithm proposed in [2] is slightly more sophisticated. It

Chapter 1 Tomàs Ortega 7

also sweeps between an initial and a final frequency. However, it has a Lock and
Direction Detector that outputs a threshold and direction function, denoted P and
D respectively. The sweep step and the direction of the step are determined by the
value of P and D, instead of being fixed. A block diagram of the proposed system
is illustrated in Figure 1.7.

×

Lock and
Direction
Detector

Adaptive-Sweep
Algorithm

Phase extractor Filter

NCO +

φ(t)− φ̂(t)ejφ(t) ej(φ(t)−φ̂(t))

P,D

ω0

̂̇φ(t) = ω̂(t)e−jφ̂(t)

Figure 1.7: Block diagram of the proposed system

Ideally, the D function would be a ramp that depended on ∆f = f − f̂ , where f

is the input signal offset and f̂ is the current offset estimate. This would allow the
system to simply add the value of D to the current estimate to achieve frequency
lock in one step. In reality, the D function only approximates such a ramp in the
vicinity of the frequency lock. Therefore, the P function is used to detect when the
estimated frequency is near the frequency lock, thus enabling the use of D.

The previously mentioned high-level description of the algorithm is illustrated
in a block scheme in Figure 1.8. There is a threshold θ, that dictates when to use
the fixed step ∆1 or the adaptive step D∆2. The initial and final frequencies of the
sweep are f1 and f2, respectively.

To understand the behaviour of the P and D functions the Lock and Direction
Detector must be studied. A detailed analysis can be found in [2], so only a simplified
version is provided in this thesis. Suppose that the frequency of the input signal has
an offset f , but the PLL estimates a frequency f̂ such that f 6= f̂ . In the absence
of noise, the input of the Lock Detector is

xi(t) = ej(2π∆ft+∆φ) (1.10)

where ∆f = f − f̂ and ∆φ = φ− φ̂. Note that both are approximated as constant
in time. Then, the following operations are performed:

yk =
1

T

∫ Tk

T (k−1)

xi(t)dt =
ej(2π∆fTk+∆φ)(1− e−j2π∆fT)

j2π∆fT

=
ej(2π∆fTk+∆φ)(ejπ∆fT − e−jπ∆fT)e−jπ∆fT

j2π∆fT

= ej(2π∆f(k− 1
2

)T+∆φ) sinc(π∆fT) (1.11)

y∗k−1yk = ej(2π∆fT) sinc2(π∆fT)

(1.12)

8 Chapter 1 Tomàs Ortega

f ← f1

Output f , Input P and D

P > θf ← f + ∆1

f ← f +D∆2

f > f2

no

yes

yes

no

Figure 1.8: Block diagram of the adaptive-sweep algorithm

This results in:

P = <
{
y∗k−1yk

}
= cos(2π∆fT) sinc2(π∆fT) (1.13)

D = =
{
y∗k−1yk

}
= sin(2π∆fT) sinc2(π∆fT) (1.14)

These functions are plotted in Figure 1.9. Observe that the behaviour of P suc-
cessfully approximates an ideal lock detector: when ∆f tends to zero, the function
has a maximum, which is equal to one. Around ∆f = 0 the function D also behaves
as desired, since it approximates a ramp that is a function of ∆f . A version of Fig-
ure 1.9 with noise can be found in section 3.3. It is interesting to observe that for
high noise levels, the D function might introduce a high variance into the estimated
frequency. In this scenario, D can be fed to a possibly non-linear function q(D),
such as a clipper, to ensure the output of q(D) is bounded between [−1, 1]. That
being said, this will not be taken into consideration in this thesis.

In practice, the Lock and Direction Detector block is implemented in the discrete
domain. Reference [2] shows nuances related to this change, but in this work the
sampling frequency will be assumed high enough to behave as the analog version.

The Simulink block schematic of the discrete Lock and Direction Detector block
can be seen in Figure 1.10. The integrator of length T to calculate yk in Equa-
tion 1.11 has been replaced by its discrete counterpart, an integrate and dump
block. Its sample length M is chosen such that, given an input sampling frequency
Fs,

T = MTs =
M

Fs
(1.15)

Chapter 1 Tomàs Ortega 9

-3 -2 -1 0 1 2 3

-0.5

0

0.5

1

Figure 1.9: P and D as a function of π∆fT

1
Direction

1
	D1

Z-125
	D1

	D3
	D3

	D3

2
Threshold

Integrate
and	Dump

	D3 	D3

Integrate
and	Dump

	D3 	D3

	D3
z-M

Figure 1.10: Lock and Direction Detector Simulink block

Several implementations of the adaptive-sweep algorithm have been developed
in this thesis, see subsection 3.2.2 for a Simulink implementation and section 2.3 for
a GNU Radio implementation.

1.4 Thesis statement

Given the adaptive sweep algorithm for carrier acquisition and tracking from [2],
explained in the literature review, the goals of this thesis are:

1. Modify the adaptive-sweep algorithm from [2] to use an automatic adaptive
step.

2. Characterize the performance of the system in the presence of AWGN.

3. Derive the design equations of a carrier acquisition and tracking system that
combines a PLL with an Adaptive-Sweep Algorithm (ASA).

4. Implement the system in a SDR and port it to a stand-alone platform.

5. Test the algorithm in both a simulated environment and using received signals
from LRO.

10 Chapter 1 Tomàs Ortega

1.5 Thesis structure

The remainder of this thesis is structured as follows:
Chapter 2 provides a system analysis and performance metrics as a function of

noise and Doppler characteristics, which are then used to derive the design equations
of a carrier acquisition and tracking system that combines a PLL with an Adaptive-
Sweep Algorithm. It also describes the characteristics of the chosen SDR software
and peripherals.

Chapter 3 contains the results obtained from the previously described work.
First, a script that calculates the system parameters using the design equations is
detailed. Next, results obtained with simulated signals running on Matlab Simulink
and SDR models are compared. Finally, experimental results obtained with LRO
signals running on a stand-alone SDR platform are presented.

Chapter 4 summarizes the thesis and its main contributions, and introduces the
possible future opportunities for research.

Chapter 1 Tomàs Ortega 11

Chapter 2

Analysis and implementation

In Chapter 1, most of the discussion assumed an ideal noiseless scenario. However, in
order to quantify the performance of the system in representative flight conditions,
the noise must be accurately modelled. In this chapter, the analysis of a combined
PLL and adaptive-sweep system in the presence of AWGN is presented. First,
section 2.1 defines several Signal to Noise Ratios that will be useful for the system
analysis. Next, section 2.2 presents the system analysis and performance metrics
as a function of noise and Doppler characteristics, which are then used to calculate
system parameters such as the threshold for the P function, and the size of the
fixed and adaptive steps. Finally, section 2.3 gives an overview of the SDR software
that has been chosen for the proposed ASA, as well as the peripherals used for
experimenting.

2.1 Signal to Noise Ratios

Signal to Noise Ratios can cause confusion when analyzing PLLs because multiple
SNRs are of interest. Before starting the SNR definitions, it is important to recall
the system model described in subsection 1.3.1. The input signal to the system,
described in Equation 1.4, is

s(t) = ejφ(t) + n(t)

where n(t) is AWGN of variance Fs

Pc/N0
, and Fs is the sample frequency.

Once the input signal is known, the carrier SNR can be defined. Given a sample
rate Fs, and Pc/N0, usually calculated using the link budget equation, the carrier
SNR, or SNRc, can be calculated as

SNRc =
Pc
N0Fs

The carrier SNR allows the sweeping branch SNR to be defined. This is the SNR
that governs the behaviour of the sweeping algorithm, and is denoted by SNRM .
Recall here that M denotes the length of the integrate and dump block used to
generate the Lock and Direction functions (see subsection 1.3.3 and Figure 1.10). It
can be computed as

SNRM = SNRc ·M,

which clearly indicates that larger values of M help reduce the variance of the noise.
The latter is of great importance, as a longer integrator will reduce the noise better,

12

but will also increase the delay between consecutive samples of P and D, therefore
making the sweep algorithm slower. As an example, Figure 2.1 presents the P and
D functions in the presence of noise with SNRM = 20 dB, and has been calculated
using the implementation detailed in section 2.3.

−3 −2 −1 0 1 2 3
π∆fT

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
P

Pideal

D

Dideal

Figure 2.1: P and D with noise SNRM = 20dB

Finally, another interesting SNR is the PLL SNR, usually denoted by ρ or
SNRPLL, that depends on the loop bandwidth BL and is computed as

ρ =
Pc

N0BL

This parameter is used in the DSN Telecommunications Link Design Handbook,
which recommends that ρ > 10 dB for the PLL to track a signal with data modulated
in a residual carrier [4].

2.2 Parameter calculation

The SNR definitions from section 2.1 allow the system analysis that will be carried
out in this section. The current system has the Degrees Of Freedom (DOF) presented
in Table 2.1, which are currently chosen ad-hoc for every proximity link scenario.
The goal of the system analysis is to provide the design equations that will make the
current system completely determined, based on a few requirements: the range of
expected Doppler offsets, the minimum expected Pc/N0, and the maximum expected
Doppler rate.

The first part of the system analysis will produce two equations that govern the
PLL and Sweeping Algorithm update rates. Afterwards, the steady-state phase error
will be deduced, giving a design equation for the PLL bandwidth. Subsequently,
the noise distribution will be studied. This will provide a design equation for the
sweep threshold, and the necessary background for calculating the adaptive and
fixed step size. In particular, three design equations, one for each step (fixed and
adaptive), and one for the minimum sweep branch integrator sample size will be

Chapter 2 Tomàs Ortega 13

DOF Description
Fs Sampling frequency
BL PLL bandwidth
N Length of PLL integrator
M Length of the integrator to calculate the P and D functions
θ Sweep threshold
∆1 Fixed sweep step
∆2 Adaptive sweep step

Table 2.1: Initial DOF with their description

derived. Finally, the expected acquisition time and the expected output frequency
error standard deviation will be calculated. This will give an idea of the system
performance without having to run simulations.

2.2.1 PLL and Sweeping Algorithm update rates

The first condition that governs the PLL update rate is the aforementioned Contin-
uous Update approximation, which following the work in [8] is

BLTPLL = BL
N

Fs
≤ 0.02 (2.1)

where N is the size of the integrate and dump block in the PLL (see Figure 1.4).
Also, as was explained in subsection 1.3.3, the update rate of the PLL has to be

faster than the update rate of the sweeping algorithm to allow the PLL to lock on
to different candidate offsets. A 10 factor has been proven to work experimentally.
Given a sampling frequency Fs, a PLL branch integrator size N , and a sweep branch
integrator size M (see Figure 1.10), the following condition is derived.

10
N

Fs
≤ M

Fs
=⇒ 10N ≤M (2.2)

2.2.2 Steady-state phase error

To calculate the loop bandwidth, one must take into account the steady-state phase
error, that is, the difference between the output phase and the input phase when
the PLL is in lock.

Given an input phase φ, the results in [8] show that the steady-state phase error
φ̃ss = φn− φ̂n−1 can be assumed constant. Also, for a second order filter of constants
K1 and K2, and an inverse PLL update rate TPLL, the formula for the steady-state
phase error is

φ̃ss =
T 2
PLL

K2

φ′′

Since a filter with a critically damped response is used,

K2 =
1

4
K2

1 =
1

4

(
16

5
BLTPLL

)2

=⇒ φ′′ = B2
L

φ̃ss4
3

52

14 Chapter 2 Tomàs Ortega

Knowing that the input signal has a phase φ(t) = 2π
∫ t
−∞ fd(τ) dτ+θc (see Equa-

tion 1.2), and that the Doppler shift is modelled as fd(t) = f0+rt (see Equation 1.5),
then

φ′′ = 2πf ′d(t) = 2πr =⇒ r = B2
L

φ̃ss4
3

2π52

Therefore, if the desired spacecraft radio is designed for φ̃ss ≤ 0.1 rad, typical in
spacecraft applications [4], then the previous formula yields

r ≤ B2
L

0.1 · 43

2π52

In other words, there is direct quadratic relationship between maximum supportable
Doppler rate and PLL loop bandwidth (see Figure 2.2). Analogously, this means
that given a maximum expected Doppler rate, one can obtain the required loop
bandwidth as √

2π52r

43φ̃ss
≤ BL (2.3)

0 20 40 60 80 100

0

100

200

300

400

500

Figure 2.2: Maximum supported r depending on BL

2.2.3 Noise distribution

After obtaining a design equation for the PLL bandwidth, the noise distribution will
be studied in order to obtain a sweep threshold θ, and a sweep branch integrator of
size M .

To begin the analysis, the noise variance of the P and D functions is computed
as a function of the SNR conditions. To gain some insight, the noise PDF will first
be numerically calculated for several values of SNRM . This will later be used to
compute error bounds for the P and D functions, which will yield the lower bound on
M . Finally, the analysis will be validated using an improved Chebyshev’s inequality.

To compute the noise variance for the P andD functions, the system’s input noise
ni(t) is modelled as complex AWGN of variance σ2

i . After an analogous procedure

Chapter 2 Tomàs Ortega 15

to Equation 1.11, the following equations are obtained:

yk = xk + nk,

xk =
1

T

∫ kT

(k−1)T

xi(t) = ej(2π∆f(k− 1
2

)T+∆φ) sinc(π∆fT),

nk =
1

T

∫ kT

(k−1)T

ni(t),

where T is the lock detector integration period T = MTs = M/Fs, nk is complex
AWGN with variance σ2

i /T . Also, P and its expected value become

P = <
{
y∗k−1yk

}
= <

{
x∗k−1xk + x∗k−1nk + n∗k−1xk + n∗k−1nk

}
(2.4)

E[P] = <
{
x∗k−1xk

}
= cos(2π∆fT) sinc2(π∆fT) = cos(2α) sinc2(α) (2.5)

where the variable α = π∆fT is defined in order to ease notation.
Using Equation 2.4, the variance of P can now be calculated. It is important to

note that all noise terms have zero mean and zero pairwise covariance, and therefore,
the variance of the sum of noise terms is the sum of the individual noise term
variances. Using these arguments it follows that

σ2
P = Var

(
<
{
x∗k−1nk + n∗k−1xk + n∗k−1nk

})
=
σ2
i

T
sinc2(α) +

1

2

(
σ2
i

T

)2

This procedure can be repeated for D, which yields values for E[D] and σ2
D that

are the same as for the P function. Therefore, the noise in D also has zero mean
and σD = σP .

Now that the mean and the variance of the noise in P and D are explicitly known,
the Probability Distribution Function (PDF) of the noise will be studied. To get
an idea of the noise distribution behaviour for different SNRM values, one can run
a numerical simulation and obtain the plots from Figure 2.3. It is interesting to
observe that for SNRM ≥ 17dB the behaviour is essentially Gaussian, a condition
that we will assume valid for the rest of the discussion.

-20 0 20 40

0

0.05

0.1

0.15

0.2

-4 -2 0 2 4 6

0

0.2

0.4

0.6

-0.5 0 0.5 1

0

0.5

1

1.5

2

-0.2 0 0.2

0

2

4

6

Figure 2.3: Noise PDF at α = 0 with different SNRM values

16 Chapter 2 Tomàs Ortega

Several approaches can then be used to calculate error bounds of P and D
due to noise at a given α. A numerical approach has been found to give more
accurate bounds than an analytical approach using Chebyshev’s inequality, or its
improvement for unimodal distributions, the the Vysochanskij–Petunin inequality
[6]. However, the analytical bound can be used to validate the numerical result.

Figure 2.4 shows the 99% error numerical bounds for P and D. As expected,
the error is maximal at α = 0, because sinc2(α) is maximal at α = 0. The spread
of the error bounds is plotted for several values of SNRM in Figure 2.5. One can
observe that for very low values of SNRM , the error at α = 0 is close to 1, which is
the maximum value of the ideal P function. In other words, the noise in the system
is so large that the P function cannot accurately indicate whether the system is in
lock or not. Therefore, a minimum value of SNRM is required to ensure that the P
and D functions are usable for carrier acquisition.

-3 -2 -1 0 1 2 3

-1

-0.5

0

0.5

1

1.5

P

D

Figure 2.4: P and D with 99% error bounds

10 20 30 40 50 60

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 2.5: P and D error bounds at α = 0

In order to allow the sweeping algorithm to lock for extended periods of time,
a minimum SNRM is required (or, equivalently, a minimum M). With the help

Chapter 2 Tomàs Ortega 17

of the previous plots, one can find that for SNRM ≥ 17 dB, the noise bound at
frequency lock is at most half the value required to reach the ideal threshold. Also,
for SNRM ≥ 17 dB, the noise is known to be normally distributed. Experimentally,
this has been tested to be a good minimum requirement for SNRM , as thirty minute
simulations have not reported losses of lock. This gives the condition

Pc
N0

M

Fs
≥ 17dB (2.6)

Now that a condition to calculate M is available, the ideal threshold θ for the P
function has to be estimated. As explained in subsection 1.3.3, once θ is surpassed,
a fully adaptive step will be used, and its value will be derived from the D func-
tion. This leads to the definition of a linear region for D, which can be obtained
numerically by estimating its global minimum and maximum respectively. As can
be seen in Figure 2.6, the linear region occurs when α ∈ [−0.672, 0.672]. Note that
this region is particularly interesting because D gives the direction and the size of
the step that is required to jump to α = 0, i.e., the lock condition.

-3 -2 -1 0 1 2 3

-0.5

0

0.5

1

Figure 2.6: P and D without noise, with emphasis on the linear region

To calculate θ, the minimum and maximum values of α from the linear region
are substituted into the P function from Equation 2.5, resulting in

E[P (−0.672)] = cos(2 · −0.672) sinc2(−0.672) = E[P (0.672)] = 0.193, (2.7)

which defines the ideal value for θ when there is no noise in the system. However,
as Figure 2.4 shows, for values of α not in the linear region, P with noise does
not surpass the ideal threshold E[P (−0.672)] ≈ 0.2 = θ. This holds for values of
SNRM ≥ 17 dB, the suggested minimum from Equation 2.6. It has been experi-
mentally verified for values of SNRM as low as 12 dB. This means that the ideal
threshold is very robust, because in a neighborhood of the linear zone, D will still
point the next iteration of the algorithm towards α = 0. In practice, the ideal
threshold will be used.

Now that the ideal threshold and the minimum SNRM conditions have been
obtained, an analytical bound can validate the previous findings. The Vysochan-
skij–Petunin inequality will be used [6], which states that given X, a random vari-
able with unimodal distribution, mean µ and finite, non-zero variance σ2, for any

18 Chapter 2 Tomàs Ortega

λ >
√

8/3 it holds that

Prob(|X − µ| ≥ λσ) ≤ 4

9λ2
(2.8)

Applying this to the random variable of noise in P , which has µ = 0 and

σ2
P =

sinc(α)2

SNRM

+
1

2SNR2
M

one can obtain a measure of how likely it is for θ to be surpassed for α not in
the linear zone. Assuming a symmetrical distribution of noise, the bound from
Equation 2.8 becomes

Prob(X − µ ≥ λσ) ≤ 2

9λ2

Using λσP = θ − cos(2α) sinc2(α), from Equation 2.5 , the probability that
P (α) > θ when λ >

√
8/3 is

Prob(P (α) ≥ θ) = Prob(X ≥ λσP) ≤ 2

9λ2

Prob(P (α) ≥ θ) ≤
2 sinc(α)2 + 1

SNRM

9(θ − cos(2α) sinc2(α))2

1

SNRM

Asymptotically, this means that for |α| → ∞, the probability that P > θ is

Prob(P ≥ θ) ≤ 1

9θ2SNR2
M

For θ = 0.2 and SNRM = 17dB, the probability that P > θ for |α| → ∞ is
Prob(P ≥ θ) ≤ 0.114%. This confirms the expectations that for all working SNRM

the ideal threshold will not be surpassed when |α| → ∞.

2.2.4 Step calculation

The threshold θ has been calculated, and the noise in the sweep branch has been
analyzed. This allows the adaptive step to apply once θ is surpassed to be calcu-
lated. After, it will be estimated under the assumption that the noise is normally
distributed. Finally, the fixed step will also be calculated.

First, the adaptive step will be obtained. Let ∆̂f denote the estimated ∆f =
f−f̂ , where f is the input frequency and f̂ is the estimated frequency. The objective
is to find a good ∆2 to multiply the direction function D, such that ∆2D = ∆̂f . In
absence of noise, D is

E[D] = =
{
x∗k−1xk

}
= sin(2α) sinc2(α)

Near α = 0, sin(2α) ≈ 2α and sinc(α) ≈ 1, so in the linear region, an optimal
estimator for ∆f would be

∆2D = ∆̂f =
1

2πT
D (2.9)

Given that for SNRM ≥ 17 dB the noise has been proven to be Gaussian dis-
tributed, it is trivial to see that the previous estimator for ∆f is a Maximum Like-
lihood Estimator (MLE). For SNRM < 17 dB, when the distribution of the noise is

Chapter 2 Tomàs Ortega 19

non-Gaussian, this might not be the case. Given a noise that is centered around zero,
with a finite variance and unimodal, the sample mean is not necessarily the MLE
(e.g., a log-normal distribution). However, since in this dissertation it is assumed
that SNRM ≥ 17, the non-Gaussian case is only of concern in future work.

The estimator from Equation 2.9 is a MLE, but it is not ideal. When the sweep
algorithm is in lock, a large adaptive step introduces noise in the output frequency,
which is not desirable. In order to take into account this noise, the following family
of functions will be considered

∆C
2 D = ∆̂f =

C

2πT
D

where C is a correction factor that will force more conservative steps at low SNR
conditions.

To calculate C, the following design criteria is selected: C will be chosen to be
the largest value that keeps the step due to noise at α = 0 below 1Hz with 99%
probability, which is equivalent to

Prob

(
C

2πT
|D(α=0)| ≥ 1

)
= 1% (2.10)

This way ∆2 is a step large enough to arrive at α = 0, or frequency lock, quickly;
and keep the fluctuations due to noise low.

The definition from Equation 2.10 allows a numerical computation of ∆2. How-
ever, assuming Gaussian distribution of the noise, one can use the Q function to
deduce a formula to calculate the adaptive step for each value of SNRM :

Prob(|∆2D| > 1Hz) < 1% ⇐⇒ Q

(
1

∆2σ

)
<

0.01

2
=⇒

∆2 =
1

Q−1(0.01/2)

√
SNRM = 0.388

√
SNRM (2.11)

Now that the adaptive step has been calculated, the fixed step ∆1 is estimated.
A larger step will allow a faster lock, but may skip the linear zone all together.
Since it takes two iterations to calculate one output of P and D, the algorithm must
ensure that at least two iterations of the algorithm fall inside of the linear zone.
Therefore, the maximum ∆1 is

2π∆1MTs ≤ 2 · 0.672 =⇒ ∆1max =
Fs · 0.672

πM
(2.12)

Using a fixed step of ∆1max , the adaptive-sweep algorithm has been tested to
work for SNRM ≥ 17dB.

2.2.5 Expected acquisition time

Given M , Fs and Pc/N0, the maximum and minimum frequencies to acquire, fmax−
fmin = 2f0, and the steps ∆1 and ∆2 selected with the previously identified criteria,
the goal is now to obtain an estimate of the expected acquisition time. To do so, first
the adaptive step will be analyzed in order to obtain a formula that approximates
the calculation from subsection 2.2.4. With it, an expected acquisition time formula

20 Chapter 2 Tomàs Ortega

will be deduced, which will be later minimized in order to obtain a second condition
for the sweep branch integrator size M .

Given the adaptive step formula from Equation 2.11, and the fixed step formula
from Equation 2.12, the expected acquisition time is deduced with the following
assumptions: the frequency offset will be assumed uniform within the sweeping
range fmax − fmin = 2f0, and the initial point in the linear zone where the ASA
starts using the adaptive step will also be assumed uniform. Subsequently,

E[Tacq] = E[Tfixed + Tadaptive] = E[Tfixed] + E[Tadaptive]

E[Tfixed] =

∫ fmax

fmin

f − fmin

∆1

MTs
1

2f0

df =
f0

∆1

MTs

E[Tadaptive] =

∫ 1

−1

|x|∆1

∆2

MTs
1

2
dx =

0.672

2π0.387
√
SNR

√
M
MTs

E[Tacq] =
f0πM

2T 2
s

0.672
+

0.672

2π0.387
√
SNR

√
M

= 4.68f0

(
M

Fs

)2

+ 0.276
1√

Pc

N0

√
M
Fs

(2.13)

This indicates that, on average, having a higher sampling rate has the same effect
as having a smaller integrator.

The upside of having a higher sampling frequency is that the continuous time
approximation will be better. Also, the range of frequencies that the ASA will be
able to detect will be higher. On the downside, the necessary hardware will be more
sophisticated.

With the given expected acquisition time formula, it is interesting to find the
minimum expected acquisition time. Knowing that Equation 2.13 is a function of
M/Fs, its derivative can be calculated by letting a = 4.68f0, b = 0.276/

√
Pc/N0,

and substituting these values in the expression

f(x) = ax2 +
b√
x

=⇒ f ′(x) = 2ax− b

2x3/2

Since all coefficients are positive, one can obtain the global optimum by simply
taking the derivative and equating it to zero. This results in

M

Fs
=

(
0.276

4
√
Pc/N04.68f0

)2/5

(2.14)

Note that this derivation is valid under the assumed condition of SNRM ≥ 17 dB.
Using this criteria, one obtains the performance plotted in Figure 2.7. An interesting
observation is that for Pc/N0 ≤ 52 dB the M value obtained from Equation 2.14
is smaller than the necessary one to satisfy the minimum SNRM condition. This
means that the value of M obtained from Equation 2.14 will only be used when
Pc/N0 > 52 dB.

Chapter 2 Tomàs Ortega 21

40 45 50 55 60

0

500

1000

40 45 50 55 60

2

3

4

5

6

40 45 50 55 60
10

-2

10
0

40 45 50 55 60

0

500

1000

Figure 2.7: Optimal expected acquisition time performance plots

2.2.6 Standard Deviation of Doppler residuals

Having calculated the expected acquisition time, the next performance indicator to
be calculated is the standard deviation of the difference between input and output
frequencies, or Doppler residuals. This will be done in two parts. First, perfect lock
will be assumed with a first order PLL. This will give an intuition of the behaviour
of the system. Next, the only assumption that will be made is that the output noise
tends to a stationary process. The resulting formula will be compared to the first
approach.

Assuming perfect lock

Consider the multiplication of s(t), the input signal from the antenna which carries
complex AWGN (see Equation 1.4), and sPLL(t), the output signal of the NCO of
the PLL, which can be modelled as

s = ejφ(t) + n(t)

sPLL = e−φ̂(t)

ssPLL = ej(φ(t)−φ̂(t)) + e−jφ̂(t)n(t) = ej(φ(t)−φ̂(t)) + ñ(t) (2.15)

where ñ(t) is also complex AWGN, with the same distribution as n(t), because it
has been multiplied by a complex number in the unit circle.

Assuming φ = φ̂, which is a lock state with no error, then the product becomes

ssPLL = ñ(t)

Extracting the imaginary part, ñ(t) becomes real AWGN with variance σ2 =
1
2

1
SNRc

= 1
2

Fs

Pc/N0
. This then goes through an integrate and dump block of size N ,

which reduces the variance by an N factor. Now, σ2 = 1
2

Fs

Pc/N0

1
N

.

22 Chapter 2 Tomàs Ortega

After the integrate and dump comes the PLL filter, which will be assumed of
first order with coefficient K1. This means that the noise will be multiplied by K1,
and later transformed to frequency by multiplying by Fs

N
1

2π
.

Therefore, for a first order filter and assuming perfect lock, the expected output
error standard deviation σf is

σf =
Fs

2πN
K1

√
1

2

1

Pc/N0

Fs
N

Assuming the output noise tends to a stationary process

When in lock, as seen in Equation 1.6, the system can be linearized using the
approximation sin(x) = x to extract the imaginary part of the output of the mixer.
Due to the linear nature of the system, one can analyze the signal components and
the noise components separately. Analyzing the noise component, the phase φ can
be modelled as AWGN of variance σ2. Using the transfer function for a second order
loop presented in Equation 1.8, and knowing that the frequency is the derivative of
the phase with respect to time, one obtains

f̂(z)

z − 1
= φ̂(z) =⇒ f̂(z)

z − 1
= φ(z)H(z) =⇒

f̂(z)
(
z2 + (K1 +K2 − 2)z + 1−K1

)
= φ(z)(z − 1)

(
(K1 +K2)z −K1

)
Since the input phase φ has been modelled as AWGN, its samples will be denoted

nk. Using this notation, the previous equation implies the following recurrence

f̂k+2 + (K1 +K2 − 2)f̂k+1 + (1−K1)f̂k =

(K1 +K2)nk+2 − (2K1 +K2)nk+1 +K1nk
(2.16)

with which the three first outputs of the system can be computed

f̂0 = (K1 +K2)n0

f̂1 = (K1 +K2)n1 + (K2 − (K1 +K2)2)n0

f̂2 = (K1 +K2)n2 + (K2 − (K1 +K2)2)n1 + ((K1 +K2)3 − 2K2(K1 +K2) +K2)n0

and, by induction

f̂k+2 =(K1 +K2)nk+2 + (K2 − (K1 +K2)2)nk+1

+ ((K1 +K2)3 − 2K2(K1 +K2) +K2)nk +
k−1∑
i=0

λini
(2.17)

Equation 2.17 allows to compute some covariances, where σ2 is the noise variance

C0 = E[f̂knk] = (K1 +K2)σ2

C1 = E[f̂knk−1] = (K2 − (K1 +K2)2)σ2

C2 = E[f̂knk−2] = ((K1 +K2)3 − 2K2(K1 +K2) +K2)σ2

The variance of f̂k can now be computed, assuming that it is a stationary process.
In other words, E[f̂kf̂k−j] = Rj is assumed to be independent of k. Taking the

Chapter 2 Tomàs Ortega 23

expected value of multiplying Equation 2.16 by f̂k, f̂k+1 and f̂k+2, the following
system is obtained

R2 + (K1 +K2 − 2)R1 + (1−K1)R0 = K1C0

(2−K1)R1 + (K1 +K2 − 2)R0 = −(2K1 +K2)C0 +K1C1

(1−K1)R2 + (K1 +K2 − 2)R1 +R0 = (K1 +K2)C0 − (2K1 +K2)C1 +K1C2

The closed form solution of this linear system can be obtained analytically, and
results in

R0 =
−2(2K3

1 + 3K2
1K2 +K1K

2
2 +K2

2)

2K2
1 − 4K1 +K1K2

R1 =
2K4

1 + 5K3
1K2 + 4K2

1K
2
2 − 2K2

1K2 +K1K
3
2 +K3

2 − 2K2
2

2K2
1 − 4K1 +K1K2

R2 = −2K5
1 + 7K4

1K2 − 2K4
1 + 9K3

1K
2
2 − 9K3

1K2 + 5K2
1K

3
2 − 9K2

1K
2
2

2K2
1 − 4K1 +K1K2

− 2K2
1K2 +K1K

4
2 −K1K

3
2 − 2K1K

2
2 +K4

2 − 4K3
2 + 2K2

2

2K2
1 − 4K1 +K1K2

which gives the prediction for σf

σf =
Fs

2πN

(√
R0

)√1

2

1

Pc/N0

Fs
N

(2.18)

Finally, knowing that 1 << K1 << K2, and specifically that K2 =
K2

1

4
, the

autocorrelation’s Taylor expansion can be calculated at K1 = 0. This results in
R0 = K2

1 + O(K3
1). In other words, the first-order approximation of σf for a 2nd

order PLL matches the performance of a first order PLL.

σf =
Fs

2πN

(√
R0

)√1

2

1

Pc/N0

Fs
N
≈ Fs

2πN
K1

√
1

2

1

Pc/N0

Fs
N

Figure 2.8 presents the goodness of the exact analytic prediction from Equa-
tion 2.18, as well as its first order approximation, compared to the measured σf
from the GNU Radio implementation presented in section 2.3.

Higher order PLLs and phase error analysis

The previously outlined procedure can be generalized to higher order loops, which
allow tracking higher Doppler dynamics but are more computationally intensive.
The work done in this thesis uses a second order loop, but the analysis for a third
order loop can be found in Appendix B, which also contains an analysis of the
residual phase error.

24 Chapter 2 Tomàs Ortega

40 45 50 55 60

Pc/N0 (dB)

2

4

6

8

10

12

14

16

σ
f
(H

z)

Fs = 80000 Hz
fd(t) = 20000 + 100t Hz
N = 16
BWLoop = 50 Hz

GNU Radio

First order approximation

Exact analytic prediction

20 25 30 35 40
SNRPLL (dB)

Figure 2.8: Experimental σf , with exact and first order predictions

2.3 SDR Implementation

The chosen tool to implement the algorithm is GNU Radio, which is a free and
open-source software development toolkit that provides signal processing blocks to
implement software defined radios. GNU Radio has a graphical tool to create signal
flow graphs called GNU Radio Companion (GRC). Python scripts are generated
from the flow graph. Visually, a GRC flow graph is very similar to a Simulink flow
graph with blocks; an example can be found in Figure 2.9.

Figure 2.9: Flow graph of a FM Radio with GRC

The GNU Radio runtime is designed to stream large amounts of data in real-
time between parallel computational nodes each operating completely independently.
Each block has a completely independent scheduler running in its own execution
thread. Blocks run as fast as the CPU, data flow, and buffer space allows [1].

Chapter 2 Tomàs Ortega 25

https://www.gnuradio.org/

GRC flow graphs process data by chunks, not sample by sample, to improve
system performance. However, feedback loops like the one present in a PLL need to
be processed sample by sample. Since this would produce significant data overhead,
GNU radio developers decided to not support loops in flow graphs [10]. Despite that,
one can still design loops as long as they are contained in an individual block, which
can be programmed in either Python or C++. As the bulk of the computation
is implemented in C++, the GNU Radio flow graph runs much faster than the
Simulink one.

The flow graph of the system with a signal generator block, an Additive White
Gaussian Noise (AWGN) channel block and the PLL block can be found in Fig-
ure 2.10. Both the signal generator and the PLL block have been implemented
internally in C++, together with gr_modtool, which is a tool developed to facili-
tate this process.

Figure 2.10: Flow graph with custom blocks in GRC, with a AWGN channel

Another nice feature of GNU radio is that it comes with pre-installed blocks that
allow it to interface with commercially available SDR peripherals (see Figure 2.9,
block osmocom Source). For this thesis, a HackRF One peripheral has used along-
side the GNU Radio software for radio transmission. A Hack RF One is able to
transmit or receive radio signals from 30 MHz to 6000 MHz with the power it re-
ceives from a USB port, with a maximum bandwidth of 20 MHz. This has been
used to transmit a carrier frequency with a certain offset to simulate the received
signal from a spacecraft.

To receive the signal transmitted from the HackRF One, another more capable
SDR peripheral has been used, namely the Ettus E310. This device is a stand-
alone SDR platform designed for field deployment. It has its own processor running
an OpenEmbedded Linux distribution, and uses a Field Programmable Gate Array
(FPGA) to interface the font-end electronics with the embedded CPU and accelerate
digital signal processing functionality. It provides up to 56 MHz of instantaneous
bandwidth and can operate at carrier frequencies ranging from 70 MHz – 6 GHz.
However, only 10 Msps can be transferred into the processor from the FPGA. The
steps used to setup the stand-alone operation of the Ettus E310 can be found in
Appendix C.

26 Chapter 2 Tomàs Ortega

https://greatscottgadgets.com/hackrf/one/
https://www.ettus.com/all-products/e310/

Chapter 3

Results

This chapter will present the results obtained from the implementation of the theo-
retical research in section 2.2 with the software tools described in section 2.3.

First, a Matlab design script will be presented, with its inputs and outputs,
and a summary of the steps it follows. Next, the Simulink implementation will
be presented, along with results that illustrate several effects described in previous
chapters. The Simulink implementation will be used to validate the GNU Radio
implementation, which has been used to produce the majority of figures from this
thesis, and has been run with a recording of a real LRO signal, also included in
this section. Finally, the stand-alone ASA implementation results will be presented,
where two LRO signals are acquired and tracked successfully.

3.1 Design script

Using the theoretical analysis from section 2.2, a design script for the ASA has been
written. Next, the inputs and outputs of the script will be presented. Finally, the
procedure it follows will be explained.

First, the inputs of the script are the following:

1. Maximum steady-state phase error

2. Maximum absolute expected Doppler rate

3. Initial and final sweep frequencies

4. Minimum expected Pc/N0

5. Maximum allowed error in adaptive step (set to 1Hz by default)

6. Probability that the maximum allowed error from item 5 is surpassed (set to
1% by default)

7. Boolean value: set to minimize frequency variation or acquisition time

And the following outputs:

1. Loop bandwidth BL

2. Sampling frequency Fs

27

3. Length of PLL integrator N

4. Length of the sweep integrator M

5. Fixed step size ∆1

6. Adaptive step size ∆2

7. Sweep threshold θ

8. Expected acquisition time E[Tacq]

9. Expected standard deviation of Doppler residuals σf

The outputs correspond to the degrees of freedom that were indicated in Ta-
ble 2.1.

Now that the inputs and outputs have been specified, the overview of the script
will be presented. The complete implemented design script can be found in List-
ing D.6. The outline of the procedure is the following:

1. The maximum steady-state phase error and the maximum expected Doppler
rate inputs are used with Equation 2.3 to obtain the loop bandwidth BL.

2. The sampling frequency is chosen to be twice the sweeping range to meet the
Nyquist rate.

3. The sweep integrator size M is chosen to be the maximum of the values ob-
tained from Equation 2.6 and Equation 2.14.

4. If the script is set to minimize frequency variation, the size of the PLL integra-
tor N is chosen to be as large as possible while maintaining the CU approxi-
mation of Equation 2.1. The size of the sweep integrator M is then updated,
if necessary, to maintain a sweep update rate lower than the PLL rate with
Equation 2.2. On the other hand, if the script is set to minimize acquisition
time, then M is constant and equal to the value from step 3. Thus, N is cho-
sen to be the largest value that satisfies both Equation 2.1 and Equation 2.2
without changing the value of M .

5. The size of the steps is calculated based on the chosen sampling rate, the sweep
integrator size, and the allowed error tolerances following Equation 2.12 for
∆1 and Equation 2.11 for ∆2.

6. The value of θ is constant and set to 0.193 based on subsection 2.2.3.

7. The expected acquisition time and the expected output frequency error are
calculated with Equation 2.13 and Equation 2.18, respectively.

3.2 Simulink

This section presents the results obtained via simulation using a Simulink model
of a combined PLL and adaptive-sweep algorithm. They are used to validate the
theoretical analysis from Chapter 2.

28 Chapter 3 Tomàs Ortega

3.2.1 PLL

The Simulink model of a PLL was presented in Figure 1.4. This model has been used
to explore two questions: the effect of the PLL bandwidth on sinusoidal Doppler
shifts, and the effect of an initial offset on the acquisition time of the PLL.

First, to illustrate the effect of the PLL bandwidth, the PLL response is recorded
for different Doppler sinusoidal inputs. Given fd(t) = sin(2πνt) and BL = 50 Hz,
the expected norm of the difference between fd(t) and its estimate can be seen
in Figure 3.1, which has been obtained with the code in Listing D.1. This plot

0 20 40 60 80 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3.1: Difference between real and estimated fd(t) depending on ν

illustrates the expected behaviour, i.e., the PLL cannot track fd(t) for values of ν
exceeding the PLL bandwidth. Note that if the PLL filter had an ideal (rectangular)
frequency response, the expected norm of the error for ν < BL would be zero. As
one can see, the filter is not ideal.

The second phenomenon that has been studied is the effect of the initial frequency
offset of fd(t), denoted f0. To illustrate this effect, input signals with offsets of 1
Hz, 100 Hz, and 1 kHz have been input into the system, with the output plotted in
Figure 3.2.

Given a 1 Hz initial offset, the PLL takes less than 0.1s to lock. For 100 Hz, the
convergence happens around t = 0.4 s. On the other hand, the PLL converges very
slowly (around t = 2500s) for f0 = 1 kHz, and does not converge for f0 ≥ 5 kHz.
This illustrates the need for a frequency sweep to correct the initial offset when it
is higher than the PLL bandwidth.

3.2.2 Adaptive-Sweep Algorithm

Figure 3.3 presents a Simulink model that combines the previously analyzed PLL
with the adaptive-sweep algorithm. The output of the sweeping algorithm has been
added before the input of the NCO. This allows the sweeping algorithm to assist
the PLL when the Doppler offset is large.

The behaviour of the system in Figure 3.3 with Fs = 32 MHz, BL = 50 Hz,
a PLL integrator of N = 200 samples, a sweep integrator of M = 5000 samples,
θ = 0.5, ∆1 = 125 Hz, ∆2 = 25 Hz and fd(t) = 100t + 20000 Hz can be found

Chapter 3 Tomàs Ortega 29

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

50

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-20

0

20

40

Figure 3.2: Estimated fd(t) with 1 Hz, 100 Hz and 1 kHz of offset

Figure 3.3: Complete Simulink model of the system

30 Chapter 3 Tomàs Ortega

in Figure 3.4. This system configuration parameters are partially inherited from
reference [2], but the sweep algorithm is allowed to take larger steps since no noise
is included in the system. Three stages are clearly visible: first, when the fixed step
is used, with a steep climb in frequency; second, when the adaptive step is used;
and third, where the plot remains flat and the PLL tracks the frequency.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-0.5

0

0.5

1

1.5

2

2.5
10

4

Figure 3.4: f̂(t) with the proposed sweep algorithm

3.3 Software-Defined Radio

This section presents the results obtained with the GNU Radio implementation,
which is the implementation with which most of the figures of this thesis have been
obtained. First, it will be validated using Simulink model shown in section 3.2.
Next, the performance of both implementations will be compared. Finally, the
results obtained from running the GNU Radio implementation with an LRO track
as input will be presented.

The results of a simulation with the same parameters as in Figure 3.4, run with
both implementations, are compared in Figure 3.5. As expected, their output is the
same. Again, this simulation has been run without noise.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

-0.5

0

0.5

1

1.5

2

2.5
10

4

Simulink

GNU Radio

Figure 3.5: Comparison of results with Simulink and GNU Radio simulations

Chapter 3 Tomàs Ortega 31

Once the SDR implementation has been validated, its performance is compared
to the Simulink model. The 90s Simulink simulations in [2] took a whole day to run.
As the model is linear, one can estimate the run time. To simulate 1s, the Simulink
model takes 880.3s. This means it would take 22h to run the full simulation. In
contrast, the full simulation with the SDR implementation takes 68.34s to run. The
code for the GNU Radio Python program can be found in Listing D.4. The main
C++ code used for the custom block that runs the ASA can be found in Listing D.5.

This difference in performance allows the GNU Radio implementation to be
used to produce results like the one in Figure 3.6, where the standard deviation
of the estimated frequency is plotted against the carrier SNR with different filter
bandwidths. To obtain this plot multiple simulations were run at different BL and
Pc/N0 levels. One can observe the behaviour predicted in subsection 2.2.6, which is
that a higher BL will make σf higher, which in turn will hurt the recovery of the
modulated symbols. Using Equation 2.18, the curves should follow

σf ≈
8

5π
BL

√
1

2N

1

SNRc

, (3.1)

which the simulations confirm. Since SNRc is in logarithmic scale on the x-axis,
the curves are not linear.

40 45 50 55 60
Pc/N0 (dB)

0

10

20

30

40

50

60

70

σ
f
(H

z)

GNU Radio with BL = 200 Hz

GNU Radio with BL = 100 Hz

GNU Radio with BL = 50 Hz

−10 −5 0 5 10
SNRc (dB)

Figure 3.6: σf when PLL is locked, with N = 16 and Equation 3.1 (dashed line)

Finally, GNU Radio has a built-in block to read from file, which has been used to
run the ASA with recordings of real signals. This can be used to obtain the results
that a hardware implementation of the ASA would have obtained when recording
the signal. To this purpose, an open-loop recording in the Goldstone DSN Antenna
receiving a signal from the LRO has been used. The spectrogram of the signal, and
the output that the ASA produced with the Short Time Fourier Transform (STFT)
of the LRO recording plotted above, can be found in Figure 3.7. As can be seen in
the spectrogram, the maximum Doppler shift is of 80 Hz, this is because the DSN
already has done some Doppler compensation with the LRO position predicts.

32 Chapter 3 Tomàs Ortega

0.5 1 1.5 2

0

10

20

30

40

50

60

70

80

90

100

20

25

30

35

40

45

50

55

60

0 0.5 1 1.5 2

0

10

20

30

40

50

60

70

80

90

100

Figure 3.7: LRO signal spectrogram and system output

3.4 Stand-alone SDR platform

As explained in section 2.3, the SDR implementation was loaded into an Ettus
E310 stand-alone SDR platform. The technical details on how this was done can be
found in Appendix C. This section first outlines the experiment carried out with
this implementation, where LRO recordings were transmitted using a HackRF One
SDR peripheral, and received by an Ettus E310 stand-alone SDR platform that ran
ASA in real time. Next, the LRO tracks that were used for this experiment will be
described. Finally, the results obtained from the Ettus E310 will be presented.

The set-up for the experiment, seen in Figure 3.8, was the following: the LRO
tracks were stored in a computer, connected to the HackRF One, which served as
a transmitter that emulated the LRO. The Ettus E310 received the signal from the
HackRF and ran ASA in real time. The results were stored in the Ettus and later
transferred to a computer via ssh in order to be plotted.

Ettus
E310 (Rx)

HackRF
One (Tx)

LRO
signal

Figure 3.8: Scheme of the experimental set-up

The experimental set-up has been described, now the LRO tracks must be ana-
lyzed. These tracks, previously recorded at the DSN using its open loop receivers,
are identified by an LRO orbit number (48247 and 48810). The spectrograms of
both tracks can be found in Figure 3.9 and Figure 3.10.

The LRO track 48247 seen in Figure 3.9 is a scenario where the LRO is setting
behind the lunar limb. The frequency jump around second 160 is the jump from
coherent to non-coherent mode. In coherent mode, the LRO acquires and tracks
the uplink frequency, generated with a DSN super stable hydrogen-maser oscillator,
and transmits it back to the DSN multiplied by the turn-around ratio, a constant
value that is pre-assigned to the spacecraft and kept constant for the duration of the
mission. In non-coherent mode, the LRO transmits at its own ultra-stable oscillator
frequency. It is also interesting to note that between second 350 and 400 there is a
temporary loss of signal. At the end of the track the LRO turns the transmitter off.

The LRO track 48810 seen in Figure 3.10 is representative of a scenario in which
LRO is egressing from the back-side of the Moon. Between seconds 50 and 100,

Chapter 3 Tomàs Ortega 33

0 50 100 150 200 250 300 350 400 450

-5000

0

5000

10000

15000

20000

15

20

25

30

35

40

45

50

Figure 3.9: LRO track 48247 spectrogram

0 50 100 150 200 250 300 350

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
10

4

20

25

30

35

40

45

50

55

60

Figure 3.10: LRO track 48810 spectrogram

34 Chapter 3 Tomàs Ortega

LRO turns the transmitter on and starts transmitting in non-coherent mode. Later,
between seconds 200 and 250 there is a jump to coherent mode, as LRO’s primary
ground station, White Sands, starts transmitting an uplink signal.

Finally, the results of the experiment will be presented. Both tracks have been
transmitted with a HackRF One, which has a very unstable oscillator, and have been
acquired by the Ettus E310 stand-alone platform running the ASA. The results have
been sent back to a computer via ssh to be plotted, and have produced Figure 3.11
and Figure 3.12.

0 50 100 150 200 250 300 350 400 450

-4

-2

0

2

4
10

4

0 50 100 150 200 250 300 350 400 450

0

10

20

30

Figure 3.11: LRO track 48247 results

0 50 100 150 200 250 300 350

-4

-2

0

2

4
10

4

0 50 100 150 200 250 300 350

0

10

20

30

Figure 3.12: LRO track 48810 results

The SNR estimation and STFT of the received signal were calculated a posteriori
from the recording of the received signal in the Ettus E310. The peaks of the
STFT serve as a truth signal for the ASA output to be compared to, and the SNR

Chapter 3 Tomàs Ortega 35

estimation is used to know when there is a carrier to be acquired and when there is
just noise.

As can be observed, both Ettus E310 outputs resemble the original LRO record-
ings. They are not identical due to the oscillator in the HackRF, which introduces
a large initial offset and a slight drop in frequency with time. However, both results
follow the main events as expected: they acquire the carrier frequency when there
is signal available and they track the change between coherent and non-coherent
modes as desired.

In conclusion, the stand-alone SDR implementation of the ASA has successfully
acquired and tracked two recordings from LRO signals in real time.

36 Chapter 3 Tomàs Ortega

Chapter 4

Conclusions

4.1 Summary

The communications link between spacecraft is affected by the Doppler shift, which
is a function of the relative trajectory between transmitter and receiver. When
the relative trajectory is unknown, like in proximity links, the Doppler shift forces
spacecraft radios to have a carrier acquisition and tracking system.

This thesis provides an overview and enhancement of the adaptive-sweep algo-
rithm proposed in [2], a method to design the system parameters, a theoretical
estimate of the system’s performance, an SDR GNU Radio implementation, and
experimental results that show the system working on real spacecraft signals.

Chapter 1 introduces the main concepts of this field, and examines present day
algorithms used for carrier acquisition and tracking. In the literature review, the
current efforts to improve these algorithms are explained. Finally, the thesis state-
ment is presented.

Chapter 2 first gives some key definitions in order to understand the following
theoretical analysis of the adaptive-sweep algorithm. The theoretical analysis allows
the formulation of design equations for system parameters, and accurate theoretical
predictions of the system’s performance. Afterwards, a short description of the
proposed SDR implementation is given, along with the benefits it will bring.

Chapter 3 describes the ASA design script, presents the obtained results with
the GNU Radio implementation, gives examples of its possible applications, and
presents the obtained results with the stand-alone SDR implementation and two
LRO tracks.

Finally, this chapter summarizes the work, highlights the main findings and
contributions, and lays out possible future endeavours on this subject.

4.2 Contributions

The main contributions of this thesis mirrors section 1.4. The adaptive sweep al-
gorithm for carrier acquisition and tracking proposed in [2] has been enhanced to
have an automatic adaptive step. In addition, the system’s performance has been
characterized in the presence of AWGN. The derived design equations have made
the system fully determined. Also, the SDR implementation has reduced the simula-
tion time by several orders of magnitude compared to the previous Simulink model,
allowing faster than real-time simulations. Additionally, this implementation has

37

been cross-compiled to a stand-alone platform, which has allowed system testing
without a computer, and yet prevented the added complexity of implementing in a
FPGA.

The main theoretical contributions have been the noise analysis of the lock and
direction functions, and the analytical prediction of acquisition time and frequency
error variance. GNU Radio simulations have been run to validate the predicted
frequency error variance.

The contributions towards technology maturity have been the design script for
system parameters based on Doppler and noise characteristics, and the SDR imple-
mentation of the ASA. Together with theoretical contributions, this implementation
has allowed the validation of the algorithm’s expected performance over a wide-range
of conditions based on current and expected proximity link conditions. Finally, the
SDR implementation has allowed testing with real signals in a stand-alone platform,
that have confirmed the computer simulations.

4.3 Future work

The possible avenues of future work can be grouped into two categories: further
theoretical research and technology maturity.

From a theoretical standpoint, at very low signal-to-noise ratios remains should
be studied further. Preliminary experiments suggest that adding a second integrator
after the Lock and Direction Detector block (Figure 1.10) can help in these scenarios.
This, combined with a 3rd order PLL that can track higher Doppler dynamics,
would allow the system to work in more challenging communications scenarios than
proximity links, such as in entry, descent, and landing.

Finally, in the technology maturity, the positive results obtained with ASA’s
software-based implementation running on a stand-alone SDR have opened to door
to developing a more capable hardware-based implementation. In particular, the
FPGA capabilities of the Ettus E310 have not been fully used, the whole system
could be implemented on the FPGA, and taken to a DSN antenna for a real-time
demonstration. Additionally, the FPGA-based implementation of ASA could be
compared in performance with Electra’s implementation of a fixed-size step algo-
rithm.

38 Chapter 4 Tomàs Ortega

Acronyms

ASA Adaptive-Sweep Algorithm. 10–12, 21, 27, 32, 33, 35–38, 52, 56, 59

AWGN Additive White Gaussian Noise. i, 3, 4, 10, 12, 15, 16, 23, 26, 37, 46

BLF Best-Lock Frequency. 2

BPSK Binary Phase Shift Keying. 3

CPU Central Processing Unit. 2

CU Continuous Update. 6, 14, 28

DOF Degrees Of Freedom. 13, 14

DSN Deep Space Network. 1, 2, 4, 13, 32, 33, 38, 41, 49

FPGA Field Programmable Gate Array. 2, 26, 38

GRC GNU Radio Companion. 25, 26

IIR Infinite Impulse Response. 5

JPL Jet Propulsion Laboratory. 1, 2, 41

LRO Lunar Reconnaissance Orbiter. i, 1, 4, 10, 11, 27, 31–33, 36, 37, 41

MLE Maximum Likelihood Estimator. 19, 20

MUPA Multiple Uplinks per Antenna. 2

NCO Numerically Controlled Oscillator. 5, 22, 29

OOT Out Of the Tree. 47

PDF Probability Distribution Function. 15, 16

PLL Phase-Locked Loop. 3–8, 11–15, 22, 26, 28, 29, 38

SDR Software-Defined Radio. 2, 3, 10–12, 32, 33, 36–38

SNR Signal to Noise Ratio. i, 12, 13, 15, 20, 32, 35

STFT Short Time Fourier Transform. 32, 35

39

Bibliography

[1] Johnathan Corgan. “GNU Radio Runtime Operation”. In: Proceedings of GR-
CON15. Aug. 2015.

[2] D. Divsalar, M. S. Net, and K. Cheung. “Adaptive Sweeping Carrier Acqui-
sition and Tracking for Dynamic Links with High Uplink Doppler”. In: 2020
IEEE Aerospace Conference. Big Sky, Montana, Mar. 2020.

[3] NASA-Jet Propulsion Laboratory. About the Deep Space Network. url: https:
//deepspace.jpl.nasa.gov/about (visited on 05/20/2020).

[4] Andrew O’Dea et al. “Doppler Tracking”. In: DSN Telecommunications Link
Design Handbook. Jet Propulsion Laboratory, 2019. url: https://deepspace.
jpl.nasa.gov/dsndocs/810-005/202/202C.pdf.

[5] Edgar Satorius et al. “The Electra Radio”. In: Autonomous Software-Defined
Radio Receivers for Deep Space Applications. John Wiley & Sons, Ltd, 2006.
Chap. 2, pp. 19–43. isbn: 9780470087800. doi: 10.1002/9780470087800.

ch2. eprint: https : / / onlinelibrary . wiley . com / doi / pdf / 10 . 1002 /

9780470087800.ch2. url: https://onlinelibrary.wiley.com/doi/abs/
10.1002/9780470087800.ch2.

[6] Thomas M. Sellke and Sarah H. Sellke. “Chebyshev Inequalities for Unimodal
Distributions”. In: The American Statistician 51.1 (1997), pp. 34–40. issn:
00031305. doi: 10.2307/2684690.

[7] Marvin K. Simon and Jon Hamkins. “Carrier Synchronization”. In: Autonomous
Software-Defined Radio Receivers for Deep Space Applications. John Wiley &
Sons, Ltd, 2006. Chap. 8, pp. 227–270. isbn: 9780470087800. doi: 10.1002/
9780470087800.ch8. eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/9780470087800.ch8. url: https://onlinelibrary.wiley.com/
doi/abs/10.1002/9780470087800.ch8.

[8] S.A. Stephens and J.B. Thomas. “Controlled-Root Formulation for Digital
Phase-Locked Loops”. In: Aerospace and Electronic Systems, IEEE Transac-
tions on 31 (Feb. 1995), pp. 78–95. doi: 10.1109/7.366295.

[9] Tore Ulversoy. “Software Defined Radio: Challenges and Opportunities”. In:
IEEE Communications Surveys and Tutorials 12 (Dec. 2010), pp. 531–550.
doi: 10.1109/SURV.2010.032910.00019.

[10] GNU Radio Wiki. FAQ: Why can’t we do loops? May 13, 2020. url: https:
//wiki.gnuradio.org/index.php/FAQ#Why_can.27t_we_do_loops.3F

(visited on 05/20/2020).

40

https://deepspace.jpl.nasa.gov/about
https://deepspace.jpl.nasa.gov/about
https://deepspace.jpl.nasa.gov/dsndocs/810-005/202/202C.pdf
https://deepspace.jpl.nasa.gov/dsndocs/810-005/202/202C.pdf
https://doi.org/10.1002/9780470087800.ch2
https://doi.org/10.1002/9780470087800.ch2
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470087800.ch2
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470087800.ch2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470087800.ch2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470087800.ch2
https://doi.org/10.2307/2684690
https://doi.org/10.1002/9780470087800.ch8
https://doi.org/10.1002/9780470087800.ch8
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470087800.ch8
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470087800.ch8
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470087800.ch8
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470087800.ch8
https://doi.org/10.1109/7.366295
https://doi.org/10.1109/SURV.2010.032910.00019
https://wiki.gnuradio.org/index.php/FAQ#Why_can.27t_we_do_loops.3F
https://wiki.gnuradio.org/index.php/FAQ#Why_can.27t_we_do_loops.3F

Appendix A

Doppler shift

The Doppler shift is a well known phenomena, where the received frequency of a
signal is modified by the relative position and velocity of the transmitter. For radio
waves, the formula is

fRx
fTx

= 1− ~v · ~u
c

where c is the speed of light, and

~v = ~vRx − ~vTx

~u =
~rRx − ~rTx
||~rRx − ~rTx||

In the context of spacecraft radios, past research suggests that the frequency
shift can be locally modelled using an offset and a Doppler rate parameter r [5]. In
other words, one can model

fd(t) = fRx(t)− fTx(t) = f0 + rt

For example, the work done in [2] uses f0 = 20 kHz and r = 100 Hz/s.
In order to justify these values and assert the goodness of this approximation,

one can compute the trajectory of a spacecraft and calculate the Doppler shift in
time with respect to a DSN station.

The trajectory of a spacecraft and its relative position and velocity with a DSN
station can be computed using the SPICE Toolkit. This has been developed by JPL
in order to help scientists obtain data from spacecraft.

Using the code found in Listing D.2, and the publicly available data from SPICE,
the trajectory of the LRO has been computed. Knowing the trajectory, the Doppler
shift read from the DSN Canberra Station has also been calculated. The calculations
have been done without taking into account the periods of occultation. For a plot of
the Doppler shift read in two lunar orbits (113 minutes each), see Figure 1.1. Since
the adaptive algorithm attaches to a fd(t) modelled as a ramp in less than 10s, one
can observe that modelling fd(t) as a ramp is reasonable.

Knowing that the LRO transmits at a highest carrier Frequency of fc = 2.2712
GHz, one can compute the maximum Doppler shift and Doppler rate in a lunar
month. The plots of the Doppler shift and its derivative (the Doppler rate) can be
found in Figure A.1 and Figure A.2.

It is interesting to observe the periodic nature of this Doppler shift, which has a
maximum offset of 15.455 kHz and a maximum rate of 11.69 Hz/s. The maximum

41

https://naif.jpl.nasa.gov/naif/toolkit.html
https://naif.jpl.nasa.gov/naif/data.html

0 5 10 15 20 25

-20

-10

0

10

20

Figure A.1: LRO Doppler shift from Canberra during a whole lunar month

0 5 10 15 20 25

-15

-10

-5

0

5

10

15

Figure A.2: LRO Doppler rate from Canberra during a whole lunar month

42 Chapter A Tomàs Ortega

Doppler acceleration (second derivative of the shift) is 10.765 mHz/s2, further con-
firming that modelling fd(t) as a ramp is a good local approximation for this work’s
study. These values also confirm that the values used in [2] accurately portray a
possible Doppler shift.

If one computes the transform of the Doppler shift fd(t), in Figure A.3, then the
periodicity of the signal can be observed even better. As one might expect, there
are only two spectral components: the one corresponding to the orbit of the LRO
around the Moon, and the one corresponding to the orbit of the Moon around the
Earth.

0 0.05 0.1 0.15 0.2 0.25 0.3

0

1000

2000

3000

4000

5000

Figure A.3: Zoomed in Fourier transform of LRO Doppler shift from Canberra

Chapter A Tomàs Ortega 43

Appendix B

Extended PLL residual error
analysis

The PLL residual error can be measured in phase or in frequency. The analysis for
frequency residuals from subsection 2.2.6 can be extended for higher order PLLs, as
is done in section B.1. An analogous procedure will give the residual phase error,
which is deduced in section B.2.

B.1 Residual frequency error

The procedure outlined for second order loops is analogous for third order loops.
First, one obtains the transfer function

H(z) =
K3z

2 +K1(z − 1)2 +K2z(z − 1)

(z − 1)3 +K3z2 +K1(z − 1)2 +K2z(z − 1)

Then, the recurrence equation

f̂k+3 + f̂k+2(−3 +K1 +K2 +K3) + f̂k+1(3− 2K1 −K2) + f̂k(K1 − 1) =

nk+3(K1 +K2 +K3) + nk+2(−K3 − 3K1 − 2K2) + nk+1(3K1 +K2) + nk(−K1) +

k−1∑
i=0

λini

After, the covariance coefficients

C0 = K1 +K2 +K3

C1 = −3K1 − 2K2 −K3 − (K1 +K2 +K3)(K1 +K2 +K3 − 3)

C2 = 3K1 +K2 + (K1 +K2 +K3 − 3)(3K1 + 2K2 +K3

+ (K1 +K2 +K3)(K1 +K2 +K3 − 3)) + (K1 +K2 +K3)(2K1 +K2 − 3)

C3 = −K1 − (K1 − 1)(K1 +K2 +K3)− (K1 +K2 +K3 − 3)(3K1 +K2 + (K1 +K2 +K3 − 3)

(3K1 + 2K2 +K3 + (K1 +K2 +K3)(K1 +K2 +K3 − 3)) + (K1 +K2 +K3)(2K1 +K2 − 3))

− (2K1 +K2 − 3)(3K1 + 2K2 +K3 + (K1 +K2 +K3)(K1 +K2 +K3 − 3))

And finally, one solves the system and obtains R0

R0 = −2
4K3

1K2 + 4K3
1K3 + 6K2

1K
2
2 + 11K2

1K2K3 + 5K2
1K

2
3 − 4K2

1K3 + 2K1K
3
2

(4K2
1K2 + 4K2

1K3 + 2K1K
2
2 + 3K1K2K3 − 8K1K2 + K1K

2
3 − 12K1K3 − 2K2K3 − K2

3 + 8K3)
+

−2
5K1K

2
2K3 + 4K1K2K

2
3 − 8K1K2K3 + K1K

3
3 − 7K1K

2
3 + 2K3

2 + 3K2
2K3 + K2K

2
3 + 2K2

3

(4K2
1K2 + 4K2

1K3 + 2K1K
2
2 + 3K1K2K3 − 8K1K2 + K1K

2
3 − 12K1K3 − 2K2K3 − K2

3 + 8K3)

44

To check if the result is correct, one can substitute K3 = 0, and obtain

R0 = −4K3
1 + 6K2

1K2 + 2K1K
2
2 + 2K2

2

K1(2K1 +K2 − 4)

Which is the same result that was obtained for a second order loop.

B.1.1 Taylor expansion with critically damped coefficients

The Taylor expansion will be calculated at K1 = 0, and the rest of the filter coeffi-
cients will be taken for a critically damped response, as explained in [8].

For first order loops, the formula for R0 is

R0 =
2K1

2−K1

R0 = K1 +
K2

1

2
+O(K4

1)

For second order loops, K2 = 1
4
K2

1

R0 = −K
2
1(K2

1 + 13K1 + 32)

2K2
1 + 16K1 − 32

R0 = K2
1 +

29K3
1

32
+O(K3

1)

For third order loops, K2 = 1
3
K2

1 , K3 = 1
27
K3

1

R0 = −2K2
1(K5

1 + 36K4
1 + 549K3

1 + 4185K2
1 + 15606K1 + 23328)

27(K4
1 + 26K3

1 + 252K2
1 + 648K1 − 1728)

R0 = K2
1 +

451K3
1

432
+O(K4

1)

Chapter B Tomàs Ortega 45

B.2 Residual phase error

The signal after the mixer, modelled in Equation 2.15, is

ej(φ(t)−φ̂(t)) + ñ(t)

Following the same procedure as in subsection 2.2.6, the signal after the phase
extractor is

φk − φ̂k + nk,

where nk is AWGN with variance σ2 = 1
2SNRc

. Assuming a perfect estimation of
the phase, the only error term left would be nk. This estimation is compared to the
measured phase error in Figure B.1, and as one can observe, it is very accurate.

Figure B.1: Residual phase error and its estimation

46 Chapter B Tomàs Ortega

Appendix C

Stand-alone SDR setup

To run GNU Radio with OOT blocks in Ettus E310, one must first follow the general
setup instructions provided by Ettus, which can be found here.

To install an out of the tree block, an analogous procedure is followed. First, on
the E310, a new install folder is created, and it is mounted via ssh to the user install
folder on the PC. It is important to source the setup environment. To do that, type
the following commands on the E310

1 mkdir −p ˜/ new in s t a l l
2 s s h f s username@192 . 1 6 8 . 1 0 . 1 : / home/ user / r fnoc / e300 n ew in s t a l l /
3 cd ˜/ n ew in s t a l l
4 source . / setup . env

Then, on the computer, the block is cross compiled in the previously mounted folder
on the PC with the following commands

1 cp −r gr−your b lock ˜\ r fnoc \ s r c \
2 cd ˜\ r fnoc \ s r c \gr−your b lock
3 mkdir bui ld−arm
4 cd bui ld−arm
5 cmake −DCMAKE TOOLCHAIN FILE=˜/r fnoc / s r c / gnuradio /cmake/Toolcha ins /oe−

s dk c r o s s . cmake −DCMAKE INSTALL PREFIX=/usr . .
6 make −j 4
7 make i n s t a l l DESTDIR=˜/r fnoc / e300/
8 make i n s t a l l DESTDIR=˜/r fnoc /oe/ s y s r o o t s /armv7ahf−vfp−neon−oe−l inux−

gnueabi /

Then, on the E310, the contents of the mounted folder are copied into the local
installation. The mounted folder contained the cross-compiled OOT module. The
necessary commands on the E310 are the following

1 cd ˜/ l o c a l i n s t a l l
2 cp −v ˜/ new in s t a l l / setup . env .
3 cp −Rv ˜/ new in s t a l l / e t c .
4 cp −Rv ˜/ new in s t a l l / usr .
5 sed − i ’ s / n ew in s t a l l / l o c a l i n s t a l l /g ’ setup . env
6 source . / setup . env
7 cd ˜/
8 umount ˜/ n ew in s t a l l
9 rm −r f ˜/ n ew in s t a l l

Remember to run source ~/localinstall/setup.env before running a GNU Ra-
dio Python script on the E310.

47

https://kb.ettus.com/Software_Development_on_the_E3xx_USRP_-_Building_RFNoC_UHD_/_GNU_Radio_/_gr-ettus_from_Source

Appendix D

Code listings

This appendix contains part of the code that was used to obtain the plots for this
thesis. Every figure that is presented in this work can be obtained with a fragment
of code found below or with a small variation. Every listing is accompanied by a
small description and a reference to the content it has generated.

Listing D.1 runs a PLL simulink model, not shown, and collects the output
frequency to obtain the residual error. In order to assess the response of the system,
this is done for a variety of input signals. The resulting plot can be seen in Figure 3.1.

1 c l e a r ; c l c ; c l o s e a l l ;
2 N = 2 ; % PLL in t e g r a t o r s i z e
3 M = 25∗N; % Sweep branch i n t e g r a t o r s i z e
4 inmode = 1 ; % 0 fd (t) = rt , 1 fd (t) = s i n (2∗ pi ∗nu∗ t)
5 nu = 1 ;
6 r = 0 ; % Doppler ra t e
7 f o = 0 ; % Frequency o f f s e t
8 BL = 50 ;
9 f s = 32 e4 ;

10 f p l l = f s /N;
11 Ts = 1/ f s ;
12 T = N/ f s ;
13 a s s e r t (BL∗T <= 0.02 , ”CU approximation f a i l e d ”)
14 %values f o r s u p e r c r i t i c a l l y damped response
15 K1 = (16/5) ∗BL∗T;
16 K2 = 1/4∗K1∗K1;
17 PcNo = 6500 ; % No no i s e
18 SNRc = PcNo − 10∗ l og10 (f s) ;
19 nus = l i n s p a c e (1 ,100 ,20) ;
20 de r r s = 1 : l ength (nus) ;
21 timesim = 0 . 1 ;
22 f o r i = 1 : l ength (nus)
23 di sp (i)
24 nu = nus (i) ; %Doppler fd (t) = s i n (2∗ pi ∗nu∗ t)
25 s imi = sim (’ j u s t p l l s im ’ , timesim) ;
26 f d t = s imi . f d t . Data ;
27 e s t = s imi . f . Data (1 , :) ’ ;
28 de r r s (i)=norm(fdt−e s t) ˆ2 ;
29 end
30 nsamp = timesim∗ f s /N;
31 p lo t (nus , s q r t (de r r s /nsamp))
32 x l ab e l (’ ν (Hz) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
33 y l ab e l (’ Expected $\ l e f t \ | f d (t) − \hat{ f d (t) } \ r i g h t \ | $ ’ , ’

I n t e r p r e t e r ’ , ’ l a t e x ’)

48

Listing D.1: Code used for Figure 3.1

Listing D.2 first loads some of NASA’s NAIF kernels, which are publicly available
at https://naif.jpl.nasa.gov/pub/naif/. Based on this data, the Doppler shift
between the LRO and the Canberra DSN station is calculated, along with the periods
of lunar occultation. The resulting plot can be seen in Figure 1.1. The rest of the
plots in Appendix A have been obtained with variations of this code.

1 % Compute t r a j e c t o r y o f LRO with r e sp e c t to ground s t a t i o n
2 % From there , compute Doppler s h i f t in time
3 c s p i c e k c l e a r ; c l e a r ; c l c ; c l o s e a l l ;
4

5 k e r n e l f o l d e r = ’ /home/tomas/Documents/JPL/mice/data/my kerne ls / ’ ;
6 l e ap s e conds = s t r c a t (k e r n e l f o l d e r , ’ l a t e s t l e a p s e c o nd s . t l s ’) ;
7 l r o p o s i t i o n = s t r c a t (k e r n e l f o l d e r , ’ l r o rg 2019074 2019166 v01 . bsp ’) ;
8 p l a n e t s p o s i t i o n = s t r c a t (k e r n e l f o l d e r , ’ de430 . bsp ’) ; %to use Earth as

obse rver
9 e a r t h p ck f o r d sn = s t r c a t (k e r n e l f o l d e r , ’ e a r t h l a t e s t h i g h p r e c . bpc ’)

;
10 dsn spk = s t r c a t (k e r n e l f o l d e r , ’ e a r t h s t n s i t r f 9 3 0 5 0 7 1 4 . bsp ’) ;
11 gene ra l pck = s t r c a t (k e r n e l f o l d e r , ’ pck00010 . tpc ’) ;
12

13 c s p i c e f u r n s h (l e ap s e conds) ;
14 c s p i c e f u r n s h (p l a n e t s p o s i t i o n) ;
15 c s p i c e f u r n s h (l r o p o s i t i o n) ;
16 c s p i c e f u r n s h (e a r t h p ck f o r d sn) ;
17 c s p i c e f u r n s h (dsn spk) ;
18 c s p i c e f u r n s h (gene ra l pck) ;
19

20 f c = 2271 .2 e6 ; % from https : // d i r e c t o r y . e opo r t a l . org /web/ eopo r ta l /
s a t e l l i t e −mis s i ons / l / l r o

21 % Array o f ephemeris , s t a r t i n g x
22 s t a r t = c s p i c e s t r 2 e t (’March 16 2019 UTC’) ;
23 h = 1 ; %space between samples
24 l u n a r o r b i t s e c = 2∗114∗60;
25 t = 0 : (l u n a r o r b i t s e c −1) ;
26 et = t ∗h + s t a r t ;
27 r e f e r en c e f r ame = ’ J2000 ’ ;
28 etend = c s p i c e s t r 2 e t (’ 2019−03−16T03 : 0 0 : 0 0 . 0 0 ’) ;
29 t a r g e t = ’LUNAR RECONNAISSANCE ORBITER ’ ;
30 obse rve r = ’DSS−43 ’ ;
31 occu l t ed = c s p i c e o c c u l t (target , ’ po int ’ , ’ ’ , ’Moon ’ , ’ e l l i p s o i d ’ , ’

iau moon ’ , ’LT+S ’ , observer , e t) < 0 ;
32 [s ta te , ˜] = c s p i c e s pk e z r (target , et , r e f e r ence f r ame , ’LT+S ’ ,

obse rver) ;
33 %LRO tx , DSN−43 rx (Canberra)
34 %vec to r s are de f ined from Earth to LRO
35 v = s t a t e (4 : 6 , :) ∗ 1e3 ;
36 u = s t a t e (1 : 3 , :) ;
37 m = length (et) ;
38 f = ones (1 ,m) ;
39 c = 299792458 .0 ;
40 f o r j = 1 :m
41 unorm = u (1 : 3 , j) / norm(u (1 : 3 , j)) ;
42 f (j) = 1 − (−v (1 : 3 , j) ’) ∗(−unorm (1 : 3)) /c ;
43 i f (o c cu l t ed (j))
44 f (j) = nan ;

Chapter D Tomàs Ortega 49

https://naif.jpl.nasa.gov/pub/naif/

45 end
46 end
47 p lo t (t /60 , (f−1)∗ f c /1000) % p lo t time in minutes and frequency in kHz
48 g r id on
49 y l ab e l (’ Doppler s h i f t (kHz) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’) ;
50 x l ab e l (’ t (min) from March 16 2019 00 : 00 : 00 UTC’ , ’ I n t e r p r e t e r ’ , ’

l a t e x ’) ;

Listing D.2: Code used for LRO trajectory plot with occultation in Figure 1.1

Listing D.3 runs a GNU Radio flow graph that is used to obtain the noise P and
D plots in Figure 2.1. The P and D block has been programmed internally in C++,
its behaviour is self-explanatory based on the theory discussed in subsection 1.3.3.

1 #!/ usr /bin /env python2
2 # −∗− coding : utf−8 −∗−
3 ##
4 # GNU Radio Python Flow Graph
5 # Ti t l e : P and D s imu la t i on
6 # Author : Tomas Ortega
7 # GNU Radio ve r s i on : 3 . 7 . 1 4 . 0
8 ##
9

10 from gnuradio import b locks
11 from gnuradio import channe l s
12 from gnuradio import eng notat ion
13 from gnuradio import gr
14 from gnuradio . eng opt ion import eng opt ion
15 from gnuradio . f i l t e r import f i r d e s
16 from math import p i
17 from optparse import OptionParser
18 import inputgenera to r
19 import pdsim
20 import numpy as np
21

22

23 c l a s s PandD(gr . top b lock) :
24

25 de f i n i t (s e l f , M, samp rate , df , SNR) :
26 gr . top b lock . i n i t (s e l f , ”P and D s imu la t i on ”)
27

28 ##
29 # Var iab l e s
30 ##
31 s e l f .M = M
32 s e l f . samp rate = samp rate
33 s e l f . n samp = n samp = 3∗ i n t (M)
34 s e l f . d f = df
35 s e l f .SNR = SNR
36

37 ##
38 # Blocks
39 ##
40 s e l f . v e c sou r c e = blocks . v e c t o r s o u r c e i ([1] ∗ n samp , False , 1 ,

[])
41 s e l f . r e a l = b locks . c omp l ex to r ea l (1)
42 s e l f . p and d = pdsim . pandd (M, i n t (samp rate))
43 s e l f . one in M = blocks . keep one in n (gr . s i z e o f g r c omp l e x ∗1 , M)
44 s e l f . no i s e channe l = channe l s . channel model (

50 Chapter D Tomàs Ortega

45 no i s e v o l t a g e=10∗∗(−SNR/20) ,
46 f r e q u e n c y o f f s e t =0.0 ,
47 ep s i l o n =1.0 ,
48 taps =(1.0 ,) ,
49 no i s e s e ed=in t (df ∗1000) ,
50 b l o ck t ag s=False
51)
52 s e l f . i ng ene ra to r = inputgenera to r . DopplerGenerator (i n t (

samp rate) , 0 , df)
53 s e l f . imag = blocks . complex to imag (1)
54 s e l f . b l o c k s v e c t o r s i n k P = blocks . v e c t o r s i n k f (1 , 1024)
55 s e l f . b l o ck s v e c t o r s i nk D = blocks . v e c t o r s i n k f (1 , 1024)
56

57 ##
58 # Connections
59 ##
60 s e l f . connect ((s e l f . imag , 0) , (s e l f . b l o ck s vec to r s i nk D , 0))
61 s e l f . connect ((s e l f . i ngenerator , 0) , (s e l f . no i s e channe l , 0))
62 s e l f . connect ((s e l f . no i s e channe l , 0) , (s e l f . p and d , 0))
63 s e l f . connect ((s e l f . one in M , 0) , (s e l f . imag , 0))
64 s e l f . connect ((s e l f . one in M , 0) , (s e l f . r ea l , 0))
65 s e l f . connect ((s e l f . p and d , 0) , (s e l f . one in M , 0))
66 s e l f . connect ((s e l f . r ea l , 0) , (s e l f . b l o ck s v e c t o r s i nk P , 0))
67 s e l f . connect ((s e l f . vec source , 0) , (s e l f . i ngenerator , 0))
68

69 de f get M (s e l f) :
70 re turn s e l f .M
71

72 de f set M (s e l f , M) :
73 s e l f .M = M
74 s e l f . set n samp (3∗ i n t (s e l f .M))
75 s e l f . one in M . s e t n (s e l f .M)
76

77 de f get samp rate (s e l f) :
78 re turn s e l f . samp rate
79

80 de f s e t samp rate (s e l f , samp rate) :
81 s e l f . samp rate = samp rate
82

83 de f get n samp (s e l f) :
84 re turn s e l f . n samp
85

86 de f set n samp (s e l f , n samp) :
87 s e l f . n samp = n samp
88 s e l f . v e c sou r c e . s e t da t a ([1] ∗ s e l f . n samp , [])
89

90 de f g e t d f (s e l f) :
91 re turn s e l f . d f
92

93 de f s e t d f (s e l f , d f) :
94 s e l f . d f = df
95

96 de f get SNR (s e l f) :
97 re turn s e l f .SNR
98

99 de f set SNR (s e l f , SNR) :
100 s e l f .SNR = SNR
101 s e l f . no i s e channe l . s e t n o i s e v o l t a g e (10∗∗(− s e l f .SNR/20))

Chapter D Tomàs Ortega 51

102

103

104 de f getpd (t op b l o c k c l s , df , M, samp rate , SNR) :
105 tb = t op b l o c k c l s (M, samp rate , df , SNR)
106 tb . s t a r t ()
107 tb . wait ()
108 P = tb . b l o c k s v e c t o r s i n k P . data () [−1]
109 D = tb . b l o ck s v e c t o r s i nk D . data () [−1]
110 re turn [P, D]
111

112

113 de f main (t o p b l o c k c l s=PandD , opt ions=None) :
114

115 import matp lo t l i b . pyplot as p l t
116 import matp lo t l i b as mpl
117 mpl . rcParams [’ mathtext . f o n t s e t ’] = ’cm ’
118

119 SNRm = 17
120 M = 993
121 samp rate = 125 e3
122 PcNo = SNRm + 10∗np . log10 (samp rate /M)
123 SNR = PcNo − 10∗np . log10 (samp rate)
124 df min = − 1/1 .0∗ samp rate /M
125 df max = −df min
126 d f range = np . l i n s p a c e (df min , df max , num=300)
127 [P,D] = np . array ([getpd (t op b l o c k c l s , f l o a t (x) , M, samp rate , SNR)

f o r x in d f range]) . t ranspose ()
128 Pt = np . array ([np . cos (x∗2∗np . p i) ∗(np . s i n c (x) ∗∗2) f o r x in (d f range

∗M/samp rate)])
129 Dt = np . array ([np . s i n (x∗2∗np . p i) ∗(np . s i n c (x) ∗∗2) f o r x in (d f range

∗M/samp rate)])
130 f i g , ax = p l t . subp lo t s ()
131 ax . p l o t (d f range ∗M/samp rate ∗pi , P)
132 ax . p l o t (d f range ∗M/samp rate ∗pi , Pt , ’−− ’)
133 ax . p l o t (d f range ∗M/samp rate ∗pi , D)
134 ax . p l o t (d f range ∗M/samp rate ∗pi , Dt , ’−− ’)
135 ax . s e t (x l ab e l=r ’ $\ alpha = \ pi \Delta f T$ ’)
136 ax . l egend ([r ’ P ’ , r ’ $P { i d e a l }$ ’ , r ’D ’ , r ’ $D { i d e a l }$ ’])
137 ax . g r id ()
138 p l t . xl im ((−np . pi , np . p i))
139 pr in t ’PcNo : ’ , PcNo
140 f i g . s a v e f i g (” noisypd . eps ”)
141 p l t . show ()
142

143

144 i f name == ’ ma in ’ :
145 main ()

Listing D.3: Code used for noisy P and D plots, see Figure 2.1

Listing D.4 contains the GNU Radio flow graph of the full system. It has been
used to obtain the majority of plots in this thesis, and is also the code that has been
run in the Ettus E310. The code for the C++ code of the ASA block can be found
in Listing D.5.

1 #!/ usr /bin /env python2
2 # −∗− coding : utf−8 −∗−
3 ##
4 # GNU Radio Python Flow Graph

52 Chapter D Tomàs Ortega

5 # Ti t l e : Fu l l ASA system
6 # Author : Tomas Ortega
7 # GNU Radio ve r s i on : 3 . 7 . 1 4 . 0
8 ##
9

10 from gnuradio import b locks
11 from gnuradio import channe l s
12 from gnuradio import eng notat ion
13 from gnuradio import gr
14 from gnuradio . eng opt ion import eng opt ion
15 from gnuradio . f i l t e r import f i r d e s
16 from optparse import OptionParser
17 import EASA
18 import inputgenera to r
19 import numpy as np
20

21

22 c l a s s f u l l p l l (gr . top b lock) :
23

24 de f i n i t (s e l f) :
25 gr . top b lock . i n i t (s e l f , ” Fu l l ASA system”)
26

27 ##
28 # Var iab l e s
29 ##
30 s e l f . samp rate = samp rate = 10 e6
31 s e l f . PcNo = PcNo = 38
32 s e l f .SNR = SNR = PcNo − 10∗np . log10 (samp rate)
33 s e l f .M1 = M1 = 79433
34 s e l f .SNRm = SNRm = SNR + 10∗np . log10 (M1)
35 s e l f .M2 = M2 = 1
36 s e l f .BL = BL = 50
37 s e l f . v a r f i n a l = v a r f i n a l = 1 .0/M2 ∗ (1 . 0/ (10∗∗ (SNRm/10)) +

0 . 5∗1 . 0/ (10∗∗ (SNRm/10)) ∗∗2)
38 s e l f . s s imu l a t i on = s s imu l a t i on = 30
39 s e l f . o f f s e t = o f f s e t = 20 e3
40 s e l f . d opp l e r r a t e = dopp l e r r a t e = 100
41 s e l f .N = N = 2018
42 s e l f . LoopSNR = LoopSNR = PcNo − 10∗np . log10 (BL)
43

44 ##
45 # Blocks
46 ##
47 s e l f . v e c to r samp l e sou r c e = blocks . v e c t o r s o u r c e i ([1] ∗ (i n t (

samp rate)) , False , 1 , [])
48 s e l f . t h r o t t l e b l o c k = blocks . t h r o t t l e (gr . s i z e o f i n t ∗1 , 5e9 , True

)
49 s e l f . s i nk p = blocks . v e c t o r s i n k f (1 , 1024)
50 s e l f . s i n k f = b locks . v e c t o r s i n k f (1 , 1024)
51 s e l f . r epeat number o f s econds = blocks . r epeat (gr . s i z e o f i n t ∗1 ,

s s imu l a t i on)
52 s e l f . no i sy channe l = channe l s . channel model (
53 no i s e v o l t a g e=10∗∗(−SNR/20) ,
54 f r e q u e n c y o f f s e t =0.0 ,
55 ep s i l o n =1.0 ,
56 taps =(1.0 ,) ,
57 no i s e s e ed =0,
58 b l o ck t ag s=False

Chapter D Tomàs Ortega 53

59)
60 s e l f . k e e p on e i n n f = b locks . keep one in n (gr . s i z e o f f l o a t ∗1 ,

N)
61 s e l f . keep one in m1m2 p = blocks . keep one in n (gr . s i z e o f f l o a t

∗1 , M1∗M2)
62 s e l f . keep one in m1m2 d = blocks . keep one in n (gr . s i z e o f f l o a t

∗1 , M1∗M2)
63 s e l f . f i l e s i n k p = blocks . f i l e s i n k (gr . s i z e o f f l o a t ∗1 , ’ /home/

tomas/Downloads/outputP . bin ’ , Fa l se)
64 s e l f . f i l e s i n k p . s e t unbu f f e r ed (Fa l se)
65 s e l f . f i l e s i n k f = b locks . f i l e s i n k (gr . s i z e o f f l o a t ∗1 , ’ /home/

tomas/Downloads/outputF . bin ’ , Fa l se)
66 s e l f . f i l e s i n k f . s e t unbu f f e r ed (Fa l se)
67 s e l f . f i l e s i n k d = blocks . f i l e s i n k (gr . s i z e o f f l o a t ∗1 , ’ /home/

tomas/Downloads/outputD . bin ’ , Fa l se)
68 s e l f . f i l e s i n k d . s e t unbu f f e r ed (Fa l se)
69 s e l f . dopp l e r g ene ra to r = inputgenera to r . DopplerGenerator (i n t (

samp rate) , dopp l e r ra t e , o f f s e t)
70 s e l f . b l o c k s n u l l s i n k 0 = blocks . n u l l s i n k (gr . s i z e o f g r c omp l e x

∗1)
71 s e l f . ASA block = EASA.EASA(i n t (samp rate) , N, M1, M2, BL, 0 . 2 ,

0 , 0 , 40e3 , samp rate ∗0.6719/np . p i /(M1) , min (0 .3793∗np . exp (0 .1157∗
SNRm) , samp rate ∗0.6719/np . p i /(M1)) , min (0 .3793∗np . exp (0 .1157∗SNRm)
, samp rate ∗0.6719/np . p i /(M1)))

72

73

74

75 ##
76 # Connections
77 ##
78 s e l f . connect ((s e l f . ASA block , 0) , (s e l f . b l o c k s nu l l s i n k 0 , 0))
79 s e l f . connect ((s e l f . ASA block , 3) , (s e l f . keep one in m1m2 d , 0))
80 s e l f . connect ((s e l f . ASA block , 2) , (s e l f . keep one in m1m2 p , 0))
81 s e l f . connect ((s e l f . ASA block , 1) , (s e l f . k e ep one i n n f , 0))
82 s e l f . connect ((s e l f . dopp l e r generato r , 0) , (s e l f . no i sy channe l ,

0))
83 s e l f . connect ((s e l f . keep one in m1m2 d , 0) , (s e l f . f i l e s i n k d ,

0))
84 s e l f . connect ((s e l f . keep one in m1m2 p , 0) , (s e l f . f i l e s i n k p ,

0))
85 s e l f . connect ((s e l f . keep one in m1m2 p , 0) , (s e l f . s ink p , 0))
86 s e l f . connect ((s e l f . k e ep one i n n f , 0) , (s e l f . f i l e s i n k f , 0))
87 s e l f . connect ((s e l f . k e ep one i n n f , 0) , (s e l f . s i n k f , 0))
88 s e l f . connect ((s e l f . no i sy channe l , 0) , (s e l f . ASA block , 0))
89 s e l f . connect ((s e l f . r epeat number o f seconds , 0) , (s e l f .

t h r o t t l e b l o c k , 0))
90 s e l f . connect ((s e l f . t h r o t t l e b l o c k , 0) , (s e l f . dopp l e r generato r ,

0))
91 s e l f . connect ((s e l f . v ec to r sample source , 0) , (s e l f .

r epeat number o f seconds , 0))
92

93 de f get samp rate (s e l f) :
94 re turn s e l f . samp rate
95

96 de f s e t samp rate (s e l f , samp rate) :
97 s e l f . samp rate = samp rate
98 s e l f . set SNR (s e l f . PcNo − 10∗np . log10 (s e l f . samp rate))
99 s e l f . v e c to r samp l e sou r c e . s e t da t a ([1] ∗ (i n t (s e l f . samp rate)) ,

54 Chapter D Tomàs Ortega

[])
100

101 de f get PcNo (s e l f) :
102 re turn s e l f . PcNo
103

104 de f set PcNo (s e l f , PcNo) :
105 s e l f . PcNo = PcNo
106 s e l f . set SNR (s e l f . PcNo − 10∗np . log10 (s e l f . samp rate))
107 s e l f . set LoopSNR (s e l f . PcNo − 10∗np . log10 (s e l f .BL))
108

109 de f get SNR (s e l f) :
110 re turn s e l f .SNR
111

112 de f set SNR (s e l f , SNR) :
113 s e l f .SNR = SNR
114 s e l f . set SNRm(s e l f .SNR + 10∗np . log10 (s e l f .M1))
115 s e l f . no i sy channe l . s e t n o i s e v o l t a g e (10∗∗(− s e l f .SNR/20))
116

117 de f get M1 (s e l f) :
118 re turn s e l f .M1
119

120 de f set M1 (s e l f , M1) :
121 s e l f .M1 = M1
122 s e l f . set SNRm(s e l f .SNR + 10∗np . log10 (s e l f .M1))
123 s e l f . keep one in m1m2 p . s e t n (s e l f .M1∗ s e l f .M2)
124 s e l f . keep one in m1m2 d . s e t n (s e l f .M1∗ s e l f .M2)
125

126 de f get SNRm(s e l f) :
127 re turn s e l f .SNRm
128

129 de f set SNRm(s e l f , SNRm) :
130 s e l f .SNRm = SNRm
131 s e l f . s e t v a r f i n a l (1 . 0/ s e l f .M2 ∗ (1 . 0/ (10∗∗ (s e l f .SNRm/10)) +

0 . 5∗1 . 0/ (10∗∗ (s e l f .SNRm/10)) ∗∗2))
132

133 de f get M2 (s e l f) :
134 re turn s e l f .M2
135

136 de f set M2 (s e l f , M2) :
137 s e l f .M2 = M2
138 s e l f . s e t v a r f i n a l (1 . 0/ s e l f .M2 ∗ (1 . 0/ (10∗∗ (s e l f .SNRm/10)) +

0 . 5∗1 . 0/ (10∗∗ (s e l f .SNRm/10)) ∗∗2))
139 s e l f . keep one in m1m2 p . s e t n (s e l f .M1∗ s e l f .M2)
140 s e l f . keep one in m1m2 d . s e t n (s e l f .M1∗ s e l f .M2)
141

142 de f get BL (s e l f) :
143 re turn s e l f .BL
144

145 de f set BL (s e l f , BL) :
146 s e l f .BL = BL
147 s e l f . set LoopSNR (s e l f . PcNo − 10∗np . log10 (s e l f .BL))
148

149 de f g e t v a r f i n a l (s e l f) :
150 re turn s e l f . v a r f i n a l
151

152 de f s e t v a r f i n a l (s e l f , v a r f i n a l) :
153 s e l f . v a r f i n a l = v a r f i n a l
154

Chapter D Tomàs Ortega 55

155 de f g e t s s imu l a t i o n (s e l f) :
156 re turn s e l f . s s imu l a t i on
157

158 de f s e t s s imu l a t i o n (s e l f , s s imu l a t i on) :
159 s e l f . s s imu l a t i on = s s imu l a t i on
160 s e l f . r epeat number o f s econds . s e t i n t e r p o l a t i o n (s e l f .

s s imu l a t i on)
161

162 de f g e t o f f s e t (s e l f) :
163 re turn s e l f . o f f s e t
164

165 de f s e t o f f s e t (s e l f , o f f s e t) :
166 s e l f . o f f s e t = o f f s e t
167

168 de f g e t d opp l e r r a t e (s e l f) :
169 re turn s e l f . d opp l e r r a t e
170

171 de f s e t d opp l e r r a t e (s e l f , d opp l e r r a t e) :
172 s e l f . d opp l e r r a t e = dopp l e r r a t e
173

174 de f get N (s e l f) :
175 re turn s e l f .N
176

177 de f set N (s e l f , N) :
178 s e l f .N = N
179 s e l f . k e e p on e i n n f . s e t n (s e l f .N)
180

181 de f get LoopSNR (s e l f) :
182 re turn s e l f . LoopSNR
183

184 de f set LoopSNR (s e l f , LoopSNR) :
185 s e l f . LoopSNR = LoopSNR
186

187

188 de f main (t o p b l o c k c l s=f u l l p l l , opt ions=None) :
189

190 tb = t op b l o c k c l s ()
191 tb . s t a r t ()
192 tb . wait ()
193

194

195 i f name == ’ ma in ’ :
196 main ()

Listing D.4: Python GNU Radio program for ASA

1 /∗ −∗− c++ −∗− ∗/
2 /∗
3 ∗ Copyright 2020 Tomas Ortega .
4 ∗/
5

6 #i f d e f HAVE CONFIG H
7 #inc lude ” con f i g . h”
8 #end i f
9

10 #inc lude <gnuradio / i o s i g n a t u r e . h>
11 #inc lude ”EASA impl . h”
12

56 Chapter D Tomàs Ortega

13 #inc lude <math . h>
14 #inc lude <gnuradio / s i n c o s . h>
15 #de f i n e MTWOPI (2 . 0 ∗ M PI)
16

17 namespace gr {
18 namespace EASA {
19

20 EASA : : sp t r
21 EASA : : make(i n t msamp rate , i n t mN, i n t mM1, i n t mM2, f l o a t mBL,

f l o a t mth1 , f l o a t mth2 , f l o a t mf1 , f l o a t mf2 , f l o a t mstep1 , f l o a t
mstep2 , f l o a t mstep3) {

22 re turn gnuradio : : g e t i n i t i a l s p t r (new EASA impl (msamp rate , mN,
mM1, mM2, mBL, mth1 , mth2 , mf1 , mf2 , mstep1 , mstep2 , mstep3)) ;

23 }
24

25 /∗
26 ∗ The pr i va t e con s t ruc to r
27 ∗/
28 EASA impl : : EASA impl (i n t msamp rate , i n t mN, i n t mM1, i n t mM2,

f l o a t mBL, f l o a t mth1 , f l o a t mth2 , f l o a t mf1 , f l o a t mf2 , f l o a t
mstep1 , f l o a t mstep2 , f l o a t mstep3) : gr : : sync b lock (”EASA” ,

29 gr : : i o s i g n a t u r e : : make (1 , 1 , s i z e o f (gr complex)) ,
30 gr : : i o s i g n a t u r e : : make2 (4 , 4 , s i z e o f (gr complex) , s i z e o f (

f l o a t))) {
31 //Global
32 samp rate = msamp rate ;
33 //PLL bu f f e r
34 N = mN;
35 p l l b u f = 0 . 0 ;
36 p l l b u f o u t = 0 . 0 ;
37 p l l b u f i n d e x = 0 ;
38 //PLL
39 damp = 1 . 0 ;
40 ou t f = 0 . 0 ;
41 p l l o u t = gr complexd (0 , 0) ;
42 K1 = 16 .0 ∗ mBL ∗ N / samp rate /(1/(damp∗damp) + 4) ;
43 K2 = 0.25 ∗ K1 ∗ K1 ∗damp∗damp ;
44 f i l t e r s um = 0 . 0 ;
45 f i l t e r o u t = 0 . 0 ;
46 nco sum = 0 . 0 ;
47 //Lock and Di r e c t i on de t e c t o r
48 M1 = mM1;
49 M2 = mM2;
50 l o ck bu f 1 i ndex = 0 ;
51 l o ck bu f 2 i ndex = 0 ;
52 l o ck bu f1 = gr complexd (0 , 0) ;
53 l o c k bu f 1 o l d = gr complexd (0 , 0) ;
54 l o ck bu f2 = gr complexd (0 , 0) ;
55 lock D = 0 . 0 ;
56 lock P = 0 . 0 ;
57 //Sweep
58 th1 = mth1 ;
59 th2 = mth2 ;
60 s tep1 = mstep1 ;
61 s tep2 = mstep2 ;
62 s tep3 = mstep3 ;
63 f 1 = mf1 ;
64 f 2 = mf2 ;

Chapter D Tomàs Ortega 57

65 f out = mf1 ;
66 }
67

68 /∗
69 ∗ Our v i r t u a l d e s t ru c t o r .
70 ∗/
71 EASA impl : : ˜ EASA impl () {}
72

73 /∗
74 ∗ Our p l l f unc t i on
75 ∗/
76 void EASA impl : : p l l r u n () {
77 // get output from p l l bu f f e r , pass through f i l t e r , get sweep i f

i t e x i s t s , update NCO output .
78 f i l t e r s um += p l l b u f o u t ;
79 f i l t e r o u t = p l l b u f o u t ∗K1 + f i l t e r s um ∗K2 + fout ∗N∗MTWOPI/

samp rate ; //we add the sweep output
80 ou t f = f i l t e r o u t ∗ samp rate /N/MTWOPI;
81 }
82

83 /∗
84 ∗ Our sweeping a lgor i thm
85 ∗/
86 void EASA impl : : sweep ing a lgor i thm () {
87 // run a step o f the sweep
88 i f (lock P < th1) {
89 f out += step1 ;
90 } e l s e {
91 i f (lock D > 1) lock D = 1 ;
92 e l s e i f (lock D < −1) lock D = −1;
93 i f (lock P < th2) fout += lock D ∗ s tep2 ;
94 e l s e f out += lock D ∗ s tep3 ;
95 }
96 i f (f out > f 2) f out = f1 ;
97 }
98

99 /∗
100 ∗ Our lock de t e c t o r
101 ∗/
102 void EASA impl : : l o c k d e t e c t o r (gr complexd inp) {
103 //put the input in the bu f f e r , i f i t i s the l a s t sample ,

r e s t a r t counter , update output and t r i g g e r sweep
104 l o ck bu f1 += inp ;
105 l o ck bu f 1 i ndex++;
106 i f (l o ck bu f 1 i ndex == M1) {
107 l o ck bu f1 /= M1;
108 l o ck bu f2 += l o ck bu f 1 o l d ∗ l o ck bu f1 ;
109 l o ck bu f 2 i ndex++;
110 l o c k bu f 1 o l d = gr complexd (l o ck bu f1 . r e a l () , −l o ck bu f1 .

imag ()) ; // conjugate
111 l o ck bu f1 = gr complexd (0 , 0) ;
112 l o ck bu f 1 i ndex = 0 ;
113 i f (l o ck bu f 2 i ndex == M2) {
114 l o ck bu f2 /= M2;
115 lock D = lock bu f2 . imag () ; //no c l i p p e r used
116 lock P = lock bu f2 . r e a l () ;
117 l o ck bu f2 = gr complexd (0 , 0) ;
118 l o ck bu f 2 i ndex = 0 ;

58 Chapter D Tomàs Ortega

119 sweep ing a lgor i thm () ;
120 }
121 }
122 }
123

124 /∗
125 ∗ Our p l l f unc t i on
126 ∗/
127 void EASA impl : : p l l b u f r un (f l o a t inp) {
128 //put the input in the bu f f e r , i f i t i s the l a s t sample ,

r e s t a r t counter , update output , t r i g g e r f i l t e r
129 p l l b u f += inp ;
130 p l l b u f i n d e x++;
131 i f (p l l b u f i n d e x == N) {
132 p l l b u f o u t = p l l b u f / N;
133 p l l b u f i n d e x = 0 ;
134 p l l b u f = 0 . 0 ;
135 p l l r u n () ;
136 }
137 // NCO
138 nco sum += f i l t e r o u t / N;
139 whi le (nco sum > M PI) nco sum −= MTWOPI; //maybe not

nece s sa ry to avoid over f l ow
140 f l o a t o r e a l , o imag ;
141 gr : : s i n c o s f (nco sum , &o imag , &o r e a l) ;
142 p l l o u t = gr complexd (o r e a l , −o imag) ; // conjugate
143 }
144

145 i n t EASA impl : : work (i n t noutput items , g r v e c t o r c o n s t v o i d s t a r &
input i tems , g r v e c t o r v o i d s t a r &output i tems) {

146 const gr complex ∗ in = (const gr complex ∗) input i t ems [0] ;
147 gr complex ∗out0 = (gr complex ∗) output i tems [0] ;
148 f l o a t ∗out1 = (f l o a t ∗) output i tems [1] ;
149 f l o a t ∗out2 = (f l o a t ∗) output i tems [2] ;
150 f l o a t ∗out3 = (f l o a t ∗) output i tems [3] ;
151 f o r (i n t i = 0 ; i < noutput i tems ; ++i) {
152 gr complexd ind = gr complexd (in [i] . r e a l () , in [i] . imag ()) ; //

complex f l o a t to complex double
153 gr complexd mult = ind ∗ p l l o u t ;
154 l o c k d e t e c t o r (mult) ;
155 p l l b u f r un (mult . imag ()) ;
156 out0 [i] = mult ;
157 out1 [i] = ou t f ;
158 out2 [i] = lock P ;
159 out3 [i] = lock D ;
160 }
161 re turn noutput i tems ;
162 }
163

164 } /∗ namespace EASA ∗/
165 } /∗ namespace gr ∗/

Listing D.5: Main C++ code for ASA

Listing D.6 contains the final design script of the ASA described in Chapter 3.
It encapsulates the theoretical work done in Chapter 2.

1 %% System input
2 % The system uses a c r i t i c a l l y damped PLL f i l t e r

Chapter D Tomàs Ortega 59

3 max sspe = 0 . 1 ; % maximum steady−s t a t e phase e r r o r (rad ians)
4 max doppler rate = 100 ; % maximum abso lu t e value o f doppler ra t e (Hz/ s)
5 o f f s e t r a n g e = 40 e3 ; % maximum o f f s e t − minimum o f f s e t (Hz)
6 PcNo = dB2lin (38) ; % PcNo value
7 p rob e r r o r s t ep2 = 0 . 0 1 ; % e r r o r p r obab i l i t y in step2 , o f va lue

max er ror s tep2
8 max error s tep2 = 1 ; % maximum al lowed e r r o r with p r ob e r r o r s t ep2

p r obab i l i t y in step2 (Hz)
9 min fva r i a t i on = 0 | 0 ; % True : minimizes f v a r i a t i o n . Fa l se : minimizes

acq time
10

11 %% Parameter c a l c u l a t i o n
12 BL = sqr t (max doppler rate ∗2∗ pi ∗ (5ˆ2) /(max sspe ∗ (4ˆ3))) ; % from the

steady−s t a t e phase e r r o r equat ion
13 Fs = o f f s e t r a n g e ∗2 ; % from Nyquist bound
14 N = 1 ; % N i s the PLL i n t e g r a t o r s i z e , l e f t at 1 by de f au l t
15 Fs = max(Fs , c e i l (N∗BL/0 .01)) ; % from the continuous−time approximation

equat ion
16 SNRc = PcNo/Fs ; % from SNRc d e f i n i t i o n
17 M = c e i l (dB2lin (17) /SNRc) ; % from minimum SNRm formula
18 Dfun = @(x) s i n (2∗x) ∗(s i n c (x/ p i) ˆ2) ; % from the D func t i on formula
19 alpha = abs (fminbnd (Dfun ,−0.7 ,−0.6)) ; % from the D func t i on l i n e a r zone
20 step2param = max error s tep2 / qfunc inv (p r ob e r r o r s t ep2 ∗0 . 5) ; % from the

e r r o r d i s t r i b u t i o n formula
21 a = o f f s e t r a n g e ∗0 .5∗ pi / alpha ;
22 b = alpha /(2∗ pi ∗ step2param∗ s q r t (PcNo)) ;
23 M = max(M, c e i l ((b/(4∗ a)) ˆ(2/5) ∗ Fs)) ; % from the optimal expected

a c qu i s i t i o n time formula
24 i f m in fva r i a t i on
25 N = max(f l o o r (Fs ∗0 .01/BL) , 1) ; % to minimize f v a r i a t i o n at output
26 M = max(M, 10∗N) ; % from Fpl l >> Fsweep cond i t i on
27 e l s e % Pr i o r i t y i s a c q u i s i t i o n time
28 N = min(c e i l (M/10) , f l o o r (Fs ∗0 .01/BL)) ; % to minimize f v a r i a t i o n

at output
29 end
30 s tep1 = alpha ∗Fs /(p i ∗M) ; % from step1 formula
31 s tep2 = step2param∗ s q r t (SNRc∗M) ; % from step2 formula
32 Pfun = @(x) cos (2∗x) ∗(s i n c (x/ p i) ˆ2) ; % from P func t i on d e f i n i t i o n
33 th r e sho ld = Pfun (alpha) ; % from optimal th r e sho ld ana l y s i s
34 e xp e c t ed a cqu i s i t i o n t ime = a ∗(M/Fs) ˆ2 + b/ sq r t (M/Fs) ; % from expected

a c qu i s i t i o n time formula
35 K1 = 16/5∗BL∗N/Fs ; % From PLL paper , c r i t i c a l l y damped
36 K2 = 1/4 ∗K1∗K1; % From PLL paper , c r i t i c a l l y damped
37 output dev i a t i on = sq r t (1 . /SNRc/2 .0/N∗ ((K1 + K2) ∗Fs/N/(2∗ pi)) ˆ2) ; %

from output f requency dev i a t i on ana l y s i s

Listing D.6: Design script

60 Chapter D Tomàs Ortega

	Introduction
	Context
	Motivation
	Literature review
	Signal model
	Phase-Locked Loop
	Sweeping Algorithm

	Thesis statement
	Thesis structure

	Analysis and implementation
	Signal to Noise Ratios
	Parameter calculation
	PLL and Sweeping Algorithm update rates
	Steady-state phase error
	Noise distribution
	Step calculation
	Expected acquisition time
	Standard Deviation of Doppler residuals

	SDR Implementation

	Results
	Design script
	Simulink
	PLL
	Adaptive-Sweep Algorithm

	Software-Defined Radio
	Stand-alone SDR platform

	Conclusions
	Summary
	Contributions
	Future work

	Acronyms
	Bibliography
	Doppler shift
	Extended PLL residual error analysis
	Residual frequency error
	Taylor expansion with critically damped coefficients

	Residual phase error

	Stand-alone SDR setup
	Code listings

