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ABSTRACT 

We present ADONIS, which stands for Aggregator/Disaggregator for Optical Network equIpmentS, a novel open 

device agent able to construct logical network devices from (dis)aggregation of physical components in order to 

expose meaningful network devices to the SDN controller. We experimentally assess it by means of a control 

closed-loop involving ADONIS, a Software Defined Network controller, a Monitoring and Data Analytics system, 

and a novel reconfiguration tool, SMART-A. 
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1. INTRODUCTION 

To build agile and highly reliable optical networks in a cost-efficient way, the telecom industry moved from fixed 

infrastructure defined at the “design phase” to flexible and reprogrammable hardware capable of supporting 

numerous operating cases. Software Defined Networks (SDN) controllers provide abstractions of network devices 

through open SouthBound Interfaces (SBI) enabling to centralize control and management tasks in a single system. 

Furthermore, monitoring the state of network impairments and dynamically tuning components’ configurations 

enable to reduce margins and entail a reduction in CAPEX [1]. This scenario demands, not only an SDN controller 

for reprogramming the devices, but also a specialized Monitoring and Data Analytics (MDA) system [2] to collate 

monitored data from the network components and to apply novel data analytics techniques, like Machine Learning, 

to extract knowledge and to take appropriate reconfiguration decisions. The network can be reconfigured in a 

proactive or reactive manner when undesired conditions are, respectively, predicted or detected. These automated 

control closed-loops also reduce OPEX and improve the network reliability and performance [3]. 

Besides, network disaggregation has been proposed in the last years aiming at improving the agility at minimal 

cost. To achieve this goal, control interfaces using open device models and protocols were standardized, thus 

enabling coordination between multi-vendor equipment such as in Open Line Systems [4],[5]. Nevertheless, when 

disaggregation level is high, each single component will expose its interface to the SDN controller leading to 

complex management of network elements, e.g. a N-degree ROADM will be a combination of multiple 

independent filter and amplifier cards. Similarly, the dual problem arises when a single shelf integrates components 

belonging to different network nodes, such as transponder and N-degree ROADM cards. However, up to now no 

generic device agent for (dis)aggregated network elements is available. 

In this paper, i) we present ADONIS, introduced in [6], which stands for Aggregator/Disaggregator for Optical 

Network equIpmentS, a novel open device agent prototype, capable of logically disaggregating a single physical 

(commercial) device into multiple logical components and aggregating multiple physical (commercial) devices 

into a single logical component, and exposing the resulting logical devices to the SDN controller; ii) we also 

present a workflow implementing a simple closed-loop that triggers the rerouting of a set of lightpaths when a 

soft-failure affecting them, such as a degradation, is detected; iii) we integrate ADONIS with novel SMART-A 

reconfiguration tool, ONOS SDN controller [7], CASTOR MDA system [2] to provide the required monitoring 

and reconfiguration capabilities to the control and management plane; and iv) we experimentally assess ADONIS 

together with the rest of components in a 4-node meshed optical network testbed with ROADMs from 2 different 

vendors providing experimental results describing the messages exchanged and elapsed time in the operations. 

2. ARCHITECTURE 

The architecture of our testbed network control and management plane is depicted in Figure 1a. The ADONIS 

open device agent logically (dis)aggregates the physical devices into logical devices and interfaces them with 

ONOS. ADONIS is implemented in Python by Nokia Bell Labs. The NorthBound Interface (NBI) relies on 

NETCONF/YANG offering OpenROADM [8] interfaces for ROADMs and OpenConfig [9] ones for 

transponders. We illustrate the use of ADONIS in Figure 1b showing the physical (commercial) data plane and in 

Figure 1c depicting the logical devices composing the 4-node network topology. 

The physical data plane consists of one Nokia 1830 PSI-2T 4-lineport transponder (Figure 1b, upper right) dis-

aggregated by ADONIS into 4 independent logical transponders (labelled TP1 to TP4 in Figure 1c); two 

Lumentum RDM20 degree boxes (Figure 1b, upper right) are aggregated into one virtual 2-degree ROADM 



(labelled R4); and one Nokia 1830 PSS-32 shelf 

(Figure 1b, bottom left), holding 7 iROADM9R cards, 

is aggregated into 3 logical 2-degree ROADMs 

(labelled R1, R2 & R3), 1 card is not used. For R1, R2 

and R3, the ADONIS first needs to disaggregate the 

shelf into its individual cards and then aggregate them 

back into logical ROADMs. 

Variable Optical Attenuators (VOA) are deployed in 

both directions of links R1-R2 and R1-R3 to emulate 

optical fiber perturbations. Moreover, to emulate 

additional lightpaths and bring stability on optical 

power in each network port, the testbed is pre-loaded 

with some loading channels also controlled by the SDN 

controller thanks to emulation functionalities that we 

implemented in ADONIS. From the physical point of 

view, they are implemented by means of an optical 

amplifier chained with optical filters and splitters. By 

controlling add-drop ports in ROADM degree cards, 

we route the loading channels through the network as 

we do for real channels. As a result, the real network 

seen by the SDN controller has 38 logical nodes (4 

logical real ROADMS, 4 logical real transponders, and 

10 logical emulated transponders in each of R1, R2 and 

R3), and 76 unidirectional optical links. For the sake of clarity, emulated components have not been depicted in 

Figure 1b,c. 

The CASTOR MDA system [2] collects and processes monitored data from the network equipment and issues 

appropriate recommendations to the SDN controller. CASTOR is implemented in Python by UPC following a 

micro-services architecture for the backend. The MDA is extended with an application implementing a degradation 

detection algorithm that triggers the control closed-loop presented in section 3. The M-COM interface [10] is used 

to populate the MDA operational databases, in particular, the Traffic Engineering Database (TED) and the Label 

Switching Path Database (LSPDB), and to issue recommendations to the SDN controller. To build a monitoring 

system scalable and performant, given the heterogeneity of network equipment and the volume of monitored 

samples, we choose to use the standardized IPFIX protocol [11] to convey data from ADONIS to CASTOR. IPFIX 

was initially designed to convey packet layer-related monitoring data; we defined some custom fields and 

templates to extend it and enable conveying optical layer devices states, such as transmitted and received power, 

as we detail in section 4. 

The ONOS SDN controller [7] manages the logical devices composing the network topology. We use ONOS 

v2.3.0 with the Open Disaggregated Transport Network (ODTN) drivers which provides the NETCONF/YANG–

based SBIs used by ADONIS. Two additional applications have been deployed, the first one implements the M-

COM interface enabling the coordination between CASTOR and ONOS, while the second one enables translating 

and then forwarding CASTOR recommendations into SMART-A computation requests. 

The SMART-A reconfiguration tool is developed by Nokia Italy in C++. It is responsible for solving the 

optimization problems requested by ONOS, optionally asking the network operator for validation, and 

implementing the computed solution in the network through ONOS. It integrates a REST API to receive 

computation requests from ONOS and uses ONOS standard NBI to retrieve up-to-date information available 

regarding devices, links and connections, and to update connections after a solution is validated. 

3. WORKFLOWS 

Three workflows, reproduced in Figure 2, are used in this work. The first workflow (a), is manually triggered by 

the network operator when the network controller is initialized. It consists in an initial synchronization of the 

operational databases, i.e. TED and LSPDB, belonging to ONOS and CASTOR. Then, ONOS discovers logical 

network devices; for each device, it retrieves its details by means of ADONIS and issues an operational databases 

update notification to CASTOR. The second workflow (b), is manually triggered by the network operator every 

time a new connection is created in ONOS; it configures the appropriate rules in the logical devices along 

connection’s path and issues appropriate update notifications to CASTOR to synchronize its operational databases. 

The third workflow (c) implements the control closed-loop. Periodically, ADONIS retrieves monitoring data 

samples from the physical devices, associates them to the corresponding logical devices and forwards collected 

data to CASTOR by means of IPFIX messages (label 1 in Figure 2c); CASTOR stores the samples on its internal 

repository and forwards them to the degradation detection algorithm (2). The algorithm correlates the samples with 

the network components and analyses trends to identify and localize the origin of degradations by comparing 

ONOS
SDN Ctrl

Planning Tool

ADONIS Open Device Agent

Config & Monit

ConfigSamples

MDA

Data Plane

Reroute

ADONIS

Data Plane

CO #1 CO #N

Recomm.

R1 R4

R2

R3

TP4

TP3

TP1

TP2

R1 R2 R3

Passive Add-Drop blocks
(Couplers)

N
o

k
ia

 1
8

3
0

 P
S

S
-3

2

R4

TP1-4Nokia 1830 PSI-2T

2 x Lumentum RDM20

(a)

(b)

(c)

VOA

VOA

 
Figure 1. Proposed architecture: (a) software 

components of the network controller, (b) physical 

equipment and (c) logical devices and network. 



measurements on transmitted and received power. In case of detecting a degradation, the algorithm issues a 

reconfiguration recommendation to ONOS (3) including the component(s) to be avoided and the affected optical 

connections. When ONOS receives the recommendation, it forwards a request to SMART-A with similar content 

(4); the latter, retrieves from ONOS an up-to-date copy of the operational databases (5) and solves the optimization 

problem to reroute the affected connections taking into account optical layer constraints and aiming at minimizing 

their reconfiguration downtime (6). When SMART-A finds a solution, it optionally asks for validation to the 

network operator, and issues requests to ONOS to implement it (7). ONOS then compiles the new optical 

connection intents and configures the appropriate rules in the logical devices through ADONIS (8). 

4. EXPERIMENTAL VALIDATION 

We carried out the experimental validation in Nokia Bell Labs France testbed deploying the architecture, 

workflows and applications, and configured the logical (dis)aggregations described in sections 2 and 3. Next, we 

initialized the scenario for both real and emulated optical connections following the initialization workflows. We 

configured 2 real bidirectional optical connections, illustrated in Figure 3a, in the test-bed, plus 10 loading channels 

between emulated transponders. Next, we increased in 5 dB the attenuation of VOAs in link R1-R2 to trigger the 

reconfiguration workflow. 

In Figure 3c, we list the Wireshark capture containing the relevant messages conveniently labelled according to 

the reconfiguration workflow. Periodically, samples retrieved by ADONIS are forwarded to CASTOR by means 

of IPFIX messages (label 1 in Figure 3c); CASTOR processes the samples by running the degradation detection 

algorithm (2) and, as a result of detecting a degradation in link ROADM1-ROADM2, the MDA sends a message 

to ONOS through the M-COM interface (3) recommending to avoid that link. Upon reception of the message, 

ONOS forwards a request with similar content to SMART-A to reroute the affected connections (4). Next, 

SMART-A retrieves the operational databases from ONOS (5) and solves the optimization problem (6) and 

implements the solution found (7). Eventually, ONOS installs the appropriate rules in each logical device 

supported by ADONIS (8). The resulting paths are illustrated in Figure 3b. 
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Figure 2. Proposed workflows: (a) initial set-up, (b) per-connection creation, and (c) closed-loop. 
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Figure 3d shows the workflow timeline of the execution. The complete workflow took around 9 seconds; mainly 

driven by the planning tool. Note that a 38-node 76-link is retrieved by SMART-A (real and emulated logical 

hardware) and used as input to solve the optimization problem. The operations performed in that time frame 

includes construction of internal data structures and validation of topology, compute the optimal routing solution 

for the paths, and validate the solutions. The time contributed by the MDA was 847 ms, including the storage of 

samples on its internal repository and execution of the degradation detection algorithm. 

The content of IPFIX and recommendation messages are illustrated in Figure 4. Figure 4a details the custom 

IPFIX template record message (id=701); it contains 4 fields: i) standard field “Observation Point Id” used to 

encode the device port identifier, ii) custom 32-bit unsigned integer field “TimeStamp Nanos” carries the fractional 

part of the timestamp to improve accuracy of IPFIX header’s timestamp field from seconds to nanoseconds, and 

two custom 32-bit floating point fields iii) “Port Input Power dBm” and iv) “Port Input Power dBm” carrying, 

respectively, the input and output optical power of ROADM degree line ports. Figure 4b depicts an example of 

IPFIX message containing one sample belonging to port 26 in logical device with unique identifier 739198. The 

recommendation is shown in Figure 4c; field “affectedIntents” carries the list of connections affected by the 

degradation, while “linkHealths” contains the labels for links where the degradation was localized. Labels 

consist in a health state computed by the algorithm. In particular, “normal” links (default if unlabelled) are safe to 

be used, “hard-failure” links are suffering from significant degradation so they are strongly discouraged and, 

the MDA recommends to avoid “soft-failure” links, when possible, since they have traces of degradation. 

5. CONCLUSIONS 

In this paper, we presented ADONIS, a novel open device agent prototype, able to logically dis(aggregate) and 

emulate physical network equipment and exposing their logical abstractions to the SDN controller. We presented 

a reconfiguration workflow involving ADONIS, ONOS SDN controller, SMART-A reconfiguration tool and 

CASTOR MDA system, and experimentally assessed them in a multi-vendor 4-node meshed optical network 

testbed increased with logically emulated hardware. 
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Figure 4. Relevant messages exchanged: (a) IPFIX template record, (b) IPFIX data record (message 1), and  

(c) JSON recommendation from MDA to ONOS (message 3). 
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