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Abstract. Simulation-based design optimization (SBDO) techniques are used in the shape
design of complex engineering systems. SBDO methods integrate an optimization algorithm,
a tool for the design modification, and analysis tools. In the context of ship/ocean applica-
tions the objective function is often noisy, its derivatives are not directly provided and local
minima cannot be excluded, therefore global derivative-free algorithms are widely used. The
objective of this work is to investigate the efficiency of three global deterministic derivative-free
optimization algorithms for the deterministic and stochastic hull-form optimization of a luxury
yacht. Particle Swarm Optimization (DPSO), Dolphin Pod Optimization (DPO), and DIviding
RECTangles (DIRECT) are applied to reduce the total resistance over a variety of conditions.
The approach includes a comparison of the performances of the optimization algorithms, based
on deterministic results for two separate operating conditions. DPSO is identified as the most
promising optimization algorithm and is used for the robust design optimization (RDO) per-
formed considering a stochastic variation of the cruise speed with uniform distribution within
a speed range from 8 to 16 kn. The resistance curve of deterministic and robust solutions is
finally presented.

1 INTRODUCTION

Simulation-based design analysis and optimization (SBDO) techniques represent an actual
paradigm to assist designers in assessing and designing complex engineering systems, where both
objectives and constraints often involve several concurrent disciplines. SBDO for shape design
has been widely used for diverse engineering applications, such as aerospace, automotive, and
naval, where the vehicle performances (e.g., aerodynamic and aeroelasticity [1, 2], hydrodynamics
and hydro-structural interaction [3, 4, 5|, structures [6], etc.) strongly depend on the shape
design. In this context, automatic SBDO approaches need to efficiently integrate three elements:
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an optimization algorithm, a geometry modification and automatic meshing tools, and simulation
solvers.

Real life applications are affected by several sources of uncertainty, such as environmental
and/or operating conditions. Specifically, uncertainty quantification (UQ) methods are needed
to evaluate the effects of stochastic input parameters on the relevant outputs, which can be rep-
resented in terms of expected value, standard deviation, and probability distribution [7, 8, 9]. In-
tegrating UQ within the design optimization process leads to robust design optimization (RDO)
formulations. SBD/RDO still represents a significant theoretical, algorithmic, and computa-
tional challenge, especially when high-fidelity and/or multi-disciplinary solvers are employed
[10, 11].

The objective of the present work is to investigate the efficiency of three global deterministic
derivative-free optimization algorithms in the hull-form optimization of a luxury yacht under
deterministic and stochastic operating conditions. The interest in investigating and using deter-
ministic global derivative free-algorithms for deterministic and or robust simulation-based shape
design optimization for ship/ocean applications depends on several concurrent issues. Objective
and constraints are often solved using black-box tools through systems of partial differential
equations, they might be noisy and derivatives are not directly provided. Furthemore, the
presence of local minima in the search space cannot be excluded a priori.

Particle Swarm Optimization (DPSO) [12], Dolphin Pod Optimization (DPO) [13], and DI-
viding RECTangles (DIRECT) [14] are applied to reduce the total resistance of a 35m length
overall yacht. The hull form is modified using two design variables, controlling global modifica-
tion functions. Design constraints include fixed displacement, fixed length between perpendicu-
lars, fixed beam and limited (5%) variation of the draft. Two deterministic operating conditions
(namely, cruise speed equal to 10 and 14 kn) are considered separately, along with a stochastic
variation of the cruise speed (uniformly distributed from 8 to 16 kn) for the RDO. A stationary
2DOF problem with free surface is studied by potential flow simulations [15]. Specifically, the
ship advances in calm water and is free to heave and pitch. A quasi Monte Carlo method coupled
with a deterministic variant of the Latin Hypercube Sampling (LHS, [10, 11]) is used for UQ
within RDO.

For the sake of confidentiality, the original geometry of the yacht hull and its optimized
versions are not shown in the current paper.

2 DETERMINISTIC VERSUS ROBUST OPTIMIZATION: PROBLEM FOR-
MULATION

The general deterministic single-objective design optimization problem may be formulated,
within the SBD context, as

maximize or minimize f(x), x € X C RMv (1)

where f, provided by simulations, is the deterministic objective function and the vector x collects
the Npy deterministic design variables. Equality and inequality functional constraints may be
applied to the problem formulated in Eq. 1, if required. Such a formulation implies that all
the inputs of the simulation tools are deterministic and the design optimization is performed for
specific design, operating, and environmental conditions.
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When dealing with real life applications, the problem presented in Eq. 1 is affected by several
sources of uncertainties, such as those related to operating and/or environmental conditions,
therefore UQ methods need to be embedded within the the optimization process. In RDO the
effects of the input uncertainties may be evaluated using diverse formulations of the original
objective function. The expected value, the standard deviation, the cumulative distribution
function or the weighted sum of expected value and standard deviation of the deterministic
objective function might be used to assess the RDO problem in its general form. The current
work focuses on the expected value only, correspondingly the problem in Eq. 1 is reformulated
as

maximize or minimize pu(f) = / f(x,y)p(y)dy, x € X C RVov (2)
Y

where p is the expected value of the original deterministic objective function f, x collects the
Npy deterministic design variables, and p(y) is the probability density function of the stochastic
operating and environmental conditions, collected in y € Y. Functional constraints may be
applied and included in the formulation, if required.

3 SBD OPTIMIZATION PROBLEM AND TOOLBOX AT A GLANCE

The objective function for the problem in Eq. 1 is the total resistance of the yacht in calm
water at 10 and 14 kn, whereas the objective function for the problem in Eq. 2 is the expected
value of the total resistance in calm water, evaluated over a stochastic speed y, with y €[8;16]
kn following a uniform probability density function.

The SBD optimization toolbox includes three essential and interconnected elements: (a) the
optimization algorithm, (b) a tool for the design modification, and (c) the analysis tools. For the
current application three deterministic, single-objective, derivative-free, and global optimization
algorithms are used, the shape modifications are performed using orthogonal basis functions,
the hydrodynamic performances are evaluated using a potential flow solver, and for the RDO
problem, the UQ is performed using a quasi MC method coupled with deterministic LHS. An
overview of the tools implemented is presented in the following.

3.1 Global Derivative-Free Optimization Algorithms

The numerical optimization is performed using DPSO algorithm, DPO, and DIRECT, which
are briefly recalled in the following.

3.1.1 Deterministic Particle Swarm Optimization [DPSO]

PSO, originally introduced by [16], is based on the social-behavior metaphor of a flock of
birds or a swarm of bees searching for food. PSO belongs to the class of heuristic algorithms for
single-objective evolutionary derivative-free global optimization. In order to make PSO more
efficient for SBDO, a deterministic version of the algorithm, namely DPSO, was formulated by
[17] and further investigated in [12]. Accordingly, the location xé of the j-th particle at the i-th
iteration is evaluated as
{ VI = X[V + 1 (% — X5) + a3 — X)) )

_ i+1
X=X +vj
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where x; ,;, is the personal optimum or cognitive term (the best position ever visited by the j-th
particle), xg is the global or social optimum (the overall best position ever visited by all the
particles), x is the constriction factor and ¢; and co are respectively the cognitive and the social
learning rate coefficients.

DPSO performances depend on the number of swarm particles interacting during the opti-
mization, on the initialization of the particles in terms of position and speed in the search space,
and on the set of coefficients defining the personal or global behaviour of the swarm dynamics.
Following [12], the swarm dimension is set to 4+ Npy, the swarm is initialized using Hammersley
sequence sampling (HSS) [18] over the design variables domain and its boundary with non-null
velocity, and the coefficients are defined as y = 0.721, ¢; = ¢ = 1.655 [19]. For the current
application the number of function evaluations is set to Nieyal = 128 - Npy.

3.1.2 Dolphin Pod Optimization [DPO]

DPO algorithm was introduced by [13], based on the metaphor of a pod of dolphins. The
7-th dolphin position x§- and velocity vector V§ at the i-th iteration are respectively defined as

vith = (1 — EAt)V] + At(—k6; + hep;)

i+1 _ _n i+1A4 %)
xj = xj =+ vj
The coefficient of Eq. 4 are defined as

hehe L apo Bl on g (5)
b

where Ng is the number of dolphins, ¢ defines the weights for the attraction forces é; (congre-
gation) and ¢, (self-awareness, communication and memory), whereas p defines the integration
time step At.

DPO performances depend on the number of dolphins interacting during the optimization, on
its initialization in terms of position and speed in the design space, and on the set of coefficients
that control its dynamic. Following the guideline suggested in [13] the pod dimension is set to
Ngq = 4 - Npv, the pod is initialised using HSS on the domain, and the coefficients are defined
as £ = 1.00, ¢ = 1.00, p = 8.00, @ = 0.50. For the current application the number of function
evaluations is set to Neyal = 128 - Npy.

3.1.3 Dlviding RECTangles [DIRECT)]

DIRECT is a sampling deterministic global derivative-free optimization algorithm and a
modification of the Lipschitizian optimization method [14, 20, 21]. The optimization process
starts transforming the domain D of the problem into the unit hyper-cube D. At the first step
f(z) is evaluated at the center (c) of the search domain; the hyper-cube is then partitioned into
a set of smaller hyper-rectangles and f(x) is evaluated at their centers. The partition of D at
iteration k is defined as

Hi={D; : i €T}, with Dy ={z e R™V : &V <oy <l j=1,... Npy, VieTi} (6)
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where €§»l) and ug-l) € [0,1], with ¢ € Z, are the lower and upper bounds defining the hyper-
rectangle D; and Z; is the set of indices identifying the subsets defining the current partition.
At a generic k-th iteration, starting from the current partition Hy of D, a new partition, Hg1,
is built subdividing a set of promising hyper-rectangles of the previous one. The identification
of potentially optimal hyper-rectangles is based on the measure of the hyper-rectangle itself and
on the value of f(x) at its center ¢!. The refinement of the partition continues until a prescribed
number of function evaluations is performed, or another stopping criterion is satisfied. The
minimum of f(x) over all the centers of the final partition, and the corresponding centers,
provide an approximate solution to the problem. For the current application the number of
function evaluations is again set to Nieya = 128 - Npy.

3.2 Shape Modification Method

Shape modifications are represented in terms of orthogonal basis functions 1, (j = 1, ..., Npv),
defined over surface-body patches as [20, 21, 22]

w6 = agsin (B 0 Yo (U4 ey (EmeaxinE ()
where o is the j-th (dimensional) design variable; p; and g; define the order of the basis function
in ¢ and 7 direction respectively; ¢; and x; are the corresponding spatial phases; A; and B;
are the patch extension in  and n respectively, and ey(; is a unit vector. Modifications may be
applied in z, y or z direction (k(j) = 1,2, 3 respectively).

In this work two (normalized) design variables, 1 = /2 and z9 = g, are used. The shape
modifications are obtained as per Eq. 7 with j = 1,2 and k£ = 3. The associated parameters are
p1 = 2.0, ¢1 = 0.0, g1 = 1.0, x1 = 0.0, oy € [-2.0;2.0] and z1 € [~1.0;1.0]; po = 1.0, ¢ = 0.0,
g2 = 2.0, x2 = 0.0, ag € [-1.0;1.0] and z2 € [—1.0;1.0]. Geometric constraints include fixed
length between perpendiculars (Lpp), fixed displacement, and fixed beam, whereas a 5% change
in draft is allowed.

3.3 Hydrodynamic analysis

The hydrodynamics is solved using the code WARP (WAve Resistance Program), developed
at CNR-INSEAN. For details of equations, numerical implementation and validation the reader
is addressed to [15]. Specifically, the wave resistance computations are based on the double-
model linear potential flow (PF) theory [23], whereas the frictional resistance is estimated using
a flat-plate approximation, based on the local Reynolds number [24].

The following assumptions are used for the numerical investigations. The numerical model,
free to sink and trim (2DOF's problem), advances in calm water with v €[8;16] kn. Its reference
length Lpp equals to 34.5 m (0.224 < Fr < 0.447) and the displacement A equals to 240 tons.
The fluid conditions are p = 1000 kg/m3, v = 1.1E-06 m?/s and g = 9.81 m/s?.

PF calculations are performed using a 150x50 panel grid for the hull surface. The computa-
tional domain for the free surface is defined within 1 hull length upstream, 3 lengths downstream
and 1.5 lengths aside, discretized with 30x44, 90x44 and 30x44 surface panels, respectively. Grid
convergence analysis is provided in [25].
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3.4 UQ method
The integral in Eq. 2 is approximated using a quasi MC method as

Nuq

NUQ Z f(x,yi) (8)

A deterministic variant of the LHS method is applied, dividing the uncertain parameter
domain (1D) with Nyg = 2" +1 (h € N*) evenly spaced items [10, 11].

4 NUMERICAL RESULTS

Numerical results are organized as follows. Subsection 4.1 shows the results of the deter-
ministic design optimization aimed at minimizing the total resistance, Rt, in two operating
conditions (i.e. v=10 and v=14kn, respectively indicated as Problem I and II in the following).
Moreover the most promising optimization algorithm is identified, based on deterministic design
optimization results. The RDO results are shown in subsection 4.2 and include a parametric
performance analysis of the RDO solution and the best performing deterministic configurations.

4.1 Deterministic optimization

For Problem I, DPSO, DPO, and DIRECT have a similar objective function reduction (differ-
ences are below 0.5%) even if DPSO and DPO show a faster convergence to the global minimum,
as depicted in Fig. la. The final configurations found by the three algorithms are very close in
terms of design variables, as shown in Fig. 2a. The deterministic optimization results, summa-
rized in Tab. 1, show that the three algorithms achieved approximately the same total resistance
reduction equal about to 11.60%. Figure 3a shows a parametric performance analysis on the
three optimized configurations compared to the original one, versus the cruise speed. As de-
sired, the optimized shapes outperform the original for the design speed (v = 10 kn). For higher
speeds, the optimized hulls show a total resistance larger than the original.
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(a) Problem I (v = 10 kn) (b) Problem II (v = 14 kn)

Figure 1: Deterministic optimization, algorithm convergence
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Figure 2: Deterministic optimization, optimal design variables
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Figure 3: Resistance curve of optimal configurations

Table 1: Deterministic Problem I results (v = 10 kn)

1D T T2 ART%
Original 0.000 0.000 -

DPSO -1.000 -0.159  -11.65

DPO -1.000 -0.167 -11.60

DIRECT -1.000 -0.162 -11.62

For Problem II, DPSO, DPO, and DIRECT achieve a comparable objective function reduction
(the differences are smaller than 1%) even if DPSO shows a faster convergence to the global
minimum and achieves a better solution than DPO and DIRECT, as depicted in Fig. 1b. The
final configurations found by DPSO and DIRECT are close in terms of design variables (see Fig.
2b), whereas DPO design variables values are slightly different. The deterministic optimization
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Table 2: Deterministic Problem II results (v = 14 kn)

1D T T2 ART%

Original ~ 0.000  0.000 -

DPSO 0.911 -0.503  -5.45

DPO 0.806 -0.308  -4.66

DIRECT 0.850 -0.404  -4.98

results are summarized in Tab. 2, showing a total resistance reduction of 5.45%, achieved by
DPSO. Figure 3b shows a parametric performance analysis of the three optimized configurations
compared to the original one, versus the cruise speed. As desired, the three optimized shapes
outperform the original for the design speed (v = 14 kn). For lower speeds, their total resistance
is found larger than the original.
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Figure 4: Wave elevation of original and DPSO optimized hulls

Finally, Fig. 4 shows the comparison between the wave elevation of the original and the
DPSO optimized configurations for Problem I (v = 10) and II (v = 14 kn), respectively. It
may be noted how, for Problem I, the optimized hull reduces bow and stern diverging Kelvin
waves and stern transverse wave. For Problem II, the optimized hull only reduces the bow wave
while slightly increases stern diverging and transverse waves, resulting in a smaller performance
improvement than Problem I.

4.2 Robust optimization

The UQ convergence is studied versus the number of samples Nyq = 2" 411, h €N, for the
design variables at centre domain value (1 = xo = 0). Figure 5a shows the solution change
of the expected value of the total resistance (Ap/p) versus Nyq. A benchmark tolerance for
solution changes is set to 1073, correspondingly a number of UQ samples Nuq = 33 is identified.

Figure 5b represents the DPSO convergence history. DPSO achieves an objective function
reduction of 7.6% showing a quite fast convergence to the global minimum. The RDO is per-
formed using a number of DPSO function evaluations set to 128 - Npy, the same as Problem I
and II. However, it should be noted that the overall number of function evaluation for the RDO
procedure is 128 - Npy - Nyq, since each evaluation of u requires 33 evaluations of the total
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Figure 6: Comparison of deterministic optimization versus RDO, optimal design variables and
resistance curve

Figure 6a shows the design variables values obtained performing the RDO compared to the
deterministic DPSO values of Problem I and II. The RDO optimum falls nearby the optimum
of Problem II.

Table 3 summarizes the results of the RDO optimization and, furthermore, shows the values
of the expect value of the total resistance evaluated ez-post for the optimal configurations of
Problem I and II. Finally, a parametric analysis of the total resistance versus the cruise speed
is presented in Fig. 6b, comparing the performances of the optimal RDO configuration and of
the optimal configurations of Problem I and II to the original ones. A close agreement is found
between Problem II solution and the RDO solution, which however present the best overall
improvement in the speed range (Tab. 3). Furthermore, although the RDO solution presents
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the overall best performance, Problem I solution is slightly better than the others for v = 10 kn.
It should be also noted that the RDO solution outperforms Problem II solution for v = 14 kn,
revealing that probably none of the three algorithms had completely explored the search space
while solving Problem II.

Table 3: Comparison of deterministic optimization versus RDO, summary of results

ID T D) AM%

Original 0.000  0.000 -

DPSO Problem I ~ -1.000 -0.159 11.14

DPSO Problem II  0.911 -0.503 -2.39

DPSO RDO 0.554 -0.580 -7.62

5 CONCLUDING REMARKS AND FUTURE WORK

An exploratory comparative study was presented on the performances of three global derivative-
free optimization algorithms for simulation-based shape design optimization of hydrodynamic
applications. Specifically, the ability of DPSO, DPO and DIRECT was studied for the mini-
mization of the total resistance of a luxury yacht. Two separate deterministic cruise conditions
(Problem I and II) were addressed. A stochastic variation of the cruise speed (uniformly dis-
tributed within the speed range) was also considered for a RDO problem. The RDO was
performed using the best performing algorithm identified from Problem I and II. Two design
variables controlled global shape modifications, an in-house potential solver was used to evalu-
ate the hydrodynamic performances of the yacht, and a quasi MC method with a deterministic
version of LHS was used to solve the UQ within RDO.

The three algorithms showed overall similar performances, achieving for both deterministic
problems comparable reductions of the objective function. For Problem I, DPSO and DPO
converged to the minimum faster than DIRECT, whereas for Problem II DPSO showed a faster
convergence than the other algorithms. Overall, DPSO was identified as the best performing
algorithm and used for the RDO problem.

The deterministic and robust optimization results were compared in terms of total resistance
and its expected value. A parametric analysis over the speed range revealed that the RDO
solution presents the overall best performance. Moreover, Problem I optimal configuration shows
the best performance for its optimization speed (v = 10kn) whereas its performances decrease
in the high speed range. Differently, RDO solution is found slightly outperforming Problem
IT solution at Problem II optimization speed (v = 14 kn), thus revealing that probably during
the deterministic optimization the design space was not completely explored. Furthermore, the
ex-post evaluation of the expected value of the total resistance of the deterministic solutions
showed that Problem I optimal solution has the worst behavior, whereas the deterministic
optimal solution of Problem II presents a similar trend to the RDO solution. Future work will
extend this study addressing higher-dimensional problems using higher-fidelity hydrodynamic
solvers, taking into account diverse probability distributions of cruise speed.
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