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Abstract

Magnetic flux ropes (MFRs) are fundamental plasma structures consisting of magnetic field lines
twisted around an axis. They appear in many heliospheric phenomena, including one of the main
drivers of adverse space weather: coronal mass ejections (CMEs). Understanding their internal
magnetic structure and dynamics is therefore essential to foretell and mitigate their potentially
damaging consequences in technological systems. This work starts by providing an explanation of
fundamental concepts in heliophysics and magnetohydrodynamics for the modeling and analysis
of MFRs. The Circular-Cylindrical (CC) analytical model for magnetic clouds is then studied
to include the phenomenon of expansion. Two different reconstruction techniques for CMEs, the
Graduated Cylindrical Shell model and the CC model, are compared for a particular event detected
by Parker Solar Probe on March 15, 2019, contributing to an article submitted to The Astrophysical
Journal (Lario et al., in review). A numerical method has been developed to analyze the helical
kink stability of MFRs with different twist profiles, and the results are discussed with the aim of
shedding some light on the dynamics of MFRs and the occurrence of rotations, magnetic forces
and expansion, among others. A publication with the methodology and outcomes of the stability
analysis, obtained in collaboration with the supervisor at NASA GSFC, Teresa Nieves-Chinchilla,
and Mark George Linton at NRL (Naval Research Laboratory), has been submitted to Solar
Physics (Florido-Llinas et al., in review). Finally, the numerical stability method is used to obtain
the optimal values of the parameters of a MFR model, which result in an instability of convenient
characteristics for nonlinear solar MHD simulations that will be carried out by researchers Kalman
Knizhnik and Mark George Linton at NRL.
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Introduction

Coronal mass ejections (CMEs) are one of the main drivers of adverse space weather. They are
large eruptions of magnetized plasma with the ability to severely impact telecommunications and
space systems, due to the sudden injection of magnetic energy into the magnetosphere. CMEs are
typically modeled as magnetic flux ropes (MFRs), twisted magnetic configurations that are prone
to develop a particular type of plasma instability, the so-called kink instability.

Understanding CMEs internal magnetic structure has become a very important challenge, since it
provides the ability to foretell sufficiently far in advance their eruption and evolution, and therefore
to mitigate their potentially damaging effects in technological systems and society.

In the first and second chapters of the present work, fundamental concepts will be given about
solar physics and CMEs, as well as of the field in charge of studying plasma behavior: magnetohy-
drodynamics. In particular, the theoretical background behind the MFR modeling of CMEs and
the linear stability analysis used in this thesis, will be explained.

The third chapter discusses in detail some of the most common MFR models for CMEs and the
importance of the twist distribution in the physical properties and dynamics of these structures.
The Circular-Cylindrical (CC) analytical flux-rope model for magnetic clouds is examined more in
depth to include the possibility of expansion. In addition, two different reconstruction techniques
(the Graduated Cylindrical Shell model and the CC model) are compared in the context of the
analysis of a particular CME detected by Parker Solar Probe on March 15, 2019.

The fourth chapter describes the numerical method that has been developed in this thesis as
a general method to study the linear kink stability of cylindrical MFRs. It is first applied to
differently twisted MFR models and the results are discussed in relation to the occurrence of
rotations, magnetic forces and expansion throughout the interplanetary medium, among others.
Finally, this numerical stability method is used to obtain optimal parameters for nonlinear MHD
simulations of ongoing solar physics research.

3



1 . Fundamentals of the Sun and CMEs

The study of the variability of the Sun and solar phenomena, as well as of its impact on the vast
heliosphere and the environment of planets, has become essential for a society that is increasingly
reliant on advanced technological systems. Understanding the magnetic structure and dynamics
of the Sun and of adverse space weather events is therefore of critical importance in order to
protect our technology and way of life from their potentially damaging consequences. This chapter
presents an overview of the current knowledge about the Sun and its largest eruptive phenomena,
the so-called coronal mass ejections (CMEs).

1.1 Discovering the Sun and its magnetic field

1.1.1 Historical remarks

The Sun has been an object of great fascination and interest for humans for thousands of years.
Not only is it essential for life on Earth, providing the energy, heat and light that is vital to all
living organisms, but it also causes radiative and eruptive phenomena whose accompanying energy
and magnetic fields can severely interfere with technological systems, both on Earth and its orbit.
The study of the Sun allows us to understand how its ever-changing conditions affect our planet
and the interplanetary medium, and this knowledge can be extended to stellar systems that are
only viewed from afar.

The first observations of the Sun and the effects of space weather date back centuries. There are
written records of aurorae from as far back as 2600 BC in China, and reports of simultaneous
deviations of compass needles caused by geomagnetic storms in 1724 (Howard, 2011). Even naked-
eye observations of sunspots (dark regions of lower temperature that appear on the visible surface
of the Sun) of the period 165 BC - 1918 AD have been compiled from historical documents and
are used nowadays to understand long-period solar variability (Vaquero et al., 2002).

Up until the start of the 20th century, many of the processes taking place within and beyond
the Solar System were poorly understood, let alone the magnetic forces that are now known to be
responsible for most of the activity and variability of the Sun. In the early 17th century, there were
astronomers like Galileo Galilei or Christoph Scheiner who measured the 27-day rotation period of
the Sun through the observation of sunspots, and realized that its angular rotation rate decreased
towards the poles. However, there was still a long way to go: theories stating that the Sun was
a solid or liquid sphere, and that sunspots were meteor impacts or the solar analogs of terrestrial
tornadoes or volcanoes, were the most widely accepted ones for a long time (Foukal, 1990).

The first discovery of extraterrestrial magnetic fields, made by George Ellery Hale in 1908, meant
a breakthrough in the understanding of the forces pervading solar and space physics. He used the
analysis made by the physicist Pieter Zeeman in 1897 of the effect of magnetic fields on spectral
lines, and applied it to the study of sunspot spectra. Sunspots occupy regions that are usually as
large as Earth and have temperatures of 3500-4500 K, which are much colder than the surrounding
materials (about 5800 K), so they appear darker in the solar surface (see Figure 1.1). This is
now known to be a consequence of their exceptionally strong magnetic fields (around 1500-3000
G, whereas the Sun’s average surface field is 1 G), which inhibit heat convection. Therefore, when
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Hale studied the Zeeman effect in sunspot spectra, he found that it showed fine structures that
closely resembled iron filings sprinkled around magnets, providing the first evidence of the existence
of solar magnetic fields. His findings revolutionized the study of the Sun, since he had actually
discovered the main force driving almost all solar activity and a lot of heliophysics phenomena.

Understanding the solar non-spot or background magnetic fields became Hale’s next challenge,
but their Zeeman effect signatures were too weak to be detected with the technologies that existed
back then. It was not until 1953 that his goal was achieved by Babcock with the invention of the
photoelectric magnetograph (Harvey, 1999; Stenflo, 2017).

Figure 1.1: Photograph of the sunspot that grew to be the largest active region seen in the solar cycle
that started in 2008, taken on October 18, 2014, by NASA Solar Dynamics Observatory (SDO); ten Earths
could be laid across its diameter of 130 · 106 m. The largest sunspot ever recorded is almost three times as
large as this one. Retrieved from NASA Image and Video Library.

1.1.2 Description of the Sun

Extensive studies have been done of the Sun’s structure and magnetic field that provide us with
a lot of information about it. For instance, helioseismology has revealed how the Sun’s interior is
organized by analyzing its oscillations, in a similar way as geoseismology uses seismic waves from
earthquakes to describe the inside of the Earth. However, there are a lot of phenomena that still
require a detailed explanation, such as how solar magnetic fields are generated or how the Sun
accelerates particles in the form of solar wind or other transient phenomena like CMEs.

The Sun is now halfway through its life, being 4.6 billion years old. It has a mass of 1.99 · 1030 kg
(thus being 330,000 times more massive than Earth) and a radius of 6 · 106 m (109 times larger
than Earth’s radius). The mean distance between the Sun and the Earth is 1.496 · 1011 m (defined
as 1 AU), so light needs 8 minutes to travel from one to the other. It takes 250 million years to
orbit the center of the Milky Way traveling at a speed of 220 km/s, and flips the polarity of its
magnetic field every 11 years. The largest sunspot on its surface was measured in 1947, with 35
times the area of the Earth (Priest, 2013).

Figure 1.2 shows the structure of the Sun. The inner part of it is a massive plasma ball consisting
of mostly ionised H (92% by number of atoms, or 73.4% by mass) and He (7.8% by number of
atoms, or 25% by mass) atoms, with other elements like C, N and O that constitute about 0.1%
of the total. The solar interior is shielded from our view, and only the surface layers can be
observed directly, but helioseismology has been used to infer the existence of three main layers
where different physical processes dominate:

• Core: It extends from the center to about 0.2Rs and 0.25Rs, where Rs is the solar radius.
This is where the energy of the star is generated and it is found at around 15 · 106 oC.
The exceptionally high temperatures combined with the huge pressure and density, force the
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Figure 1.2: Structure of the Sun. Retrieved from http://www.esa.int/ESA_Multimedia/Images/2019/

10/Anatomy_of_our_Sun.

occurrence of fusion between hydrogen nuclei, resulting in the creation of helium and the
release of vast quantities of energy. Every second, the Sun converts 4 · 109 kg of matter into
energy that will reach the surface after going through a very slow journey.

• Radiative zone: It extends from the core to about 0.7Rs. The temperature goes from 7·106

oC next to the core to 2 · 106 oC at the top of the layer. The density of the plasma in this
region is still so high that convection cannot occur, so the energy of the core can only travel
through it by radiative diffusion. Whereas a photon would take about 2 seconds to cross this
layer if there was vacuum inside, the photons are absorbed and re-emitted so many times
that they need around 170,000 years to pass through the radiative zone (Mitalas and Sills,
1992).

• Convection zone: It extends from the radiative zone to near the surface. The density of
the plasma here is too low to allow radiative diffusion, but low enough to allow the outward
energy transport through convection: at the base of this layer, the plasma is heated rapidly
since it reaches temperatures of around 2 · 106 oC, so it rises rapidly to the top (found at
between 4500-6000 oC) through buoyancy. This movement creates a turbulent convection
pattern.

The boundary between the radiative and convective zones is called the tachocline. Below it, the
Sun rotates like a solid rigid body. Above it, it has different rotation speeds depending on the
latitude. As viewed from Earth, the solar equator makes a complete rotation in 26.24 days, while
the poles take 36 or 37 days to do so (Priest, 2013). This phenomenon is known as differential
rotation. The change in rotation speed across the tachocline is so abrupt, that it is considered to
be an important source of the shearing forces that play a fundamental role in the creation of much
of the Sun’s large-scale magnetic field.

Above the aforementioned layers, there is the solar atmosphere, which can be observed because
photons can escape directly into space. It consists of multiple regions:

• Photosphere: This is the visible surface of the Sun and emits most of the solar radiation,
since the energy generated in the core can finally move freely through space. It is a layer with
an extremely small thickness (only several hundred kilometers), and a temperature between
4500-6000 oC. A phenomenon known as granulation caused by convective currents below the
photosphere is manifested here in the form of granules or Bénard cells (see Figure 1.3). Each
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Figure 1.3: Close-up view of the solar surface provided by NSF’s Inouye Solar Telescope covering a
total area of 36, 500 × 36, 500 km. It shows the pattern of cell-like structures called granules that are
the signature of the violent convective motions that transport heat to the Sun’s surface. Retrieved from
https://www.nsf.gov/news/news_summ.jsp?cntn_id=299908&linkId=81408478.

granule is roughly 1000 km wide and lasts for about 20 minutes. Plasma rises in the center
of the cell where it is hotter, cools down through the release of energy into space, and then
flows to the sides of the granule and sinks down into the photosphere, making the borders
appear darker.

• Chromosphere: It is found above the photosphere, with a thickness of merely 1000-2000
km and a temperature rising from 4500-6000 oC at the bottom to about 25000 oC on top of it.
Here, the plasma density drops dramatically, being only 10−4 times that of the photosphere.
Right above the chromosphere and separating it from the corona, there is a thin and irregular
layer called the solar transition region. Its most striking feature is the incredible increase
in temperature to nearly a million degrees Celsius that occurs across it. The importance of
the transition region relies on the fact that it represents a spatial boundary of two different
behaviors of solar plasma: below, gas pressure and fluid dynamics govern the plasma, while
above it, magnetic forces dominate its motion and shape.

• Corona: It is the Sun’s outer atmosphere. Its average temperature is of 1 · 106 − 2 · 106 oC
and can go up to 20 · 106 oC, although the reason why the Sun’s corona is so much hotter
than its surface is still an unsolved problem in physics. Its density is about 10−12 times the
density of the photosphere. This layer extends millions of kilometers away from the Sun, and
can be observed during solar eclipses or using coronagraphs (devices that block out most part
of the direct light coming from the Sun, such that only the relatively faint corona remains
visible).

The region of influence of the Sun in space extends much further than the solar corona or even the
Solar System. It is known as the heliosphere (see Figure 1.4), and it actually forms a giant bubble
around the Sun that continuously receives plasma released by it, known as the solar wind. The
solar wind was discovered by the astrophysicist Eugene Parker in 1958, and it is formed by streams
of plasma that possess enough energy to escape the Sun’s gravitational field. It reaches speeds of
300-800 km/s, but the acceleration mechanism is still unknown. Moreover, it drags with it the solar
magnetic field from the corona, filling the Solar System with the so-called heliospheric magnetic
field (HMF) (the coupling between plasma and magnetic field will be addressed in section 2.2). Due
to the rotation of the Sun, the HMF arranges itself into a pattern similar to a spiral (the Parker
spiral), and more complexity is added due to the variations of the solar wind in temperature, speed
and density over solar latitude, longitude, and time.

1.1.3 Solar dynamo theory and the occurrence of eruptions

Nowadays, very detailed images of the turbulent surface and the different layers of the Sun are
available thanks to missions such as the SOlar and Heliospheric Observatory (SOHO) or the Solar
TErrestrial RElations Observatory (STEREO). They allow us to see the solar surface and the
different atmospheric layers through extreme ultraviolet imagers (EUVI) that select and amplify
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Figure 1.4: Diagram of what is currently believed to be the structure of the heliosphere. The so-
lar wind travels through space without impediments far beyond Pluto until the termination shock.
There, the outside pressure of the interstellar medium slows it down abruptly and the solar wind be-
comes turbulent and compressed in a broad transitional region known as the heliosheath. The he-
liopause is the outer boundary of the heliosphere where the solar and interstellar wind are in equilib-
rium. The figure also shows the twin Voyager 1 and 2 spacecraft. They were launched in 1977 and
are still providing invaluable scientific data, since they are the first and only probes that have reached
the interstellar medium until today. Retrieved from https://www.jpl.nasa.gov/edu/news/2018/12/18/

then-there-were-two-voyager-2-reaches-interstellar-space/.

particular wavelengths of ultraviolet light emitted by the Sun. The X-ray emission spectra of
the Sun has also been observed with missions like the Nuclear Spectroscopic Telescope ARray
(NuSTAR). An example of these images can be seen in Figure 1.5. The results reveal very turbulent
and constantly changing phenomena: magnetic loops forming, twisting and decaying, brightness
variations, plasma flows, eruptions, among others.

Understanding these processes and their consequences requires the study of what the main drivers
of the solar magnetic system are and how its magnetic fields are originated. This is one of the
central problems in solar physics. Solar dynamo theory is currently the most promising theory for
the solar behavior (see section 2.2.2), but it still requires further development to be complete.

The Sun is made up of hot plasma, a fundamental state of matter that consists of a gas of ions
and free electrons, such that long-range electrostatic interactions and the effect of magnetic fields
become relevant. The movement of charged particles is known to create magnetic fields which in
turn affect the way the particles move. The area of physics that studies these phenomena is called
magnetohydrodynamics (MHD), and will be described in Chapter 2.

Solar dynamo theory asserts that these complicated nonlinear interactions between the magnetic
fields and the solar plasma, together with the energy released by nuclear fusion reactions at the
core of the Sun, generate and maintain its magnetic fields. The plasma material moves along the
magnetic field because it is actually frozen into it in most cases (the well-known Alfvén’s theorem,
see section 2.2). Therefore, solar magnetic fields are observable to EUV or X-ray imagers thanks
to the fact that the plasma that moves along with them emits light at different wavelengths, as
shown in Figure 1.5.

The Sun varies periodically with time, in a cycle that lasts for approximately 11 years. In the
beginning of this period, sunspot groups are formed first at high latitudes symmetrically around
the equator (40-50o) and then slowly propagate towards it, reaching after some years the phase of
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maximum occurrence of the sunspots at latitudes below 25o: the maximum of the cycle. At this
moment, the magnetic field adopts a very complex shape with magnetic structures that become
increasingly twisted and entangled, and continuously interact with emerging fields. When the
energy required to sustain these complex structures grows too large, the Sun removes parts of
them through eruptions that convert the magnetic energy into gravitational and kinetic energy,
which can cause the ejection of large plasma structures into the interplanetary space (e.g. coronal
mass ejections). Every eruption contributes to decrease the complexity of the solar magnetic fields
while the sunspot groups gradually approach the equator. This goes on until the Sun reaches its
simplest state and the sunspots disappear almost completely: the minimum of the cycle.

Figure 1.5: Left: extreme ultraviolet images for three different wavelengths (from left to right: 304 Å,
193 Å, 171 Å) taken by NASA’s Solar Dynamics Observatory (SDO). It illustrates how each wavelength
allows the visualization of only specific solar features. Right: close-up of the complex magnetic structures
of an active region during July 15-18, 2016, which appear in the 171 Å EUV image taken by NASA’s SDO.
See further explanation in section 1.2.3. Retrieved from NASA Image and Video Library.

1.2 Coronal Mass Ejections (CMEs) and Space Weather

The build-up of energy that is produced in the Sun due to the constant motion and twisting of
its magnetic field, creates very complex structures which can require an energy too high to be
sustained. If that is the case, the Sun releases the excess energy in two possible ways: the usual
steady flow of light that is essential for living organisms on Earth, but also in more violent and
explosive forms, such as flares, coronal mass ejections (CMEs) and eruptive prominences.

Coronal mass ejections (CMEs) consist of large structures containing plasma and magnetic fields
that are expelled from the Sun into the heliosphere. From a scientific point of view, they are
particularly interesting in order to understand the solar magnetic field and activity. Moreover,
being responsible for the most extreme space weather events, they can have severe impact in our
technological systems. The aim of space weather is therefore being able to foretell sufficiently far
in advance the eruption and evolution of CMEs and other phenomena, allowing us to prevent or
mitigate their potentially damaging effects on our society.

1.2.1 Space weather and the impact of CMEs on Earth

The first relation between geomagnetic storms and solar activity was established in 1859. In that
year, the most intense magnetic storm ever recorded on Earth occurred only 18 hours after Richard
Carrington made the first observation of a solar flare (a sudden burst of increased brightness on the
Sun), causing the disruption of telegraph systems across Europe and North America, and aurorae
at low-latitude regions like the Caribbean (Howard, 2011).
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In fact, as society becomes more reliant on ever more advanced technology systems powered by
electricity, its vulnerability to extreme space weather events (generally caused by large and fast
CMEs hitting Earth with southward magnetic field) increases. They could have potentially dire
consequences for power grids, GPS, aviation and satellites, as well as endanger high-altitude air-
craft fliers and astronauts due to increased radiation exposure, or cause the early corrosion of oil
and gas metal pipelines. These effects, in turn, would cause the failure of other interdependent
infrastructures (e.g. potable water distribution, preservation of perishable foods and medications,
heat/air conditioning, sewage disposal, transportation, phone services, operational and communi-
cation systems in spacecraft). An example of the severe effects of past geomagnetic storms can be
found in a report of a CME hitting Earth on March 1989 Allen et al. (1989). Some studies estimate
that future extreme space weather events could cost $1-2 trillion in the first year and take 4-10
years to fully recover (by comparison, hurricane Katrina costed $81-125 billion, and the Northeast
blackout of 2003, $4-10 billion) (National Research Council, 2008; Oughton et al., 2017).

The predictability of geomagnetic storms caused by CMEs has therefore recently become one of the
primary goals of space weather research. However, the limited information about their 3D mag-
netic topology provided by measurements, and the insufficient understanding of the evolutionary
processes that CMEs may undergo, hinder the development of accurate prediction models.

1.2.2 Overview of CMEs basic features

Coronal mass ejections (CMEs) are large eruptions of magnetized plasma from the solar corona into
the heliosphere that are observed as an increase of brightness in the solar telescopes’ field of view
(see two examples in Figure 1.6). They reach typical velocities of 400-1000 km/s. An Earthward-
directed CME would take 2 to 5 days to reach Earth, but the largest CMEs can accelerate particles
to about a tenth of the speed of light, which implies that they only need 80 minutes to reach Earth.
They have a mass of about 1011−1012 kg and typically span several tens of degrees of heliographic
latitude (measured from the solar equator to the poles), while the Earth has a mass of around
6 · 1024 kg and is (5 · 10−3)o in heliographic latitude. Most of the ejected plasma comes from the
low corona, although cooler, denser material is sometimes involved, which is probably originated
at the chromosphere or photosphere (Priest, 2013).

Figure 1.6: Extreme ultraviolet images of erupting CMEs by the Solar Dynamics Observatory (SDO).
The pictures were taken on May 1, 2013 (left) and February 24, 2015 (right). Retrieved from NASA Image
and Video Library.

The occurrence rate of CMEs depends on the solar cycle, and one can observe between 0.5 per day
at solar minimum to 6 per day at solar maximum. Their spatial distribution is clustered about the
equator at solar minimum but is much broader at solar maximum. When they erupt, they cause
major modifications in the large-scale magnetic structure of the corona (Priest, 2013).

Interplanetary coronal mass ejections (ICMEs) are what CMEs are called when they reach dis-
tances of more than 50 solar radii away from the Sun. They are the heliospheric counterpart of
CMEs, and possess similar magnetic structure and mass but smaller velocities. When they travel
through the interplanetary medium at supersonic speeds, they cause shock waves in front of them.

10



1.2.3 Detection of CMEs and ICMEs

Remote sensing observations

One way to detect CMEs consists in observing them in the images taken by telescopes. Researchers
usually refer to these measurements as remote sensing observations. There are many different types
of them, and can be classified in terms of the wavelengths they detect, for example.

Coronagraphs and heliospheric imagers provide observations of the photospheric white-light that is
scattered by the free electrons of the coronal plasma. The invention of the coronagraph by Bernard
Lyot in 1931 produced the first coronal white-light measurements by blocking out most of the
unwanted solar radiation, such that only the corona remained visible. However, the sensitivity of
the first devices needed to be improved in order to detect coronal eruptions, since the light from
the corona is relatively faint in comparison with the emission from other layers. It was not until
1973 that the astronomer Richard Tousey observed the first CME.

One of the main challenges posed by white-light images of the corona is that one can only observe
the projection of the CMEs into the sky plane. Therefore, determining the shape, the trajectory or
the characteristics of the dynamic evolution of CMEs is usually a difficult task. It is often helpful to
consider multipoint observation measurements, since the real situation can be reconstructed better
if two or more different points of view are available. Otherwise, it is useful to look at the solar
disk for signatures of eruptions (e.g. erupting prominences, solar flares or disappearing filaments)
to have an idea of the initial direction of propagation. This is where extreme ultraviolet (EUV) or
X-ray observations come into play.

EUV measurements provide images of the solar disk features. They filter the light coming from
the Sun and select only one wavelength for the visualization. EUV measurements have obtained
invaluable information to the study of CME initiation theories, the early stage development of
CMEs, as well as the detailed examination of solar surface features. Moreover, X-ray images
indicate the occurrence of solar flares, which are often associated to CME eruptions.

Images as the ones in Figure 1.5 and 1.7 can be obtained every 12 seconds for more than 10 different
extreme ultraviolet wavelengths, providing an almost constant and extensive source of information
about the Sun. The bright areas correspond to active regions, where the magnetic field is especially
strong and can give rise to solar eruptions. The dark areas, on the other hand, correspond to coronal
holes, where the Sun’s magnetic field opens out into the solar system, allowing plasma from the
inside to escape. Long thin bright filaments are prominences, which can give birth to CMEs at
some point.

In situ measurements

Measurements of physical plasma parameters that are taken directly on the ICME while it crosses
the instruments of a spacecraft, such as magnetic field and solar wind density or velocity, are known
as in situ measurements. The detection of the first CMEs in the early 1970s coronagraphs motivated
the search for their signatures in in situ spacecraft data, and more than 20,000 CME events have
been registered to this day. Burlaga et al. (1981) first identified structures containing organized
magnetic fields and showing the smooth rotation of at least one of their magnetic components. He
named them magnetic clouds (MCs) and their connection to CMEs was soon established.

The in situ signatures that identify MCs are: the increase in the average magnetic field strength, the
monotonic rotation of the magnetic field direction through a large angle, a low proton temperature,
and a low ratio of the plasma to magnetic pressure, i.e. βproton � 1, such that the magnetic forces
dominate the structure. These signatures actually correspond to the behavior of ideal magnetic flux
ropes (MFRs), which are defined as collections of field lines wrapping around an internal main axis
in a twisting way. They will be discussed in much more detail in Chapter 3, since they constitute
the basis of many of the reconstruction techniques that have been developed for CMEs.

The main inconvenience about in situ measurements is the fact that they only measure a single
1D track through the ICMEs. The information is thus incomplete, and so it is necessary to make
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Figure 1.7: Images taken by STEREO A SECCHI/EUVI telescope on June 10, 2007.
(a) The Sun at 171 Å. Light mainly emitted by Fe IX and X (iron ionized 8-9 times) at 1.0 · 106 K.
(b) The Sun at 195 Å. Light mainly emitted by Fe XII (iron ionized 11 times) at 1.4 · 106 K.
(c) The sun at 284 Å. Light mainly emitted by Fe XV (iron ionized 14 times) at 2.2 · 106 K.
(d) The Sun at 304 Å. Light mainly emitted by He II (helium ionized once) at 60,000-80,000 K. Retrieved
from STEREO Mission Official Website.

strong assumptions about their geometry in order to reconstruct the global 3D picture of the whole
structures. Multipoint in situ measurements of a single event, when they are available, usually
help address this issue.

It has been found that only around a third of the CMEs detected in the solar wind exhibit clear
MC signatures. The percentage varies depending on the solar activity level, being significantly
higher during solar minima. However, is this small fraction due to the fact that not all ICMEs
are MCs? Or is it rather due to the limitations of 1D in situ measurements (e.g. crossing the MC
far from the axis), or to other phenomena that we do not understand yet, like the interactions
between consecutive CMEs and the solar wind, the expansion of the structures, or the occurrence
of rotations and deflections? These are open questions that will be addressed in the present work.
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1.2.4 Spacecraft for the study of CMEs

There are currently a great number of missions that have provided a lot of valuable information
for the study of CMEs. This section gives an overview of the main characteristics of the spacecraft
that will be mentioned through this study.

Parker Solar Probe

Parker Solar Prober (PSP) is a NASA mission that was launched on August 12, 2018, from Cape
Canaveral Air Force Station (Florida). It is the first spacecraft to fly into the low solar corona,
getting as close as 9.86 solar radii (or 6.86 · 106 km) from the center of the Sun, well within Venus’
orbit and seven times closer to it than any other spacecraft until now. This mission provides a
unique opportunity to study the solar magnetic field and plasma structures and dynamics, as well
as the heating mechanisms of the corona and the acceleration of energetic particles.

The spacecraft uses Venus’ gravity to get gradually closer to the Sun during a period that will last
for over seven years. It has a dual system of photovoltaic arrays as the primary power source, and
is prepared to withstand temperatures as high as 1400 oC. PSP has a set of in situ and imaging
instruments that will hopefully contribute to advance the current understanding of the corona and
the solar wind. The instruments that will be used in the analysis of a CME event in section 3.4
can be visualized in Figure 1.8 and are the following:

• The SWEAP, or Solar Wind Electrons Alphas and Protons, contains two complementary
instruments that count and measure properties like the velocity, density, and temperature,
of electrons, protons and helium ions that constitute the solar wind. The two instruments
are: the Solar Probe Cup, or SPC, and the Solar Probe Analyzers, or SPAN. In this work,
in situ data of the SPC instrument of the solar wind temperature, density and velocity, will
be used.

• The FIELDS instrument suite studies the magnitude and shape of electric and magnetic
fields in the Sun’s atmosphere. We will use its magnetic field measurements to study and
reconstruct the CME.

Figure 1.8: Close-up of the PSP spacecraft and its instrument suites. Retrieved from NASA Image and
Video Library.

Other missions

• STEREO was launched on October 25, 2006, from Cape Canaveral Air Force Station. It con-
sisted of two nearly identical or so-called twin spacecraft, STEREO A (Ahead) and STEREO
B (Behind), whose aim was to provide the first stereoscopic measurements of solar phenom-
ena like CMEs. The STEREO mission was designed to last for only two years, but STEREO
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A is still operating today and STEREO B was lost on October 1, 2014, after a long period of
8 years since the launch. The most relevant instruments for us will be SECCHI COR1 and
COR2, two coronagraphs that provide white-light images of the plane of sky from 1.4 to 4.0
solar radii and from 2.5 to 15.6 solar radii, respectively (see EUV images taken by STEREO
in Figure 1.5 and 1.7, and COR2 image in Figure 3.6).

• The SOlar and Heliospheric Observatory (SOHO) is a spacecraft built jointly by the European
Space Agency (ESA) and NASA, which was built to last for two years, but is still operating
today after over 25 years in space. It is located very close to the Earth and maintains its
relative position to the Earth and the Sun. Its main goal is the study of the solar atmo-
sphere with remote sensing observations, as well as the interior structure of the Sun through
helioseismology. The instruments that will provide measurements for the reconstruction in
section 3.4 are LASCO C2 and C3 white-light coronagraphs, that generate images of the
plane of sky from 2 to 7 solar radii and from 3.7 to 30 solar radii, respectively.

• Solar Orbiter is a mission developed by the ESA and NASA that has been launched very
recently, on February 10, 2020. In principle, the mission will last 7 years and will address the
main challenges about the understanding of the solar wind, the Sun’s magnetic fields, and
CMEs. Moreover, it will go out of the ecliptic plane to reach latitudes up to 33o, providing
images of regions closer to the solar poles than ever before. The design of Solar Orbiter
trajectory and its complete set of instruments (see Figure 1.9) will provide very valuable
information to address many scientific questions, such as the twist and kink instability of
magnetic flux ropes (MFRs) that are analyzed in Chapter 4.

Figure 1.9: Solar Orbiter spacecraft and its instrument suites. Retrieved from https://www.esa.int/

Space_in_Member_States/Spain/Los_instrumentos_de_Solar_Orbiter.
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2 . MHD in space physics

Plasmas are ubiquitous in the Universe and play an important role in almost any phenomenon
occurring in the interplanetary, interstellar and intergalactic spaces. They are profoundly affected
by magnetic fields and can adopt many different forms and behaviors. Magnetohydrodynamics
(MHD) studies the physics of plasmas and their interaction with magnetic fields. This chapter
will provide an overview of plasmas and MHD fundamentals, which will be essential in order to
understand how the main objects of this study, coronal mass ejections (CMEs), are modeled and
reconstructed, as well as the instabilities they can develop.

2.1 Plasma: the fourth state of matter

2.1.1 Space and terrestrial plasmas

Plasma represents over 99% of the matter that is found in the Universe (Kallenrode, 2004), al-
though the existence of dark matter and its unknown properties could challenge this hypothesis.
There is an endless list of space plasmas (e.g. galactic jets, supernova bubbles, accretion disks,
gallactic and stellar winds, stellar coronas, sunspots, the heliosphere...) and of the many important
phenomena that they cause (e.g. cosmic rays, stellar flares, interstellar and interplanetary shock
waves, magnetospheric storms, CMEs...).

It is actually not necessary to go so far into the Universe in order to encounter plasmas, since
the Earth and its surroundings contain plenty of examples of them. We can find plasmas in our
everyday lives, for example in the flash of a lightning bolt, in the aurorae of polar regions, inside
fluorescent tubes or neon signs, in fusion plasma research, etc. If we go a little bit further above of
us, to the upper part of the atmosphere, there is a plasma layer called ionosphere (located from 60
to 1000 km of altitude) that reflects radio waves, therefore allowing the long-distance propagation
of radio signals. In fact, the ionosphere forms the inner edge of the Earth’s magnetosphere, i.e.
the region of space that is dominated by Earth’s magnetic field. It is mainly populated by plasma
too, and acts as a barrier to the solar wind (Borovsky and Valdivia, 2018).

It is worth mentioning here that interplanetary coronal mass ejections (ICMEs), one of the central
subjects of this thesis, can severely modify the magnetosphere when they hit it carrying a southward
magnetic field, since the process of magnetic reconnection (the rearrangement of the field topology
to reduce the energy of a system; see an example in Figure 2.4) takes place between the ICME
and Earth’s polar magnetic field lines. Therefore, the energetic particles of the solar wind plasma
are able to enter the terrestrial polar regions through the field lines that have become directly
connected to the Sun (see Figure 2.1 (left)). These particles excite the molecules in the Earth’s
upper atmosphere and make them emit photons when they return to the original state, creating a
natural light display in the Earth’s sky of high-latitude regions, which are called aurorae. Other
planets like Jupiter also have their own magnetosphere and aurorae (e.g. see Fig. 2.1 (right)).
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Figure 2.1: Left: Scheme of magnetic reconnection between an ICME and Earth’s magnetosphere. The
reconnected lines passing through the Sun and the Earth are green, while the field lines that are connected
with only one of them appear in blue. Retrieved from Howard (2011). Right: Picture of Jupiter’s aurora
taken by NASA/ESA Hubble Space Telescope. Retrieved from NASA Image and Video Library.

2.1.2 Definition and basic properties of plasmas

The term ‘plasma’ was first used to describe an ionized gas in 1927 by the Nobel prize winning
chemist Irving Langmuir, since the way it carried electrons and ions reminded him of the way blood
plasma carries red and white corpuscles. However, this description of the fourth state of matter
needs to be more accurate, since gases always have some small degree of ionization but not all of
them behave as plasmas. As stated in Chen (1984), a plasma can be defined as a quasineutral gas
of charged and neutral particles which exhibit collective behavior.

By collective behavior, we are referring to the situation in which the motion of one particle depends
not only on its local environment, but also on the state of the plasma in remote regions. This does
not occur in ordinary neutral gases, whose molecules move undisturbed unless they collide with
another one. The collisions are thus the only mechanism that controls the particles’ motion and
are responsible for transmitting forces and perturbations around the gas. However, the situation
becomes completely different when the gas contains charged particles. Their motion can give rise
to local concentrations of positive or negative charge, which in turn generate currents, electric
and magnetic fields, so a particle can now affect others that are far away through the action of
these electromagnetic fields. In practice, collisions and long-range electromagnetic interactions
happen simultaneously. An ionized gas will qualify as a plasma only if collisions do not occur
very frequently, such that the behavior is dominated by the electromagnetic forces rather than the
typical hydrodynamic ones.

It just remains to specify the meaning of quasineutrality. Plasmas are characterized by the fact
that they are able to shield out electric potentials, since their free positive and negative charges can
form a cloud around the newly introduced charges to cancel them out (see Figure 2.2). In a cold
plasma with no thermal motion at all, the shielding would be perfect because the particles would
be able to move freely. However, as the temperature is finite in real situations, the ones that are
closer to the “edge” of the cloud have enough thermal energy as to escape from the electromagnetic
forces that tried to keep them inside. The parameter known as Debye length λD gives a measure
of the scale over which mobile charge carriers in a plasma are able to shield out electric fields,
without being dominated by their thermal energy.

Any local concentration of charge or external potential will be shielded out in a distance λD.
Therefore, if λD � L, where L is the characteristic dimension of the system, then the bulk of the
plasma can still be considered to be ‘almost neutral’ or, equivalently, quasineutral. While λD is
of the order of 10−4 m in tokamak plasmas (with an electron density of Ne ∼ 1020 m−3), it can
reach macroscopic values in space plasmas with low electron density Ne, such as the solar wind
(Ne ∼ 106 m−3, λD ∼ 10 m), the magnetosphere (Ne ∼ 107 m−3, λD ∼ 102 m) or the intergalactic
medium (Ne ∼ 1 m−3, λD ∼ 105 m) (Chen, 1984).
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Figure 2.2: Schematic representation of the Debye shielding phenomenon. Retrieved from Chen (1984).

2.2 Fundamentals of magnetohydrodynamics (MHD)

The dynamics and behavior of electrically conducting fluids are studied by MHD, which couples
the Navier-Stokes equations for fluid dynamics and Maxwell’s equations for electromagnetism,
in order to account for the mutual interaction between the movement of the particles and the
electromagnetic fields of the system. The fluids under study by MHD are mainly plasmas, liquid
metals and strong electrolytes.

During the 19th century, there were physicists who made a few isolated experiments that already
addressed some of the concepts behind MHD. However, there was still little incentive by the prac-
tical and scientific possibilities offered by it. It was not until astrophysicists realized the ubiquitous
presence of plasmas and magnetic fields throughout the Universe in the 1930s or early 1940s that
the study of MHD began in earnest. Indeed, for example, Larmor had already hypothesized in
1919 that the Earth’s magnetic field was generated due to the liquid-metal nature of its core.
The physicist Hannes Alfvén was the first to use the term ‘magnetohydrodynamics’ in 1942, when
he discovered the Alfvén wave (a phenomenon peculiar to plasmas in which ions can transmit
transverse inertial waves as if they were strings being plucked).

Nowadays, there are three major fields of application of MHD: the study of space plasmas and
magnetic fields, the controlled thermonuclear fusion of plasmas (with a special focus on their
stability for magnetic confinement), and the metallurgical industry (where magnetic fields are
routinely used to stir, heat, pump and levitate liquid metals).

An intuitive picture of the physical effects involved in the mutual interaction of a magnetic field
and the velocity of a conducting fluid can be given as follows: when the fluid moves in the presence
of a magnetic field, an electromotive force develops in accordance with Faraday’s law of induction,
generating electrical currents proportional to the conductivity σ of the fluid. The induced currents,
in turn, give rise to an induced magnetic field in accordance with Ampère’s law, which adds to the
original magnetic field in such a way that the fluid seems to drag the magnetic field lines along
with it. At the same time, the combined magnetic field interacts with the induced current to give
rise to a Lorentz force on the conductor, which generally tends to inhibit the relative movement of
the fluid and the magnetic field (Davidson, 2001).

The tendency of these physical mechanisms to couple the magnetic field and the motion of the
fluid, generally reducing the relative movement between them, is actually the hallmark of MHD. In
the limit of ideal MHD (where the fluid is considered to be a perfect conductor), Alfvén’s theorem
states that the magnetic flux passing through any arbitrary open surface area moving with the
plasma is constant. This implies that the flux is conserved globally and locally, and that that
magnetic field lines move as if they were ‘frozen into’ the fluid (see Figure 2.3).

Figure 2.3: Interaction between a magnetic field and a perfectly conducting moving wire loop. Currents
and fields are generated such that the wire appears to ‘drag’ the field lines. Retrieved from Davidson
(2001).
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2.2.1 The advection-diffusion equation of the magnetic field

MHD kinematics studies one half of the coupling between the magnetic field B and the velocity v
of the system, by only considering the influence of v on B, and taking v to be prescribed, without
worrying about its origin or the reaction Lorentz forces on the fluid (so Navier-Stokes equations
are not taken into consideration yet).

In this respect, the induction (or advection-diffusion) equation for B is a key equation in MHD
since it dictates the temporal and spatial evolution of B for some given v. Let E be the electric
field, j the current density, σ the conductivity of the fluid and µ0 the vacuum permeability. The
starting point is to combine Faraday’s law (∇×E = −∂B∂t ) with Ohm’s law (j = σ(E + v×B)) in

∂B

∂t
= −∇×E = −∇×

(
j

σ
− v ×B

)
= ∇× (v ×B)− 1

σ
∇× j.

The second term can be rewritten using Ampère’s law (∇ × B = µ0j) and the vector identity
∇ × (∇ × B) = ∇(∇ · B) − ∇2B, such that Gauss’ law for magnetism (∇ · B = 0) reduces it to
∇× (∇×B) = −∇2B. The previous expression becomes

∂B

∂t
= ∇× (v ×B) + λ∇2B, (2.1)

where λ = 1/(µ0σ) is the so-called magnetic diffusivity. Eq. (2.1) is actually the induction equation
for B. The first term corresponds to the advection or motion of the magnetic field caused by the
fluid, and the second one to diffusion through the medium.

The magnetic Reynolds number is an important dimensionless parameter since it measures the
strength of the coupling between the magnetic field and the fluid flow. It is defined as

Rm =
lv

λ
= µ0σlv, (2.2)

where l and v are the typical length and velocity scales of the fluid, respectively. Indeed, Rm
gives a tentative value for the magnitude of the ratio of the advective to diffusive terms in Eq.
(2.1), since ∇ × (v × B) ∼ B0v/l and λ∇2B ∼ λB0/l

2, and dividing them results in Eq. (2.2).
Consequently, the behavior of the magnetic field depends crucially on the magnitude of Rm:

• Diffusive limit (Rm � 1): the induction equation reduces to a simple diffusion equation,

∂B

∂t
= λ∇2B.

In this limit, the velocity v has little influence on B, and the magnetic field induced by the
motion of the fluid is negligible. However, B can still severely modify v through the Lorentz
force j × B if the magnitude of the imposed magnetic field is strong enough. Laboratory
liquid-metal MHD lies closer to this limit.

• Ideal limit (Rm � 1): the induction equation reduces to

∂B

∂t
= ∇× (v ×B).

Alfvén’s theorem of the flux conservation, which was stated in the end of the previous section,
is valid in this limit, and therefore the field lines behave as if they were frozen to the plasma,
and move with it. In this regime, small disturbances can give rise to near-elastic inertial oscil-
lations where the restoring force is provided by B, known as Alfvén waves. This phenomenon
has an important role in the propagation of energy and momentum of space plasmas, for
example. The ideal limit is valid for many astrophysical plasmas, which usually posses Rm
values over 108 due to their exceptionally large length scales, as well as for liquid-metal cores
of planets like Earth (Rm ∼ 102), or hot fusion laboratory plasmas (Rm ∼ 106−109) (Zohm,
2015).
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2.2.2 MHD applications: magnetic reconnection and dynamo theory

We have seen that Alfvén’s theorem of flux conservation is only valid in the limit of ideal MHD,
when the magnetic diffusivity λ of the system becomes completely negligible. Since any allowable
physical motion of a fluid requires that the fluid elements remain adjacent to one another (such
that they cannot break or tear into separate pieces) and the magnetic field is frozen into them, this
implies that the magnetic field topology must be preserved in any physically allowed motion. Even
if it would be energetically favorable for field lines to break and reconnect into other configurations
at some point, they are not physically allowed to do so.

However, the introduction of even a very small value of λ can have dramatic effets on the behavior
of the plasma and its stability. The topological constraint is removed, and the diffusion allows the
field lines to reconnect, converting the excess magnetic energy to kinetic and thermal energy, and
particle acceleration. This can give rise to very violent and explosive phenomena (see Figure 2.4).
Magnetic reconnection is actually thought to be a key mechanism in the initiation of CMEs and
solar flares, as well as the cause of solar geomagnetic storms by the reconnection of the magnetic
field lines of CMEs and the Earth’s magnetosphere (see Figure 2.1 (left)).

A common approach to study plasma stability is to use the ideal MHD limit, since the equations
become significantly simpler, and astrophysical and laboratory fusion plasmas are usually close
to it. However, it should be taken into account that the introduction of a very small diffusivity
can dramatically affect the plasma stability and behavior through the phenomenon of magnetic
reconnection. Instabilities in the presence of diffusivity are studied in resistive MHD but lie far
beyond the scope of the present work.

Figure 2.4: Schematic representation of the phenomenon of magnetic reconnection that usually occurs
in solar magnetic fields. Retrieved from https://svs.gsfc.nasa.gov/13422.

Apart from magnetic reconnection, which is involved in many phenomena occurring in the Sun and
the interplanetary space, there is a very interesting application of MHD that has given us great
insight into the origin and evolution of magnetic fields throughout the Universe: dynamo theory.

The motivations for the development of dynamo theory came from different questions that had
remained unanswered for a long time. The Earth’s magnetic field has been shown to exist at
around its present strength for 3 · 109 years, but it cannot account for its own magnetism by itself
since conducting bodies with the same spatial dimensions can retain their magnetic fields only for
around 2 ·105 years. The same conclusions are reached for other planets. So how do they maintain
their magnetospheres if they cannot be a fossil relic of their birth?

In the case of stars similar to the Sun, the time that the magnetic field would require to dissipate,
taking into account the turbulence of its plasma, would be of the order of a decade. Indeed, the
magnetic field of the Sun follows an 11-year cycle, and at the end of each period it generates a new
magnetic configuration with opposite polarity. A lot of stars similar to the Sun have analogous
cycles. What is the mechanism behind the origin and the periodic variability of the Sun’s magnetic
field?

Dynamo theory provides a possible answer to these questions by proposing complex nonlinear
interactions arising from the twisting, rotating and stretching motions of the highly conducting
material they contain (i.e. plasma or liquid-metal cores) as the source that maintains and contin-
uously intensifies the magnetic field (Proctor et al., 1995).
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2.3 Studying MHD instabilities

In general, plasmas have a strong tendency to spontaneously change and develop rapid dynamics
when they are slightly perturbed. These changes can completely destroy the original structure,
since they usually involve large-scale motions at high speeds. Learning how to avoid MHD insta-
bilities became crucial especially after the 1950s, when research on controlled thermonuclear fusion
began in earnest and required the effective magnetic confinement of the plasma. In contrast to the
extreme difficulty encountered in confining laboratory plasmas, it is surprising how a lot of solar
plasma structures, like prominences or filaments, remain stable for long periods of time. At some
point, however, they can also suddenly develop an instability and erupt towards the interplanetary
space in the form of CMEs or stellar flares.

There is a very long list of instabilities of different nature that occur in plasmas. They can be
internal or external (depending on whether they modify the plasma outer surface or not), pressure-
driven or current-driven (according to the dominant driving source), etc. In the present work, we
will focus on a particular type of current-driven instability, the kink instability, which is very
common in space plasmas and acts upon magnetic configurations that are twisted around their
axis, such that the axis itself becomes a helix (see Figure 2.5).

Figure 2.5: Photograph of the kink instability in a laboratory plasma column, where the helical shape
of the axis can be clearly observed. Retrieved from Bellan et al. (2005).

2.3.1 Ideal MHD equations and equilibrium

Since MHD equations describe the motion of a conducting fluid interacting with a magnetic field,
the first step towards obtaining them consists in combining Maxwell’s equations with the govern-
ing equations of fluid mechanics. The set of ideal MHD equations will be presented here as in
Goedbloed and Poedts (2010).

Let E(r, t) and B(r, t) denote the electric and magnetic fields, j(r, t) the current density, ρ(r, t) the
plasma density, p(r, t) the pressure in the plasma, τ(r, t) the charge density, σ the conductivity of
the fluid, γ the ratio of specific heats at constant pressure and volume, µ0 the vacuum permeability,
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ε0 the vacuum permittivity, and c the speed of light. Maxwell’s equations are

∇×E = −∂B

∂t
(Faraday’s law) (2.3)

∇×B = µ0j +
1

c2
∂E

∂t
(Ampère’s law) (2.4)

∇ ·E =
τ

ε0
(Gauss’ law) (2.5)

∇ ·B = 0 (Gauss’ law for magnetism) (2.6)

and the additional relations for Ohm’s law and charge conservation are

j = σ(E + v ×B) (Ohm’s law) (2.7)

∇ · j = −∂τ
∂t

(charge conservation) (2.8)

On the other hand, the equations for gas dynamics are

Dρ

Dt
+ ρ∇ · v = 0 (mass conservation) (2.9)

Dp

Dt
+ γp∇ · v = 0 (entropy conservation) (2.10)

where one defines
D

Dt
≡ ∂

∂t
+ v · ∇.

The coupling between both sets of equations is established through Newton’s equation of motion
for a fluid element that is subject to gravity, electromagnetic forces, and a pressure gradient,

ρ
Dv

Dt
= F ≡ −∇p+ ρg + j×B. (2.11)

In the ideal limit (σ →∞), it is required that E + v ×B = 0, and the spatial charge τ as well as
its time derivative ∂τ/∂t can be neglected. Moreover, in the case of non-relativistic plasmas, the
second term in the right hand side of Ampère’s law (2.4) vanishes. All of these approximations
allow to eliminate variables E and j, and to obtain the basic set of equations of ideal MHD,

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ j×B− ρg, j = ∇×B (2.12)

∂B

∂t
= ∇× (v ×B), ∇ ·B = 0 (2.13)

∂p

∂t
= −v · ∇p− γp∇ · v (2.14)

∂ρ

∂t
= −∇ · (ρv) (2.15)

The relation ∇ · B = 0 is actually considered an initial condition, since the induction equation
(2.13a) shows that, if it vanishes initially, then it remains satisfied at any time. Therefore, (2.12)-
(2.15) form a complete set of eight nonlinear partial differential equations for the eight variables
B(r, t),v(r, t), ρ(r, t) and p(r, t). The initial and boundary conditions will depend on the particular
problem under study.

Ideal MHD equilibrium assumes that all quantities are independent of time and a static plasma
(v = 0). Under these assumptions, the conservation of mass (2.9) and energy (2.10) relations
are trivially satisfied. The static ideal Ohm’s law requires E = 0, such that Faraday’s law is
automatically fulfilled. The remaining non-trivial equations that define the MHD equilibrium of
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the system are given by

j×B = ∇p (2.16)

∇×B = µ0j (2.17)

∇ ·B = 0 (2.18)

From (2.16)-(2.18) can be deduced that the magnetic field and current density lines must lie in
surfaces of constant pressure, since multiplying the first equation by B or j results in B · ∇p = 0
or j ·∇p = 0. Constant pressure surfaces are sometimes called flux surfaces, since no magnetic flux
goes across them.

2.3.2 Linear stability analysis

In order to know if a plasma that is slightly perturbed will return to its original equilibrium
state (stability) or further enhance the disturbance (instability), it is generally enough to do a
linear stability analysis. Indeed, plasma instabilities are usually so virulent that they can destroy
and completely modify the structure of the system. This is the reason why it is better to com-
pletely avoid their onset in laboratory contexts, which can be ensured by linear stability, such that
nonlinear analyses are not really interesting because they only provide details on the plasma self-
destruction. For solar phenomena, however, nonlinear simulations can provide meaningful insights
on the evolutionary processes and dynamics of the Sun. In this work, we will develop a linear
stability analysis, which will greatly simplify the problem. The complete derivation of the linear
stability analysis can be found in the literature (e.g. see Bernstein et al., 1958; Biskamp, 1997;
Goedbloed and Poedts, 2010).

Assume that an ideal plasma is in MHD stationary equilibrium, and is perturbed by an arbitrarily
small perturbation. First, the quantities describing the plasma are linearized,

B(r, t) = B0(r) + B1(r, t)

v(r, t) = v1(r, t)

ρ(r, t) = ρ0(r) + ρ1(r, t)

p(r, t) = p0(r) + p1(r, t)

where Q0(r, t) are the equilibrium solutions obtained from (2.16)-(2.18), and the disturbance terms
Q1(r, t) satisfy Q1(r, 0) = 0 and |Q1/Q0| � 1. Since the initial equilibrium is static, we set v0 to
0. Substituting the above quantities into the ideal MHD equations and keeping only linear terms
on the perturbed quantities, it is obtained

ρ0
∂v1

∂t
= −∇p1 + j1 ×B0 + j0 ×B1 − ρ1g, j1 = ∇×B1 (2.19)

∂B1

∂t
= ∇× (v1 ×B0), ∇ ·B1 = 0 (2.20)

∂p1

∂t
= −v1 · ∇p0 − γp0∇ · v1 (2.21)

∂ρ1

∂t
= −∇ · (ρ0v1). (2.22)

Consider now the vector ξ(r, t) that represents the displacement of the plasma away from its
equilibrium position, such that it satisfies

v1 =
∂ξ

∂t
.

A significant simplification can be done using equations (2.21)-(2.22) to eliminate all the perturbed
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quantities and express them only in terms of ξ,

B1 = ∇× (ξ ×B0) (2.23)

p1 = −ξ · ∇p0 − γp0∇ · ξ (2.24)

ρ1 = −∇ · (ρ0ξ). (2.25)

Substituting these expressions into (2.19), the final equation of motion is obtained,

ρ0
∂2ξ

∂t2
= F{ξ}, (2.26)

where F is the linear self-adjoint operator that represents the force per unit volume,

F{ξ} ≡ −∇p1 + j1 ×B0 + j0 ×B1 =

= −∇p1 +∇ · (ρ0ξ)g + {∇ × [∇× (ξ ×B0)]} ×B0/µ0 + (∇×B0)× [∇× (ξ ×B0)]/µ0.

The boundary conditions depend on the particular properties of the system under study. For
instance, if we are seeking solutions that do not perturb the outer surface Sp of the plasma (internal
modes), then the boundary condition can be expressed as n ·ξ|SP = 0, where n is the normal vector
to the plasma surface at each point. Instead, if the boundary is free to move (external modes), the
problem becomes substantially more complicated. The second approach was taken in the stability
analysis that is used in this thesis, since it better represents the situation in the solar corona and
interplanetary space. The initial conditions for (2.26) that correspond to a static equilibrium are

ξ(r, 0) = 0,
∂ξ(r, 0)

∂t
= v1(r, 0) 6= 0.

Since F is a self-adjoint linear functional of ξ (proof in Goedbloed and Poedts, 2010) where the
time variable t does not appear explicitly, normal mode solutions of the form

ξ(r, t) = ξ(r)eiωt

can be sought. The corresponding eigenvalue equation is

− ω2ρ0ξ = F{ξ}, (2.27)

where ω2 ∈ R due to the self-adjointness of F and ρ0 will be assumed constant. Therefore, if
there exists any eigenvalue ω2 < 0, the perturbation grows exponentially in time and the system
is unstable. If ω2 > 0 for all the eigenvalues of F, then the system is stable.

The concept of exponential stability is valid when F has a discrete spectrum, which has been shown
to be generally true for the unstable part of the spectra of most of the configurations studied until
now, including the one that is considered in this work. However, the operator F becomes ill-behaved
for the continuous spectrum, and the stability analysis is significantly more complex. A detailed
discussion and exploration of the spectral properties of F, and of the existence and uniqueness of
solutions to (2.26) with the appropriate boundary conditions, is beyond the scope of this thesis,
and has been addressed in the literature (see e.g. Lifschitz, 1989; Goedbloed and Poedts, 2010;
Freidberg, 2014).

As stated in Bernstein et al. (1958) and Goedbloed and Poedts (2010), the eigenfunctions ξ(r) of
the operator F make the Rayleigh quotient Λ,

Λ{ξ} =

∫
V

d3x ξ∗ · F{ξ}∫
V

d3x |ξ|2
(2.28)

stationary (i.e. its derivative vanishes), where ξ∗ is the complex conjugate of ξ, and the stationary
values of Λ correspond to the eigenvalues of F. This equivalent variational formulation allows us
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to introduce the method developed in Linton et al. (1996) that has been adopted for the stability
analysis in the present work. The potential energy of the system W{ξ} and the kinetic energy
K{ξ} are defined as

W{ξ} = −1

2

∫
V

d3x ξ∗ · F{ξ}, K{ξ} =
1

8π

∫
V

d3x |ξ|2.

Extremizing the generalized energy U{ξ} = W{ξ}+ λK{ξ} can be shown to give the extrema of
the quotient W{ξ}/K{ξ}, where K{ξ} is held constant and λ is the unknown Lagrange multiplier
(Freidberg, 2014). Then, since W{ξ}/K{ξ} = 4πΛ{ξ}, with Λ is given in (2.28), this is equivalent
to finding the eigenvalues ω2 of F in the normal mode formulation (2.27), and at an extremum the
Lagrange multiplier λ is related to the eigenvalues by

λ = −4πρ0ω
2.

The system is unstable with growth rate |ω| if ω2 < 0 (or λ > 0). If λ < 0 for all perturbations ξ
that solve (2.26) and satisfy the initial and boundary conditions, then the system is stable.

The stability problem can be simplified further if the exact growth rates and evolution of the
perturbation are not needed, such that we only want to obtain under which conditions the system
is ideal MHD stable. This is achieved through the energy principle (Bernstein et al., 1958), which
asserts that an equilibrium is stable if and only if W{ξ} > 0 for all possible displacements ξ
satisfying the boundary conditions.

2.3.3 Analysis of the helical kink instability

Assume that the magnetic configuration under study has cylindrical symmetry with fixed cross-
sectional radius R and is described by the cylindrical coordinates (r, y, ϕ), so the magnetic field in
equilibrium depends only on the radial coordinate r and has the form

B0(r) = (0, By(r), Bϕ(r)).

Since the coefficients in the linearized MHD equations are independent of y, ϕ, a single Fourier
harmonic of the perturbation ξ(r) in y, ϕ at a time can be analyzed (Bateman, 1978),

ξ(r) = (ξr(r), ξy(r), ξϕ(r))ei(ky+mϕ),

where m and k ∈ R determine the type and physical behavior of the instability (see Figure 2.6).
The helical kink instability corresponds to the value m = 1, and k will be referred to as the
wavenumber of the instability.

Figure 2.6: Graphical representation of perturbations corresponding to different values of m, k. The pair
m = 0, k 6= 0 is called the sausage instability, and m = 1, k 6= 0 is the kink instability that makes the axis
adopt a helical shape. Retrieved from Freidberg (2007).
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The present work uses the stability analysis method developed by Linton et al. (1996), and the
details of the derivation that follows can be found there. The perturbation is assumed to be
incompressible (∇ · ξ = 0) because it is a condition that is generally fulfilled for the most unstable
modes of the system. Then, the perturbation that minimizes the generalized energy of the system
U{ξ} = W{ξ}+ λK{ξ} with respect to ξ can be obtained from the radial component ξr given by
the Euler-Lagrange equation

d

dr

(
f

dξr
dr

)
− gξr = 0, (2.29)

where f and g are defined as

f =
r3(λ+

(
kBy +

Bϕ
r

)2

1 + k2r2
,

g =
k2r

1 + k2r2

r2

{
λ+

(
kBy +

Bϕ
r

)2
}
− rd|B0(r)|2

dr

−2B2
ϕ


2
(
kBy +

Bϕ
r

)2

λ+
(
kBy +

Bϕ
r

)2 − 1

+
2

1 + k2r2
(r2λ+ k2r2B2

y −B2
ϕ)

 .
Regularity at the origin is ensured by the boundary conditions ξ̇r(0) = 0 and ξr(0) = ξ0 (ξ0 can
be set to 1 without loss of generality).

With regard to the external medium and its relation to the plasma, there are many configurations
that can be considered. For example, stability analyses in tokamaks or coronal loops sometimes
assume the confinement of the plasma by a conducting wall (ξr(R) = 0, so it is an internal mode)
or the presence of an external vacuum field B(r > R) 6= 0. In contrast, Linton et al. (1996)
considers that the plasma has a free boundary and no external magnetic field. An additional
boundary condition is therefore obtained when imposing the continuity of the total pressure across
the plasma boundary and the Euler-Lagrange equation at the outer edge of the configuration, even
if there is a discontinuity in the magnetic field,

D(λ;R, k) =

[
k2|B(R)|2 + λ+ λ

(1 + k2R2)K1(|k|R)

|k|RK0(|k|R) +K1(|k|R)

]
ξr(R)

+

{
Rλ+R

(
kBy +

Bϕ
r

)2
}
ξ̇r(R) = 0, (2.30)

where K0 and K1 are modified Bessel functions. Eq. (2.30) can be regarded as a dispersion relation
for the eigenvalue λ.

A cylindrical magnetic configuration is said to be kink stable if it is stable to perturbations of any
wavenumber k. And so, taking into account the discussion of the previous section (the system is
unstable if there exists λ > 0), we reach the main conclusion that has been used as the basis of the
stability analysis of the present work: the necessary and sufficient condition for the kink stability
of an MFR is that the largest λ for which the dispersion relation (2.30) holds is negative for all k.
This method also allows us to obtain the growth rates and the shape of the most unstable modes.

2.4 MHD description of magnetic flux ropes (MFRs)

Magnetic fields are present throughout the universe and strongly interact with plasmas, structuring
them into different configurations and causing many of the most common phenomena. These
structures are mainly combinations of two basic building blocks: magnetic flux tubes (see Figure
2.7) and current sheets. This section will describe magnetic flux tubes and MFRs that are essential
in the derivation of different CME models (discussed in the next chapter).
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Figure 2.7: Photograph taken by NASA/SDO of coronal loops in the Sun surface, resembling the structure
of flux tubes. Retrieved from https://www.nasa.gov/mission_pages/sdo/news/flux-ropes.html.

2.4.1 Defining magnetic flux tubes and flux ropes

A magnetic field line is a curve that is tangent to the magnetic field B at any point. From here,
a magnetic flux tube can be defined as the volume enclosed by the set of field lines intersecting a
simple closed curve (see Figure 2.8). A magnetic flux rope (MFR) is a twisted magnetic flux tube,
such that the field lines are wrapped around the axis (Priest, 2013).

Figure 2.8: Diagram of part of a magnetic flux tube bounded by the areas S1, S2 and with fluxes F1, F2.
Retrieved from Priest (2013).

Flux conservation

The strength of a flux tube is defined as the magnetic flux that crosses a section S,

F =

∫
S

B · dS,

where dS is taken in the same sense as B, so F is always positive. In fact, F = 〈Bn〉A, where 〈Bn〉
is the absolute value of the mean normal field to the surface S, and A is the cross-sectional area of
the section considered. Integrating Gauss’ law for magnetism ∇ ·B = 0 over the volume of a flux
tube enclosed between two sections S1 and S2 gives

0 =

∫
V

∇ ·B dV =

∫
S1

B · dS +

∫
S2

B · dS = −F1 + F2,

where F1 and F2 are the strengths of B across S1 and S2, respectively (see Figure 2.8). This implies
that the strength is constant across any surface intersecting the tube. Therefore, from F = 〈Bn〉A
can be inferred that if a flux tube narrows, the mean field 〈Bn〉 must increase and vice versa.

2.4.2 Magnetic forces and a physical picture of the kink instability

In section 2.3.1, we saw that the magnetic field acted on the plasma through the Lorentz force j×B
that appears in Newton’s equation of motion for a fluid element (2.11). An important feature to
take into account about magnetic forces is that they do not promote nor inhibit the motion of the
plasma along the magnetic field lines. This means that any motion or variation of density along
them must have been caused by other forces (i.e. pressure gradients or gravity).
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In order to better understand the effects of the magnetic forces acting on the plasma, it is worth
decomposing them into two different terms, using Ampère’s law (j = (∇×B)/µ0) and the vector
identity (∇ × B) × B = B · ∇B − ∇(B2/2). Keeping only the terms that are orthogonal to the
magnetic field, the Lorentz force can be rewritten as

j×B =
B2

µ0Rc
n̂−∇⊥

(
B2

2µ0

)
, (2.31)

where n̂ is the principal normal direction of the magnetic field line, Rc is the local radius of
curvature, and ∇⊥ takes the gradient only in the direction orthogonal to B.

The first term in (2.31) corresponds to the magnetic tension force. It is directed radially inward
with respect to the magnetic field line curvature and tends to straighten it, in the same way as
tension would act on a curved wire or string (see Figure 2.9 (left)).

The second term corresponds to the so-called magnetic pressure. It is exerted from regions with
higher magnetic pressure to regions with lower values of it (see Figure 2.9 (right)).

Figure 2.9: Left: the magnetic tension force direction is radially inward with respect to the magnetic
field line curvature. Right: the magnetic pressure, B2/(2µ0), creates a force directed towards the regions
where it adopts a lower value.

We can now use these concepts to develop more intuition on the helical kink instability of MFRs,
whose stability analysis was discussed in section 2.3.3 and an example of its occurrence in a
laboratory plasma is shown in Figure 2.5. When the axis of a cylindrical MFR is slightly disturbed
to adopt a helical shape (see Figure 2.10), which corresponds to the onset of a potential kink
instability, the magnetic pressure increases at region A, and decreases at region B. Therefore, a
force appears that is directed from A to B and has a destabilizing effect, since it tends to increase
the curvature of the axis. Conversely, as the curvature increases, a stabilizing magnetic tension
force appears that tends to straighten the field lines and thus decreases the perturbation. If the
axial magnetic field By is not strong enough, the magnetic tension will not compensate for the
force caused by the magnetic pressure gradient, and therefore the kink instability will keep on
growing.

Figure 2.10: Schematic representation of a MFR that is developing a helical kink instability. The axial
and poloidal magnetic field components, By and Bϕ, are depicted separately.
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2.4.3 Magnetic helicity

Apart from storing magnetic energy and acting as a channel for flows of fast particles, heat and
plasma, magnetic flux tubes are also described by an important topological quantity, magnetic
helicity, which is related to their internal structure (the amount of internal twist) as well as the
external structure (the linkage between different flux tubes). This quantity can be defined in a
volume V as

H =

∫
V

A ·B dV,

where A is the vector potential (B = ∇×A). If the volume V is magnetically closed, that is to
say, if the magnetic field lines do not enter nor leave it, the helicity H is gauge invariant (i.e. it
does not change if A is replaced by A +∇ΦA, where ΦA is an arbitrary function).

However, is it possible to define an alternative expression that is also gauge invariant for non-
magnetically closed volumes? (Berger and Field, 1984) proposed such a quantity, the relative
magnetic helicity, Hr, that is defined as

Hr =

∫
V

(A ·B−A0 ·B0) dV, (2.32)

where B0 = ∇×A0 is a potential field that satisfies B0 ·n = B ·n on S, and S is the surface that
encloses V . The potential field B0 is actually uniquely specified in all V just from imposing the
boundary condition B0 ·n = B ·n on S. A0 is also fully determined by requiring A×n = A0×n
on S.

The relative magnetic helicity turns out to be very useful, since it has been shown to be a global
topological invariant in ideal MHD. Even in weakly resisitve MHD, which allows the occurrence
of reconnection, the helicity decays very slowly with time. The conservation of magnetic helicity
thus imposes important constraints on physically allowed plasma motions (Priest, 2013), and will
provide us with interesting conclusions about the occurrence of the kink instability in expanding
MFRs.
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3 . MFR modeling of CMEs

An important fraction of the in situ signatures of ICMEs that have been detected until now, dis-
plays the characteristics of the heliospheric magnetic structures known as magnetic clouds (MCs):
the increase in the average magnetic field strength, the monotonic rotation of the magnetic field
direction through a large angle, a low proton temperature, and a small ratio of the plasma to
magnetic pressure, i.e. βproton � 1, such that the magnetic forces dominate the structure.

The large net rotation of the magnetic field that is observed in MCs is an indicator of their mag-
netic flux rope (MFR) configuration: fundamental structures that can be defined as collections of
magnetic field lines wrapping around an internal main axis in a twisting way, confining magnetized
plasma within them (see section 2.4.1).

This chapter describes the MFR models that will be used to analyze the kink instability of magnetic
clouds: the circular-cylindrical (CC) analytical model developed by Nieves-Chinchilla et al. (2016),
the linear force-free Lundquist model, and the uniformly-twisted Gold-Hoyle (GH) model. Some
comments will be made regarding the inclusion of expansion to the CC model. Finally, two different
types of reconstruction techniques will be compared in the study of a particular CME observed by
Parker Solar Probe, which has contributed to the thorough analysis in Lario et al. (in review).

3.1 Cylindrically symmetric models of MFRs

3.1.1 Derivation of the general equations

A cylindrical MFR structure of radius R at equilibrium is considered (see Figure 3.1). It is
parametrized in circular-cylindrical coordinates (r, y, ϕ), with r ∈ (0, R], y ∈ R, ϕ ∈ [0, 2π), which
are related to the Cartesian coordinates (xc, yc, zc) through

xc = r cosϕ, yc = y, zc = r sinϕ.

The orthonormalized basis vectors {er, ey, eϕ} in the cylindrical coordinate system can be written
in terms of the Cartesian basis vectors {ux,uy,uz} as

er = cosϕux + sinϕuz

ey = uy

eϕ = − sinϕux + cosϕuz.

The cylindrical approximation is used, which assumes that the radial magnetic field vanishes,
Br = 0, and that the magnetic field components only depend on r. The magnetic field is thus
given by

B(r) = (0, By(r), Bϕ(r)),

and the field lines lie in cylindrical surfaces around the y axis, about which they are twisted with a
constant angle for each particular r. Under these assumptions, Gauss’ law for magnetism ∇·B = 0
is satisfied, and to obtain the relation between the magnetic field and the current density, Ampère’s
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law ∇×B = µ0j in cylindrical coordinates is applied,

µ0j = ∇×B =

(
∂Bϕ
∂y
− 1

r

∂By
∂ϕ

)
er +

1

r

(
∂Br
∂ϕ
− ∂(rBϕ)

∂r

)
ey +

(
∂By
∂r
− ∂Br

∂y

)
eϕ.

Since Br = 0 and the derivatives on y and ϕ vanish due to the cylindrical approximation, the
following set of equations that are valid in every point of the MFR are obtained,

jr = 0 (3.1)

jy = − 1

µ0r

∂(rBϕ)

∂r
(3.2)

jϕ =
1

µ0

∂By
∂r

(3.3)

Equations (3.2) and (3.3) are integrated from 0 to r, taking into account that Bϕ(r = 0) = 0 to
maintain regularity at the origin, and setting By(r = 0) = B0

y , such that the final result expresses
the magnetic field components in terms of the current density,

Br = 0

By = B0
y + µ0

∫ r

0

jϕ(r′) dr′

Bϕ = −µ0

r

∫ r

0

r′jy(r′) dr′

(3.4)

Any other physical quantity can be derived from these equations, which actually represent the core
of any cylindrical MFR model.

For a straight cylindrical structure, it can be shown (Dasso et al., 2003) that the relative magnetic
helicity per unit length, as defined in equation (2.32), is given by

Hr

L
= 4π

∫ R

0

AϕBϕrdr. (3.5)

Figure 3.1: Schematic representation of the MFR and the circular-cylindrical basis vectors. The hand-
edness of the MFR is indicated according to the the sign of the axial current component jy, assuming
By ≥ 0. Retrieved from Nieves-Chinchilla et al. (2016).
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3.1.2 Force-free MFR models

Force-free (FF) models are those in which the Lorentz force vanishes throughout the MFR,

j×B = 0.

Therefore, in the static magnetic equilibrium defined by equations (2.16)-(2.18), the pressure of a
FF magnetic configuration is constant and j is aligned with B, so Ampère’s law becomes

∇×B = αB, (3.6)

where α is, in general, spatially dependent. Taking the divergence of (3.6) and using ∇ ·B = 0, it
is obtained that α must obey B · ∇α = 0, which means that α is constant along field lines. Fields
that have constant α throughout the plasma are called linear (or constant-α) FF fields. Otherwise,
they are called nonlinear FF fields.

Linear force-free fields: the Lundquist model

The circular-cylindrical linear FF model has been the standard model to reconstruct the in situ
magnetic signatures of MCs since the 1990s (Lepping et al., 1990). It is known as the Lundquist
model (Lundquist, 1951), and for a MFR of radius R, it is given by

By(r̄) = B0
yJ0(αr̄), Bϕ(r̄) = B0

yJ1(αr̄), (3.7)

where J0, J1 are Bessel functions, r̄ is the normalized radius coordinate (r̄ = r/R), B0
y is the

magnitude of the magnetic field at the axis, and α is the fitting parameter (see Figure 3.2 (left)).

A property that makes linear FF models particularly interesting was proved by Woltjer (1958): the
state of minimum magnetic energy for a given total magnetic helicity of a closed system is given
by a linear FF field. Actually, he showed that any constant-α FF field extremizes the energy of
the system, but not necessarily minimizes it.

Nonlinear force-free fields: the Gold-Hoyle model

Another MFR model that is very commonly used is the nonlinear FF uniformly-twisted Gold-Hoyle
(GH) model. For a MFR of radius R, its magnetic field is given by

By(r̄) =
B0
y

1 + q2r̄2
, Bϕ(r̄) =

qr̄B0
y

1 + q2r̄2
(3.8)

where r̄ is the normalized radius coordinate (r̄ = r/R), B0
y is the magnitude of the magnetic field

at the axis, and q is the fitting parameter (see Figure 3.2 (right)).

Figure 3.2: Left: Lundquist MFR at different r. It can be observed that the field lines are increasingly
twisted around the axis as r increases. Retrieved from Rong et al. (2013). Right: GH MFR at different r.
It shows that the twist of the field lines remains constant along the radius. Retrieved from Priest (2013).
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3.2 Twist distribution of MFR models

Different MFR models have been developed since the early 1980s for the reconstruction of MFRs
in ICMEs only from 1D measurements along the spacecraft observational path. The linear FF
Lundquist model (3.7) or the nonlinear FF GH model (3.8) are two of the most commonly used.
However, they impose strong conditions on the magnetic field since they ignore the magnetic
forces that can arise from interactions with other CMEs or the ambient solar wind, as well as other
phenomena like rotations, cross-sectional distortions or instabilities.

Non-force-free (NFF) methods are important to account for more general situations that occur
in the interplanetary space. Some of them assume a particular current density and then solve
Maxwell’s equations for the magnetic field with circular or elliptical cross sections (e.g. the CC
model that will be explained in section 3.3 and the elliptical-cylindrical model for MCs, both
developed by Nieves-Chinchilla et al., 2016, 2018b). Another well-known technique is the Grad-
Shafranov model, which is based on MHD equilibrium equations with some geometric simplifica-
tions. It usually shows good agreement with multipoint in situ measurements (Hu, 2017).

All of these models differ in the twist they predict, i.e. the number of turns that the magnetic field
lines make around the axis per unit length. Some of them show twist profiles that increase with
radius within the cylindrical structure, like the Lundquist model or the most commonly used forms
of the CC model. Others like the Gold-Hoyle (GH) model, assume uniform twist. This section will
define this quantity and stress its importance in the physical behavior of MFRs.

3.2.1 Definition of twist

The total twist angle Φ of a field line going from one end to the other of a MFR with length L is

Φ(r) =
LBϕ(r)

rBy(r)
, (3.9)

and its geometrical interpretation is shown in Figure 3.3. The total number of turns done by a
magnetic field line around the MFR axis is given by N = Φ/(2π), where Φ is measured in radians.
Finally, the twist Q of a MFR is defined as the angle covered by a magnetic field line around the
axis per unit length,

Q =
Φ

L
=

Bϕ
rBy

. (3.10)

Therefore, for example, the twist of the Lundquist model (3.7) is given by Q = J1(αr̄)/(Rr̄J0(αr̄))
(it increases along the radius of the MFR), and for the GH model (3.8) it adopts the uniform value
of Q = q/R (see schematic representation in Figure 3.2).

Figure 3.3: The trajectory of a magnetic field line in going from one end of the MFR to the other is
represented in red. The cylindrical surface is flattened out, so tan Θ(r) = L/(rΦ(r)) = By(r)/Bϕ(r).
Isolating Φ(r), the total twist angle is obtained Φ(r) = LBϕ(r)/(rBy(r)).
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3.2.2 The role of the twist in the occurrence of MFR instabilities

The twist is an important quantity describing MFRs, since it is related to the amount of magnetic
free energy density stored in the structure and its tendency to develop certain instabilities. This is
because twisted plasma structures are subject to the occurrence of the helical kink instability, which
makes the axis become a helix itself, as explained in section 2.3.3. Studying the twist distribution
of MFRs therefore gives us a lot of information about the configuration and physical properties of
ICMEs that contain MCs (see Figure 3.4).

Figure 3.4: Model of the structure of an ICME. The twisted field lines of the MFR extending around the
axis can be clearly observed. Retrieved from https://eclipse2017.nasa.gov/coronal-mass-ejections.

Although a MFR needs the presence of twist to maintain the integrity of the structure (Schuessler,
1979; Longcope et al., 1996), the kink instability takes place when the twist becomes larger than a
critical value and can completely alter the original configuration. The stability threshold depends
on many factors, like the internal magnetic configuration, the external field, the βproton or the
aspect ratio, among others (Mikic et al., 1990; Linton et al., 1996; Török and Kliem, 2005). We
can mention some examples:

• For toroidal fusion power reactors, a well-known result is the Kruskal-Shafranov limit, which
states that Φc = 2π, where Φc is the critical total twist angle of a field line around the axis
for the occurrence of the kink instability.

• For straight circular-cylindrical geometries, it was found in Dungey and Loughhead (1954)
that the critical twist Φc follows the relation Φc = 2LR , where L is the axial length and R is
the radius of the MFR.

• For line-tied MFRs (with the footpoints anchored on the photosphere) described by the GH
model, Hood and Priest (1981) found that the line-tying condition had a stabilizing effect,
with Φc = 2.5π.

3.2.3 Measurements and relevance of the twist in interplanetary MFRs

In the heliosphere, the are two main ways that are used to estimate the twist of interplanetary
MFRs: using MFR modeling along with the Grad-Shafranov reconstruction technique, or probes
of energetic particles to infer the total field-line length (Kahler et al., 2011). For example, the
velocity-modified GH model was applied in the analysis of the 126 MCs in Lepping’s list (Lepping
et al., 2006), and the results showed that all interplanetary MFRs have a twist smaller than 12π
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rad per AU, with total twist angle Φ bounded by 0.2LR < Φ < 2LR , and an average of Φ = 0.6LR
(Wang et al., 2016).

However, twist observations have not yet provided a consensus on how the twist distribution of
CMEs should be. Some support that CMEs are uniformly-twisted structures, or that they have a
high-twist core enveloped by a less-twisted outer shell. On the other hand, a recent study based
on a superposed epoch analysis of a set of MCs detected by Wind between 1995-2012 showed that
the twist distribution is nearly constant in about half their central part (with an average of 11.5
turns per AU), and then it increases up to a factor two towards the MC boundaries (Lanabere
et al., 2020).

Even the most commonly used MFR models have differing twist distributions: the linear force-free
(LFF) Lundquist model, which has been widely used to fit a large variety of ICMEs, shows an
increasing twist profile along the radius of the cross section; the GH model has uniform twist; and
other NFF models, like the CC model, can show a wide range of twist profiles and are also able to
fit great collections of events (Nieves-Chinchilla et al., 2018a).

Further research and measurements of the twist distribution within interplanetary MFRs is very
important, since not only it allows us to gain better insight into the most plausible initiation process
as well as MFR models, according to the theoretical twist distributions they predict; it also makes
it possible to predict the range of parameters for which MFRs become kink unstable, and possibly
start to rotate (Vourlidas et al., 2011; Nieves-Chinchilla et al., 2012). In fact, the kink instability
is nowadays regarded as a promising phenomenon to explain the way MFRs emerge through the
photosphere (Knizhnik et al., 2018). With regard to CME propagation in the interplanetary
space, the analysis of the kink stability behavior in expanding CMEs (Berdichevsky, 2013) could
also provide insightful contributions to the field. All of these points will be further addressed in
section 4.2.

3.3 CC model and expanding MFRs

The CC model developed in Nieves-Chinchilla et al. (2016) does not impose any force-free condition
on the MFR. It assumes a generic polynomial expansion of the current density

j =

∞∑
m=0

βmr
mey −

∞∑
n=1

αnr
neϕ, (3.11)

where αn, βm are arbitrary real coefficients. Substituting this expression into the general equations
for the magnetic field of a cylindrically symmetric MFR (3.4), the expression of the CC magnetic
field is obtained as 

Br = 0

By = B0
y − µ0

∞∑
n=1

αn
rn+1

n+ 1

Bϕ = −µ0

∞∑
m=0

βm
rm+1

m+ 2
.

(3.12)

It is necessary to impose limr→0Bϕ(r) = 0 and limr→0 jϕ(r) = 0 to avoid a singularity in the axis,
which implies that n ≥ 1 and m ≥ 0. By convention, the component By is assumed to be positive
and decreases from a maximum B0

y at the axis to a minimum at the boundary r = R, so that jϕ
is taken to be negative (i.e. αn > 0). The handedness or chirality (indicated as H in Figure 3.1)
is thus determined by the sign of jy.

3.3.1 The CC model reconstruction technique

The details on the reconstruction technique of the CC model are specified in Nieves-Chinchilla
et al. (2016). It uses a multiple regression technique to infer the spacecraft trajectory with the
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Levenberg-Marquardt algorithm. Its aim is to minimize the quantity χ2,

χ2 =
1

N

∑
[(Bexpx −BGSEx )2 + (Bexpy −BGSEy )2 + (Bexpz −BGSEz )2], (3.13)

where N is the number of data points, (Bexpx , Bexpy , Bexpz ) are the experimental data in the space-

craft coordinate system (Geocentric Solar Ecliptic or GSE), and (BGSEx , BGSEy , BGSEz ) are the
corresponding theoretical values obtained from the model.

It is assumed that the mean solar wind bulk velocity vsw and the transit time ts of the spacecraft
across the MFR are known. The parameters of the model are θ (tilt), φ (longitude), y0 (impact
parameter or minimum distance of the spacecraft to the MFR y axis), and the coefficients αn, βm
of the CC model (3.12).

The transformation to go from the local MFR Cartesian coordinate system, BL, to the spacecraft
GSE coordinate system, BGSE , is done applying a rotation of θ around x̂GSE , and of φ around
ẑGSE , which results inBGSEx

BGSEy

BGSEz

 =

cosφ − sinφ cos θ sinφ sin θ
sinφ cosφ cos θ − cosφ sin θ

0 sin θ cos θ

BLxBLy
BLz

 (3.14)

The values (BLx , B
L
y , B

L
z ) are obtained from the CC model (3.12) as follows. The MFR is ex-

panding radially away from the Sun (which corresponds to the x̂GSE direction). The satellite
local-cylindrical coordinates along the MFR are

rsat =
√
x2
sat + z2

sat (3.15)

sinϕsat =
zsat
rsat

, (3.16)

where xsat and zsat are the spacecraft coordinates in the local MFR Cartesian system. Assuming
that the spacecraft trajectory in GSE coordinates across the MFR is (vsw(t − t0) − x0, 0,−z0)
(where t0 is the time at which the MFR encounters the spacecraft, −x0 is the x GSE coordinate
at the entrance, and z0 is constant), and then applying the inverse transformation of (3.14),{

xsat = (vsw(t− t0)− x0) cosφ

zsat = (vsw(t− t0)− x0) sin θ sinφ− z0 cos θ

The magnetic field circular-cylindrical components given by (3.12), (Br, By, Bϕ), can now be trans-
formed into (BLx , B

L
y , B

L
z ) byBLxBLy

BLz

 =

cosϕsat 0 − sinϕsat
0 1 0

sinϕsat 0 cosϕsat

BrBy
Bϕ

 . (3.17)

It only remains to find z0 and x0 in terms of the parameters of the model. The value z0 comes
from imposing that the impact parameter y0 is the minimum distance to the flux rope axis that
the spacecraft ever reaches, such that it minimizes the function

D2(t) = r2
sat(t) = (vsw(t− t0)− x0)2 cos2 φ+ ((vsw(t− t0)− x0) sin θ sinφ− z0 cos θ)2.

The derivative vanishes at tmin given by

tmin = t0 +
x0

vsw
+
z0 sin θ cos θ sinφ

vswH2
,
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where H =
√

cos2 φ+ sin2 φ sin2 θ. Imposing y2
0 = D2(tmin), and isolating z0, it is obtained that

z0 =
y0H

cos θ cosϕ
. (3.18)

The quantity x0 is computed by making the radial coordinate of the spacecraft at the entrance
and at the exit of the MFR be the same, such that R2 = D2(t0) = D2(t0 + ts), since a circular
cross section without expansion has been assumed:

R2 = D2(t0) = x2
0 cos2 φ+ (−x0 sin θ sinφ− z0 cos θ)2 (3.19)

R2 = D2(t0 + ts) = (vswts − x0)2 cos2 φ+ ((vswts − x0) sin θ sinφ− z0 cos θ)2 (3.20)

The solution for x0 is

x0 =
vswts

2
+

tanφ sin θ

H
y0. (3.21)

Therefore, (BGSEx , BGSEy , BGSEz ) are calculated this way at each iteration of the Levenberg-Marquardt
algorithm until χ2 is minimized, and the output parameters of the model are ϕ, θ, y0 and the co-
efficients αn, βm, of which an initial approximation is initially required.

3.3.2 Conservative quantities in expanding CC MFRs

When an ICME travels through the heliosphere, and there is no erosion nor reconnection with the
ambient solar wind, the relative magnetic helicity Hr and the axial and poloidal magnetic fluxes
φy, φϕ are conserved (Nieves-Chinchilla, 2018). The magnetic fluxes in the CC model (3.12) of a
MFR with radius R and length L, are given by

φy(r) =

∫
Sy

B · dS = πr2

(
B0
y − 2µ0

∞∑
n=1

αn
rn+1

(n+ 1)(n+ 3)

)
φϕ(r) =

∫
Sϕ

B · dS = µ0L

∞∑
m=0

βm
rm+2

(m+ 2)2

(3.22)

The relative magnetic helicity Hr is calculated as expressed in (3.5). Assuming that a MFR is
described by the CC model when it expands from radius R to R′, and from length L to L′, the
conservation of φy, φϕ, Hr imposes physical constraints on the free coefficients of the CC model
(see section 4.1.4 in next chapter).

3.3.3 Including the expansion to the CC reconstruction process

The expansion velocity (vexp) of MFRs can be analyzed and measured in different ways from in
situ observations, and it can include a radial as well as an axial expansion components. Assume
that vexp corresponds to the expansion rate of the MFR cross-sectional radius R with respect to
the axis. Then, the only thing that needs to be changed in the reconstruction technique of section
3.3.1 is the radius of the MFR at the exit of the spacecraft, which will now have expanded to
R+ vexpts. Therefore, equations (3.19)-(3.20) are rewritten as

R2 = D2(t0) = x2
0 cos2 φ+ (−x0 sin θ sinφ− cos θz0)2 (3.23)

(R+ vexpts)
2 = D2(t0 + ts) = (vswts − x0)2 cos2 φ+ ((vswts − x0) sin θ sinφ− z0 cos θ)2 (3.24)
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Substituting z0 in (3.18) into equations (3.23)-(3.24), and using H =
√

cos2 φ+ sin2 φ sin2 θ, they
can be rewritten as

R2 = x2
0H

2 +
y2

0H
2

cos2 φ
− 2x0y0H sin θ tanφ (3.25)

(R+ vexpts)
2 = x2

0H
2 +

y2
0H

2

cos2 φ
− 2x0y0H sin θ tanφ+

+ 2vswtsy0H sin θ tanφ+ v2
swt

2
sH

2 − 2x0tsvswH
2 (3.26)

Now, (3.26) is simplified using (3.25), and the following expression is obtained

2vexpts + v2
expt

2
s = 2vswtsy0H sin θ tanφ+ v2

swt
2
sH

2 − 2x0tsvswH
2

=⇒ x0 =
vswts

2
+

sin θ tanφ

H
y0 −

1

2H2

vexp
vsw

(vexpts − 2R) =

= xno exp.
0 − 1

2H2

vexp
vsw

(vexpts − 2R), (3.27)

where xno exp.
0 coincides with the result obtained without expansion (3.21). The new expression for

x0 in expanding MFRs depends on R, which is not a free parameter of the model. This dependence
can be eliminated by substituting the x0 given by (3.27) in equation (3.23), and solving the resulting
equation for R. The expanding CC model represents a more realistic approach to the evolution
of ICMEs in the interplanetary space, and therefore could enhance the capability of the model to
predict the orientation and physical parameters of MCs.

3.4 Analysis of an event observed by PSP

This section presents an outline of an ICME encountered by Parker Solar Probe (PSP) at 0.547
AU from the Sun on March 15, 2019. The contribution to the comprehensive analysis done in Lario
et al. (in review) has consisted of comparing the results of two types of reconstruction techniques
for this event, the Graduated Cylindrical Shell (GCS) and the CC model, using the procedures
developed by González-Álvarez (2019).

3.4.1 In situ measurements

Figure 3.5 displays the ICME in situ measurements made by the FIELDS and SWEAP sets of
instruments of PSP spacecraft. The black vertical line, located at 08:58 UT on March 15, 2019,
indicates the start of the ICME (the so-called interplanetary shock, characterized by a remarkable
discontinuity of the physical parameters, and followed by the sheath period with fluctuations that
do not follow any specific pattern). The MC period is delimited by two dashed vertical green lines,
and goes from 12:14 UT to 17:45 UT on March 15, 2019. The typical in situ signatures of MCs
that were listed at the beginning of this chapter are observed: the increase in the average magnetic
field strength, the monotonic rotation of the magnetic field direction (mainly in the R-N plane), a
low proton temperature, and βproton � 1.

The expansion velocity vexp has also been calculated as indicated in (Nieves-Chinchilla et al.,
2018c) with the expression vexp = (vs − ve)/2, where vs and ve are the start and end speeds
obtained from a linear fit of the vsw data in the MC interval. The result leads to a negligible
value of vexp = 0.813 km/s. Another parameter that accounts for the cross-section distortion that
occurs in MCs as a result of the interaction with the solar wind is the distortion parameter (DiP),
defined as the fraction of the MC duration that contains half of the total area accumulated under
the magnetic field magnitude curve, such that it satisfies∫ DiP·Td

0
B(t′) dt′∫ Td

0
B(t′) dt′

= 0.5,
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Figure 3.5: In situ data of the ICME detected by PSP on March 15, 2019. From top to bottom: magnetic
field magnitude, magnetic field components in the RTN coordinate system of the spacecraft, plasma density,
proton plasma thermal speed, βproton, and the solar wind bulk velocity (with a pink line that corresponds to
the linear fit of vsw). The bottom three panels are hodograms that plot the magnetic field RTN components
by pairs, with pink lines representing the hourly average of the data, and three dots that correspond to
the start time of the MC. Figure generated following the method used in González-Álvarez (2019) adapted
to this event.
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where Td is the duration of the whole MC period. In this case, the DiP has a value of 0.507,
indicating the presence of a highly symmetric profile characteristic of ideal MFR structures.

3.4.2 Reconstructing the event

The MC in situ signatures make this ICME a good candidate for the reconstruction by cylindrical
MFR models. Therefore, the CC model (explained in section 3.3) and the elliptical-cylindrical
(EC) analytical model (a generalization of the CC model, developed in Nieves-Chinchilla et al.,
2018b) have been applied by Lario et al. (in review). The longitude φ and tilt θ of the MFR axis
when it intercepts PSP has given similar results in both models, φCC = 173o and θCC = −2o

for the CC model, and φEC = 169o, θEC = −1o for the EC model. The impact parameter y0

(y0CC/RCC = 0.90, y0EC/REC = 0.80) shows that PSP intercepts the MC close to its edge, and
the radius obtained is rather small (RCC = 0.0084 AU, REC = 0.0129 AU). The EC model gives
an aspect ratio δ = 0.82 of the elliptical cross section, suggesting that it is slightly distorted with
respect to an ideal circular shape.

The Graduated Cylindrical Shell (GCS) model (Thernisien et al., 2009) has also been used in Lario
et al. (in review) to reproduce the 3D structure of the ICME using remote sensing observations
from SOHO and STEREO A. This model assumes a MFR-like structure of the CME, with conical
legs that connect it to the Sun, and a torus-like front edge. The simultaneous observations from
two different points of view, as well as the temporal sequence of them, allows the GCS model to
provide an estimate of the propagation direction, orientation, height and speed (see Figure 3.6).

Figure 3.6: GCS modeling results represented as green grids overplotted in coronagraph images. From
left to right: LASCO/C2 (covers from 2 to 7 solar radii), LASCO/C3 (covers from 3.7 to 30 solar radii)
and STEREO-A/COR-2 (covers from 2.5 to 15.6 solar radii). The first two images were taken at 04:54
UT on March 13, 2019, and the third one, at 04:48 UT on March 13, 2019. The white arrows indicate the
main body of the MFRs. Retrieved from Lario et al. (in review).

3.4.3 Comparison of the CC and GCS 3D reconstruction techniques

Figure 3.7 has been generated to simultaneously show the results of the in situ EC model and
the remote sensing GCS reconstruction, with the aim of evaluating their mutual consistency. It is
observed that, under the assumption of a self-similar expansion of the GCS reconstruction, PSP
intercepts one of the legs of the structure. In addition, the orientation of the MFR axis given by the
EC model is consistent with this interpretation, as seen in Figure 3.7. The main difference between
the both reconstruction techniques is in the radius of the MFR: the EC radius (REC = 0.0129 AU)
is more than 5 times smaller than the GCS radius (RGCS = 0.068 AU at the portion intercepted
by PSP).

This discrepancy could be due to the fact that the self-similar expansion assumption is not realistic,
since it neglects the interactions of the CME with the ambient solar wind, as well as other processes
of expansion, compression, distortion, magnetic forces, and even rotations. The limitation of only
having a 1D cut through the CME, inherent in in situ reconstruction techniques, could be adding

39



even more uncertainty. For this particular ICME, it is suggested in Lario et al. (in review) that a
high-speed solar wind stream could have interacted with the MC compressing it and thus modifying
its shape. Indeed, there are a lot of phenomena in the interplanetary space that could give birth
to different expanding regimes of MFRs that strongly differ from the typical self-similar expansion
assumption. In section 4.2.4 of the next chapter, various expanding behaviors will be discussed in
terms of the occurrence of the kink instability.

This analysis highlights the importance of carrying out studies like Nieves-Chinchilla et al. (2012)
or González-Álvarez (2019), since the exploration of the sources that create differences between
the various types of reconstruction techniques, can give important clues on CME dynamics and
their evolutionary processes. Moreover, the combination of multiview remote sensing observations
as well as multipoint in situ measurements provide a better perspective and helps in analyzing the
consistency of the reconstructed structures.

Figure 3.7: The colored hollow croissant structure corresponds to the GCS fit, self-similarly expanded
to the distance where the CME intercepts PSP. The purple cylinder is the EC reconstruction of the MC
and the black arrows indicate the PSP RTN coordinate system, with PSP located at the center. The
dashed straight black line is the axis of the EC MFR. The orange, green and red straight lines show the
radial direction towards PSP, Earth and STEREO A, respectively. The long black arrow is the direction
of propagation of the nose of the CME as derived by the GCS reconstruction technique. The coordinate
system of the figure is HEEQ (the z axis is the solar rotation axis, the x axis is directed from the center
of the Sun towards the intersection between the solar equator and its central meridian, and the y axis
is chosen to complete the right-handed basis). Figure generated following the method used in González-
Álvarez (2019) adapted to this event, as a contribution to the analysis in Lario et al. (in review).
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4 . Studying the kink instability of MFR
models of CMEs

A numerical method has been developed in this thesis to analyze the helical kink stability of MFRs
with different twist distributions, which is based on the theoretical stability analysis in Linton et al.
(1996). This chapter presents the methodology and results, and discusses them in relation to the
occurrence of rotations, magnetic forces, expansion, reversed chirality, and the shape of the twist
profile, among others. The contents of this part of the chapter have been accepted in Solar Physics
and will be published shortly (Florido-Llinas et al., in review). Finally, the numerical procedure
for the linear stability analysis has been applied to obtain optimal parameters in nonlinear MHD
simulations, which will be used by Mark George Linton and Kalman Knizhnik at NRL for ongoing
research about the emergence of MFRs in the Sun.

4.1 Methodology

4.1.1 Magnetic field configuration

This method can be applied to any MFR model that assumes an axially symmetric cylindrical
magnetic configuration, with cross-sectional radius R. The non-force-free CC model has been
chosen because it has the ability to model various types of magnetic forces, as well as different
twist distributions that increase along the radius of the MFR. Although the real twist profile of
MFRs is still unknown (as explained in section 3.2.3), its increasing behavior has been supported by
observations (Lanabere et al., 2020) and eruption theory (Démoulin et al., 2019). The extensively
used force-free Lundquist and Gold-Hoyle (GH) models will also be employed.

As explained in section 3.3, the CC model assumes a generic polynomial expansion of the current
density j. We will adopt here the most usual approach, in which the series is truncated to a single
term αnr

n for jϕ, and βmr
m for jy. New variables are defined in terms of the original ones in Eq.

(3.12),

τ = B0
y

/(
µ0αn

1

n+ 1
Rn+1

)
, C̃nm = −m+ 2

n+ 1

αn
βm

Rn−m, r̄ = r/R,

and the magnetic field components can be rewritten as
Br = 0

By = B0
y

(
1− 1

τ
r̄n+1

)
Bϕ =

B0
y

τC̃nm
r̄m+1

. (4.1)

To avoid a singularity in the axis, the conditions n ≥ 1 and m ≥ 0 must be fulfilled (limr→0Bϕ(r) =
0 and limr→0 jϕ(r) = 0). In this thesis, the cases [n,m] ∈ {[1, 0], [2, 1], [3, 2], [1, 1]} will be analyzed.
The magnetic field equations for each particular case are given in the second column of Table 4.1.
The goal will be to find the range of parameters τ and C̃nm for which the system is kink unstable
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for each pair [n,m]. The intervals τ ∈ [0.0, 4.0] and C̃nm ∈ [0.5, 2.0] will be studied since CC
fittings often use parameters inside of these ranges.

On the other hand, the Lundquist and GH models (introduced in section 3.1.2) are parametrized
as functions of α and q (see Table 4.1). The aim will be to find α and q for which the system is
kink stable.

Model B Q =
Bϕ
rBy

sin Ω

CC [1, 0]


By = B0

y

(
1− 1

τ
r̄2

)
Bϕ =

B0
y

τC̃10

r̄

1

C̃10R(τ − r̄2)

r̄
(
τ − r̄2 − 1

C̃2
10

)
[
(τ − r̄2)2 + r̄2

C̃2
10

] 1
2
[
r̄2 + 1

C̃2
10

] 1
2

CC [2, 1]


By = B0

y

(
1− 1

τ
r̄3

)
Bϕ =

B0
y

τC̃21

r̄2

r̄

C̃21R(τ − r̄3)

r̄
(
τ − r̄3 − r̄

C̃2
21

)
[
(τ − r̄3)2 + r̄4

C̃2
21

] 1
2
[
r̄2 + 1

C̃2
21

] 1
2

CC [3, 2]


By = B0

y

(
1− 1

τ
r̄4

)
Bϕ =

B0
y

τC̃32

r̄3

r̄2

C̃32R(τ − r̄4)

r̄
(
τ − r̄4 − r̄2

C̃2
32

)
[
(τ − r̄4)2 + r̄6

C̃2
32

] 1
2
[
r̄2 + 1

C̃2
32

] 1
2

CC [1, 1]


By = B0

y

(
1− 1

τ
r̄2

)
Bϕ =

B0
y

τC̃11

r̄2

r̄

C̃11R(τ − r̄2)

τ − r̄2
(

1 + 3
2C̃2

11

)
[
(τ − r̄2)2 + r̄4

C̃2
11

] 1
2
[
1 + 1

C̃2
11

] 1
2

Lund.

{
By = B0

yJ0(αr̄)

Bϕ = B0
yJ1(αr̄)

J1(αr̄)

Rr̄J0(αr̄)
0

GH


By =

B0
y

1 + q2r̄2

Bϕ =
qr̄B0

y

1 + q2r̄2

q

R
0

Table 4.1: Magnetic field, twist and misalignment equations (see Eq. (4.3) for the definition of the
force-free measure given by the misalignment sin Ω).

Figure 4.1a shows the normalized CC magnetic field components By (in red) and Bϕ (in black)

along the normalized radius of the MFR, for τ = 1.0 and C̃nm = 1.0. The axial magnetic field By
is set to B0

y in the core and decreases towards the boundary of the MC by an amount that depends
on the parameter τ : it vanishes there if τ = 1, becoming negative when τ < 1 or closer to B0

y if
τ > 1. The azimuthal component Bϕ is zero in the axis and grows towards the outer edge with a

rate of change that is inversely proportional to C̃nm and τ .

Figure 4.1b and 4.1c show the Lundquist and GH magnetic fields for α = 2.4, 3.4 and q = 1.0, 2.0,
respectively. In fact, varying α in the Lundquist model only squeezes or stretches the horizontal
axis, and so it indicates where the cutoff point of the Bessel functions is taken as the MFR outer
radius. The GH model behaves similarly. For both models, increasing α or q generally entails a
bigger difference between By in the core and the boundary. For the Lundquist case, By becomes
negative when α > 2.4. In the GH model, By stays always positive.
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Figure 4.1: Axial and poloidal magnetic field components of (a) the CC model for [n,m] =
[1, 0], [2, 1], [3, 2], [1, 1] with parameters τ = 1.0, C̃nm = 1.0; (b) the Lundquist model for α = 2.0, 3.0;
(c) the GH model for q = 1.0, 2.0.

4.1.2 Twist or helical pitch

The twist Q was defined in section 3.2.1 as the wavenumber measuring the angle covered by
magnetic field lines per unit length, given by

Q =
Bϕ
rBy

, (4.2)

and its particular expression for each of the models under study is given in the third column of
Table 4.1, which shows that Q is inversely proportional to the MFR cross-sectional radius R.

Figure 4.2a shows the behavior of the product RQ in the CC model, along the normalized radius,
for parameters τ = 1.5 and C̃nm = 0.5. For the cases of the form [n, 0], Q adopts the finite value
of 1/(C̃n0Rτ) in the core, while it vanishes for the rest of them. Then, it increases towards the
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boundary reaching a value that depends on τ : if τ = 1 it goes to infinity in the edge; if τ < 1 the
twist becomes infinite at an internal point of the MFR (r̄ = τ) and then reverses its sign causing
the chirality to change; and if τ > 1, the twist goes to 1/(C̃nmR(τ − 1)) at the edge.

The CC model twist Q is inversely proportional to C̃nm and R. Its profile decreases with increasing
τ and adopts a more uniform shape, so that it is constant to 0 in the limit τ → ∞. Moreover,
for the cases [k + 1, k], larger k implies a smaller growth rate of the twist around the core, thus
adopting more of a stage-like distribution, or in other words, an MFR with a twist distribution
around the core that is different from the one in its outer shell (in this case, it would be almost
uniform in the core, and abruptly increase close to the boundary).

Figure 4.2b displays in blue the quantity RQ in Lundquist model for α = 2.4, 3.4. It has an
increasing profile, growing towards a finite value in the boundary if α < 2.4 and to infinity if
α = 2.4. When α > 2.4 there is a change in the chirality of the MFR that occurs at r̄ = 2.4/α.
Figure 4.2b also shows in orange the product RQ of GH model for q = 1.0, 2.0; indeed, Gold-Hoyle
MFRs are uniformly twisted along their cross-sectional radius.

Figure 4.2: Measurement of RQ along the flux rope radius for (a) CC [n,m] = [1, 0], [2, 1], [3, 2], [1, 1]
with parameters τ = 1.5, C̃nm = 0.5; (b) the Lundquist model (in blue) for α = 2.4 (continuous) and 3.4
(dashed), and the GH model (in orange) for q = 1.0 (continuous) and q = 2.0 (dashed).

4.1.3 Misalignment between j and B

An MFR is said to be force-free (FF) if the magnetic field is completely aligned with the current
density, j ×B = 0. A measure of the force-freeness for the CC model (Eq. (4.1)) is given by the
misalignment between j and B,

sin Ω =
(j×B)|r
|j||B|

=
r̄n(τ − r̄n+1)− m+2

n+1
r̄2m+1

C̃2
nm[

(τ − r̄n+1)2 + 1
C̃2
nm

r̄2(m+1)
] 1

2
[
r̄2n + 1

C̃2
nm

r̄2m
] 1

2

. (4.3)

The configuration is purely FF in the core (sin Ω = 0 at r̄ = 0) for the cases with n > m. Lundquist
and GH models predict MFRs that are completely FF inside. In particular, Lundquist model is a
constant-α or linear FF field, while GH is a non-linear FF model (as explained in section 3.1.2).

The criterion used in the present work to establish if a MFR model that allows the presence of
magnetic forces, is FF or not, at a particular r̄, is given in Nieves-Chinchilla et al. (2016):

• If sin Ω > 0.3 (Ω > 18◦): non-force-free (NFF), with the Lorentz force pointing outwards.

• If |sin Ω| < 0.3 (|Ω| < 18◦): FF.

• If sin Ω < −0.3 (Ω < −18◦): NFF, Lorentz force pointing inwards.
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Figure 4.3 displays how the misalignment sin Ω between j and B varies along the radius and with the
parameter C̃nm, for different pairs [n,m] and τ . Three planes corresponding to sin Ω = −0.3, 0, 0.3
are shown in each of them.

In general, it can be observed that smaller C̃nm makes the structure inward-NFF in the vicinity
of the boundary, while bigger C̃nm makes it be outward-NFF in the middle and outer sections.
The first three panels in Figure 4.3 show how the misalignment changes in the case [1, 0] as τ is
increased: larger τ makes the structure be more FF (for small C̃nm) or outward-NFF towards the
edge (for big C̃nm), and the inward-NFF behavior disappears. This is valid for the rest of [n,m].
The case [1, 1] (see Figure 4.3f) has been included in the analysis because it is outward-NFF in the
core, while the ones of the form [k+1, k] are FF in the axis and become slightly more outward-NFF
in the mid and outer sections as k is increased (see Figure 4.3b, 4.3d, 4.3e for fixed τ = 2.0).

Figure 4.3: Plots of the misalignment sin Ω in function of the normalized radius and the parameter C̃nm.
(a), (b) and (c) show the variation of sin Ω with increasing τ for [1, 0]. (b), (d) and (e) show how sin Ω
changes when k in [k + 1, k] is increased for constant τ = 2.0. The outward-NFF behavior of the case [1,
1] in the core is displayed in (f).
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4.1.4 CC model parameters in expanding MFRs

In the ICME journey throughout the heliosphere, the relative magnetic helicity Hr and magnetic
fluxes φy, φϕ are conservative quantities if there is no erosion or reconnection with the ambient
solar wind. The expressions for these physical quantities for the general CC model were given in
section 3.3.2. They can be rewritten in terms of the CC cases and parameters adopted in this
chapter as

φy = πR2B0
y

[
1− 2

(n+ 3)τ

]
φϕ = LR

B0
y

(m+ 2)τC̃nm

Hr

L
=

4πR3(B0
y)2

τC̃nm

[
1

2(m+ 4)
− 1

(n+ 3)(m+ n+ 5)τ

]
,

where the relative helicity Hr is expressed per unit length. The MFR expands from a radius R to
R′ and from an axial length L to L′. The CC parameters when the MFR has radius R (τ, C̃nm and
B0
y) are known. The aim is to find the parameters τ ′, C̃ ′nm and B0

y
′ of the MFR when it expands

to a radius R′ and axial length L′, in terms of τ, C̃nm and B0
y . This is achieved by making equal

the magnetic fluxes and the relative helicity at the two evolutionary stages: φy = φ′y, φϕ = φ′ϕ and
Hr = H ′r. Isolating 1/τ ′ in φy = φ′y, one obtains

1

τ ′
=
n+ 3

2
+
B0
y

B0
y
′

(
R

R′

)2 [
1

τ
− n+ 3

2

]
, (4.4)

and φϕ = φ′ϕ gives

C̃ ′nm
C̃nm

=
L′

L

R′

R

B0
y
′

B0
y

τ

τ ′
(4.5)

Substituting Eq. (4.4) and (4.5) in Hr = H ′r, the final results are
B0
y
′ =

(
R

R′

)2

B0
y

τ ′ = τ

C̃ ′nm =
L′

L

R

R′
C̃nm

. (4.6)

Therefore, upon expansion, τ remains constant (i.e. the ratio of By in the core to its value in the

boundary does not change), B0
y decreases in a way inversely proportional to (R′)2, and C̃nm can

increase or decrease depending on the relation between L′/L and R′/R. In terms of the magnetic
field components and twist, 

B′y =

(
R

R′

)2

By

B′ϕ =
R

R′
L

L′
Bϕ

Q′ =
L

L′
Q

which implies that the twist will decrease if the MFR axial length increases.

4.1.5 Linear stability analysis

The method to study the kink instability was explained in section 2.3. Here we only summarize the
final equations and stability criteria that have been used for the numerical stability analysis. The
plasma is perturbed by an arbitrarily small perturbation ξ(r, t) from a stationary equilibrium. In
the normal mode approach, a temporal dependence of ξ(r, t) = ξ(r)eiωt is assumed. The unknown
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Lagrange multiplier λ of the generalized energy U = W +λK is related to the temporal frequency
ω through λ = −4πρ0ω

2, where ρ0 is the equilibrium density of the plasma. In the study of the
kink instability, the eigenfunctions ξ(r) have helical symmetry with wavenumber k and arbitrary
radial structure, ξ(r) = [ξr(r), ξy(r), ξϕ(r)]ei(ky+ϕ). Then, the perturbation that minimizes the
generalized energy of the system can be obtained from the radial component ξr given by Euler-
Lagrange equation

d

dr

(
f

dξr
dr

)
− gξr = 0, (4.7)

where f and g are defined as

f =
r3(λ+

(
kBy +

Bϕ
r

)2

1 + k2r2
, (4.8)

g =
k2r

1 + k2r2

r2

{
λ+

(
kBy +

Bϕ
r

)2
}
− rd|B(r)|2

dr
(4.9)

−2B2
ϕ


2
(
kBy +

Bϕ
r

)2

λ+
(
kBy +

Bϕ
r

)2 − 1

+
2

1 + k2r2
(r2λ+ k2r2B2

y −B2
ϕ)

 . (4.10)

The boundary conditions ξ̇r(0) = 0 and ξr(0) = ξ0 (ξ0 can be set to 1 without loss of generality)
ensure regularity at the origin. The imposition of the continuity of the total pressure across the
free boundary of the MFR, with no external field, gives the dispersion relation for λ,

D(λ;R, k) =

[
k2|B(R)|2 + λ+ λ

(1 + k2R2)K1(|k|R)

|k|RK0(|k|R) +K1(|k|R)

]
ξr(R)

+

{
Rλ+R

(
kBy +

Bϕ
r

)2
}
ξ̇r(R) = 0, (4.11)

where K0 and K1 are modified Bessel functions. As stated in section 2.3.3, a circular-cylindrical
MFR with given R and B0(r) is said to be kink stable if it is stable to perturbations of any
wavenumber k, so a necessary and sufficient condition for kink stability is that the largest λ for
which the dispersion relation in Eq. (4.11) holds is negative for all k.

4.1.6 Numerical method for the linear stability analysis

Given a particular pair [n,m] defining the magnetic equilibrium B0(r) for the CC model, the
purpose of the numerical procedure that has been developed in Python is to find the value of τ
for each C̃nm above which the system becomes kink stable to perturbations of any wavenumber
k, called τcrit. The intervals of interest are τ ∈ [0.0, 4.0] and C̃nm ∈ [0.5, 2.0] because CC fittings
use parameters that are usually inside of these ranges. An outline of the numerical method is
presented in this section.

For a particular pair of C̃nm and τ , the main subroutine of the code uses Brent’s method (Brent,
2013) to find the zeros of the dispersion relation (4.11). This root-finding algorithm has been chosen
because it has the reliability of the bisection method, given an appropriately chosen bracketing
interval [λ0, λ1] (D(λ0;R, k)D(λ1;R, k) < 0), an it is able to potentially converge to the zero λf
in the interval as fast as the secant method.

After the first zero λf has been found, k is changed to k+∆k for a sufficiently small ∆k. An interval
[λf − L, λf + L] is defined around λf , and subdivided into a specific number N of subintervals.
Starting from above (because we want to find the biggest zero λ, which corresponds to the most
unstable mode), the new subintervals are inspected until a bracketing interval is found, such that
the function D has opposite signs at both ends of it (i.e., it is checked if D(λf +L− 2L/N ;R, k+
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∆k)D(λf + L;R, k + ∆k) < 0. If not, then it is checked if D(λf + L − 4L/N ;R, k + ∆k)D(λf +
L − 2L/N ;R, k + ∆k) < 0, and so on). Brent’s method is applied in the new bracketing interval
to find the precise zero for k+ ∆k. The process is repeated varying k until no positive zero of the
dispersion relation can be found. The main output parameters of this subroutine are:

• kmin, the minimum k for which the largest λ that solves D(λ;R, k) = 0 is positive.

• kmax, the maximum k for which the largest λ that solves D(λ;R, k) = 0 is positive.

• kext, the wavenumber k for which the most unstable mode occurs.

• λext, the most unstable mode occurring for the wavenumber kext, such that λext = max{λ >
0 | ∃k s.t. D(λ;R, k) = 0}.

Each evaluation of D(λ;R, k) requires solving Euler-Lagrange equation to obtain ξr(R), ξ̇r(R), and
this has been implemented with odeint Python routine (source code from Oliphant), which applies
LSODA algorithm for differential equations. The problem is actually solved for the dimensionless
quantities λ̃ = λR2/(B0

y)2, k̃ = kR, r̄ = r/R and B̃ = B/B0
y .

For fixed τ and C̃nm, the program needs a first rough guess of k̃min, k̃max, and also the largest zero
of D(λ̃; 1, k̃) only for one arbitrary value of k̃. The output consists of the precise values of k̃min,
k̃max, k̃ext and λ̃ext. The first approximations of the aforementioned parameters are provided by
graphical inspection for some values of C̃nm and τ , and the process is then automatized to find
them by interpolation of the partial results.

Therefore, for each given C̃nm, the program outputs k̃min, k̃max, k̃ext, λ̃ext for a desired number n
of points in the range of τ ∈ [0.0, 4.0]. Next, a decreasing exponential function is fitted to λ̃ext as a
function of τ (λ̃ext(τ) = αeβτ + γ, with α, β, γ ∈ R). The criterion chosen to define the τcrit above
which the system becomes kink stable is to locate the τ at which the fitted function becomes 0.
This process is repeated to find τcrit as a function of C̃nm, for C̃nm ∈ [0.5, 2.0]

The procedure can be restricted to the variation of a single parameter in order to study the kink
instability of the Lundquist and GH models in terms of α or q, respectively. Moreover, the radial
perturbation ξr that solves Euler-Lagrange equation (4.7) can be computed to get more insight
into the behavior of the instability. Any other desired cylindrically symmetric magnetic profile can
also be analyzed with this method.

4.2 Results and discussion of the stability analysis of MFRs

Figure 4.4 shows the results of the numerical analysis explained in section 4.1.6 for the CC model.
The points correspond to the minimum C̃nm above which the system becomes kink stable for each
τ , for the different cases [n,m]. The linear stability analysis of the Lundquist magnetic profile has
resulted in a stability threshold of αcrit = 3.2, so α < αcrit implies that the system is kink stable.
Likewise, the uniformly-twisted Gold-Hoyle model is kink stable if q < qcrit, with qcrit = 1.2.

It is observed in Figure 4.4 that, for the CC cases studied, big values of τ and C̃nm are likely to
be kink stable, since they make the twist Q decrease, and τ < 1 implies instability. Lundquist and
GH models are kink stable for small α or q. Moreover, among the cases [k+ 1, k] analyzed, Figure
4.4 shows that [1, 0] is less stable than [k + 1, k], for k ≥ 1, while it is also the only case for which
the twist vanishes at r = 0 (see Figure 4.2). This suggests that the presence of twist close to the
axis could have a kink destabilizing effect.

A modified Weibull distribution (Rinne, 2009) has been fitted to each of the analyzed CC cases,
with parameter γ = 1 in the expression

C̃nm(τ) =
ρβ

η

(
τ − γ
η

)β−1

e−( τ−γη )
β

, (4.12)

where the fitted values of β, η, ρ for each [n,m] are shown in Table 4.2. The adjusted functions are
plotted in Figure 4.4 as dashed lines. They provide a good estimate of the stability limit curve for
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Model Stability range

CC [1, 0] C̃10 > C̃10,crit(τ) = (Eq. (4.12) with γ = 1, β = 0.8400, η = 5.7, ρ = 5.6382)

CC [2, 1] C̃21 > C̃21,crit(τ) = (Eq. (4.12) with γ = 1, β = 0.8400, η = 5.7, ρ = 4.7935)

CC [3, 2] C̃32 > C̃32,crit(τ) = (Eq. (4.12) with γ = 1, β = 0.8400, η = 5.7, ρ = 4.3101)

CC [1, 1] C̃11 > C̃11,crit(τ) = (Eq. (4.12) with γ = 1, β = 0.8032, η = 5.8, ρ = 6.1000)

Lund. α < αcrit = 3.2

GH q < qcrit = 1.2

Table 4.2: Summary of the kink stability thresholds obtained.

Figure 4.4: Plot of the points and the fitted Weibull distributions (dashed lines) symbolizing the boundary
values of C̃nm at fixed τ between the stable and unstable regimes of the MFR.

τ ∈ [1.0, 4.0]. It is clearly seen that [1, 1] shows the smallest stability range, while the cases of the
form [k+ 1, k] become increasingly stable to kink as k increases. Future exploration of more [n,m]
cases could provide an expression relating the fitted parameters with the n,m values considered.

The results obtained can now be compared to well-known thresholds for the kink instability of
MFRs that already exist in the literature. They are usually given in terms of the critical total
twist angle, Φcrit, which is related to the twist Q by Φ = QL (L is the MFR axial length).

• The values Φcrit found in the present work depend on the aspect ratio L
R , since Q is in-

versely proportional to R in all cases, as can be seen in Table 4.1. Dungey and Loughhead
(1954) studied a uniformly twisted infinite MFR in an incompressible plasma, considering
By constant, Bϕ = Ar (A ∈ R), and uniform twist Q = A/By. They showed analytically
that Φcrit = 2LR . Here, the uniformly-twisted GH model has been found to predict less

stable MFRs, with lower Φcrit = qcrit
L
R = 1.2LR . The numerical method developed could be

applied to the magnetic field of Dungey and Loughhead (1954) to check that the same result
is obtained, and further exploration of the differences between the two models could provide
more insight into the physical properties that destabilize MFRs.

• Hood and Priest (1981) found the well-known threshold of Φc = 2.5π for line-tied MFRs
described by the GH model. A MFR is said to be line-tied when its two footpoints are
anchored in the photosphere, so one needs to impose that the perturbation ξ vanishes there.
Indeed, laboratory experiments resembling solar line-tied MFRs were carried out (Myers
et al., 2015), and the same critical twist was obtained. Therefore, the threshold does not
depend on the aspect ratio L

R for line-tied MFRs (instead, we found Φcrit = 1.2LR ).
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• The constant-α FF Lundquist has given a stability threshold of αcrit = 3.2 in this work,
assuming a free boundary of the structure. Instead, Voslamber and Callebaut (1962) con-
sidered a MFR enclosed by a perfectly conducting rigid wall, and obtained a very similar
result, αcrit = 3.176. This suggests that the two types of boundary conditions do not have
any significant physical effect on the onset of the kink instability, but this issue should be
independently studied in depth in future research.

4.2.1 Rotations and the kink instability

The kink instability is already regarded as a possible explanation for the rotation of emerging
MFRs in the photosphere (see Figure 4.5), since it makes the axis of the twisted structure become
a helix itself. However, this process has not yet been sufficiently explored to account for rotations
in the lower-middle corona and heliosphere that are sometimes observed.

As stated in Florido-Llinas et al. (in review), the accumulation of poloidal magnetic flux during
the first stages of the evolution of a CME could modify the internal twist distribution and physical
parameters of the MFR, and this change could drive the onset of kink instabilities that would be
seen as rotations in remote sensing coronagraphs (Vourlidas et al., 2011; Nieves-Chinchilla et al.,
2012). This contrasts with the phenomenon that is commonly referred to as CME deflection,
which also displays rotation signatures but is caused solely by the interaction with the ambient
solar wind, and not from internal physical processes such as the kink instability. On this matter,
nonlinear simulations should be done in each case to study how the instabilities evolve in the long
run and whether they are consistent with observations.

The critical twists of Table 4.2 could be used along with observational studies in order to infer
which MFRs are susceptible to rotate. For example, the study made by Wang et al. (2016) on
126 MCs of Lepping’s list (Lepping et al., 2006) with the velocity-modified GH model showed that
interplanetary MFRs have a total twist angle Φ bounded by 0.2LR < Φ < 2LR with an average

Figure 4.5: Graphical representation of the characteristic stages of a confined filament eruption on May
27, 2002, observed by TRACE (Transition Region and Coronal Explorer). The actual remote sensing
measurements (left side of each panel) are compared to a parametric MHD simulation (right side). The
kink instability deforms the axis of the emerging MFR, until reconnection occurs with the ambient field
lines in panel (d), creating a coronal loop as the final result in panel (e). Retrieved from Hassanin and
Kliem (2016).
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of Φ = 0.6LR . The GH threshold found in the present work, Φc = qcrit
L
R = 1.2LR , denotes that

interplanetary MFRs are kink stable on average, but there are a large amount of events with
1.2LR < Φ < 2LR that would still be unstable. Further study of these MFRs and of possible
signatures of rotation would allow us to gain better insight into the relation between rotations and
the occurrence of the kink instability in the interplanetary medium, as well as physically meaningful
constraints on MFR models with multiple free parameters.

4.2.2 Magnetic forces and the kink instability

While the inside of Lundquist and GH MFRs is completely FF, the misalignment between j and
B for the CC model showed different behaviors depending on the pair [n,m] and the parameters
C̃nm, τ , as seen in Figure 4.3. This raises the question of whether there exists any relation between
the magnetic forces that act on an MFR and the occurrence of kink instabilities.

For example, the CC [1, 1] case presents a smaller stability range than the cases [k + 1, k] (see
Figure 4.4). The main difference between them is that [k + 1, k] cases are FF close to the axis,
while [1, 1] is outward-NFF around the core, and has inward magnetic forces close to the boundary
in the most unstable regime corresponding to small C̃nm (see Figure 4.3). In addition, low values
of τ make the MFR be more kink unstable as well as inward-NFF around the boundary (as seen
in Figure 4.3a, 4.3b and 4.3c). Does this mean that the presence of magnetic forces in opposite
directions within the MFR and of inward forces around the edge favor the kink instability?

On the other hand, the boundary of the MFR becomes more outward-NFF at the edge for larger
k in cases [k + 1, k] and for high C̃nm (as seen in Figure 4.3b, 4.3d and 4.3e), which in turn imply
an enhanced stability to kink. Has the presence of outward magnetic forces around the boundary
of a MFR a kink stabilizing effect?

These questions should be addressed in future research to get more insights into how the kink
stability is influenced by magnetic forces, as well as the heliospheric sources of non-force-freeness
and the nature of the magnetic forces that they would induce on MFRs (inward or outward, around
the core or close to the edge...).

With respect to constant-α FF fields, it is sometimes said in the literature that they are all energy-
minimizing and thus stable states of the system. However, this statement is not accurate: as stated
in section 3.1.2, Woltjer (1958) showed that, if the energy of a system with given helicity is at a
minimum, then ∇×B = α0B for some α0, but if ∇×B = α0B, this only implies that the energy
is an extremum but not necessarily a minimum. Therefore, it is not true that all constant-α fields
are stable, as shown in the present work and in Voslamber and Callebaut (1962), where αcrit was
found to be 3.176 for a Lundquist MFR enclosed by a perfectly conducting rigid wall.

4.2.3 Reversed chirality scenario and the kink instability

Another phenomenon that has been observed to occur for certain values of the CC and Lundquist
parameters is the change of the sign of By at some distance from the MFR axis. In general,
assuming that the magnetic field components around the axis are positive (with left-handed (L)
chirality), three scenarios in which the sign of the magnetic field components change some distance
away from the core can occur. The three possibilities are described in Table 4.3. The GH model
does not admit any change in the sign of By or Bϕ. Lundquist model with α > 2.4, and the CC
model with τ < 1 for any [n,m], correspond to option (b) in Table 4.3. Lundquist model also
predicts an additional change in the MFR chirality if α > 3.83, since Bϕ becomes negative.

The results of the stability analysis have shown that a CC MFR is always kink unstable for τ ≤ 1
(see Figure 4.4), or in other words, option (b) is always kink unstable for the CC [n,m] pairs
studied. This is not the case for the Lundquist model, which can be stable in the reversed chirality
scenario when 2.4 < α < 3.2. However, Lundquist double chirality reversal scenario (α > 3.83) is
kink unstable.

The fact that the Lundquist model remains kink stable in the reversed chirality scenario raises
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Option
B properties

Sketch

Part By Bϕ Chirality

(a)
Int. + + L

Ext. + - R

(b)
Int. + + L

Ext. - + R

(c)
Int. + + L

Ext. - - L

Table 4.3: Description of the scenarios in which the sign of the magnetic field components changes at
some distance from the MFR axis. The internal (int.) axial and poloidal magnetic fields are assumed to be
always positive, so that the inner part of the MFR is left-handed (L). The different possibilities of change
in the signs of the external (ext.) By and Bϕ, and their corresponding chirality, are listed. Two sketches
of each scenario are included to clarify the directions of the magnetic field components and the helices that
they generate.

the question of how magnetic flux can be added in opposite directions during the first stages of
the CME evolution. Some events have already been observed that support this hypothesis (Cho
et al., 2013; Vemareddy and Démoulin, 2017). Moreover, theoretical studies have been done on
the physical consequences of the reversed chirality scenario. For example, Einaudi (1990) found
that MFRs with an inversion of the By sign have a much higher critical twist for instability and
involve more drastic nonlinear evolution of the instability. In the thermonuclear fusion field, a
similar magnetic configuration, the reversed field pinch (RFP), which is an axisymmetric toroidal
structure with a change of the By sign (option (b) in Table 4.3), has been subject of extensive
research for the confinement of laboratory plasmas, due to its being a minimum-energy state of
the system and stable against localized MHD instabilities (Schwarzschild, 1981).

Nevertheless, further research on the stability and initiation of these MFR scenarios is needed to
understand the physical processes that would be occurring and how they could have been generated.
The consideration of an additional term of the axial current density of the CC model would also
allow an inversion in the Bϕ sign, and thus the stability of options (a) and (c) could be explored
with the numerical method developed in this thesis.

4.2.4 Expansion and the kink instability

Regarding the evolution of interplanetary MFRs, some conclusions can also be inferred from the
results of the stability analysis of the CC model. Equation (4.6) showed the relation between the
parameters of an MFR with radius R and axial length L, and their values when it evolves into
an MFR with radius R′ > R and axial length L′: τ remains constant, so any change in the kink
stability will be given exclusively by the variation of C̃nm (C̃ ′nm = L′

L
R
R′ C̃nm). Three possible

scenarios can be identified in view of the results in Figure 4.4:

1. L′/L < R′/R: the rate of expansion of the axis length is smaller than the radial growth rate.
In this scenario, C̃ ′nm < C̃nm, so an initially stable MFR can become unstable at some point
of its propagation.

2. L′/L = R′/R: this scenario corresponds to that of self-similar expansion. C̃ ′nm = C̃nm, so
no change in the kink stability is produced.
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3. L′/L > R′/R: the rate of expansion of the axis length is bigger than the radial growth rate.
In this case, C̃ ′nm > C̃nm, so an initially unstable MFR could become kink stable in the
course of its evolution.

These results suggest that different types of interaction may change the stability of a CME and
cause its rotation or its stabilization. Examples of each of the three scenarios are sketched in Figure
4.6. In case 1, an interaction taking place along the sides of a CME could slow down the axial
length growth, while an interacting agent pushing the MFR front from behind could increase the
radial growth rate. This would have a destabilizing effect on it and could cause its rotation, since
C̃ ′nm < C̃nm. In case 2, without any interactions, the MFR would expand self-similarly and its
kink stability would not be affected because C̃ ′nm = C̃nm. In case 3, an interaction acting on the
front of the CME could slow down the radial growth. This would have a stabilizing effect, since
C̃ ′nm > C̃nm.

The next step should be to test these hypotheses with the observational data, by inferring the
ratios L′/L and R′/R from the parameters commonly used to characterize expanding CMEs in
remote sensing observations (e.g. AWD and AWL in Cabello et al., 2016; Cremades et al., 2020, or
Vlat and Vfront in Balmaceda et al., in prep.). For example, the event detected on March 15, 2019,
by PSP (analyzed in section 3.4) could correspond to scenario 3 because the cross-sectional radius
inferred by in situ models was much smaller than the one predicted by self-similar expansion, so
no rotation due to the internal magnetic configuration of the CME would be expected. Single
events with L′/L < R′/R (scenario 1) could then be selected and studied to see if they are likely
to display rotation signatures during their evolution.

Further studies on the different types of interaction that could take place and their effect on the
onset of CME rotations, as well as more comparisons with observational studies and other MFR
models, are still needed to improve the current understanding of the evolution of CMEs and their
kink stability.

Figure 4.6: Top: schematic representation of an MFR, with the radius R and the axial length L indicated.
Bottom: examples of different types of interaction that could be causing each of the three expansion
scenarios. The black MFR is the original one, while the blue MFR represents the structure after expansion
with radius R′ and axial length L′. The orange rectangles are abstractions of possible interacting agents
in the heliosphere, moving towards the MFR in the directions indicated by the arrows.
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4.2.5 Further remarks

There are two basic types of theories describing the initiation of CMEs on the Sun: on-the-fly
MFR theories assume that the MFR forms during the eruption due to a sequence of motions and
reconnections, while preformed MFR theories assume that an MFR had already formed prior to
the eruption. The second type of initiation scenario is more prone to generate MFRs with a stage-
like twist distribution (the term is used to describe distributions that show different behavior of
the twist around the core and in the outer shell), which coincides with the twist profile of CC
[k + 1, k] cases for higher k (almost uniform around the axis and abruptly increasing close to the
edge, as noted in section 4.1.2). On the other hand, MFRs with bigger k have been found to be
more kink stable than other MFRs with the same By and Bϕ at the boundary, as observed in
Figure 4.4. Since the eruption of a CME requires the triggering of the kink instability, this could
suggest that an MFR with continuously distributed twist (i.e. on-the-fly MFR theories) is a more
likely initiation scenario than the corresponding more stable stage-like distribution (i.e. preformed
MFR theories). However, in order to obtain physically meaningful conclusions, more exploration
on the twist distribution that different initiation hypotheses of MFRs theoretically predict, and
the analysis of the kink stability of MFR models with the corresponding twist profiles for each
case, are still needed.

Finally, the study of the kink instability of MFRs can also help to review the choice of the param-
eters that is usually made for some models, as well as to find physical constraints for models that
include multiple free parameters, in order to avoid the occurrence of the instability. For example,
this analysis has shown that α in the Lundquist model can be varied around 2.4 before becoming
unstable for α > 3.2 (as discussed in Démoulin et al., 2019). Additionally, it has been found that
the typical value τ = 1 that is often used to fit events with the CC model results in the kink
instability, for the pairs [n,m] considered.

4.3 Study of optimal parameters for solar MHD simulations

The numerical method that has been developed in the present work (outlined in section 4.1.6) can
also be used to study which values of the parameters of a particular MFR model will result in the
onset of an instability with desirable characteristics, e.g. with the biggest growth rate or with a
particular wavenumber k.

This was the case for a nonlinear MHD simulation that researchers Kalman Knizhnik and Mark
Linton at NRL wanted to carry out, in order to study the role of the kink instability in the
emergence of MFRs from the convection zone into the corona. The goal was to obtain the optimal
parameters that gave the biggest growth rate for a particular instability wavelength that had been
measured in the Sun through remote sensing observations. In this case, the model used to describe
an emerging MFR of cross-sectional radius R is given by{

By(r) = B0

(
1− r2

R2

)p
Bϕ(r) = qrBy(r),

where p and q are free parameters. The model is uniformly twisted with twist Q = Bϕ/(rBy) = q.
We want to find a pair of p and q that results in a big growth rate for the instability for a
sufficiently large wavelength Λ with magnitude of around Λ ∼ 10R. The MFR under study has
physical characteristics of R = 1 Mm, L = 261 Mm, B0 = 13 T and ρ0 = 0.077 kg/m3, although
they will not be needed for the analysis.

As mentioned in section 4.1.6, the numerical procedure that has been developed works with the
adimensional parameters λ̃ = λR2/B2

0 , k̃ = kR, r̄ = r/R, q̃ = qR. The wavelength Λ of the
instability is related to the adimensional wavenumber k̃ of the code through

Λ =
2π

k
=

2π

k̃
R.

54



The maximum growth rate ωmax can be obtained in terms of the adimensional parameter λ̃ext of
the code by taking into account that

λ = −4πρ0ω
2 =

λ̃B2
0

R2
, vA =

√
B2

0

4πρ0
.

Therefore, λ̃ext = −ω2
maxR

2/v2
A, and the final result is

|ωmax| =
vA
R

√
λ̃ext.

The output parameters of the main subroutine of the numerical procedure were defined in section
4.1.6: k̃min, k̃max (the minimum and maximum wavenumbers for which there is kink instability,
respectively), k̃ext (the wavenumber for which the largest growth rate of the instability occurs),
λ̃ext (λ̃ at which the largest growth rate of the instability occurs). These quantities are illustrated
in Figure 4.7.

The variation of the exponent p for fixed values of qR makes the output parameters change,
as can be observed in the example of Figure 4.8 for fixed qR = 1.0 and p adopting the values
p = 0.0, p = 0.1, p = 0.36.

The parameter p is fixed to p = 0.1 since it is a value commonly used in the literature, and we will
explore the variation of kmax, kmin, kext, λext in terms of q. Figure 4.9 shows the results. To find
the stability threshold, we can approximate the quantities k̃min and k̃max with two lines and find
their intersection. The result is that qcrR ∼ 0.32, which means that the MFR becomes linearly
unstable when q > qcr.

Figure 4.7: Graphical representation of the maximum λ̃ that solves the dispersion relation D(λ;R, k) = 0
(see equation (4.11)) as a function of of the wavenumber k̃, for the parameters qR = 1.0 and p = 0.0. The
tildes on the parameters have been omitted to simplify the image.

Figure 4.8: Comparison of the results for the biggest λ̃ = λR2/B2
0 solving the dispersion relation (4.11)

as a function of k/q, for qR = 1.0.
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Figure 4.9: Output of the code for different values of qR and p = 0.1.

To find the wavelength Λ of the most unstable mode as a function of qR, we need to relate it to the
code parameter k̃ext that gave the wavenumber at which the most unstable instability occurred.
The pink dots in Figure 4.10 (left) represent the values of k̃ext found numerically for each qR.
They display a linear behavior, so Λ is found as a function of qR as

kextR = c(qR) + d,

{
c = −0.66213953

d = −0.11361216
,

which implies that

Λ =
2π

|c(qR) + d|
R. (4.13)

This equation allows to predict the wavelength at which the maximum growth rate occurs for each
value of qR. The plot of Λ is shown in Figure 4.10 (right).

To find the maximum growth rate |ωmax| as a function of qR, we need to relate it to the code

parameter λ̃ext. Figure 4.11 (left) shows that log(
√
λ̃ext) = log(ωmaxR/vA) displays a linear

behavior as a function of log((q2 − q2
cr)R

2), where qcr was found to be qcrR = 0.32. Therefore,

taking into account that |ωmax| = vA
√
λ̃ext/R, it can be approximated as

log(

√
λ̃ext) = a[log((q2 − q2

cr)R
2)] + b,

{
a = 1.21984623

b = −1.34042807
,

which ultimately gives

ωmax =
vA
R
ea[log((q2−q2cr)R2)]+b. (4.14)

Figure 4.10: Left: The linear behavior of the interpolated points of kextR is shown in magenta. The
adjusted function kextR = c(qR) + d is plotted in green. Right: Plot of the deduced wavelength Λ of each
individually calculated qR (black dots), and the adjusted function of Eq. (4.13) (blue line).
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Figure 4.11: Left: The linear behavior of the interpolated points of log(
√
λ̃ext) = log(ωmaxR/vA) is

shown in magenta. The adjusted function log(
√
λ̃ext) = a[log((q2− q2cr)R2)] + b is plotted in green. Right:

Plot of the deduced maximum growth rate ωmax of each individually calculated qR (black dots), and the
adjusted function of Eq. (4.14) (blue line).

This relation allows to predict the maximum growth rate for each value of qR, occurring at the
wavelength Λ specified by Eq. (4.13). The plot of |ωmax| is shown in Figure 4.11 (right).

Finally, to get some insights into the behavior of the radial perturbation ξr, the Euler-Lagrange
equation (4.7) can be solved for different values of qR, at the wavelength λ of maximum growth
rate ωmax given by equations (4.13) and (4.14), respectively. The results are shown in Figure
4.12, where the instability is observed to be an internal motion of the plasma for qR ∈ [0.6, 0.7]
approximately, compressing the boundary for qR < 0.6, and expanding it for qR > 0.7.

Since the wavelength Λ decreases with qR and the growth rate ωmax increases with qR, a trade-off
between them is needed. The final choice of parameters results in qR = 1.0 for p = 0.1, because
the fastest growing mode that has been analyzed (with ωmax = 0.21vA/R) gives a sufficiently large
wavelength (Λ = 8R) for the purposes of the solar MHD simulations that will be done.
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Figure 4.12: Shape of ξr for qR = 0.33, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. The wavelength Λ at with the
maximum growth rate ωmax occurs for each qR, and ωmax (as computed with Eq. (4.13) and (4.14)) are
indicated in the titles.
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Summary and conclusions

In the present work, the internal magnetic configuration and dynamics of MFRs have been studied
in terms of MFR modeling and plasma instabilities, with the aim of providing theoretical back-
ground to address fundamental questions about the twist distribution and the magnetic structure
of a dynamically expanding MFR.

The inclusion of the expansion in the CC reconstruction technique has been studied, as well as the
effect of conserved quantities on the physical parameters of the model. In addition, the GCS model
and the EC model have been applied to a particular CME detected by PSP on March 15, 2019,
to check their mutual consistency. The results have shown a big discrepancy in the cross-sectional
radius predicted, which could be due to the fact that the self-similar expansion assumption is not
realistic, and to the limitations imposed by the one-dimensional nature of in situ measurements.

Then, a numerical method has been developed and applied to study the kink instability of differ-
ently twisted MFR models. The stability thresholds found are shown in Table 4.2 and Figure 4.4.
The kink instability has been discussed as a possible cause of CMEs rotations that are produced
solely by their internal magnetic configuration, so the stability thresholds would actually indicate
the range of parameters for which some MFRs are susceptible to rotate. Moreover, the analysis
of the magnetic forces has shown that their occurrence in opposite directions within the MFR
could have a strong destabilizing effect, while outward magnetic forces near the plasma edge could
stabilize the structure.

More phenomena like the reversed chirality scenario or the expansion have also been considered.
The occurrence of the kink instability in expanding MFRs described by the CC model depends on
the ratio of the axial and radial expansion rates: an initially stable MFR could become unstable
during its propagation if L′/L < R′/R, while L′/L > R′/R would have a stabilizing effect. Self-
similar expansion does not lead to changes in the kink stability of the system.

Finally, the numerical procedure developed has been used to obtain the optimal parameters for a
nonlinear MHD simulation of the emergence of MFRs at the Sun, which lead to the onset of an
instability with the desired wavelength and growth rate.
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J. Harvey. Hale’s Discovery of Sunspot Magnetic Fields. The Astrophysical Journal, Nov. 1999.
URL.

A. Hassanin and B. Kliem. Helical Kink Instability in a Confined Solar Eruption. The Astrophysical
Journal, Dec. 2016. DOI. URL.

A. W. Hood and E. R. Priest. Critical conditions for magnetic instabilities in force-free coronal
loops. Geophysical & Astrophysical Fluid Dynamics, Jan. 1981. DOI. URL.

T. Howard. Coronal Mass Ejections: An Introduction. Astrophysics and Space Science Library.
Springer-Verlag, New York, 2011. DOI. URL.

S. Q. Hu. The Grad-Shafranov reconstruction in twenty years: 1996-2016. Science China Earth
Sciences, Aug. 2017. DOI. URL.

S. W. Kahler, S. Krucker, and A. Szabo. Solar energetic electron probes of magnetic cloud field
line lengths. Journal of Geophysical Research: Space Physics, 2011. DOI. URL.

M.-B. Kallenrode. Space Physics: An Introduction to Plasmas and Particles in the Heliosphere
and Magnetospheres. Springer Science & Business Media, Mar. 2004.

K. J. Knizhnik, M. G. Linton, and C. R. DeVore. The Role of Twist in Kinked Flux Rope
Emergence and Delta-spot Formation. The Astrophysical Journal, Sept. 2018. DOI. URL.

V. Lanabere, S. Dasso, P. Démoulin, M. Janvier, L. Rodriguez, and J. J. Maśıas-Meza. Magnetic
twist profile inside magnetic clouds derived with a superposed epoch analysis. Astronomy and
Astrophysics, Mar. 2020. DOI. URL.

D. Lario, L. Balmaceda, M. Mays, N. Alzate, I. Richardson, R. Allen, M. Florido-Llinas, T. Nieves-
Chinchilla, A. Koval, C. Arge, P. Macneice, D. Odstrcil, N. Lugaz, L. Jian, A. Szabo, M. Desai,
P. Whittlesey, M. Stevens, G. Ho, and J. Luhmann. The Streamer Blowout Origin of a Flux
Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 AU. The Astrophysical
Journal, in review.

R. P. Lepping, J. A. Jones, and L. F. Burlaga. Magnetic field structure of interplanetary magnetic
clouds at 1 AU. Journal of Geophysical Research, 1990. DOI. URL.

61

http://adsabs.harvard.edu/abs/2001inma.book.....D
http://doi.org/10.1071/PH540005
http://www.publish.csiro.au/?paper=PH540005
http://doi.org/10.1007/s11207-019-1564-x
http://arxiv.org/abs/1912.09829
https://ui.adsabs.harvard.edu/abs/1990GMS.........43E/abstract
https://ui.adsabs.harvard.edu/abs/1990soas.book.....F/abstract
http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=4636927
https://upcommons.upc.edu/handle/2117/168746
https://ui.adsabs.harvard.edu/abs/1999ApJ...525C..60H/abstract
http://doi.org/10.3847/0004-637X/832/2/106
http://adsabs.harvard.edu/abs/2016ApJ...832..106H
http://doi.org/10.1080/03091928108243687
http://www.tandfonline.com/doi/abs/10.1080/03091928108243687
http://doi.org/10.1007/978-1-4419-8789-1
https://www.springer.com/gp/book/9781441987884
http://doi.org/10.1007/s11430-016-9052-1
http://adsabs.harvard.edu/abs/2017ScChD..60.1466H
http://doi.org/10.1029/2010JA015328
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010JA015328
http://doi.org/10.3847/1538-4357/aad68c
https://doi.org/10.3847%2F1538-4357%2Faad68c
http://doi.org/10.1051/0004-6361/201937404
http://adsabs.harvard.edu/abs/2020A%26A...635A..85L
http://doi.org/10.1029/JA095iA08p11957
http://doi.wiley.com/10.1029/JA095iA08p11957


R. P. Lepping, D. B. Berdichevsky, C.-C. Wu, A. Szabo, T. Narock, F. Mariani, A. J. Lazarus,
and A. J. Quivers. A summary of WIND magnetic clouds for years 1995-2003: model-fitted
parameters, associated errors and classifications. Annales Geophysicae, Mar. 2006. DOI. URL.

A. E. Lifschitz. Magnetohydrodynamics and spectral theory. Developments in electromagnetic
theory and applications. Kluwer Academic Publishers, Dordrecht, Boston, 1989.

M. G. Linton, D. W. Longcope, and G. H. Fisher. The Helical Kink Instability of Isolated, Twisted
Magnetic Flux Tubes. The Astrophysical Journal, Oct. 1996. DOI. URL.

D. W. Longcope, G. H. Fisher, and S. Arendt. The Evolution and Fragmentation of Rising Magnetic
Flux Tubes. The Astrophysical Journal, June 1996. DOI. URL.

S. Lundquist. On the Stability of Magneto-Hydrostatic Fields. Physical Review, July 1951. DOI.
URL.

Z. Mikic, D. D. Schnack, and G. van Hoven. Dynamical Evolution of Twisted Magnetic Flux
Tubes. I. Equilibrium and Linear Stability. The Astrophysical Journal, Oct. 1990. DOI. URL.

R. Mitalas and K. R. Sills. On the photon diffusion time scale for the sun. The Astrophysical
Journal, Dec. 1992. DOI. URL.

C. E. Myers, M. Yamada, H. Ji, J. Yoo, W. Fox, J. Jara-Almonte, A. Savcheva, and E. E. Deluca.
A dynamic magnetic tension force as the cause of failed solar eruptions. Nature, Dec. 2015. DOI.
URL.

NASA Image and Video Library. URL.

National Research Council. Severe Space Weather Events: Understanding Societal and Economic
Impacts: A Workshop Report. Technical report, Washington, DC: The National Academies
Press, Dec. 2008. URL.

T. Nieves-Chinchilla. Modeling Heliospheric Flux Ropes: A Comparative Study of Physical Quan-
tities. IEEE Transactions on Plasma Science, July 2018. DOI. URL.

T. Nieves-Chinchilla, M. G. Linton, M. A. Hidalgo, A. Vourlidas, N. P. Savani, A. Szabo, C. Far-
rugia, and W. Yu. A Circular-cylindrical Flux-rope Analytical Model for Magnetic Clouds. The
Astrophysical Journal, May 2016. DOI. URL.

T. Nieves-Chinchilla, L. F. Guedes dos Santos, A. Vourlidas, N. A. Al-Haddad, N. Savani, and
A. Szabo. Reconstruction of the near-Earth interplanetary coronal mass ejections during 1995-
2015: Catalog of geometrical and physical properties. AGUFM, Dec. 2018a. URL.

T. Nieves-Chinchilla, M. G. Linton, M. A. Hidalgo, and A. Vourlidas. Elliptic-cylindrical Analytical
Flux Rope Model for Magnetic Clouds. The Astrophysical Journal, July 2018b. DOI. URL.

T. Nieves-Chinchilla, A. Vourlidas, J. C. Raymond, M. G. Linton, N. Al-haddad, N. P. Savani,
A. Szabo, and M. A. Hidalgo. Understanding the Internal Magnetic Field Configurations of
ICMEs Using More than 20 Years of Wind Observations. Solar Physics, Feb. 2018c. DOI. URL.

T. Nieves-Chinchilla, R. Colaninno, A. Vourlidas, A. Szabo, R. P. Lepping, S. A. Boardsen, B. J.
Anderson, and H. Korth. Remote and in situ observations of an unusual Earth-directed coronal
mass ejection from multiple viewpoints. Journal of Geophysical Research: Space Physics, 2012.
DOI. URL.

T. Oliphant. SciPy/integrate/odepack.py. URL.

E. J. Oughton, A. Skelton, R. B. Horne, A. W. P. Thomson, and C. T. Gaunt. Quantifying
the daily economic impact of extreme space weather due to failure in electricity transmission
infrastructure. Space Weather, 2017. DOI. URL.

E. Priest. Magnetohydrodynamics of the Sun. Cambridge University Press, Cambridge, 2013. DOI.
URL.

62

http://doi.org/https://doi.org/10.5194/angeo-24-215-2006
https://www.ann-geophys.net/24/215/2006/
http://doi.org/10.1086/177842
http://adsabs.harvard.edu/doi/10.1086/177842
http://doi.org/10.1086/177387
http://adsabs.harvard.edu/doi/10.1086/177387
http://doi.org/10.1103/PhysRev.83.307
http://adsabs.harvard.edu/abs/1951PhRv...83..307L
http://doi.org/10.1086/169232
https://ui.adsabs.harvard.edu/abs/1990ApJ...361..690M/abstract
http://doi.org/10.1086/172103
http://adsabs.harvard.edu/abs/1992ApJ...401..759M
http://doi.org/10.1038/nature16188
http://adsabs.harvard.edu/abs/2015Natur.528..526M
https://images.nasa.gov/
https://doi.org/10.17226/12507
http://doi.org/10.1109/TPS.2018.2811400
https://ieeexplore.ieee.org/document/8337126/
http://doi.org/10.3847/0004-637X/823/1/27
https://ui.adsabs.harvard.edu/abs/2016ApJ...823...27N/abstract
https://ui.adsabs.harvard.edu/abs/2018AGUFMSH51D2863N/abstract
http://doi.org/10.3847/1538-4357/aac951
http://stacks.iop.org/0004-637X/861/i=2/a=139?key=crossref.71d7680750fcde9ffd3f7dd109fbdbfc
http://doi.org/10.1007/s11207-018-1247-z
http://link.springer.com/10.1007/s11207-018-1247-z
http://doi.org/10.1029/2011JA017243
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JA017243
https://github.com/scipy/scipy
http://doi.org/10.1002/2016SW001491
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016SW001491
http://doi.org/10.1017/CBO9781139020732
http://ebooks.cambridge.org/ref/id/CBO9781139020732


M. R. E. Proctor, A. D. Gilbert, and Cambridge University Press. Lectures on Solar and Planetary
Dynamos. Cambridge University Press, Cambridge, 1995.

H. Rinne. The Weibull distribution: a handbook. CRC Press, Boca Raton, 2009.

Z. J. Rong, W. X. Wan, C. Shen, T. L. Zhang, A. T. Y. Lui, Y. Wang, M. W. Dunlop, Y. C.
Zhang, and Q.-G. Zong. Method for inferring the axis orientation of cylindrical magnetic flux
rope based on single-point measurement. Journal of Geophysical Research (Space Physics), Jan.
2013. DOI. URL.

M. Schuessler. Magnetic buoyancy revisited: analytical and numerical results for rising flux tubes.
A&A, Jan. 1979. URL.

B. M. Schwarzschild. Reversed-field pinch stable 8 msec. PhT, 1981. DOI. URL.

J. Stenflo. History of Solar Magnetic Fields since George Ellery Hale. Space Science Reviews, Sept.
2017. DOI. URL.

STEREO Mission Official Website. URL.

A. Thernisien, A. Vourlidas, and R. A. Howard. Forward Modeling of Coronal Mass Ejections
Using STEREO/SECCHI Data. Solar Physics, May 2009. DOI. URL.

T. Török and B. Kliem. Confined and Ejective Eruptions of Kink-unstable Flux Ropes. The
Astrophysical Journal, Sept. 2005. DOI. URL.
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