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Abstract 

Count data sets may involve overdispersion from a set of species and underdispersion from another set
which would require fitting different models (e.g. a negative binomial model for the overdispersed set and a
binomial model for the underdispersed one). Additionally, many count data sets have very high counts and
very low counts. Categorising these counts into ordinal categories makes the actual counts less influential in
the model fitting, giving broad categories which enable us to detect major broadly-based broadly based
patterns of turnover or nestedness shown by groups of species. In this paper, a strategy of categorising
count data into ordinal data was carried out and also we implemented measures to compare different
cluster structures. The application of this categorising strategy and a comparison of clustering results
between count and categorised ordinal data in two ecological community data sets are shown. A major
advantage of using our ordinal approach is that it allows for the inclusion of all different levels of dispersion in
the data in one methodology, without treating the data differently. This reduction of the parameters on
modelling different levels of dispersion does not substantially change the results in clustering structure. In the
two data sets used in this paper, we observed ordinal clustering structure up to 93.1% 93.1 % similar to
those from the count data approaches. This has the important implication of supporting simpler, faster data
collection using ordinal scales only.

Supplementary materials accompanying this paper appear on-line.
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Introduction

Count Data

One of the most common types of data recorded is a count of the number of times an event occurs, for
example, the number of a particular species at a certain site. The values are non-negative integers, with the
zero value being included or not depending on whether it is ecologically important. The counts may have no
upper bound, or may have a known maximum (as in a binomial or multinomial distribution of n objects over
different categories). In this article, unbounded count data are considered.

Rogers (1974, Chapter 1) describes a stochastic scheme for classifying count data in relation to its variance-
mean ratio. When this ratio is equal to unity, i.e. the variance is equal to the mean, the dispersion of the data
relative to a predefined study region follows a random point pattern (a Poisson process). On the other hand,
if the data have a variance-mean ratio greater than unity, i.e. \(\hbox {variance}>\hbox {mean}\)
(overdispersion), this indicates a more clustered (e.g. spatial or temporal clustering) than random point
pattern. Finally, if the data has have a variance-mean ratio less than unity, i.e. \(\hbox {variance}<\hbox
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pattern. Finally, if the data has have a variance-mean ratio less than unity, i.e. \(\hbox {variance}<\hbox
{mean}\) (underdispersion), the point pattern is more likely to result from a more regular than random or
clustered process. In the case of count data distributed as a random point pattern, the dispersion is expected
to follow a Poisson distribution as the variance of this distribution is equal to its mean. Rogers
(1974, Chapter 2) derives the densities under linearity assumptions detailed below when the dispersion
follows a clustered or regular pattern. This is determined from a random point pattern resulting in a negative
binomial distribution when the dispersion is clustered and in a binomial distribution when the dispersion
follows a regular pattern. In the case of a clustered point pattern (\(\hbox {variance}>\hbox {mean}\),
negative binomial distribution), the probability of an object settling in a quadrat is positively linearly related
to the number of objects already there (e.g. shoal of sardines). If this probability is completely independent
of the number of objects already in a quadrat (e.g. plants with well-dispersed seeds) then the point pattern is
random (\(\hbox {variance}=\hbox {mean}\), Poisson distribution). In a regular point pattern (\(\hbox
{variance}<\hbox {mean}\), binomial distribution), the probability of an object settling in a quadrat
decreases linearly with the number of objects already there (e.g. gannet nests in a colony or songbirds
establishing territories). The mean-variance relationship is a critical property of count data. When not
properly controlled for, trends in location (mean abundance) may be confounded with changes in dispersion
(variance), leading to misleading results (Warton et al. 2012). This is a major problem, and one way to deal
with the variance-mean ratio problem is to turn the count data into ordinal data.

The detection of patterns in matrices of count data was considered by Pledger and Arnold (2014) using the
Poisson distribution. Both single-mode clustering (row clustering only or column clustering only) and
biclustering (simultaneous clustering of rows and columns) were done using finite mixtures. This gave rise to
model-based analogues of correspondence analysis, multidimensional scaling, association analysis,
ordination, biplots and other methods in multivariate analysis. However, for some count data sets sets, the
assumption of a Poisson distribution is unrealistic, and in Hui et al. (2014) the negative binomial distribution
was found to be more appropriate for multidimensional scaling of a matrix of 28 sites by the species
composition of 12 spider species (the same data set used below in the example in Section Sect. 3.1). Each
species was given its own dispersion parameter, to allow for different degrees of spatial clustering. The
question arises of whether a species-specific grouping into ordinal data (e.g. zero or a low, medium or high
count for that species) would provide essentially the same information about overall clustering and
association patterns.

There are several possible problems which could arise from using count data. Firstly, one of the causes of
overdispersion in count data is the presence of outliers. Secondly, count data is are often supplied from data
sets that structurally exclude zero counts (e.g. hospital length of stay data set). Thirdly, a more frequent
situation is count data having an excess of zero counts which are far more that the expected zero counts
under NB or Poisson distributional assumptions (e.g. number captured from spatially rare or hard to detect
species). Lastly, as we described in Section Sect. 1, the binomial distribution is a useful model to use when
count data has have underdispersion . The difficulty in this scenario is the estimation of the number of trials
parameter. Although different models for count data may be fitted depending on the data features, a good
alternative is to recode the data into ordinal scale to fit our ordinal model approach. For instance, compared
with the count data distributions, an ordinal variable is less sensitive to the presence of outliers and is not
affected by the omission of zeros or large number of count outcomes in the data.

The main aims of this paper are to show the advantages of categorising count data into ordinal data in
different situations such as when the count data set has extreme values or involves overdispersion, and to
compare clustering results between count and categorised ordinal data. The plan of the article is as follows.
The methodology of our strategy for determining the optimal number of ordinal categories using likelihood-
based models for matrices of ordinal data is i s presented in Section Sect. 2. Additionally, this Section
presents three measures to compare clusterings from count and ordinal data methods over the same data
set: the adjusted Rand index, the normalized normalised variation of information and the normalized
normalised information distance. The results of clustering comparison in two real data s e t sets from
community ecology are given in Section Sect. 3, and we conclude with a discussion in Section Sect. 4.

Methodology

In this section, we introduce the mixture likelihood-based models built on the ordinal stereotype model to
define our clustering approach (Section (Sect. 2.1). Furthermore, the strategy to categorise the count data



into ordinal outcomes is developed in Section Sects. 2.2, and Section 2.3 introduces the measures to
compare different clustering structures.

Ordinal Stereotype Model Approach

The extension of the likelihood-based models proposed in Pledger and Arnold (2014) for an \(n \times m\)
data matrix with ordinal data was considered by Fernández et al. (2014a). This approach also considered
finite mixtures to define a fuzzy clustering and used the ordered stereotype model introduced by Anderson
(1984) in order to formulate the ordinal approach. The ordered stereotype model including row clustering,
column clustering or biclustering for the probability that \(y_{ij}\) takes the category k that i s characterized
characterised by the following log oddsodds: 

• Row clustering 
MediaObjects/13253_2015_240_Equ5.gif

\[\begin{aligned} \begin{aligned}&{\mathrm {log}} \left( \frac{P\left[ y_{ij}=k \mid i\in r \right]
}{P\left[ y_{ij}=1 \mid i\in r \right] }\right) =\mu_{k}+ \phi_{k}(\alpha_{r} + \beta_{j} +
\gamma_{rj}),\\&k=2,\ldots ,\ell , \qquad r=1,\ldots ,R, \qquad j=1,\ldots ,m. \end{aligned}
\end{aligned}\]

• Column clustering 
MediaObjects/13253_2015_240_Equ6.gif

\[\begin{aligned} \begin{aligned}&{\mathrm {log}} \left( \frac{P\left[ y_{ij}=k \mid j\in c \right]
}{P\left[ y_{ij}=1 \mid j\in c \right] }\right) =\mu_{k}+ \phi_{k}(\alpha_{i} + \beta_{c} +
\gamma_{ic}),\\&k=2,\ldots ,\ell , \qquad i=1,\ldots ,n, \qquad c=1,\ldots ,C. \end{aligned}
\end{aligned}\]

• Biclustering 
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\[\begin{aligned} \begin{aligned}&{\mathrm {log}} \left( \frac{P\left[ y_{ij}=k \mid i\in r, j\in c \right]
}{P\left[ y_{ij}=1 \mid i\in r, j\in c \right] }\right) =\mu_{k}+ \phi_{k}(\alpha_{r} + \beta_{c} +
\gamma_{rc}),\\&k=2,\ldots ,\ell , \qquad r=1,\ldots ,R, \qquad c=1,\ldots ,C, \end{aligned}
\end{aligned}\]

where the inclusion of the monotone increasing constraint \(0=\phi_{1} \le \phi_{2} \le \dots \le \phi_{\ell
}=1\) ensures that the variable response \(\varvec{Y}\) is ordinal (see [see Anderson (1984) ) . ) ] . The
parameters \(\{\mu_{2},\ldots ,\mu_{\ell }\}\) are the cut points, and \(\{\phi_{2},\ldots ,\phi_{\ell }\}\)
are the parameters which can be interpreted as the “scores” for the categories of the response variable
\(y_{ij}\). The sets of parameters \(\{\alpha_{1},\ldots ,\alpha_{n}\}\) and \(\{\beta_{1},\ldots
,\beta_{m}\}\) quantify the main effects of the n rows and m columns columns, respectively, and the set
\(\{\gamma_{11},\ldots ,\gamma_{nm}\}\) are is the associations between the different rows and columns.
We restrict \(\mu_{1}=\phi_{1}=0\), \(\phi_{\ell }=1\),
\(\sum_{i=1}^{n}\alpha_{i}=\sum_{j=1}^{m}\beta_{j}=0\) and we impose sum-to-zero constraints on
each row and column of the association (or pattern detection) matrix \(\gamma \) to ensure identifiability.
\(R\le n\) is the number of row groups, \(C\le m\) the number of column groups, \(i\in r\) means row i is
classified in the row cluster r and \(j\in c\) means column j is classified in the column cluster c. It is
important to note that the actual membership of the rows among the R row-clusters and the columns among
the C column-clusters is unknown and, therefore, it is considered as missing information. Further, we define
\(\{\pi_{1},\ldots ,\pi_{R}\}\) and \(\{\kappa_{1},\ldots ,\kappa_{C}\}\) as the (unknown) proportions of
rows and columns in each row and column g r o u p g r o u p , respectively, with
\(\sum_{r=1}^{R}{\pi_{r}}=\sum_{c=1}^{C}{\kappa_{c}}=1\). We can view \(\pi_{r}\) and
\(\kappa_{c}\) as the a priori row and column membership probabilities.

One of the most common uses of the EM algorithm (Dempster et al. 1977; McLachlan and Krishnan 1997) is
in the case of the estimation of the parameters for a finite mixture-density model with incomplete data which
in this case is the actual unknown cluster membership of each row and/or column. This method performs a
fuzzy assignment of rows/columns to clusters based on the posterior probabilities after likelihood
maximization. maximisation. In this paper, we have fitted a suite of clustering models using the EM
algorithm, and the information criterion AIC was computed for each model to select the best models.



An advantage of using the stereotype model in our ordinal approach is the interpretation of the score
parameters \(\{\phi_k\}\). If two ordinal categories have the same (or very similar) score parameter values,
this provides evidence that those ordinal categories are not distinguishable and we can collapse them into a
single category in our data (Fernández et al. 2014a, Section 1.2.2). It is useful to know into how many cuts
(i.e. into how many ordinal categories) the data must be divided. The following subsection introduces a
strategy to categorise count data based on the ordinal stereotype model.

How Many Ordinal Categories?

One of the questions arising from recoding count data into an ordinal scale is related to determining how
many ordinal categories into which the data should be optimally categorised. We implemented the option of
replacing the count data by their ranks, and then cutting the ranks into groups based on percentiles because
percentiles are not strongly influenced by extreme values in the count data, and can be calculated even if the
counts are skewed. Therefore, percentiles do not depend on the variance-mean ratio scheme of the count
data. When recoding a matrix \(\varvec{Y}=\{y_{ij}\}\), one option is to recode across the whole count data
set with the chosen criterion. However, it may be more appropriate to analyse count data sets where the
columns (or rows) have a dramatically different count pattern. For instance in an ecological community, a
data set of abundance of species (columns) by sites (rows) might have a set of species with a high high-
count pattern because they are either numerous or easily detectable species, whereas other species (more
difficult to observe) have a low count low-count pattern. In order to standardise the species, a recoding
strategy where the columns are recoded separately should be taken.

Given a \(n\times m\) matrix \(\varvec{Y}\) of count data, our strategy to categorise \(\varvec{Y}\) is as
follows:

1. Start by setting a large number of ordinal categories \(\ell \) (e.g. \(\ell =10\)). 
2. Rescale each observation \(y_{ij}\) \((i=1,\ldots ,n\), \(j=1,\ldots ,m)\) as: as 
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\[\begin{aligned} y^{\mathrm{st}}_{ij}=\frac{y_{ij}-
{\mathrm{min}}(\varvec{Y}_{j})}{\mathrm{max}(\varvec{Y}_{j}) -
{\mathrm{min}}(\varvec{Y}_{j})}, \end{aligned}\]
where \(\varvec{Y}_{j}\) (\(j=1,\ldots ,m)\) is the column vector. After this step, we have a new
standardized standardised \(n \times m\) data matrix
\(\varvec{Y}^{\mathrm{st}}=\{y^{\mathrm{st}}_{ij}\}\) which lies on in the range [0, 1]. 

3. Divide each new column vector \(\varvec{Y}^{\mathrm{st}}_{j}\) into \(\ell +1\) quantiles:
\(Q^{(0)},\ldots ,Q^{(\ell )}\). 
There is a number of equivalent ways of defining the sample quantiles. However, the sample quantiles
used in statistical packages in common use such as R are all based in one or two order on one- or two-
order statistics, and can be written as: as 
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\[\begin{aligned} Q^{(k)}= \left\{ \begin{array}{ll} 0 &{} \qquad {\mathrm{if}}\,\,k=0,\\ \\ (1-
\varphi )y^{\mathrm{st}}_{(i)j}+\varphi y^{\mathrm{st}}_{(i+1)j} &{} \qquad
{\mathrm{if}}\,\,k=1,\ldots ,\ell -1,\\ \\ 1 &{}\qquad {\mathrm{if}}\,\,k=\ell ,\\ \end{array} \right.
\end{aligned}\]

(1)

where \(\varphi =nk+s-j\), \(s=\frac{1}{3}(k+1)\), \(j=\lfloor kn+s \rfloor \) is the floor function for
\(kn+s\) (i.e. the largest integer not greater than \(kn+s\)), and \(y^{\mathrm{st}}_{(i)j}\) denotes the
\(i\hbox {th}\) order statistics of the column vector \(\varvec{Y}^{\mathrm{st}}_{j}\) (see [see
Hyndman and Fan (1996) for more details).details]. 

4. Recode each observation \(y^{\mathrm{st}}_{ij}\) \((i=1,\ldots ,n\), \(j=1,\ldots ,m)\) as: as 
MediaObjects/13253_2015_240_Equ2.gif

\[\begin{aligned} y'_{ij}= \left\{ \begin{array}{ll} 0 &{} \qquad {\mathrm{if}}\,\,
y^{\mathrm{st}}_{ij}=0,\\ \\ k &{} \qquad {\mathrm{if}}\,\, y^{\mathrm{st}}_{ij}>0 \,\,
{\mathrm{and}}\,\,y^{\mathrm{st}}_{ij} \in (Q^{(k-1)},Q^{(k)}], \\ \end{array} \right.
\end{aligned}\]

(2)

where \((Q^{(k-1)},Q^{(k)}]\) is the interval of values from vector \(\varvec{Y}^{\mathrm{st}}_{j}\)
between the \((k-1)^{\mathrm{th}}\) \((k-1){\mathrm{th}}\) and \(k^{\mathrm{th}}\)
\(k{\mathrm{th}}\) quantiles, for \(k=1,\ldots ,\ell \). Each interval contains \(\frac{100}{\ell
}\%\)}\,\%\) of the non-zero data. 
As a result of this step, we obtain an ordinal view \(\varvec{Y'}\) of the original data set \(\varvec{Y}\). 
A graphical illustration of the recoding from count data \(y_{ij}\) into ordinal responses \(y'_{ij}\) based
on the quantiles is given in Figure 3 in Web Appendix A. 

5. Fit our ordinal mixture methodology to \(\varvec{Y'}\) (Section (Sect. 2.1). 
6. If two or more adjacent categories have the same score parameter value, collapse them, set the new

number of ordinal categories \(\ell \) and return to step 2. Otherwise, the categorisation is appropriate



and returns the results of model fitting. 

Note that we standardize standardise the original count data with the aim of reducing the number of
quantiles to calculate in the step 3. Thus, we need to calculate only \((\ell +1)\) quantiles for the whole data
set \(\varvec{Y}^{\mathrm{st}}\), instead of \(m\times (\ell +1)\) quantiles (i.e. \(\ell +1\) quantiles for
each column in \(\varvec{Y}\)). However, this standardization standardisation might not work suitably for
some data sets (e.g. when there is no variation in a column and so the maximum and minimum values in
that column are the same) and other strategies can be used. For instance, computing the \(\ell +1\) quantiles
for groups of columns. Additionally, we may wish to directly assign zero values from the original count data
into a particular category in the ordinal scale (see eq. [see Eq. (2)). )]. The reason for this procedure is
related to the particular meaning of the zero value in some data sets such as ecological community data
regarding species abundance, where it is important to keep absences separated from presences. However,
this category could be removed and equation Eq. (2) would simply turn into
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\[\begin{aligned} y'_{ij}= \left\{ \begin{array}{ll} 0&{}\qquad {\mathrm{if}} \,\, y^{\mathrm{st}}_{ij}
\in [Q^{(0)},Q^{(1)}],\\ \\ k &{}\qquad {\mathrm{if}} \,\, y^{\mathrm{st}}_{ij} \in
(Q^{(k)},Q^{(k+1)}], \\ \end{array} \right. \end{aligned}\]

for \(k=1,\ldots ,\ell -1\). Finally, this strategy was presented on categorising throughout columns but the
same idea might be applied over the rows just exchanging columns for rows above.

Comparing Clusterings. Definition of Measures

Let Y be a data set of N observations, then \(\varvec{U}=\{U_1,\ldots ,U_K\}\) is a partition, or clustering,
o f Y into K groups, where \(\bigcup_{k=1}^K U_k=Y\) and \(U_i \cap U_j=\varnothing \) for \(i\ne j\)
(non-overlapping). Equivalently, \(\varvec{V}=\{V_1,\ldots ,V_{K'}\}\) on Y is an alternative of clustering Y
in to \(K'\) groups. The information on the overlap between these two clusterings \(\varvec{U}\) and
\(\varvec{V}\) can be summarised in the form of a \(K\times K'\) contingency table as illustrated in Table 1.

Given two clusterings \(\mathbf{U }\) and \(\mathbf V \), the following quantities are defined via the
marginal and the joint distributions of data items in \(\mathbf U \) and \(\mathbf V \) respectively ,
respectively, as Vinh et al. (2010):
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\[\begin{aligned} \begin{aligned} {\mathrm{H}}(\mathbf U )&= -\sum_{i=1}^{K} \frac{a_i}{N}\log
\left( \frac{a_i}{N}\right) , \qquad \qquad \,\, \text{(Entropy } \text{ for } \mathbf U )\\
{\mathrm{H}}(\mathbf V )&= -\sum_{j=1}^{K'} \frac{b_j}{N}\log \left( \frac{b_j}{N}\right) , \qquad
\qquad \text{(Entropy } \text{ for } \mathbf V )\\ {\mathrm{H}}(\mathbf U ,\mathbf V )&= -
\sum_{i=1}^{K}\sum_{j=1}^{K'} \frac{n_{ij}}{N}\log \left( \frac{n_{ij}}{N}\right) , \qquad
\text{(Joint } \text{ entropy } \text{ for } {} \mathbf U \hbox { and }{} \mathbf V ) \\
{\mathrm{I}}(\mathbf U ,\mathbf V )&= \sum_{i=1}^{K}\sum_{j=1}^{K'} \frac{n_{ij}}{N}\log \left(
\frac{n_{ij}/N}{a_i b_j/N^2}\right) \\&={\mathrm{H}}(\mathbf U )+{\mathrm{H}}(\mathbf V )-
{\mathrm{H}}(\mathbf U ,\mathbf V ). \qquad \text{(Mutual } \text{ information } \text{ for } {}
\mathbf U \hbox { and }{} \mathbf V ) \end{aligned} \end{aligned}\]

(3)

We use three measures in common use to compare clusterings: the adjusted Rand Index (ARI, Hubert and
A rabie (1985) ) , ) , the variation of information (VI, Meila (2005) ) , ) and the normalized normalised
information distance (NID, Kraskov et al. (2005)). ). The ARI is a pair counting-based measure developed
from the Rand index (Rand 1971) and corrected for chance as suggested by Hubert and Arabie (1985). The
ARI remains the most well-known and widely used measure to compare clusterings. For instance, Žiberna
et al. (2004) used this measure to compare clusterings for ordinal data. The formulation of the ARI from
Table 1 is as follows,follows: 
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\[\begin{aligned} {\mathrm{ARI}}(\mathbf U ,\mathbf V )= \frac{\sum_{i=1}^{K}\sum_{j=1}^{K'} \left(
{\begin{array}{c}n_{ij}\\ 2\end{array}}\right) - \frac{\left[ \sum_{i=1}^{K} \left( {\begin{array}{c}a_i\\
2\end{array}}\right) \right] \left[ \sum_{j=1}^{K'} \left( {\begin{array}{c}b_j\\ 2\end{array}}\right)
\right] }{\left( {\begin{array}{c}N\\ 2\end{array}}\right) }}{\frac{1}{2}\left[ \sum_{i=1}^{K} \left(
{\begin{array}{c}a_i\\ 2\end{array}}\right) + \sum_{k=1}^{K'} \left( {\begin{array}{c}b_j\\
2\end{array}}\right) \right] -\frac{\left[ \sum_{i=1}^{K} \left( {\begin{array}{c}a_i\\ 2\end{array}}\right)
\right] \left[ \sum_{j=1}^{K'} \left( {\begin{array}{c}b_j\\ 2\end{array}}\right) \right] }{\left(
{\begin{array}{c}N\\ 2\end{array}}\right) }}. \end{aligned}\]

This measure is bounded above by 1, and a 0 value indicates independent clusterings.

An alternative to pair counting-based measures are is information theoretic-based distance measures. They



are based on the relationship between an observation from Y and its cluster in each of the two clusterings
that are compared. Based on the quantities defined in (3), the VI for clustering \(\mathbf U \) and \(\mathbf
V \) is formulated as
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\[\begin{aligned} {\mathrm{VI}}(\mathbf U ,\mathbf V )={\mathrm{H}}(\mathbf U ,\mathbf V )-
{\mathrm{I}}(\mathbf U ,\mathbf V ) ={\mathrm{2H}}(\mathbf U ,\mathbf V )-{\mathrm{H}}(\mathbf U
)-{\mathrm{H}}(\mathbf V ). \end{aligned}\]

This measure is bounded between 0 and \(\log (N)\). In order to bound it between 0 and 1, the normalized
normalised VI (NVI, Kraskov et al. (2005)) ) is defined, which consists of dividing \({\mathrm{VI}}(\mathbf
U ,\mathbf V )\) by \({\mathrm{H}}(\mathbf U ,\mathbf V )\):
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\[\begin{aligned} {\mathrm{NVI}}(\mathbf U ,\mathbf V ) =1-\frac{{\mathrm{I}}(\mathbf U ,\mathbf V
)}{{\mathrm{H}}(\mathbf U ,\mathbf V )}. \end{aligned}\]

Another distance measure is the NID which is bounded between 0 and 1 and formulated as
MediaObjects/13253_2015_240_Equ13.gif

\[\begin{aligned} {\mathrm{NID}}(\mathbf U ,\mathbf V )=1-\frac{{\mathrm{I}}(\mathbf U ,\mathbf V
)}{{\mathrm{max\{H}}(\mathbf U ),H(\mathbf V )\}}. \end{aligned}\]

A zero value indicates that \(\varvec{U}\) and \(\varvec{V}\) are exactly the same clusterings and a value of
one is interpreted as independent clusterings for both NVI and NID. Thus, we use the unit-complements of
these measures (i.e. 1-NVI and 1-NID) in our comparisons in order to have the same scale interpretation
between ARI, NVI and NID.

Application

In this section, clusterings from approaches for count and ordinal data are compared. The count data-based
clusterings are obtained by applying the likelihood-based methodology described in b y Pledger and Arnold
(2014) for basic Poisson and NB building blocks, and the ordinal data-based clustering by applying
Fernández et al. (2014a) )’s approach (Section (Sect. 2.1). Two real-life data sets are used to illustrate the
comparison among clusterings. These data sets have small dimension. We have not found drawbacks in the
application of our approach to larger data sets (e.g. thousands of sites and species) apart from the higher
computational speed required. For the sake of increasing this speed, we compiled certain functions in C code
and called them from R. Regarding model choice, we have used Akaike’s Information Criterion (AIC, Akaike
(1973)). ). Fernández et al. (2014a) set up a comprehensive simulation study and conclude that the AIC is
the best information criteria when dealing with ordinal data and the likelihood-based finite mixture model
with the stereotype model as the components in the mixture is are fitted. In general terms, the lower is the
AIC value of a model model, the best is the fitting of this model for a data set.

Example 1: Spider Data Set

The spider abundance data set (Van der Aart and Smeenk-Enserink 1974) shows the distribution of 12
different hunting spider species across 28 different sites. We obtained the original count data set from the R
package mvabund using the data set called “spider”. The original count data is are given in Table 5 in Web
Appendix B.1. Note the large number of zeros and also the high counts, suggesting the NB model is
preferable to the Poisson model (Hui et al. 2014). Additionally, Figure 4 in Web Appendix B.1 depicts the
mean and variance for all of the species of spiders throughout the sites. The variance is greater than the
mean in all the species indicating possible overdispersion (the variance-mean ratio ranges from 6.8 to 65.4).
We categorised the original data into four ordinal responses by following the strategy described above
(Section (Sect. 2.2), setting:
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\[\begin{aligned} y_{ij}= \left\{ \begin{array}{ll} \text{(0) \text {(0) }\mathbf{None } \mathbf{None }
&{} \qquad \text{ No } \text{ data } \text{ recorded }\\ \text{(1) } \mathbf{Low } &{} \qquad \text{
Species } \text{ coverage } \text{ is } \text{ below } 25\%\\ \text{(2) } \mathbf{Medium } &{}\qquad
\text{ Species } \text{ coverage } \text{ is } \text{ between } 25\%-65\% \\ \text{(3) } \mathbf{High }
&{} \qquad \text{ Species } \text{ coverage } \text{ is } \text{ higher } \text{ than } 65\%.\\ \text {No
data recorded}\\ \text {(1) }\mathbf{Low } &{} \qquad \text {Species coverage is below }25\,\%\\ \text
{(2) }\mathbf{Medium } &{}\qquad \text {Species coverage is between }25-65\,\% \\ \text {(3)
}\mathbf{High } &{} \qquad \text {Species coverage is higher than }65\,\%.\\ \end{array} \right.
\end{aligned}\]

(4)



The whole ordinal data set and a summary of the frequencies of spider abundance data for this new ordinal
scale are shown in Table 6 in Web Appendix B.1 B.1, respectively. All the categories have similar frequency
(between 56 and 66 observations) apart from the first category, which is for sites and spider species without
the presence recorded.

A suite of models was fitted fitted, and the information criteria measures were computed. The results are
summarised in Table 7 in Web Appendix B.1. AIC indicates that the best model is the stereotype model
version including row (sites) clustering with \(R=3\) row groups (i.e.
\(\mu_{k}+\phi_{k}(\alpha_{r}+\beta_{j})\)) with \(\hbox {AIC}=397.28\). Each row is allocated to the
group to which the site belongs with the highest posterior probability. The resultant row clustering setting is
\({\mathrm{R}}1=\{1-7,13,14\}\), \({\mathrm{R}}2=\{8,21-24,27,28\}\), a n d \({\mathrm{R}}3=\{9-
12,15-20,25,26\}\).

The scatter plot and histogram (Figure (Fig . 1) display the average fitted scores \(\{\overline{\phi
}_{(.j)}\}\) over the 28 sites, using a weighted average which accounts for the fitted spacings (Fernández
et al. 2014a).

Different colour and shape points and colour bars represent the resultant \(R=3\) row (site) clustering
settings. Three groups are distinguished in the scatter plot plot, and the histogram presents three clear
modes. Since each ordinal response category k \((k=0,\dots \((k=0,\ldots ,3)\) is associated with a score
parameter \(\phi_{k}\), the spacing between adjacent \(\phi_{k}\) values shows us how similar or different
categories are in terms of the effect of rows and columns (see [see Agresti (2010, Section 4.3.5.) and
Fernández et al. (2014a, Section 5.2.2)). 5.2.2)]. For this data set, the fitted score parameters were
\(\widehat{\phi }_{0}=0\), \(\widehat{\phi }_{1}=0.39\), \(\widehat{\phi }_{2}=0.89\) and
\(\widehat{\phi }_{3}=1\) (the end points being fixed at 0 and 1). Therefore, the distance between ordinal
categories “Low” and “Medium” (0.50) is greater than that between categories “None” and “Low” (0.11) or
categories “Medium” and “High” (0.39). This spacing is illustrated in the spaced mosaic plot (Fernández et al.
2014b) in Figure Fig. 2.

Table 2 summarises all the 3 three clusterings. They are also also shown in Figure 5 in Web Appendix B.1.

For all the sites, the highest posterior probability stands out from the other two probabilities except for the
sites 16, 17 and 19 (e.g. \(\kappa_1=0.52\) and \(\kappa_3=0.42\) for site 17). The clustering which
allocates the sites 16, 17 and 19 to their highest highest, a posteriori probability cluster is thus not the only
reasonable crisp clustering. For this reason reason, we make an alternative allocation (“Stereotype 2”) which
allocates site 17 to cluster R1 and sites {16, 19} to cluster R2 (whereas they had all been originally allocated
to cluster R3). This enable enables us to test for the effect of the fuzziness when comparing clusterings.
Furthermore, we obtained the count data-based clustering for 3 site groups for Poisson and NB building
blocks, using the highest probability-based allocation criteria. Taking into account the “Stereotype 2”
clustering, the results show that sites \(\{1-7, 13-20, 22-24, 27, 28\}\)  1–7, 13–20, 22–24, 27, 28 are
classified into the same cluster for all three probability models. Sites 8 and 21 are allocated to group R2
according to the ordinal model and in group R3 according to the other two models. The opposite happens in
site 26. The rest of the sites (\(\{9-12, 25\}\)) (9–12, 25) are classified into a different cluster depending on
the fitted model. These clustering structures show that the ordinal stereotype approach is closer to the NB
approach than the Poisson approach, which is as expected given the overdispersion shown for the data.
However, we want to compare the clustering not only graphically but also using the measures described in
Section Sect. 2.3. The measures ARI, NVI, NVI and NID were computed for the three clusterings (Poisson,
NB and Stereotype) Stereotype), and the results are summarised in the Table 3.

Large values of these measures indicate similarity of clustering. Furthermore, we computed an index which
indicates the percentage of the Poisson vs. NB clustering explained by the clustering with ordinal data for
each measure. For example, the ARI value for the Poisson vs. NB comparison is 0.555 and the ARI value for
the NB vs. Stereotype comparison is 0.409. Therefore, the clustering structure with the stereotype approach
explains a \(\left( 1-\frac{0.555-0.409}{0.555}\right) \times 100=73.7\%\)100=73.7\,\%\) of the count
data clustering structure. For the three comparison measures, the Poisson and NB clusterings are the closest
as it is expected. Between count and ordinal data-based models, the “Stereotype 2” clustering is closer to the
NB clustering than the Poisson one. The clustering from the other ordinal data-based model (“Stereotype”) is
also closer to NB than Poisson Poisson, although less similar than the “Stereotype 2”. We observed that the



“Stereotype 2” clustering structure is up to 84.2% 84.2 % similar to those from the count data approach.
The observed similarity between NB and stereotype clusterings is a satisfactory result because the data is are
overdispersed suggesting that NB is preferred over Poisson.

Example 2: Urban Bird Data Set

The urban bird data set (Dolédec et al. 1996) is a list of information about 40 bird species (columns) across
51 sites (rows). We obtained the original count data set from the R package ade4 using the data set called
“aviurba”. As in the previous example, there is a large number of zeros (76% (76 % of the whole data set)
but the difference with the spider data set is that the range of count data values is small, from 0 to 4, i.e. it is
a data set with low counts. Additionally, Figure 6 in Web Appendix B.2 shows that the variance and the mean
have similar values for almost all the species (the variance-mean ratio only ranges from 0.5 to 2.1) indicating
that the point pattern is random random, and therefore a Poisson model is preferable. As this data set only
consist consists of 5 possible count data values and with the aim of obtaining as more similar ordinal data set
to the count data set as possible, we categorised the count values (0, 1, 2, 3, 4) into their corresponding five
ordinal categories with labels \(\{0,1,2,3,4\}\). However, models fitted to these data indicated that the
corresponding estimated score parameters for the adjacent categories 3 and 4, \(\widehat{\phi }_{3}\) and
\(\widehat{\phi }_{4}\), were very close to each other. This spacing is illustrated in the spaced mosaic plot
in Figure 9 in Web Appendix B.2. This implies that the relative frequencies in these two categories are
independent of the clustering structure. Therefore Therefore, retaining the distinction between 3 and 4 is not
informative about the clustering structure (see [see Fernández et al. (2014a, Section 5.2.2) for more detail).
details]. In that case, the model still holds with the same scores if the ordinal scale is collapsed by combining
those two adjacent categories into one single response category. Table 8 in Web Appendix B.2 summarises
the frequencies of urban bird data in the final 4-level four-level ordinal scale.

Furthermore, a suite of models was fitted and a summary of the AIC results are in the bar plot depicted in
Figure 7 in Web Appendix B.2. This bar plot is sorted by AIC and the model version is distinguished by
different bar colours.

AIC indicates that the best model is the column effect model (i.e. \(\mu_{k}+\phi_{k}\beta_{j})\)).
However, as we want to compare clustering structures, we select the stereotype model version including
species clustering with \(C=3\) column groups (i.e. \(\mu_{k}+\phi_{k}\beta_{c})\)) which is labeled
labelled as \(\{rR1,cC3\}\) in the bar plot and is the second best model for the data, according to AIC. The
three species groups are distinguished in the scatter plot in Figure 8 in Web Appendix B.2.

In order to compare clusterings, we fitted the same model \(\{rR1,cC3\}\) for \(C=3\) species groups for
Poisson and NB building blocks (i.e. \(\mu +\beta_{c}\)). Table 9 and Figure 10 in Web Appendix B.2
summarize summarise the clusterings structures for Poisson, NB and ordinal stereotype building blocks based
on the highest posterior probability allocation criterion. We observe that our ordinal approach is closer to the
Poisson approach. This is also confirmed in Table 10 in Web Appendix B.2 which shows the ARI, 1-NVI, 1-
N V I and 1-NID calculations for the three clusterings. The three measures indicate that the stereotype
approach is closer to Poisson. For instance, according to the 1-NID measure, the ordinal clustering structure
in comparison with the Poisson clustering structure is 93.1% 93.1 % similar to the count data approaches.
We observe that all three comparison measures between Poisson and stereotype clusterings result in low
values. This is because each model defines the clustering structure differently. Table 4 shows the average of
the species mean and the variance-mean for each column cluster in both models. We note that the three
groups in the Poisson model have different species mean values, but that difference is not equally reflected in
the variance-mean ratio (i.e. [i.e. 1.100 (Cluster 2) vs. 1.021 (Cluster 3)). 3)]. However, the means are not
as well separated in the stereotype model as in the Poisson model (particularly between groups C2 and C3),
but the three clusters are very well distinguished across the variance-mean ratio. Therefore, the Poisson
model is clustering based on the species mean across the sites, whereas the stereotype model is doing it
based more on the species variance-mean ratio because this model can cluster data sets of all different levels
of dispersion.

Discussion

We have shown some features of categorising count data into ordinal data. In our view, a major advantage is
that by using our approach for ordinal data, we do not have to decide among different parametric models for



the data. It enables the inclusion of all of the different levels of dispersion in one methodology. For example,
if a count data set involves overdispersion from one set of species and underdispersion from another set,
probably the optimal strategy using the original data would be to fit a NB model for the overdispersed set
and a binomial model for the underdispersed one. However, we may fit our ordinal stereotype methodology
to both of these without treating the data differently. Additionally, many count data sets have extreme
values, for example example, very high counts and very low counts in ecological community data. Replacing
these counts with “high” and “low” respectively “low”, respectively, ordinal categories makes the actual counts
less influential in the model fitting, giving broad categories which enable us to detect major broadly-based
broadly based patterns of turnover or nestedness shown by group of species. These features in count data
were illustrated in the two examples presented. The spider data set has large number of zeros, high counts,
and also overdispersion is shown examining the variance-mean ratio. It suggests that the NB model is
preferable. However, similar values for almost all the species in the urban bird data set suggest that the
Poisson would be the best model. In both examples examples, we can fit our ordinal approach regardless the
level of dispersion in the data. Thus, our ordinal data approach has similarities to non-parametric tests, being
based on ranks, which are less susceptible to outliers. Our approach is an alternative analysis for researchers
to consider.

The problem of changes in abundance being confounded with changes in dispersion (Warton et al. 2012)
was addressed in Hui et al. (2014) using complicated negative binomial models with latent variables or finite
mixtures. Our approach has been to simplify the count data into ordered categories, allowing the data to
dictate the spacings, which is a more non-parametric method. The statistical methodology is now available to
evaluate the option of using ordinal rather than count data to identify broad overall patterns of species
abundance. The saving in cost of sampling time in collecting only ordinal data (such as the Braun-Blanquet
scale) may be justified by the benefits of being able to sample more sites and identify overall patterns more
accurately.

Two future research directions may be set in order to investigate the differences between recoded and
original count data. Firstly, setting up an empirical comprehensive study through numerical experiments
across a wide range of scenarios. Secondly, developing a measure to quantify the loss of information due to
use of the ordinal categorisation instead of the original count data.

Although our examples have been drawn from ecological communities, the methods in the article are widely
applicable over many disciplines.
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13253_2015_240_Fig1_print.png 
Fig. 1 Spider abundance data se t: se t: Scatter plot and histogram of the \(R=3\) fitted sites clusters
\(\{\overline{\phi }_{(i.)}\}\) from the row clustering version of the stereotype model
(\(\mu_{k}+\phi_{k}(\alpha_{r}+\beta_{j})\))). 

13253_2015_240_Fig2_print.png 
Fig. 2 Spaced mosaic plot with spacing for the \(R=3\) fitted spider site clusters from the row clustering version of
the stereotype model (\(\mu_{k}+\phi_{k}(\alpha_{r}+\beta_{j})\)). The plot is divided into three horizontal bands
over the y-axis, y-axis, one for each group, and four vertical bands over the x-axis, x-axis, one for each ordinal
category. The fitted spacing \(\{\phi_{k}\}\) is depicted with different color colour blocks (yellow, (yellow, red and
blue) blue) showing differences between two adjacent categories. We observe that ordinal categories 2
(“Medium”) and 3 (“High”) are close to each other (blue band)(blue band).

Table 1 The contingency table for clusterings \(\mathbf U \) and \(\mathbf V \) on Y where \(n_{ij}\) is interpreted
as the number of observations from Y that are common to clusters \(U_i\) and \(V_j\) (i.e. \(n_{ij}=|U_i \cap V_j|\)),
\(a_i\) is the sum of row i (i.e. \(a_{i}=|U_i |\)), and \(b_j\) is the sum of column j (i.e. \(b_{j}=|V_j |\))).

http://http//msor.victoria.ac.nz/foswiki/pub/Main/ResearchReportSeries/TechReport_Spaced_Mosaic_Plots


\(\mathbf{U \backslash
V}\)

\(V_1\) \(V_2\) \(\ldots \) \(V_{K'}\) Total

\(U_1\) \(n_{11}\) \(n_{12}\) \(\ldots \) \(n_{1K'}\) \(a_1\)

\(U_2\) \(n_{21}\) \(n_{22}\) \(\ldots \) \(n_{2K'}\) \(a_2\)

\(\vdots \) \(\vdots \) \(\vdots \) \(\ddots
\)

\(\vdots \) \(\vdots \)

\(U_K\) \(n_{K1}\) \(n_{K2}\) \(\ldots \) \(n_{KK'}\) \(a_K\)

Total \(b_1\) \(b_2\) \(\ldots \) \(b_{K'}\) \(N=\sum_{i=1}^K\sum_{j=1}^{K'}
n_{ij}\)

Table 2 Spider data set: set: Site clustering results for Poisson, NB and ordered stereotype model. The number
of fitted clusters is \(R=3\). All the allocations are based on highest posterior probabilities except for the
“Stereotype 2” clustering which has a fuzzy allocation in the sites shown in boldface

Groups Clustering (highest probability) Stereotype 2

Poisson NB Stereotype

R1{1-7,9-
14,25}

{1–7,9—14,25} {1-7,13,14}{1-
7,13,14}

{1–7,13,14} {1-7,13,14,{1–
7,13,14,17}

R2{22-
24,26-28}

{22–24,26–
28}{9-12,22-28}

{9–12,22–
28}{8,21-
24,27,28}

{8,21–
24,27,28}

{8,16,19,21-
24,27,28},21–
24,27,28}

R3{8,15-
21}

{8,15–21}{8,15-
21}

{8,15–21}{9-
12,15-20,25-26}

{9–12,15–
20,25–26}

{9-12,15,18,20,25-26} {9–
12,15,18,20,25–
26}

The number of fitted clusters is \(R=3\). All the allocations are based on the highest posterior probabilities except
for the “Stereotype 2” clustering which has a fuzzy allocation in the sites shown in boldface. 

Table 3 Spider data set: set: Clustering results for Poisson, NB, N B and two classifications based on the
ordered stereotype model (“Stereotype” and “Stereotype 2”).

Clustering comparison ARI 1-NVI 1-NID

Poisson versus NB 0.555 0.562 0.701

Poisson versus Stereotype 0.280 (50.5 %) 0.229 (40.7 %) 0.361 (51.5 %)

NB versus Stereotype 0.409 (73.7 %) 0.335 (59.6 %) 0.500 (71.3 %)

Poisson versus Stereotype 2 0.334 (60.2 %) 0.304 (54.1 %) 0.457 (65.2 %)

NB versus Stereotype 2 0.465 (83.8 %) 0.423 (75.3 %) 0.590 (84.2 %)
The number of fitted clusters is \(R=3\). Large values indicate similarity of clustering. The percentage of the
Poisson vs. versus NB clustering explained by the clustering with ordinal data is indicated in parenthesis. The
closest clusterings are the two count data-based models (Poisson and NB) over the three measures. Between
count and ordinal data-based models, “Stereotype 2” is closer to NB than Poisson and is shown in boldface

Clustering Comparison ARI 1-NVI 1-NID

Poisson vs. NB 0.555 0.562 0.701

Poisson vs. Stereotype 0.280 (50.5%) 0.229 (40.7%) 0.361 (51.5%)

NB vs. Stereotype 0.409 (73.7%) 0.335 (59.6%) 0.500 (71.3%)

Poisson vs. Stereotype 2 0.334 (60.2%) 0.304 (54.1%) 0.457 (65.2%)

NB vs. Stereotype 2 0.465 (83.8%) 0.423 (75.3%) 0.590 (84.2%)
Table 4 Urban bird abundance data set: Comparison between Poisson and ordered stereotype model cluster
structure. boldface. 

Table 4 Urban bird abundance data set: Comparison between Poisson and ordered stereotype model cluster
structure.

Groups Poisson Stereotype

Mean Var-mean ratio Mean Var-mean ratio

C1 2.206 0.659 2.206 0.659

C2 0.528 1.100 0.501 1.548



C3 0.114 1.021 0.213 0.937
The number of fitted clusters is \(C=3\). Cells in the columns labelled as “Mean” and “Var-Mean Ratio” “Var-mean
ratio” are the average of the mean of the species and variance-mean ration across the 51 si tes sites,
respectively, for each species cluster

Groups Poisson Stereotype

Mean Var-Mean Ratio Mean Var-Mean Ratio

C1 2.206 0.659 2.206 0.659

C2 0.528 1.100 0.501 1.548

C3 0.114 1.021 0.213 0.937
cluster. 
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